Geosci. Model Dev., 13, 1885-1902, 2020
https://doi.org/10.5194/gmd-13-1885-2020

© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Parallel I/0O in Flexible Modelling System (FMS) and

Modular Ocean Model 5 (MOMS)

Rui Yang!, Marshall Ward'2, and Ben Evans'

INational Computational Infrastructure, The Australian National University, Canberra, ACT 0200, Australia
4now at: Geophysics Fluid Dynamics Laboratory, National Oceanic & Atmospheric Administration,

Princeton, NJ 08540-6649, USA

Correspondence: Rui Yang (rui.yang @anu.edu.au)

Received: 12 September 2019 — Discussion started: 11 October 2019
Revised: 15 March 2020 — Accepted: 18 March 2020 — Published: 16 April 2020

Abstract. We present an implementation of parallel I/O in
the Modular Ocean Model (MOM), a numerical ocean model
used for climate forecasting, and determine its optimal per-
formance over a range of tuning parameters. Our imple-
mentation uses the parallel API of the netCDF library, and
we investigate the potential bottlenecks associated with the
model configuration, netCDF implementation, the underpin-
ning MPI-IO library/implementations and Lustre filesystem.
We investigate the performance of a global 0.25° resolution
model using 240 and 960 CPUs. The best performance is ob-
served when we limit the number of contiguous I/O domains
on each compute node and assign one MPI rank to aggre-
gate and to write the data from each node, while ensuring
that all nodes participate in writing this data to our Lustre
filesystem. These best-performance configurations are then
applied to a higher 0.1° resolution global model using 720
and 1440 CPUs, where we observe even greater performance
improvements. In all cases, the tuned parallel I/O imple-
mentation achieves much faster write speeds relative to se-
rial single-file I/O, with write speeds up to 60 times faster at
higher resolutions. Under the constraints outlined above, we
observe that the performance scales as the number of com-
pute nodes and 1/0O aggregators are increased, ensuring the
continued scalability of I/O-intensive MOMS model runs
that will be used in our next-generation higher-resolution
simulations.

1 Introduction

Optimal performance of a computational science model re-
quires efficient numerical methods that are facilitated by the
computational resources of the high performance comput-
ing (HPC) platform. For each calculation in the model, the
operating system (OS) must provide sufficient access to the
data so that the calculation can proceed without interruption.
This is particularly true in highly parallelized models on HPC
cluster systems, where the calculations are distributed across
multiple compute nodes, often with strong data dependen-
cies between the individual processes. I/O operations repre-
sent such a bottleneck, where one must manage the access of
potentially large datasets by many processes while also rely-
ing on the available interfaces, typically provided by a Linux
operating system to a POSIX parallel (or cluster) filesystem
such as Lustre and through to distributed storage arrays. A
poorly designed model can be limited by the data speed of
an individual disk, or a poorly configured kernel may lack a
parallel filesystem that is able to distribute the data transfer
across multiple disks.

Datasets in climate modelling at the highest practical res-
olutions are typically on the order of gigabytes in size per
numerical field, and dozens of such fields may be required to
define the state of the model. For example, a double-precision
floating point variable of an ocean model over a grid of ap-
proximately 0.1° horizontal resolution and 75 vertical levels
will typically require over 5 GiB of memory per field. Over
20 such fields may be necessary to capture the model state
and preserve bitwise reproducibility, and the periodic stor-
age of model output may involve a similar number of vari-
ables per diagnostic time step. A typical 1-year simulation

Published by Copernicus Publications on behalf of the European Geosciences Union.

1886

Compute and I/O domain decomposition

-280 -240 -200 -160 -120 -80 -40 0 40

Figure 1. A representative decomposition of a global domain. Black
squares denote the computational domains of each process, and yel-
low boundaries denote the collection of computation domains into a
larger I/O domain. The global domain is denoted by the red bound-
ary.

can require reading hundreds of gigabytes of input data and
can produce terabytes of model output. For disk speeds of
350 MB s~ !, a serial transfer of each terabyte would take ap-
proximately 1h and can severely burden the model runtime.
For such models, efficient I/O parallelization is a critical
requirement, and the increase in future scalability requires
further improvements in I/O efficiency. Parallel I/O can de-
scribe any skilful decomposition of the reading and writing
of data across multiple threads, processes, compute nodes or
physical storage. Many climate models, and ocean models
in particular, can be characterized as hyperbolic partial dif-
ferential equation (PDE) solvers, which are naturally decom-
posed into numerically solvable subdomains with only local
data dependencies (Webb, 1996; Webb et al., 1997), and it
is natural to consider parallel I/O operations which follow a
similar decomposition.

In short, there are four fundamental approaches to model
I/0, each with its respective tradeoffs, which are outlined in
Table 1. The first three approaches are common when using a
single file per process, although multiple problems can arise
regardless of whether the I/O operation is single-threaded or
distributed (Shan and Shalf, 2007).

In the simplest and most extreme case, the field is fully de-
composed to match the computational decomposition of the
model, so that the data used by each process element (PE),
such as an MPI rank or an OpenMP thread, are associated
with a separate file, i.e. “distributed I/O, single file per PE
in Table 1”. An example decomposition is shown in Fig. 1,
where the numbered black squares denote the computational
domain of each PE. I/O operations in this case are fully par-
allelized. But this can also require an increasing number of
concurrent I/O operations, which can produce an abnormal
load on the OS and its target filesystems when such a model
is distributed over thousands of PEs (Shan and Shalf, 2007).
It can also result in datasets which are distributed over thou-
sands of files, which may require significant effort to either
analyse or reconstruct into a single file.

Geosci. Model Dev., 13, 1885-1902, 2020

R. Yang et al.: Parallel I/O in FMS and MOMS

At the other extreme, it is possible to associate the data of
all PEs with a single file, denoted by the red border in Fig. 1.
One method for handling single-file I/O is to allow all PEs to
directly write to this file. Although POSIX I/0O permits con-
current writes to a single file, it can often compound the is-
sues raised in the previous case, where resource contentions
in the filesystem must now be resolved alongside any con-
tentions associated with the writing of the data itself. Such
methods are rarely scalable without considerable attention to
the underlying resource management, and hence we do not
consider this method in the paper.

A more typical approach for single-file I/O is to assign a
master PE which gathers data from all ranks and then serially
writes the data to the output file. That is, “single-threaded,
single file” in Table 1. While this approach avoids the issues
of filesystem resourcing outlined above, it also requires ei-
ther an expensive collective operation and the storage of the
entire field into memory or a separation of the work into a se-
quence of multiple potentially expensive collectives and /O
writes. These two options represent the traditional tradeoff of
memory usage versus computational performance, and both
are limited to serial I/O write speeds.

In order to balance the desire for parallel I/O performance
while also limiting the number of required files, one can use
a coarser decomposition of the grid which groups the local
domains of several PEs into a larger “I/O domain”, i.e. “dis-
tributed I/0, single file per [/O domain” in Table 1. A repre-
sentative I/O domain decomposition, with I/O domains de-
lineated by the yellow borders, is shown in Fig. 1. Within
each I/O domain, one PE is nominated to be responsible for
the gathering and writing of data. This has the effect of re-
ducing the number of I/O processes to the number of /O do-
mains, while still permitting some degree of scalability from
the concurrent I/O. Several models and libraries provide im-
plementations of I/O domains, including the model used in
this study (Maisonnave et al., 2017; Dennis et al., 2011). A
similar scheme for rearranging data from compute tasks to
selective 1/0 tasks is proposed and implemented in the PIO
(parallel I/0) library, which can be regarded as an alternative
implementation of I/O domains (Edwards et al., 2019).

Because the I/O domain decomposition will produce
fields that are fragmented across multiple files, this often
requires some degree of preprocessing. For example, any
model change which modifies the I/O domain layout, such
as an increase in the number of CPUs, will often require that
any fragmented input fields be reconstructed as single files.
A typical 0.25° global simulation can require approximately
30 min of postprocessing time to reconstruct its fields as sin-
gle files; for global 0.1° simulations, this time can be on the
order of several hours, often exceeding the runtime of the
model which produced the output.

One solution, presented in this paper, is to use a parallel
I/0 library with sufficient access to the OS and its filesystem,
which can optimize performance around such limitations and
provide efficient parallel I/O within a single file, i.e. “paral-

www.geosci-model-dev.net/13/1885/2020/

R. Yang et al.: Parallel I/O in FMS and MOMS

1887

Table 1. Comparison of write pattern between serial I/O and parallel /0.

Number of Postproces-
Write pattern output files Run time sing time
Single-threaded, single file 1 Long None
Distributed I/0O, single file per I/O domain I/O domains Moderate Long
Distributed I/0O, single file per PE PEs Short Long
Parallel 1/0, single shared file 1 Scalable None

lel I/0, single shared file” in Table 1. For example, a library
based on MPI-IO can use MPI message passing to coordinate
data transfer across processes and can reshape data transfers
to optimally match the available bandwidth and number of
physical disks provided by a parallel filesystem such as Lus-
tre (Howison et al., 2010). This eliminates the need for writer
PEs to allocate large amounts of memory and also avoids
any unnecessary postprocessing of fragmented datasets into
single files, while also presenting the possibility of efficient,
scalable I/O performance when writing to a parallel filesys-
tem.

In this paper, we focus on a parallel [/O implementa-
tion for the Modular Ocean Model (MOM), the principal
ocean model of the Geophysical Fluid Dynamics Laboratory
(GFDL) (Griffies, 2012). As MOM and its Flexible Mod-
elling System (FMS) provide an implementation of I/O do-
mains, it is an ideal platform to assess the performance of
these different approaches in a realistic model simulation.
For this study, we focus on the MOMS release, although the
work remains relevant to the more recent and dynamically
distinct MOM6 model, which uses the same FMS frame-
work.

We present a modified version of FMS which supports par-
allel I/O in MOM by using the parallel netCDF API, and
we test two different netCDF implementations: the PnetCDF
library (Li et al., 2003) and the pHDF5-based implementa-
tion of netCDF-4 (Unidata, 2015). When properly config-
ured to accommodate the model grid and the underlying Lus-
tre filesystem, both libraries demonstrate significantly greater
performance when compared to serial 1/O, without the need
to distribute the data across multiple I/O domains.

In order to achieve the satisfied parallel I/O performance,
it is necessary to determine the optimal settings across the
hierarchy of I/O stack, including the user code, high-level
I/0 libraries, I/O middleware layer and parallel filesystem.
There is a large number of parameters at each layer of the
I/0 stack, and the right combination of parameters is highly
dependent on the application, HPC platform, problem size
and concurrency. Designing and conducting the /O tuning
benchmark is the key task of this work. It is of particular
relevance to MOM/FMS users who experience a bottleneck
caused by I/O performance. But given the ubiquity of I/O in
the HPC domain, the findings will be of interest to most re-
searchers and members of the general scientific community.

www.geosci-model-dev.net/13/1885/2020/

The paper is outlined as follows. We first describe the ba-
sic I/O implementation of the FMS library and summarize
our changes required to support parallel I/O. The benchmark
process and tuning results are described and presented in the
following section. Finally, we verify the optimal I/O param-
eter values by applying them to an I/O-intensive MOM sim-
ulation at higher resolution.

2 Parallel I/O implementations in FMS

The MOM source code, which is primarily devoted to nu-
merical calculation, will rarely access any files directly and
instead relies on FMS functions devoted to specific I/O tasks,
such as the saving of diagnostic variables or the reading of an
existing input file. Generic operations for opening and read-
ing of file data occur exclusively within the FMS library, and
all I/0 tasks in MOM can be regarded as FMS tasks.

Within FMS, all I/O operations over datasets are han-
dled as parallel operations and are accessed by using the
mpp module, which manages the MPI operations of the
model across ranks. The API resembles most POSIX-based
I/O interfaces, and the most important operations are the
mpp_open, mpp_read, mpp_write and mpp_close
functions, which are outlined below.

Files are created or opened using the mpp_ open function,
which sets up the I/O control flags and identifies which ranks
will participate in I/O activity. Each rank determines whether
or not it is assigned as a master rank of its I/O domain and,
if so, opens the file using either the netCDF nf_create or
nf_open functions.

The mpp_write interface is used to write data to a file,
and it supports fields of different data types and numbers of
dimensions. Non-distributed datasets are contiguous in mem-
ory and are typically saved on every PE, and such fields are
directly passed to the write_record function, which uses
the appropriate netCDF nf_put_var function to write its
values to disk.

When used with distributed datasets, mpp_write must
contend with both the accumulation of data across ranks
and the non-contiguity of the data itself, due to the val-
ues along the boundaries (or “halos”) of the local PE do-
mains, which are determined by the neighbouring PEs. The
mpp_write function supports the various I/O methods de-
scribed in Sect. 1. For single-threaded I/O, the data on each

Geosci. Model Dev., 13, 1885-1902, 2020

1888

PE must first be stripped of local halo data from the field, and
the interior values are copied onto a local contiguous vector.
These vectors are first gathered onto a single master rank,
which passes the data to the write_record function. The
alternative is to use I/O domains, where each rank sends its
data to the master PE of its local I/O domain in the same
manner as the single-threaded method but where each 1/0
domain writes to its own file. When using I/O domains, a
postprocessing step may be required to reconstruct the do-
main output into a single file.

The mpp_read function is responsible for reading
data from files and is very similar to mpp_write in
most respects, including the handling of distributed data.
In this function, read_record replaces the role of
write_record, and the netCDF nf_get functions re-
place the nf_put functions.

When I/0 operations have been completed, mpp_close
is called to close the file, which finalizes the file for use by
other applications. This is primarily a wrapper to the netCDF
nf_close function.

Because FMS provides access to distributed datasets as
well as a mechanism for collecting the data into larger I/O
domains for writing to disk, we concluded that FMS already
contained much of the functionality provided by existing par-
allel I/O libraries and that it would be more efficient to gen-
eralize the I/O domain for both writing to files and passing
data to a general-purpose IO libraries such as netCDF. By us-
ing FMS directly, there is no need to set up a dedicated I/O
server with extra PEs, as done in other popular parallel I/O
libraries such as XIOS (XIOS, 2020).

The major code changes relevant to the parallel I/O im-
plementations are outlined below:

— All implementations are fully integrated into FMS and
are written in a way to take advantage of existing FMS
functionality.

— netCDF files are now handled in parallel by invoking
the nc_create_par and nc_open_par functions
in the FMS file handler, mpp_ open.

— All fields are opened with collective read/write opera-
tions, via the NF_COLLECTIVE tag. This is a require-
ment for accessing variables with unlimited time axis
and also a necessary setting to achieve good I/O per-
formance. When possible, the pre-filling of variables is
disabled to shorten the file initialization time.

— Infrastructure for configuring MPI_Info settings
has been added to allow fine tuning of the I/O perfor-
mance at the MPI-1O level.

— The root PEs of I/O domains, which we identify as I/O
PEs, are grouped into a new communicator via FMS
subroutines and used to access the shared files in par-
allel.

Geosci. Model Dev., 13, 1885-1902, 2020

R. Yang et al.: Parallel I/O in FMS and MOMS

— The FMS subroutine write_record is modified to
specify the correct start position and size of data blocks
in the I/O domain for each I/O PE.

— New FMS namelist statements have been introduced to
enable parallel I/O support and features. An example
namelist group is shown below.

&mpp_io_nml

parallel_netcdf = .true.
enable parallel I/0
(Default: .false.)
parallel_read = .false.

Enable parallel I/O
for read operation

(Default: .false.)
pnetcdf = .false. # Use PnetCDF backend
in place of HDF5
(Default: .false.)
parallel_chunk = .true. # Set a custom

chunk for
netCDF-4 format

(Default: .false.)
chunk_layout = cnk_x, cnk_y

The user defined chunk

layout if

parallel_chunk is set
as .true.

/

Development required approximately 1 month to implement
a working feature, along with an additional month of work
to troubleshoot more complex configurations related to land
masking and the handling of I/O domains which only cover
a subset of the total grid.

3 Parallel I/O performance benchmark

On large-scale platforms, I/O performance optimization re-
lies on many factors at the architecture level (filesystem), the
software stack (high-level I/0O libraries) and the application
(access patterns). Moreover, external noise from application
interference and the OS can cause performance variability,
which can mask the effect of an optimization.

Obtaining good parallel I/O performance on a diverse
range of HPC platforms is a major challenge, in part because
of complex interdependencies between I/O middleware and
hardware. The parallel I/O software stack is comprised of
multiple layers to support multiple data abstractions and per-
formance optimizations, such as the high-level I/0O library,
the middleware layer and a parallel filesystem (Lustre, GPFS,
etc.). A high-level I/O library translates data structures of the
application into a structured file format, such as netCDF-3
or netCDF-4. Specifically, PnetCDF and parallel HDF5 are
the parallel interfaces to the netCDF-3 and netCDF-4 file

www.geosci-model-dev.net/13/1885/2020/

R. Yang et al.: Parallel I/O in FMS and MOMS

formats, respectively, and they are built on top of MPI-IO.
The middleware layer, which in our case is an MPI-1O im-
plementation, handles the organization and access optimiza-
tion from many concurrent processes. The parallel filesystem
handles any accesses to files stored on the storage hardware
in data blocks.

While each layer exposes tuneable parameters for improv-
ing performance, there is little guidance for application de-
velopers on how these parameters interact with each other
and how they affect the overall I/O performance. To address
this, we select combinations of tuneable parameters at mul-
tiple I/O layers covering parallelization scales, application
I/0 layout, high-level I/O libraries, netCDF formats, data
storage layouts, MPI-IO and the Lustre filesystem. Although
there is a large space of tunable parameters at all layers of the
parallel I/O stack, many parameters interact with each other,
and only the leading ones need to be investigated.

3.1 1I/0 parameter space

With over 20 tunable parameters across the parallel 1/O
stack, it can become intractable to independently tune every
parameter for a realistic ocean simulation. In order to sim-
plify this process, we conduct a pre-selection process by ex-
ecuting a stand-alone FMS I/O program (test_mpp_1io)
which tests most of the fundamental FMS I/O operations
over a domain of a size comparable to the lower-resolution
MOMS benchmarks. After running this simplified model
over the complete range of I/O parameters, we found that
most of the parameters had no measurable impact on perfor-
mance, and we were able to reduce the number of relevant
parameters to the list shown in Table 2, which are summa-
rized below:

— Application. As described in the introduction, the
io_layout parameter is used to define the distribu-
tion of I/O domains in FMS. In the original distributed
I/0 pattern, multiple PEs are grouped into a single I/O
domain within which a root I/O PE collects data from
the other PEs and writes them into a separate file. In
our parallel I/O implementation, the I/O domain con-
cept is preserved in that data are still gathered from each
I/O domain onto its root PE. The main difference is
that these I/O PEs now direct their data to the MPI-
IO library, which controls how the data are gathered and
written to a single shared file. Retaining the I/O domain
structures allows the application to reorganize data in
memory prior to any I/O operations and enables more
contiguous access to the file.

— High-level I/0O library. In general, the data storage lay-
out should match the application access patterns in order
to achieve significant I/O performance gains. The data
layout of netCDF-3 is contiguous, whereas netCDF-4
permits more generalized layouts using blocks of con-
tiguous subdomains (or “chunks”). To simplify the I/O

www.geosci-model-dev.net/13/1885/2020/

1889

tuning, we use the default chunking layout of netCDF-4
files, so that we can focus on the impact of other I/O
parameters. We consider the impact of chunking on per-
formance in the high-resolution benchmark.

MPI-IO. There are many parameters in the MPI-IO
layer that could dramatically affect the 1/O perfor-
mance. MPI-IO distinguishes between two fundamen-
tal styles of I/0O: independent and collective. We only
consider collective I/O in this work as it is required
for accessing netCDF variables with unlimited dimen-
sions (typically the time axis). All configurable set-
tings for independent functions are thus excluded. The
collective I/O functions require process synchroniza-
tion, which provides an MPI-IO implementation the
opportunity to coordinate processes and rearrange the
requests for better performance. For example, as the
high-performance portable implementation packaged
in MPICH and OpenMPI, ROMIO has two key opti-
mizations, data sieving and collective buffering, which
have demonstrated significant performance improve-
ments over uncoordinated 1/O. However, even with
these improvements, the shared file I/O performance is
still far below the single-file-per-process approach. Part
of the reason is that shared file I/O incurs higher over-
head due to filesystem locking, which can never hap-
pen if a file is only accessed by a unique process. In
order to reduce such overhead, it is necessary to tune
the collective operations. By reorganizing the data ac-
cess in memory, collective buffering assigns a subset of
client PEs as I/O aggregators. These aggregators gather
smaller, non-contiguous accesses into a larger contigu-
ous buffer and then write the buffer to the filesystem
(Liao and Choudhary, 2008). Both I/O aggregators and
collective buffer size can be set through MPI info ob-
jects (Thakur et al., 1999). For example, the number of
aggregators per node is controlled by the MPI-IO hint
cb_config_list, and the total number of aggrega-
tors is specified in cb_nodes. To simplify the bench-
mark configuration, we always set cb_nodes to the
total number of PEs and leave cb_config_list to
control the actual aggregator distribution over all nodes.
The collective buffer size, cb_buffer_size, is the
size of the intermediate buffer on an aggregator for col-
lective I/O. We initially set the value to 64kB in the
lower-resolution model and then evaluate its impact on
the I/O performance of the higher-resolution model.

Lustre Filesystem. The positioning of files on the disks
can have a major impact on I/O performance. On the
Lustre filesystem, this can be controlled by striping the
file across different OSTs (object storage targets). The
Lustre stripe count, striping_factor, specifies the
number of OSTs over which a file is distributed, and the
stripe size, striping_unit, specifies the number of bytes
written to an OST before cycling to the next OST. As

Geosci. Model Dev., 13, 1885-1902, 2020

1890

there is limit of 165 stripes for a shared file on our Lustre
filesystem, we set a range of stripe counts up to 165 to
align the number of nodes. The stripe size should gener-
ally match the data block size of I/O operations (Turner
and Mclntosh-Smith, 2017); we find that the stripe size
had limited effects on the write performance, and the
default 1 MiB gave satisfactory I/O performance in our
preselection process.

3.2 Configurations

The parallel I/O performance benchmark configurations are
set up as shown in Table 3.

Project size details: we run a suite of 1 d simulations of the
0.25° global MOM-SIS model for each of the I/O parameters
in Table 3. We then apply these results to a 1 d simulation of
0.1° models and validate the parallel I/O performance ben-
efits. Each simulation is initialized with prescribed temper-
ature and salinity fields and is forced by prescribed surface
fields. The compute domain is represented by the horizontal
grid sizes of 1440 x 1080 and 3600 x 2700 for the 0.25 and
0.1° models, respectively. Both configurations use a common
50-level vertical grid. Model output consists of several restart
files in double-precision format and a diagnostic output file in
single-precision format. In order to produce significant I/O
loads for such a short run, diagnostic output is saved after
every time step. In the 0.25° configuration, the model writes
70 GB of data to the diagnostic file over 48 time steps with
the 0.25° configuration and writes 2.7 TB of data over 288
steps with the 0.1° configuration model. Multiple indepen-
dent runs are repeated, and the shortest time is shown for
each case.

Domain layout: domain layout depends on the total num-
ber of PEs in use. Two distinct CPU configurations, 240 and
960 PEs, are considered for the 0.25° model. The domain
layout is 16 x 15 for 240 PEs and 32 x 30 for 960 PEs. In
0.1° model, grids are distributed over 720 and 1440 PEs with
the domain layout of 48 x 15 and 48 x 30, respectively. PEs
are equally assigned in node majority along the x direction
of the domain layout.

High-level I/0 libraries and netCDF formats: the netCDF
library provides parallel access to netCDF-4 formatted files
based on the HDF? library and netCDF-3 formatted files via
the PnetCDF library. HDF5 maintains two version tracks, 1.8
series and 1.10 series, in order to maintain the file format
compatibility and the enabling of new features, such as the
collective metadata I/O or virtual datasets. We are interested
in checking the I/O performance to access different formats
via various libraries as listed in Table 3.

We rely on the FMS I/0 timers to measure the time met-
rics on opening (mpp_open), reading (mpp_read), writ-
ing (mpp_write) and closing (mpp_close) files together
with the total runtime. The metric time contains both I/O
operations and communications for generation of restart and
diagnostic files, and it takes the maximum wall time among

Geosci. Model Dev., 13, 1885-1902, 2020

R. Yang et al.: Parallel I/O in FMS and MOMS

all PEs. We do not attempt to compensate for variability as-
sociated with the Lustre filesystem, such as network activity
or file caching, and rely on the ensemble to identify such
variability.

Experiments are carried out on the NCI Raijin supercom-
puting platform. Each compute node consists of two In-
tel Xeon (Sandy Bridge) E5-2670 processors with a nomi-
nal clock speed of 2.6 GHz and containing eight cores, or
16 cores per compute node. Standard compute nodes have
64 GB of memory shared between the two processors. A Lus-
tre filesystem having 40 OSSs (object storage servers) and
360 OSTs is mounted as the working directory via 56 Gb
FDR InfiniBand connections.

4 Benchmark results
4.1 Single-threaded single-file I/O of the 0.25° model

The single-threaded single-file pattern of MOMS is chosen as
the reference to compare its I/O time with the parallel I/O
methods. As with parallel I/O, this method creates a single
output file, and no postprocessing is required. The 1/0 oper-
ation times and total execution times for our target libraries
and PE configurations are shown in Table 4.

We can see that all benchmarks are I/O intensive and
they are driven by file initialization and writing operations.
Specifically, writing a 4D dataset into the diagnostic file takes
about 85 % of total elapsed time. All other times are notably
shorter than mpp_write.

The time used in writing data into netCDF-4 formatted
files is about 10 % longer than creating netCDF-3 format-
ted files. This reflects the fact that in serial I/0, the root PE
holding the global domain data tends to write the file contigu-
ously, and it matches the contiguous data layout of netCDF-3
better than the default block chunking layout of netCDF-4.

Most 1/O operations excluding mpp_read take longer
time when the number of PEs increases from 240 to 960, due
to the higher overhead from resource contention, I/O lock-
ing and data communication. This indicates that I/O time
of MOMS does not scale with number of PEs in the single-
threaded single-file I/O pattern.

4.2 Parallel I/O performance tuning of the 0.25° model
4.2.1 1I/0 layout

As outlined in the introduction, I/O layout specifies the
topology of I/O domains to which the global domain is
mapped. In our parallel I/O implementation, we adapt the
I/0 layouts in FMS to define subdomains of parallel I/O ac-
tivity. Only the root PE of each I/O domain is involved in ac-
cessing the shared output file via MPI-10. A skilful selection
of I/0O layout can help to control the contentions on opening
and writing of files. I/O layout is not involved in reading in-

www.geosci-model-dev.net/13/1885/2020/

R. Yang et al.: Parallel I/O in FMS and MOMS

Table 2. The preselected parameters at all layers of I/O software stack.

Layer Parameter Value
Application io_layout iox=32,16,8,4,2, 1
PP (iox x ioy) ioy =30, 15, 5,3

High-level I/0 library

Data storage layout netCDF-3: contiguous
netCDF-4: default chunking

cb_buffer_size 64 kB
MPI-1IO cb_nodes number of PEs
cb_config_list 1,2,4,8
Lustre striping_unit 1MB

striping_factor 15, 30, 60, 120, 165(max)

Table 3. The parallel I/O performance benchmark configurations.

Parameters

Description

Model

Configurations

1 d simulations with diagnostic output enabled.
0.25° model (1440 x 1080) for I/O performance tuning
0.1° model (3600 x 2700) for validating I/O performance

Output

Diagnostic

Diagnostic fields: T, S, u, v, fage
Diagnostic file write frequency:

1891

30 min interval for 0.25°, 48 steps, 70 GB

5 min interval for 0.1°, 288 steps, 2.7 TB

PEs 240 & 960 for 0.25° model; 720 & 1440 for 0.1° model

Domain layout
Benchmark

16 x 15 for 240 PEs; 32 x 30 for 960 PEs (0.25°)
48 x 15 for 720 PEs; 48 x 30 for 1440 PEs (0.1°)

NetCDF v4.6.1 with the following libraries/formats:
HDFS5 v1.8.20/netCDF-4

1/0 library/format

HDF5 v1.10.2/netCDF-4 & netCDF-4 classic

PnetCDF v1.9.0/netCDF-3 (64-bit offsets)

put files; all PEs access the input files independently when
reading the grid and initialization data.

In this section we explore how I/0 layouts affect the I/O
performance. For each I/O layout, we adjust the number
of stripe counts and aggregators to approach the shortest
I/0 time.

In the 240 PE benchmark, the domain PEs are distributed
over a 2D grid of 16 PEs in the x direction and 15 PEs in
the y direction, denoted as 16 x 15. On our platform, this
corresponds to 16 PEs per node over 15 nodes. The experi-
mental I/O subdomain is similarly defined as n, x ny, where
ny=1,2,4,8,16and ny, =3, 5, 15. On our platform, which
uses 16 CPUs per node, we can interpret n, as the number
of I/O PEs per node and ny as the number of I/O nodes. A
schematic diagram of 16 x 15 PE domains and 4 x 3 I/O do-
mains in 240 PE benchmark is shown in Fig. 2. For the 960
PE benchmark, the PE layout is 32 x 30, which utilizes 960
CPU cores over 60 nodes. The experimental I/0 layout is set
as the combination of n, =1, 2, 4,8, 16,32 and ny, = 15, 30.

www.geosci-model-dev.net/13/1885/2020/

Note that in the case of n, =1, there are ny I/O nodes and
one I/0 rank per I/O node. For all other cases in the 960 PE
benchmark, there are two ny I/0O nodes and 1/2n, 1/0O PEs
per I/0 node.

The time metrics associated with different I/O layouts by
using 240 and 960 PEs are measured and compared. Each
benchmark result is classified based on its library/format and
the I/O layout, and we report the shortest observed time in
each category.

In all benchmarks, the elapsed times for writing files in
netCDF-4 and netCDF classic formats are very similar, as
both are produced by utilizing the HDF5 1.10.2 library. We
will thus report performance among three libraries, i.e. HDF5
1.8.20, HDF5 1.10.2 and PnetCDF 1.9.0.

The mpp_open metric measures both the opening time of
input files and the creation time of output files. Its runtime
versus 1/O layout at 240 and 960 PE benchmarks is shown
in Fig. 3. In all of the experiments, PnetCDF has shorter
mpp_open time than HDF5 due to the simpler netCDF-3

Geosci. Model Dev., 13, 1885-1902, 2020

1892

R. Yang et al.: Parallel I/O in FMS and MOMS

Table 4. Serial single-file I/O time in MOMS by using 240 and 960 PEs.

0.25° Model 240 PEs 960 PEs
Time (s) netCDEF-3 netCDF-4 netCDF-3 netCDF-4
(PnetCDF 1.9.0) (HDF5 1.10.2) (PnetCDF 1.9.0) (HDF5 1.10.2)
Total runtime 637.82 687.20 629.33 671.95
mpp_open 7.46 6.39 15.62 14.97
mpp_read_meta 3.90 3.73 6.16 4.88
mpp_read 4.58 4.15 2.37 2.43
mpp_write 545.50 592.39 576.92 616.35
mpp_close 0.65 0.96 1.23 2.37

Core

Figure 2. A schematic diagram of 16 x 15 computation domain (grid
of yellow-outlined squares) and 4 x 3 I/O domain (grid of blue-
outlined squares) with 12 I/O PEs (labelled with filled-in yellow
squares) in a 240 PE benchmark. The index of each I/O PE is la-
belled.

file structure. Both runtime and variability are much less in
240 PEs than in 960 PEs, indicating higher filesystem con-
tention as the number of PEs is increased.

The mpp_read metric measures the time of all PEs to
read data from the input files. Its dependence on I/O lay-
out is shown in Fig. 4. As I/O layout is only applicable to
write rather than read operations, mpp_read time should
be unaffected by 1/O layout, as demonstrated in the figure.
We also observe no consistent difference in mpp_read due
to the choice of I/0O library. As with mpp_open time, the
mpp_ read time is much higher for 960 than 240 PEs, which
we again attribute to the increased file locking times and OST
contentions when using more PEs.

The majority of I/O time is due to mpp_write, which
depends strongly on the choice of I/O layout, as shown
in Fig. 5. In the 240 PE benchmarks, the write time drops
quickly as we increase the number of 1/O nodes (ny) and
more gently as the number of I/O PEs per node (n) is in-
creased. The 960 PE benchmarks show a similar trend to the

Geosci. Model Dev., 13, 1885-1902, 2020

240 PE results. The shortest write time of the 960 PE bench-
marks is less than that of 240 PE ones, which indicates that
parallel write time demonstrates the same degree of scalabil-
ity. All libraries present similar mpp_write trend over I/O
layout, as they approach the shortest mpp_write time with
moderate number of PEs per node (i.e. two or four PEs per
node).

The mpp_close metric measures the time to close files,
which involves synchronizations across all I/O ranks. Its de-
pendence on /0 layout is shown in Fig. 6. We observe that
there is a notable loss of performance in the HDF5 1.8.20
library, which is exacerbated as both the number of nodes
and I/O PEs per node are increased. As we shall demon-
strate in a later section, this can be attributed to issues re-
lated to contentions between MPI operations and the use of
the MPI_File_set_size function in a Lustre filesystem.
This effect is mitigated, although still present, in the HDF5
1.10.2 library. In contrast to all HDFS5 libraries, PnetCDF has
negligible mpp_close time as there are fewer metadata op-
erations in netCDF-3 than netCDF-4.

The total elapsed time versus I/O layout for all libraries
are plotted in Fig. 7. The HDF5 1.8.20 takes more time than
HDF5 1.10.2 to produce the netCDF-4 files, due to longer
mpp_write and mpp_close time. The shortest total time
for HDF5 1.10.2 and PnetCDF 1.9.0 happens at an I/O lay-
out of 8 x 15 (8 PEs/node) for 240 PE and 4 x 30 (2 PEs/node)
for 960 PE. Comparing it with all other time metrics as
shown above, mpp_write dominates the total I/O time.

The impact of I/O layout on each I/O component time in-
dicates that excessive parallelism can give rise to high I/O
contention within the file server and can diminish I/O per-
formance. We could thus set up the delegated I/O processes
to reduce the contention that is also detailed in other work
(Nisar et al., 2008). The best I/O performance is achieved
by using a moderate number of /O PEs per node, such as
eight I/O PEs per node in the 240 PE or two I/O PEs per
node in the 960 PE benchmark. Each I/O PE collects data
from other PEs within the same I/O domain and forms more
contiguous data blocks to be written to disk. In the next sec-
tion, we use the best-performing I/0O layouts, 8 x 15 for 240

www.geosci-model-dev.net/13/1885/2020/

R. Yang et al.: Parallel I/O in FMS and MOMS

& 40
Q
O’
o130
s
20 L
o p o
0p0 oo » N VKK
"0 00 o 09 0 o, o N > \- S '\' oo /.

10 5 5 %oo ©° o O o % o %
O RN AN R Rt - R AN R L BN B - R AN R SR Nt Rt et el R NN R RNt s R NN SR SNt S R Lot
XXXXXXX XX XXX XX XXX XEXKXKKK XXXXXXX XXX XX XX XXX XXX XXX XXX XXX XX K XX XXX XXX X
eI T SIS AROI 5T OO B DD NN XIS LI APO L5 E O bd00 —mae NN XTI BRLSICOS 5500
PORIVVVVLOPPVVIVCVVONVY Y Ls PPV YVLLOPYLVVIYYVLINVLYEY L PPV PVLLYYYVVEYYVLONVL LYKo
XXX XTTBX XXX TRy y 2P0 X CB X X OO X X T LB X XU By v T RBRE XX COXXTTOXXToaX XU DBy e eaeg
CEXXANXXXGTXXXDDXXXXXXTXTR CEXXANX X X X X Xavew X X X XXXT XD XXAQXX XG4 X X Xow X X X XXX XY

=TYNaaY Ve 000220 0y & ©0002L0 ol = NN T e PP o000 0l
TETO® TETRS TETOS
1/0 layout 1/0 layout 1/0 layout

Lib = hdf5 1.08.20

Lib = hdf5 1.10.2

Lib = pnetcdf 1.9.0

e 240
960

1893

Figure 3. mpp_open time (in seconds) versus I/O layout in different libraries and PE numbers. HDFS5 times are generally larger than in
PnetCDF, and the runtime increases as PEs increase from 240 to 960. The I/O layout together with its PE distribution in [PE per node x
nodes] are labelled on the x axis.

Lib = hdf5 1.08.20 Lib = hdf5 1.10.2 Lib = pnetcdf 1.9.0
35 e 240
960
0
_30 0
2
§25
S
d
220
=
15
«
0™ 0 o %0 0 00 0 N, o %90 % 0 0y 0 N o " o 090 00 0 gqg O 09 0 09 o
CEHLoLoRLoLEHLELOHLOLoDE HhHT SRR PP LEnEnEOLEnHoLENHoLEos
IXXXXXXXX XXX XX KX X EEXHXXKK KXXXXXXA XXX XXEKXXXXEEXKXKK XXX XXX XA XX XXX XK EEX KX XX
T NNCN Y NS NO PG 0T LoD O O FTIATARPG 0000000 TerNNCQeTTATARPT0TCO0o000
OBV VVYPCVVONVY D ne PRI VVLOPYLVVYY VLNV ET L PRIV PVLOPYVWVYEVPVVOMVLED Lo
XX OB XX CCBXXCEB X X LBy 2T OBO B X T B X X EBX X LB 2 T 28R XX CBXXTLBX XU UBX XD LBy 02803
CEXXAAXXX G I XX XDOXXXXXXT XY co X XAQXX X T XX XDD XXX EXXTXYT cr X XANX X X G X X XX X X XXX XYY
= ~ s ©00Ll0 50Xy & ©000LLo o e TNNNNT T e PP 0000 S0 XX
TETeS TETeS TETOS
1/0 layout 1/0 layout 1/0 layout

Figure 4. mpp_ read time (in seconds) versus I/O layout in different libraries and PE numbers. Read operations do not use I/O layout or
parallel I/O, and runtimes are largely independent of layout and library. Read times increase significantly as the number of PEs is increased.

The I/0 layout together with its PE distribution in [PE per node x nodes] are labelled on the x axis.

PE and 4 x 30 for 960 PE, to explore the optimal settings of
Lustre stripe count and MPI-1O aggregator.

4.2.2 Stripe count and aggregators

The Lustre stripe count and the number of MPI-IO aggrega-
tors can be set as MPI-IO hints when creating or opening
a file and are the two major MPI-IO parameters affecting
I/O performance. The MPI-IO hint striping_factor
controls the total number of stripe counts of a file; cbn-
ode sets the total number of collective aggregators; and
cb_config_list controls the distribution of aggregators
over each node. In ROMIO, there are competing rules which
can change the interpretation of these parameters. For ex-
ample, the total number of aggregators must not exceed the
stripe count; otherwise, it will always be set to the stripe
count. To simplify the parameter space, we adopt the actual
number of aggregators (denoted as real_aggr) and stripe
counts (denoted as real_stp_cnt) as the basic parame-
ters in tuning the I/O performance.

240 PEs
The variations in each time metric versus the number of ag-

gregators and stripe counts for each library are plotted in
Fig. 8 for the 240 PE experiments.

www.geosci-model-dev.net/13/1885/2020/

The mpp_open time does not depend strongly on the
number of aggregators. PnetCDF spends less mpp_open
time than all HDFS5 libraries.

The mpp_read time increases as the number of aggrega-
tors, and stripe counts are increased. Runtime is independent
of library, as expected for a serial I/O operation.

The optimal mpp_write time is observed when the
aggregator and stripe counts are set to 60. The overall
mpp_write times are quite comparable among all HDF5
libraries, and they are slightly higher than PnetCDF, as ob-
served in the I/0 layout timings.

The mpp_close times of the HDF5-based libraries are
independent of the number of aggregators and increase
slightly as the stripe count is increased. HDF5 v1.8.20 spends
a much greater time in mpp_close than HDF5 1.10.2. The
mpp_close time is negligible for PnetCDF and shows no
measurable dependence on aggregator and stripe count.

The total runtime shows similar dependences on stripe
count and aggregators with mpp_write. The performance
trend across libraries remains consistent over I/O tuning pa-
rameters, with PnetCDF showing the best performances, fol-
lowed by HDF5 1.10.2 and HDF 1.8.20. The optimal param-
eters for read and write operations were observed when we
set the number of aggregators and stripe count to 15 or 30.
This corresponds to one or two aggregators per node, with all
15 nodes contributing to I/O operations.

Geosci. Model Dev., 13, 1885-1902, 2020

1894

Lib = hdf5 1.08.20

Mpp_write (s)

2 a
g8 8
-
=
=/=
—
—

Lib = hdf5 1.10.2

_ : T \\ TS

R. Yang et al.: Parallel I/O in FMS and MOMS

Lib = pnetcdf 1.9.0
e 240
960

PR BCBL BB BCBBD BB
XXxxxxxxxxxxxxxxxxxxxxxxxx Xxxxxxxxxxx
T NNCNC I NYNOOTDIPPOO000 T o NN

1/0 layout

A >
BB BBy @
XXX XXX XX XXX
SN INSNOOT DT L0

1/0 layout

BomHOBOHOIT
833 BB BB BBl B3R
X X X XXxxxxxxxxxxxxééxxxééxxxxx
000 TreeNNCACIINTNOPTorLLDeo00

CeBy x LT Ieegwe
XX XD XX XEXXTXLQ
AR R T

1/0 layout

Figure 5. mpp_write time versus I/O layout for different library and PE numbers. Write time improves greatly as I/O nodes are increased
(grouped curves) and modestly as the I/O PEs per node are increased (across grouped curves). Runtimes are scalarly reduced as PEs are
increased. PnetCDF shows modest improvement over HDF5 performance. The I/O layout together with its PE distribution in [PE per

node x nodes] are labelled on the x axis.

Lib = hdf5 1.08.20 Lib = hdf5 1.10.2 Lib= pnetcdf 1.9.0
e 240
125 960
z100
3
8 75
o
o
2 50 5
s °
25 / 2'
o/ o p 0 g0 « . »
oo
o o' o g0 o WO © o0 0 oo ©
0 L 0000000090090 00900 0000 000
i RN L Bt RN R VAN R =L ot it PN s Bt RN R VAN SR Lot BB BB B BLeHRS
Xxxxxxxxxxxxxxxxxxxxxxxxxx XXxxxxxxxxxxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxx X><><><><><
XX A2 I E L0 EEE 0055588 Tl lNNXIXT I EL00EFT00L55588 TroeaaX XTI Lo0I 5T 005555
"""mo Lung s P PBnanLL Lo O D 1O o D, DOZOOLES o "’mmommmmo"“’mmonmmmommmmomo
XXTBXXCCBXXTTOXXTT By TRBOZ X xCOX X CCBX X T T B xR P8 XXLRXXTTEXXTTS X xTES L TOB0Y
CeXXNAX XX G X X X0wX X XEXXT XY < XX xquqxxxmmxxxwoxxxxx CEXXANXX XXX XDoX X XEL X XYY
e TNNNT T T P 00020 S6 I fae NN ©00LLeFo XX NNNT Tt T P 00000 5ol
TETes TETES TETeS

1/0 layout

1/0 layout

1/0 layout

Figure 6. mpp_close time versus I/O layout with different libraries and PE numbers. Contentions within the HDFS5 library lead to perfor-
mance problems, which increase with layout and number of PEs. PnetCDF does not exhibit these issues, and close times are negligible. The
1/0 layout together with its PE distribution in [PE per node x nodes] are labelled on the x axis.

960 PEs

The variations in each time metric on the number of aggrega-
tor and stripe count in all library/format bindings are plotted
in Fig. 9 for 960 PE experiments.

The metrics for the 960 PE benchmarks show a simi-
lar trend to the 240 PE benchmarks. Both mpp_open and
mpp_ read times increase from 240 to 960 PE, in most cases
by a factor of 2, due to the higher contentions due to ac-
cessing the same files. Using the smallest number of aggre-
gators, namely 60 aggregators, one aggregator per node, to-
gether with an equal number of stripes, gives the best per-
formance for both mpp_open and mpp_read times. The
mpp_write times are shorter than those of 240 PE. As in
previous results, PnetCDF shows the best performance, while
HDF5 1.10.2 outperforms HDF5 1.8.20. We observe that the
best write performance occurs when the number of aggrega-
tors and stripe counts are set to 60, or one per node. Overall,
the total time is reduced when using 960 PEs.

In both the 240 and 960 PE experiments, the best I/O per-
formance occurs when the Lustre stripe count matches the
number of aggregators. Using a larger stripe count may de-
grade the performance, since each aggregator process must
communicate with many OSTs and must contend with re-
duced memory cache locality when the network buffer is

Geosci. Model Dev., 13, 1885-1902, 2020

multiplexed across many OSTs (Bartz et al., 2015; Dickens
and Logan, 2008; Yu et al., 2007).

4.2.3 1I/0 implementation profiling analysis

The above benchmark results show performance variances
among different libraries and formats. In order to explore
the source of differences in performance, we have developed
an I/O profile to capture I/O function calls at multiple lay-
ers of the parallel I/0 stack, including netCDF, MPI-10 and
POSIX I/0, without requiring source code modifications. It
provides a passive method for tracing events through the use
of dynamic library preloading. It intercepts netCDF function
calls issued by the application and reroutes them to the tracer,
where the timestamp, library function name, target file name
and netCDF variable name along with function arguments
are recorded. The original library function is then called af-
ter these details have been recorded. It is applied similarly at
the MPI-IO and POSIX I/0 layers. We have disabled profil-
ing of HDFS5 and PnetCDF libraries, as both are intermediate
layers. Profiling overheads were measured to be negligible in
comparison to the total I/O time.

We apply the I/O profiler described above to the 240 PE
benchmark experiments, using the optimal I/O parameters
from the previous analysis. The profiling results are plotted in

www.geosci-model-dev.net/13/1885/2020/

R. Yang et al.: Parallel I/O in FMS and MOMS

Total (s)
N
g

200

Lib = hdf5 1.08.20

Lib = hdf5 1.10.2

\

Lib= pnetcdf 1.9.0

q p
q
b 1\ n\ "\/ \
NS TN 7
b 0 o | L /\ « l q p
'\. e ° \ r \ b
° >
P 000 0,0 o N + "
X T ° 00 09,
°
GEERLoLEHLOLEPLOLEHLELoDE HLLEHHOLEHLOLEPLOLEHLOLEDD HLLSHHOLEHLOLERLOLEHLOLEoD
XXxxxxxxxxxx§xxxxxxxxx;xxx XXxxxxxxxxxx;xxxxxxxxxixxx XX;xXxx;xxxx;xxxxxxxxxxxxx
TR RN I I ITARRIE IO 656 T e NN AIADBISIOOEEFEE —r w ANEAEIHIIARRISILOTEH5E
SoegltrngPtnng P tnngnnn g ""”mo""“mmo”"’mmo""”mmommm =) "’mmo“""mmc”"’mmo"’“’mmommm =)
LRI P IvinvE S dvotess TOL TR0 XXLRXXY D xTL2DL XXX XS TR X X TR XX D clael
SEXXA xquqxxxmmxxxmnxxxxx xxNNxquqxxxmmxxxwmxxxxx SXXQ xquqxxxmmxxxwmxxxxx
T PEEECRLRHY TReRaS IR

1/0 layout

1/0 layout

1/0 layout

1895

Figure 7. Total elapsed time versus 1/O layout for different libraries and PE numbers. Higher contention at 960 PEs can overwhelm the
overall performance trends observed at 240 PEs. The I/O layout together with its PE distribution in [PE per node x nodes] are labelled on

the x axis.

Lib = hdf5 1.08.20

30 @.
3
(%
O‘
ol20 \
g
E L]
10

15 30 60 120
Real_aggr

Lib = hdf5 1.08.20

14
12

Real_aggr

Mpp_read

Lib = hdf5 1.08.20

9! /\/
3
g
g 50 Q:I :
15 30 60 120
Real_aggr
Lib = hdf5 1.08.20
° 75
S
S 50
%‘)
s 25
0
15 30 60 120
Real_aggr
Lib = hdf5 1.08.20
300
ket
2200 e

15 30 60 120
Real_aggr

Figure 8. The I/0 performance of 240 PE benchmarks with differ-

Lib = hdf5 1.10.2

Lib = pnetcdf 1.9.0_pread

Lib = hdf5 1.08.20

Lib = hdf5 1.10.2

80 8
Real_stp_cnt S
o———o—0 : ;g 8] 60 °
a
L e 60 =
e 120 40
e 165
15 30 60 120 15 30 120 60 120 60 120
Real_aggr Real_aggr Real_aggr Real_aggr

Lib = hdf5 1.10.2

Lib = pnetcdf 1.9.0_pread Lib = hdf5 1.08.20

Lib = hdf5 1.10.2

50
Real_stp_cnt o
15 3
° 40
e 30 a
(=N
o 60 =
o 120 30 5
o 165
15 30 60 120 15 30 120 GOR | 120 60 Real 120
Real_aggr Real_aggr eal_aggr eal_aggr
Lib = hdf5 1.08.20 Lib = hdf5 1.10.2
Lib = hdf5 1.10.2 Lib = pnetcdf 1.9.0_pread
Q
Real_stp_cnt g 60 et
L] 15 D_J 40 L]
e 30 o
o 60 = 20 =
o 120
e 165 60 120 60 120
15 30 60 120 15 30 60 120 Real_aggr Real_aggr
Real_aggr Real_aggr Lib = hdf5 1.08.20 Lib = hdf5 1.10.2
Lib = hdf5 1.10.2 Lib = pnetcdf 1.9.0_pread 75 :___/_“
® .
real_stp_cnt 3 50
e 15 |
—
e 30 825
. e 120 0
C————c——0 ° 165 60 120 60 120
15 30 60 120 15 30 120 Real_aggr Real_aggr
Real_aggr Real_aggr Lib = hdf5 1.08.20 Lib = hdf5 1.10.2
Lib = hdf5 1.10.2 Lib = pnetcdf 1.9.0_pread 300 :4
Real_stp_cnt g 200 ©
e 15 [.’/ﬁ
e 30
e 680 100
e 12 60 120 60 120
o 165 Real_aggr Real_aggr

15 30 60 120 15 30
Real_aggr

120

Real_aggr

Lib = pnetcdf 1.9.0_pread

Real_stp_cnt
—_—" ® 60
e 120
® 165
°
60 120
Real_aggr
Lib = pnetcdf 1.9.0_pread
/ Real_stp_cnt
e 60
e 120
° ® 165
60 120
Real_aggr
Lib = pnetcdf 1.9.0_pread
Real_stp_cnt
® 60
e 120
:: e 165
60 120
Real_aggr
Lib = pnetcdf 1.9.0_pread
Real_stp_cnt
e 60
e 120
e 165
o—o
60 120
Real_aggr
Lib = pnetcdf 1.9.0_pread
Real_stp_cnt
® 60
e 120
| o e 165
°
60 120

Real_aggr

Figure 9. The I/0O performance of different library/format bindings

ent library/format bindings regarding to the number of aggregators

and stripe counts.

call path flowcharts for each library as shown in Figs. 10-12.
The accumulated maximum PE time is presented within each
function node and above call path links. The number of I/O
PEs involved in each call path is also given in the brackets.
Call paths with trivial elapsed time have been omitted.

www.geosci-model-dev.net/13/1885/2020/

with a variety of aggregators and stripe counts by using 960 PEs.

As shown in Fig. 10, nc_close is the most time

File_set_

consuming netCDF function in the benchmark of HDF5
1.8.20/netCDF-4. Two underlying MPI-IO functions,
MPI_File write_at and MPI_
consume the majority of time within nc_close. HDF5
metadata operations are comprised of many smaller

size,

writes, and the independent write function MPI_File_

Geosci. Model Dev., 13, 1885-1902, 2020

1896

R. Yang et al.: Parallel I/O in FMS and MOMS

£6950120] 0.226[120] -
- 2B ; 0226 0.158[120] T 2264
nc=endde 0.158[120] nc_create_par 2.107[240] mI,File,opq
0.226[120] 0226 2 1071240) —
nc_create_par_fortran 21072 0.166[240] 0.166 N
3.532(240] 353 1{\4‘;?2—591 ‘ e 0227(1] paEUTRELD
53212 £ 22 nc_open_par 206[2
[EincTopentparformn®| 5 5321240) 1.200[240]
T oess 0.678[15]
. 0.166[240 <
0.655[240] s e T 12401 nc$n1.3:i - 1.292[240] L — _ 0.678[15]
1.528[240 — 2521240] ¢l 11.621 P
‘ 0212240 029202400 € MPpI_File_readatall 0 0227011 /SN
0.282[240] 0282 — — 1=)
MAIN . 8.990[240] e 0.362[240] ol
9.573[240] nc_get_vara_int 9573 \ y
29.603[120] nc_get_vara_double 0.362(240] = ~—
1.413[120] 0.509[120 0.416[240] = 1.162 N
24.830[120] e SRNECEE
76011201 0.969[120] i 2219 N 0.113[30]
- 29.603 0.113130] LA
nc_put_vara_double | o
2.173[120] 1.760 b 25586 D) 11.496[30]
ne_put_varl_double RRVECRIESHESES (.43312) -
- A
1573(72) 0.940[120] [2299
1.812[120) I 12.197[120) \ e /,"
37.639[240] 0.941[120] ¢ 13372 B 1.573[72] - g
2173 0.940[120] . ,Wj!f‘lﬁ*“f?‘?i?\,
nc_sync 12.198[120]
12.1 1201 R
S | 0.626[120]
nC,;:lOSe 0.193[120]
3.367[240])
1.039[120] { MPLFilesyne
1.945[240] P —
20.789[240] P 21828 N

MPI File set size -~

Figure 10. The call path flow of a tuned 240 PE benchmark with HDF5 1.8.20/netCDF-4. It is classified into three layers, i.e. netCDF,
MPI-IO and system 1/O functions. The maximum PE time together with the total number of PEs from the invoker are labelled above each
path line, and the maximum PE time on each function are labelled within the node block.

0.193[120] I
1.337[120 I 2.103(240]
ne__enddef 1.341(240]
0267[120] 0267
ne_syne 14.934[120)
17.871 0.196[18]
1787112401 nc_close 0.266[120] 0.134[30]
2LOAN]) 0.196(18]
0.134[30] __ MPLFile write_at all 108170301 Ve N
i i = Y 0s 10,831
10.817(30 [108
24 729120) 24729 817030) 04890120] | wiite |
ne_put_vara_double 0252(120] A 4
L 50001201 1202 1.418[120] S 2312 071312401
nc_put_varl_double 0.918[120] . MPL Allreduce = - 1517
3391241 24 Tem—— ¢ :)
CMAN 0391240 " 0339 014412401 0.187240] Da0ai0) - MPLFile set view
- ._gel_vara_int 296(2 = A
9.803[240] 93803 8.913[240] 03412401 AT
S 2880 t_vara_double > ST ol
2.388[240] nic_get_vara_(0.341[240] TBORD o 04M[15] | pead |
4304240] 43940240] 2388 210412401 € MPI File. read_at_all) 0.140(1] 7
nc_get_vara_float | 0.444[15] e
4304 0.118[240] 105712401
0.240[120] nc_open_par_fortran 40]
L0s700] 4304 0.140013 N
0.140(1 nic_open_par 0.118[240] 0.118
0240 ! MPI File_get si
1.096[240] TN Create parsfortzan| 02401201 3.137[240] BRI
1096 0.162(120] 0240 0.162[120] T 3267

ne_get_var_double

nc_create_par

y
- MPLFile open -

Figure 11. The call path flow of tuned 240 PE benchmark with HDF5 1.10.2/netCDF-4. It is classified into three layers, i.e. netCDF, MPI-10
and system I/O functions. The maximum PE time together with the total number of PEs from the invoker are labelled above each path line,
and the maximum PE time on each function are labelled within the node block.

write_at from each PE may give rise to large overheads
due to repeated use of system calls. It is a known issue that
usingMPI_File_set_size on aLustre filesystem which
uses the ftruncate system call has an unfavourable interaction
with the locking for the series of metadata communications
which the HDFS library makes during a file close (Howison
et al., 2010). In practice, this leads to relatively long close
times and prohibits I/O scalability.

Aside from the metadata operations, reading
and writing netCDF variables are conducted col-
lectively via MPI_File_read_at_all and
MPI_File_write_at_all functions, which retain

Geosci. Model Dev., 13, 1885-1902, 2020

good I/O performance when processing non-contiguous
data blocks.

In the HDF5 1.10.x track, collective I/O was introduced
to improve the performance of metadata operations. Col-
lective metadata I/O can improve performance by allowing
the library to perform optimizations when reading the meta-
data, by having one rank read the data and broadcasting it to
all other ranks. It can improve metadata write performance
through the construction of an MPI-derived data type that is
then written collectively in a single call. The call path flow
of tuned 240 PE benchmark with HDF5 1.10.2/netCDF-4 is
shown in Fig. 11.

www.geosci-model-dev.net/13/1885/2020/

. Yang et al.: Parallel I/O in FMS and MOMS

0.294[240

1.300[120!

20.466[120]

1184
nc_close

0.640
nc_sync

3535
nc_open_par_fortran

1070
nc_get_var_double
9535
ne_get_vara_double
1461
ne_get_vara_float

1.300
nc_put_varl_double

20.466
nc_put_vara_double

) 0212
nc_create_par_fortran

0.246
nc__enddef

0.245[120]

0.212[120
0.199[120
0.986[240
0.941[240
0.497[120
0.599[120°
0.132[1]

3.534[240
0.119[240
2.260[240
1.093[240

0.388[240,
0.248[240,

0.294
nc_get_vara_int

9.610[30]

0212
nc_create_par

1207

0.188[240]

2.082

 MPIFile set view

18860

0.199[120]

2.260[240]

0.119[240]
1.093[240]
0.132[1]

- T, 9610030)
. MPLFile write atall

2668

_ MPLFile open

" 9610
\ wiite |

p 0.119 N
" MPLFile_get size

024502401 -
11444 T 0.629(15]
‘. MPIFileread atall

0.132[1]

D\

/ 1067
| read

1897

Figure 12. The call path flow of tuned 240 PE benchmark with PnetCDF. It is classified into three layers, i.e. netCDF, MPI-1O and system
I/0O functions. The maximum PE time together with the total number of PEs from the invoker are labelled above each path line, and the
maximum PE time on each function are labelled within the node block.

It shows that nc_close now invokes MPI_File_
write_ at_all instead of MPI_File_write_at in
HDF5 1.10.2, and HDFS5 1.10.2 spends less time than HDF5
1.8.20. Furthermore, HDF5 1.10.2 has been modified to
avoid MPI_File_set_size calls when possible by com-
paring the EOA (end of allocation) of the library with the
filesystem EOF (end-of-file) and skipping the MPI_File_
set_size call if the two matches. As a result, HDF5
1.10.2 spends much less time on nc_close function than
HDFS5 1.8.20. Aside from the metadata operations, the gen-
eral write performance of the nc_put_vara_double and
nc_ put_varl_double functions show similar perfor-
mance in netCDF 1.10.2 and 1.8.20 when accessing netCDF-
4 formatted files.

The call path flow of the tuned 240 PE benchmark with
PnetCDF is shown in Fig. 12. Due to the simpler file struc-
ture of netCDF-3, the nc_close function spends a trivial
amount of time in MPI_Barrier and MPI_file_sync
rather than invoking expensive MPI_File_set_size
function calls, which explains the much shorter mpp_close
time in the benchmark experiments. In addition, the func-
tion nc_put_vara_double also spends less time than
the HDFS5 libraries, which implies that the access pattern
matches the contiguous data layout of netCDF-3 performs
in a better way than the default block chunking layout of
netCDF-4.

4.2.4 Load balance

Load balance is another factor which may strongly affect I/O
performance. In Fig. 13 we compare the time distribution
over PEs in three layers of the major write call path between
HDFS5 1.10.2 and PnetCDF.

In the benchmark of the HDF5 1.10.2, both nc_put_
vara_ double and MPI_File write_at_all func-
tions are called by eight PEs per node, as configured in
the I/O layout of 8 x 15. The POSIX write function is in-

www.geosci-model-dev.net/13/1885/2020/

voked by two PEs per node, as configured by the MPI-
IO aggregator configuration, real_aggr =30. All three
functions show good load balance, as one would expect
since all I/O PEs participate in the collective I/O opera-
tions. There are overheads in the nc_put_vara_double
and MPI_File_write_at_all functions, but there is a
larger time gap between MPI_File_ write_ at_ all
and the POSIX write call, which reflects the communica-
tion overhead among aggregators and other PEs associated
with collective buffering. A similar pattern also appears in
the PnetCDF profile. Although HDFS5 1.10.2 and PnetCDF
spend a similar amount of time on POSIX write calls, the
aggregation overheads are much higher for HDF5. This sug-
gests again that the conventional contiguous storage layout in
netCDF-3 matches the access pattern better than the default
block chunking layout of netCDF-4.

4.2.5 Serial read and parallel read

As indicated in the above benchmark experiments, the write
performance is optimized by choosing an appropriate num-
ber of I/O PEs, aggregators and Lustre stripe counts. In con-
trast to mpp_write, the mpp_read time grows from 240
to 960 PE benchmarks and can potentially become a major
performance bottleneck for a large number of PEs. Since I/O
layout is not employed in the parallel read process and the in-
put files may use different formats and data layouts, there is
no means to skilfully tune the parallel read performance.

As noted earlier, the serial mpp_read time is relatively
small and stable in both 240 and 960 PE benchmarks. This
motivates us to combine the original serial read with the par-
allel write in order to approach the best overall I/O perfor-
mance. The 960 PE benchmarks with an I/O layout of 4 x 30
and using serial read (denoted here as sread) and parallel
write methods are shown for the HDF5 1.10.2 and PnetCDF
libraries. The performance is compared with the parallel read
benchmarks (denoted as pread) in Fig. 14.

Geosci. Model Dev., 13, 1885-1902, 2020

1898

—— MAIN/nc_put_vara_double
—— MAIN/nc_put_vara_double/MPI_File_write_at_all
—— MAIN/nc_put_vara_double/MPI_File_write_at_all/write

il

|

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288
Task ID

gL |

(a) HDF5 1.10.2 (netCDF-4)

R. Yang et al.: Parallel I/O in FMS and MOMS

—— MAIN/nc_put_vara_double
—— MAIN/nc_put_vara_double/MPI_File_write_at_all
—— MAIN/nc_put_vara_double/MPI_File_write_at_all/write

|

I

112 128 144 160 176 192 208 224 240 256 272 288
Task ID

0 LA AU

48 64

Il

16

L

(b) PnetCDF (netCDF-3)

Figure 13. Time distribution over PEs of major write call path functions, i.e. nc_put_vara_double for netCDF, MPI_File_write_at_all for
MPI-IO and POSIX call write. The benchmark is running on 240 ranks with an I/O layout of 8 x 15.

45

1 2 3 4 5 6 15 30 60 90 120 165
Stp_cnt

-

1

b

Lib
Pnetcdf 1.9.0_sread
Hdf5_1.10.2_sread
Pnetcdf 1.9.0_pread
Hdf5_1.10.2_pread

2 3 4 5 6 15 30 60 90 120 165
Stp_cnt

Figure 14. The 960 PE benchmarks with I/O layout = 4 x 30 and naggr=1 by using serial read (sread) and parallel read (pread) with the
HDFS5 1.10.2 and PnetCDF libraries. Serial read times are overall more efficient over a range of stripe counts.

The mpp_read time is much shorter in the serial read
benchmarks than the parallel reads and it remains fixed as
stripe count is increased. The mpp_open times increase
with stripe count but are otherwise consistent across the four
benchmarks shown. The serial read is unaffected by the write
performance and file closing times. As a result, the net serial
read time is overall shorter than parallel read times in both
HDFS5 1.10.2 and PnetCDF benchmarks.

5 1/0 performance validation of 0.1° model

The tuning results from the 0.25° model suggests that the
best parallel I/O performance could be achieved with the fol-
lowing settings:

— aparallel write with

— a moderate number I/O PEs per node to access the
file, as defined by I/0 layout;

— one or two aggregators per node, as defined by
MPI-IO hints;

Geosci. Model Dev., 13, 1885-1902, 2020

— a stripe count matching the number of aggregators,
as defined by MPI-IO hints.

— aserial read on input files with the same stripe count as
parallel write.

In this section we apply the above settings to the 0.1° model
and measure their impact on I/O performance. As shown in
previous results, the HDF5 1.8.20 library is overall slower
than the HDF5 1.10.2 due to its higher metadata operation
overheads, so we focus on the HDF5 1.10.2 and PnetCDF
libraries.

The domain layouts of the 720 and 1440 PE runs are
48 x 15 and 48 x 30, respectively. We choose I/O layouts
of 3 x 15 and 3 x 30 for 720 and 1440 PEs, respectively, so
there is one I/O PE per node. The number of aggregators is
also configured to one per node, and the stripe count is set
to the total number of aggregators, i.e. 45 and 90 for the 720
and 1440 PE runs, respectively. For all benchmark experi-
ments, we use serial independent reads and parallel writes.
The measured time metrics in 720 and 1440 PE runs for the

www.geosci-model-dev.net/13/1885/2020/

R. Yang et al.: Parallel I/O in FMS and MOMS

HDF5 1.10.2 and PnetCDF libraries are shown in Table 5.
The timings of the original single-threaded single file I/O
(SIO) pattern in 720 and 1440 PE runs are also listed for
comparison.

As shown in Table 5, the original serial I/O pattern re-
quires a very long time (about 6h) to create a large diag-
nostic file (2.7 TB) and multiple restart files (75 GB) in 720
PE runs. The serial 1440 PE runs exceeded the platform job
time limit of 5h and could not be completed, but the lack
of scalability of serial I/O indicated by 0.25° model (Ta-
ble 4) suggests that the total time would be comparable to
the 720 PE runs. We noticed that the PnetCDF timings are
20 % faster than the HDFS times, as also observed in the
0.25° model benchmarks. Both libraries have similar non-
I/0 times at each level of PE count, which comprise less than
5 % of total runtime, demonstrating that the benchmarks are
I/0 intensive and that different libraries have no impact on
the computation time.

The values of mpp_write in parallel I/O are much
shorter than the serial times. In the 720 PE runs, the parallel
write time is about 30 to 36 times faster than the serial time
in both the HDF5 and PnetCDF libraries. Such speedups are
reasonable relative to the 720 PE configuration, which uses
45 1/0 PEs, aggregators and stripe counts. In the 1440 PE
benchmark, which also doubles our number of I/O PEs, ag-
gregators and stripe counts to 90, the parallel mpp_write
runtime was further reduced by a factor of 2. We also ob-
serve that the non-I/O compute time of MOM from 720 to
1440 PE runs was reduced by a factor of 2, complementing
the enhanced I/0O scalability of the parallel I/O configura-
tion and maintaining the high overall parallel scalability of
the model for I/O intensive calculations.

The PnetCDF library shows better write performance than
HDFS5 in both serial and parallel 1/O, as well as a much
shorter time in mpp_close. To investigate such perfor-
mance diversity, we have conducted further tests on changing
the data layout of HDF5/netCDF-4.

All HDF5 performance results used the default block
chunking layout, where the chunk size is close to 4 MB with
a roughly equal number of chunks along each axis. We re-
peated these tests by customizing the chunk layout while
keeping all other I/O parameters unchanged. The chunk lay-
out, (ckx, cky), could be defined such that the global do-
main grids are divided into ckx and cky segments along the
x and y axes, respectively. The mpp_write times and total
runtimes of the 720 PE runs for chunking layouts spanning
values of ckxe{1,2,3,4} and ckye{1, 3,5, 15} are plotted
in Fig. 15. The performance of the default chunking layout
of HDF5 and PnetCDF are also shown in the figure as a ref-
erence point.

The chunk layout of (1, 1) defines the whole file as a sin-
gle chunk. In this case, it occupies the same contiguous data
layout with PnetCDF. Not surprisingly, the mpp_write
time of chunk layout (1, 1) is nearly the same as that
of PnetCDF/netCDF-3 as shown in Fig. 16. In fact, the

www.geosci-model-dev.net/13/1885/2020/

1899

mpp_write time changes only slightly across cky values
when for ckx =1. On the other hand, changing ckx val-
ues for a fixed cky value give rise to a steeply increasing
mpp_write time. Given the conventional contiguous stor-
age layout of a 4D variable (¢, z, y, x), the time dimension
varies most slowly, z and y vary faster, and x varies fastest.
This is also true within a chunk and increasing ckx will pro-
duce more non-contiguous chunks than increasing cky. This
means an [/O PE needs more 1/O operations to write a con-
tiguous memory data block across multiple chunks along the
increasing ckx than cky, and thus write times rise accord-
ingly as shown in Fig. 14. An exception case is ckx =3 as it
used similarly short write time with ckx = 1. This is because
it matches the number of x divisions of I/O layout (3, 15),
and each I/O PE needs only one operation to write a line of
data with the fixed y value. Instead, for ckx =2 or ckx =4,
each I/O PE may use two or more write operations to write a
line of y as it crosses multiple chunks. This makes the write
time much longer for ckxe{2, 4} than ckxe{l, 3}.

The mpp__close time is negligible in all tests. By reduc-
ing the total number of chunks and thus the metadata opera-
tions overheads, the mpp_ close time can also be controlled
with the reasonable chunk layout. The total time presents the
similar trend with mpp_write along different chunk lay-
outs as shown in Fig. 15.

Choosing a good chunk layout depends strongly on the
I/0 layout settings. Using a single chunk in the netCDF-4
file is unnecessary as it resembles the same data layout as
the netCDF-3 format. Adopting an I/O layout as the chunk
shape is sufficient for achieving optimal performance if our
intention is to create netCDF-4 formatted output files and to
utilize more advanced features, such as compression and fil-
tering operations.

Although benchmark tests in this work are highly I/O in-
tensive to explore the performance of parallel I/O, the gen-
eral simulation with less I/O workloads could also benefit
from parallel I/O. To demonstrate it we conducted 8 d sim-
ulations of 0.1° model with I/O frequencies in every 1 and
4.d. The I/O time and total runtime in each simulation from
720 and 1440 PEs runs are listed in Table 6. The produced
ocean diagnostic files are 73 and 19GB for 1 and 4d I/O
frequencies, respectively.

For 720 PEs the I/O time takes 6.09 % of total runtime
for 1d I/O frequency, and it reduces to 3.87 % of total run-
time for a lower I/O frequency of 4 d. These are regarded as
typical I/O workloads of normal model simulations at 5 %
(Koldunov et al., 2019). The parallel I/O scheme could re-
duce the I/O weight to be less than 1 % of total run time
in both netCDF-4 and netCDF-3 formats. It is noticed that
total overheads from those one-time I/O operations such as
mpp_read, mpp_open and mpp_close are comparable
with and in most cases larger than mpp_write time due to
the very limited number of write frequency, i.e. eight time
steps for 1 d and two time steps for 4 d I/O frequencies. This
gives rise to a weaker scalability between serial I/O and par-

Geosci. Model Dev., 13, 1885-1902, 2020

1900

R. Yang et al.: Parallel I/O in FMS and MOMS

Table 5. The time metrics of 0.1° model in 720 and 1440 PE runs with HDF5 1.10.2/netCDF-4 and PnetCDF 1.9.0/netCDF-3. SIO represents
the original serial read and single-threaded write; PIO represents the serial read and parallel shared write. All values are taken from the

maximum wall time among all PEs.

Library/format HDF5 1.10.2 (netCDF-4) PnetCDF 1.9.0 (netCDF-3)
PEs 720 (45 nodes) | 1440 (90 nodes) 720 (45 nodes) | 1440 (90 nodes)
1/0 pattern SIO PIO SIO PIO SIO PIO SIO PIO
Total runtime (s) 21689 1624 | > 18000 889 19726 1387 | > 18000 782
mpp_open (s) 8 51 90 9 16 81
mpp_read (s) 25 11 11 15 11 14
mpp_write(s) 20826 705 349 18 839 526 290
mpp_close (s) 8 37 59 0 0 1
Non-I/O time (s) 828 820 380 860 834 396
mpp_write (s) Total runtime (s)
4000 4000
3500 3500
3000 3000
2500 2500
2000 2000
°

1500

1000

500

cky=1 cky=3 cky=5 cky=15 ref.
@ ckx=1 @ ckx=2
ckx=3 ckx=4

e HDF5/NC4 default chunking es=@e== PnetCDF/NC classic

1500 = —v—/. o

1000

500

cky=1 cky=3 cky=5 cky=15 ref.
e CkX=1 ckx=2
ckx=3 ckx=4

@ HDF5/NC4 default chunking e==ge== PnetCDF/NC classic

Figure 15. Performance of 720 PE runs with customized chunk layouts in HDF5/netCDF-4. The default chunk layout of HDF5/netCDF-4

and contiguous layout of PnetCDF/netCDF-3 are shown as references.

allel I/O in comparison with the case of high-I/O-intensive
simulations given in Table 5. By running the simulation with
1440 PEs, the compute times are reduced in scale with num-
ber of PEs, but the I/0 time of SIO is similar to that with 720
PEs. As a result, the I/O time ratios increase to 10.98 % and
7.18 % for 1 and 4d I/O frequencies, respectively. It is ex-
pectable that the I/O time of SIO may have a higher weight
along with more compute PEs as it is not scalable, and thus
I/O workloads may eventually become the major scalabil-
ity bottlenecks. On the other hand, the I/O ratio in two PIO
cases maintain their light weights of around 1 % ~ 2 % from
720 to 1440 PEs. This indicates parallel I/O could maintain a
satisfactory overall scalability in the general simulation cases
with typical I/O workloads.

6 Conclusions

We have implemented parallel netCDF 1/O into the FMS
framework of the MOMS ocean model and presented re-

Geosci. Model Dev., 13, 1885-1902, 2020

sults which demonstrate the I/O performance gains relative
to single-threaded single-file I/O. We present a procedure for
tuning the relevant I/O parameters, which begins with iden-
tifying the I/O parameters that are sensitive to overall perfor-
mance by using a light-weight benchmark program. We then
systematically measure the impact of this reduced list of I/O
parameters by running the MOMS5 model at a lower (0.25°)
resolution and determining the optimal values for these pa-
rameters. This is followed by a validation of the results in the
higher (0.1°) resolution configuration.

Several rules for tuning the parameters across multiple
layers of the I/O stack are established to maintain the con-
tiguous access patterns and achieve the optimal I/O perfor-
mance. At the user application layer, [/O domains were de-
fined to retain more contiguous I/O access patterns by map-
ping the scattered grid data to a smaller number of I/O PEs.
We achieve the best performance when there is at least one
1/0 PE per node, and there can be additional benefits to using
multiple I/O PEs per node, although an excessive number of
I/0 PEs per node can impede performance.

www.geosci-model-dev.net/13/1885/2020/

R. Yang et al.: Parallel I/O in FMS and MOMS

1901

Table 6. The time metrics of 0.1° model in 720 and 1440 PE runs with less I/O frequencies, i.e. write per 1 and 4 d in 8 d simulations. SIO
represents the original single-threaded write; PIO represents parallel shared write. The I/O time composes of contributions from mpp_ open,
mpp_read, mpp_write and mpp_close. The I/O time ratio is given between the I/O time and total runtime. All values are taken from

the maximum wall time among all PEs.

I/0 pattern & format SIO in netCDF4_classic PIO in netCDF-4 PIO in netCDF-3

I/0 frequency 1d 4d 1d 4d 1d 4d

Total runtime (s) 8114 7817 7685 7569 7666 7469

720 PEs I/0 time/mpp_write (s) 494/453 302/265 75/40 62/27 57117 49/11
I/O ratio 6.09 % 3.87 % 098% 0.82% 0.74% 0.66 %

Total runtime (s) 4118 3743 3547 3578 3518 3549

1440 PEs I/O time/mpp_write (s) 452/421 269/238 59/24 48/14 51/14 4077
1/0 time ratio 10.98 % 7.18 % 1.67% 135% 145% 1.14%

At the MPI and Lustre levels of the I/O stack, it was found
that the number of aggregators used in collective MPI-1/O
operations and the number of Lustre stripe counts needed to
be consistently restricted to no more than two per node in
order to facilitate contiguous access and reduce the number
of contentions between PEs.

An I/0 profiling tool has been developed to explore over-
all timings and load balance of individual functions across
the I/0 stack. It was determined that the MPI implementa-
tion of particular I/O operations in the HDF5 1.8.20 library
used by netCDF-4 caused significant overhead when access-
ing metadata and that these issues were largely mitigated in
HDF5 1.10.2. Additional profiling of the PnetCDF 1.9.0 li-
brary showed that it did not suffer from such overhead, due
to the simpler structure of the netCDF-3 format.

High-resolution MOMS5 benchmarks using the 0.1° con-
figuration were able to confirm that the parallel I/O imple-
mentations can dramatically reduce the write time of di-
agnostic and restart files. Using parallel I/O enables the
scaling of I/O operations in pace with the compute time
and improves the overall performance of MOMS, especially
when running an I/O-intensive configuration resembling our
benchmark. The parallel I/O implementation proposed in
this paper provides an essential solution that removes any
potential I/O bottlenecks in MOMS at higher resolutions in
the future.

Although this work is applied to a model with a fixed reg-
ular grid, these results could be applied to a model with an
unstructured mesh. Much of the work required to populate
the I/O domains and to define chunked regions is required to
produce contiguous streams of data which are passed to the
I/0O library. If the data are already stored as contiguous 1D
arrays, then the task of dividing the data across I/O servers
could be trivial. If more complex data structures are used,
such as linked lists, then the buffering of data into contigu-
ous arrays could add significant overhead to parallel I/O.

An investigation of data compression is not a part of this
work, as traditionally it can only be used in serial I/O. We
note that the more recent version of HDF5, 1.10.2, intro-

www.geosci-model-dev.net/13/1885/2020/

duced support for parallel compression, and it is expected
that the netCDF library will soon follow. As the 1/O lay-
out generally picks up one to two I/O PE per compute node,
it may produce chunks which are too large (i.e. too small a
number of chunks) for efficient parallel compression. In this
sense, the default chunk layout of netCDF4 should also be
considered as it gains acceptable write performance and has
suitable chunk sizes more suitable for parallel compression.
Finally, it is explored that parallel I/O could not only largely
accelerate I/O intensive model simulations but also prompt
the scalability of a general case with typical I/O workloads.

Code availability. The source code of parallel I/O enabled FMS
is available from https://doi.org/10.5281/zenodo.3700099 (Ward
and Yang, 2020). The MOMS code used in the work is
available at https://github.com/mom-ocean/MOMS5.git (last ac-
cess: ; Griffies, 2012-2020). The core dataset is available
as https://doi.org/10.1007/s00382-008-0441-3 (Large and Yeager,
2009). Build script, configure files and job scripts are available from
https://doi.org/10.5281/zenodo.3710732 (Yang, 2020).

Author contributions. RY and MW developed the parallel I/O code
contributions to FMS. RY carried out all model simulations, as well
as performance profiling and analysis. RY and MW wrote the initial
draft of the article. All coauthors contributed to the final draft of the
article. BE supervised the project.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work used supercomputing resources
provided by National Computational Infrastructure (NCI), The Aus-
tralian National University.

Geosci. Model Dev., 13, 1885-1902, 2020

https://doi.org/10.5281/zenodo.3700099
https://github.com/mom-ocean/MOM5.git
https://doi.org/10.1007/s00382-008-0441-3
https://doi.org/10.5281/zenodo.3710732

1902

Review statement. This paper was edited by Olivier Marti and re-
viewed by Nikolay V. Koldunov and Michael Kuhn.

References

Bartz, C., Chasapis, K., Kuhn, M., Nerge, P., and Ludwig, T.: A
Best Practice Analysis of HDF5 and NetCDF-4 Using Lustre,
ISC 2015, https://doi.org/10.1007/978-3-319-20119-1_20, 2015.

Dennis, J. M., Edwards, J., Loy, R., Jacob, R., Mirin, A.
A., Craig, A. P, and Vertenstein, M.: An application-
level parallel I/O library for Earth system models,
The Int. J. High Perform. Comput. Appl, 26, 43-56,
https://doi.org/10.1177/1094342011428143, 2011.

Dickens, P. and Logan, J.: Towards a high performance implemen-
tation of MPI-IO on the Lustre file system, On the Move to
Meaningful Internet Systems: OTM 2008 LNCS 5331, 870-885,
https://doi.org/10.1007/978-3-540-88871-0_61, 2008.

Edwards, J., Dennis, J. M., Vertenstein, M., and Hartnett, E.: PIO
library, available at: http://ncar.github.io/ParallelIO/index.html
(last access: March 2020), 2019.

Griffies, S. M.: Elements of the Modular Ocean Model
(MOM), GFDL Ocean Group Technical Report No. 7,
NOAA/Geophysical Fluid Dynamics Laboratory, 620, available
at https://github.com/mom-ocean/MOMS5.git (last access: April
2020), 2012-2020.

Howison, M., Koziol, Q., Knaak, D., Mainzer, J., and Shalf, J.: Tun-
ing HDF5 for Lustre file systems, Proceedings of 2010 Work-
shop on Interfaces and Abstractions for Scientific Data Storage
(IASDS10), 2010.

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko,
D., Danilov, S., and Jung, T.: Scalability and some opti-
mization of the Finite-volumE Sea ice—-Ocean Model, Ver-
sion 2.0 (FESOM2), Geosci. Model Dev., 12, 39914012,
https://doi.org/10.5194/gmd-12-3991-2019, 2019.

Large, W. G. and Yeager, S. G.: The global climatology of an inter-
annually varying air-sea flux data set, Clim. Dynam., 33, 341—
364, https://doi.org/10.1007/s00382-008-0441-3, 20009.

Li, J., Liao, W., Choudhary, A., Ross, R., Thakur, R., Gropp, W.,
Latham, Siegel, R. A., Gallagher, B., and Zingale, M.: Parallel
netCDF: A Scientific High-Performance I/O Interface, Proceed-
ings of ACM/IEEE conference on Supercomputing, 39, 2003.

Liao, W. and Choudhary, A.: Dynamically adapting file domain
partitioning methods for collective I/O based on underlying
parallel file system locking protocols, Proceedings of the 2008
ACM/IEEE conference on Supercomputing (SC’08), 3, 2008.

Geosci. Model Dev., 13, 1885-1902, 2020

R. Yang et al.: Parallel I/O in FMS and MOMS

Maisonnave, E., Fast, 1., Jahns, T., Biercamp, J., Sénési, S.,
Meurdesoif, Y., and Fladrich, U.: CDI-pio & XIOS I/0
servers compatibility with HR climate models, Technical Re-
port, TR/ICMGC/17/52, CECI, UMR CERFACS/CNRS No5318,
2017.

Nisar, A., Liao, W. K., and Choudhary, A.: Scaling paral-
lel I/O performance through I/O delegate and caching sys-
tem, International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 2008, 1-12,
https://doi.org/10.1109/SC.2008.5214358, 2008.

Shan, H. and Shalf, J.: Using IOR to Analyze the I/O Performance
of XT3, Cray User Group Conference, 2007.

Thakur, R., Gropp, W., and Lusk, E.: Data Sieving and
Collective 1I/O in ROMIO, 182-189, 7th Symposium
on the Frontiers of Massively Parallel Computation,
https://doi.org/10.1109/FMPC.1999.750599, 1999.

Turner, A. and Mclntosh-Smith, S.: Parallel 1/O Performance
Benchmarking and Investigation on Multiple HPC Architectures,
1.4, ARCHER White Papers, 2017.

Unidata: Network Common Data Form (netCDF) version 4.3.3.1,
UCAR/Unidata, https://doi.org/10.5065/D6H70CW6, 2015.

Ward, M. and Yang, R.: NOAA-GFDL/FMS: Parallel
netCDF Support (Version parallel NCDF), Zenodo,
https://doi.org/10.5281/zenodo.3700099, 2020.

Webb, D. J.: An ocean model code for array processor computers,
Comput. Geophys., 22, 569-578, https://doi.org/10.1016/0098-
3004(95)00133-6, 1996.

Webb, D. J.,, Coward, A. C., de Cuevas, B. A., and
Gwilliam, C. S.: A multiprocessor ocean general circu-
lation model using message passing, J. Atmos. Ocean.
Technol., 14, 175-183, https://doi.org/10.1175/1520-
0426(1997)014<0175: AMOGCM>2.0.CO:;2, 1997.

XIOS: XML IO server , available at: http://forge.ipsl.jussieu.fr/
ioserver, last access: March 2020.

Yang, R.: anuryang/mom5_parallel_io_config_scripts:
v0.4 (Version v0.4), Zenodo, Supplement,
https://doi.org/10.5281/zenodo.3710732, 2020.

Yu, W., Vetter, J., Canon, R. S., and Jiang, S.: Exploiting lustre
file joining for effective collective 10, Cluster Computing and
the Grid CCGRID 2007, Seventh IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid 07), 267-274,
https://doi.org/10.1109/CCGRID.2007.51, 2007.

www.geosci-model-dev.net/13/1885/2020/

https://doi.org/10.1007/978-3-319-20119-1_20
https://doi.org/10.1177/1094342011428143
https://doi.org/10.1007/978-3-540-88871-0_61
http://ncar.github.io/ParallelIO/index.html
https://github.com/mom-ocean/MOM5.git
https://doi.org/10.5194/gmd-12-3991-2019
https://doi.org/10.1007/s00382-008-0441-3
https://doi.org/10.1109/SC.2008.5214358
https://doi.org/10.1109/FMPC.1999.750599
https://doi.org/10.5065/D6H70CW6
https://doi.org/10.5281/zenodo.3700099
https://doi.org/10.1016/0098-3004(95)00133-6
https://doi.org/10.1016/0098-3004(95)00133-6
https://doi.org/10.1175/1520-0426(1997)014<0175:AMOGCM>2.0.CO;2
https://doi.org/10.1175/1520-0426(1997)014<0175:AMOGCM>2.0.CO;2
http://forge.ipsl.jussieu.fr/ioserver
http://forge.ipsl.jussieu.fr/ioserver
https://doi.org/10.5281/zenodo.3710732
https://doi.org/10.1109/CCGRID.2007.51

	Abstract
	Introduction
	Parallel I/O implementations in FMS
	Parallel I/O performance benchmark
	I/O parameter space
	Configurations

	Benchmark results
	Single-threaded single-file I/O of the 0.25 model
	Parallel I/O performance tuning of the 0.25 model
	I/O layout
	Stripe count and aggregators
	I/O implementation profiling analysis
	Load balance
	Serial read and parallel read

	I/O performance validation of 0.1 model
	Conclusions
	Code availability
	Author contributions
	Competing interests
	Acknowledgements
	Review statement
	References

