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Abstract. Natural and anthropogenic disturbances, in par-
ticular forest management, affect forest age structures all
around the globe. Forest age structures in turn influence key
land surface processes, such as photosynthesis and thus the
carbon cycle. Yet, many dynamic global vegetation mod-
els (DGVMs), including those used as land surface mod-
els (LSMs) in Earth system models (ESMs), do not account
for subgrid forest age structures, despite being used to in-
vestigate land-use effects on the global carbon budget or
simulating biogeochemical responses to climate change. In
this paper we present a new scheme to introduce forest age
classes in hierarchical tile-based DGVMs combining bene-
fits of recently applied approaches the first being a compu-
tationally efficient age-dependent simulation of all relevant
processes, such as photosynthesis and respiration, using a
restricted number of age classes and the second being the
tracking of the exact forest age, which is a prerequisite for
any implementation of age-based forest management. This
combination is achieved by using the tile hierarchy to track
the area fraction for each age on an aggregated plant func-
tional type level, whilst simulating the relevant processes
for a set of age classes. We describe how we implemented
this scheme in JSBACH4, the LSM of the ICOsahedral Non-
hydrostatic Earth system model (ICON-ESM). Subsequently,
we compare simulation output to global observation-based
products for gross primary production, leaf area index, and
above-ground biomass to assess the ability of simulations
with and without age classes to reproduce the annual cycle
and large-scale spatial patterns of these variables. The com-
parisons show decreasing differences and increasing compu-

tation costs with an increasing number of distinguished age
classes. The results demonstrate the benefit of the introduc-
tion of age classes, with the optimal number of age classes
being a compromise between computation costs and error re-
duction.

1 Introduction

Land use, particularly forest management, substantially in-
fluences the age structure of global forests (Pan et al., 2011;
Erb et al., 2017). More than 19 Mkm2 of forest area, i.e. about
15 % of global ice-free land, are under some kind of manage-
ment (Luyssaert et al., 2014), with 65 % being under regu-
lar harvest schemes and another 7 % being intensive planta-
tions (Erb et al., 2017). Often, management practices make
use of rotation cycles, as is common in shifting cultivation
(Boserup, 1966) or even-aged forest management strategies
that historically were common in temperate forests and are
still the dominant management type in boreal forests (Ku-
usela, 1994; Puettmann et al., 2015; Kuuluvainen and Gau-
thier, 2018). Forest age structures are also influenced by
other natural or anthropogenically caused disturbances such
as fires, windthrows, droughts, pests, and insect outbreaks
(e.g. Soja et al., 2006; van Mantgem et al., 2009; Dore et al.,
2010; Pan et al., 2011, 2013).

Changes in forest age structure in turn influence biophys-
ical and biogeochemical interactions with the atmosphere,
through changes in land surface properties such as albedo
and carbon uptake (e.g. Juang et al., 2007; Dore et al., 2010;
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Sun et al., 2010; Kirschbaum et al., 2011; Pan et al., 2011,
2013; Poorter et al., 2016; Erb et al., 2017). Forest age struc-
ture changes can influence the susceptibility to the envi-
ronment and to environmental changes. It is, for example,
hypothesised that the response of forests to increasing at-
mospheric CO2 ceases as the forest matures because other
resources than CO2, such as water and nutrients, become
growth limiting (Körner, 2006).

It is crucially important to include forest age structures in
estimates of the effects of land use on the global scale, pri-
marily (1) due to the aforementioned large extent and sub-
stantial effects of forest undergoing changes in age structure;
(2) due to the aim of global studies to include forest manage-
ment effects in addition to anthropogenic land cover changes;
and (3) because global studies usually only have a very
coarse resolution. One example of such global studies is the
estimate of global land-use emissions for the annual global
carbon budget (Le Quéré et al., 2018), which is conducted
with dynamic global vegetation models (DGVMs). Here, 10
out of the 16 participating DGVMs account for wood har-
vesting. Other examples are studies estimating biogeochem-
ical and/or biophysical interactions between the land surface
and the climate system. Such studies are conducted with
Earth system models (ESMs) including their land surface
models (LSMs), many of which taking part in the coupled
model intercomparison projects (CMIPs). Here, considera-
tions of forest age structure might in particular be important
for future scenarios that often include strong land-based mit-
igation measures, such as forest management and afforesta-
tion (e.g. in CMIP6’s land use intercomparison project LU-
MIP; see Lawrence et al., 2016). Global studies, in particular
the computationally expensive ESM simulations, inevitably
need to be conducted on coarse horizontal resolutions, typ-
ically only about 0.5 to 2◦. Land use will thus usually only
happen on fractions of the grid cells, creating the need to rep-
resent subgrid forest age structures. The importance of sub-
grid forest age structures is also underlined by recent stud-
ies stressing the role of forest (re-)growth for the histori-
cal and future terrestrial carbon uptake (e.g. Kondo et al.,
2018; Krause et al., 2018; Yao et al., 2018) and by studies
simulating smaller land-use emissions when accounting for
secondary forests (e.g. Shevliakova et al., 2009; Yue et al.,
2018a). Despite all this evidence, many DGVMs, and partic-
ularly also those used as LSMs in ESMs, do not account for
subgrid forest age structures (Pongratz et al., 2017).

There are categorically different approaches of how sub-
grid forest age structures can be implemented in DGVMs, de-
pending on whether these models are individual- and cohort-
based or tile-based. In the class of individual- and cohort-
based models (referred to as vegetation demographic mod-
els in Fisher et al., 2018), subgrid structures are inherently
provided. Examples are ED-derivatives (Fisher et al., 2015,
2018), LPJ-Guess (Smith et al., 2001; Bayer et al., 2017),
and the SEIB-DGVM (Sato et al., 2007). In the (larger)
class of tile-based models (also referred to as area-based

in Smith et al., 2001), subgrid structures are not inherently
provided. In these models each tile describes an average in-
dividual per plant functional type (PFT). Examples of this
class of DGVMs are CABLE (Haverd et al., 2018), Class-
CTEM (Melton and Arora, 2016), ISAM (Yang et al., 2010),
JSBACH (Reick et al., 2013; Mauritsen et al., 2019), LM3
(Shevliakova et al., 2009), LPX-Bern (Stocker et al., 2014b),
different versions of ORCHIDEE (Naudts et al., 2015; Yue
et al., 2018b), and others. In our study we focus on the sec-
ond class of DGVMs, as they are more commonly used as
LSMs in ESMs. One reason that tile-based models are more
commonly used is simply that they have lower computational
costs. Another reason is their often historically conditioned
top–down development, which facilitates a fully coupled ex-
ecution within the corresponding ESM.

To expand tile-based DGVMs to represent subgrid forest
age structures, two approaches have recently been developed.
The more frequently applied approach has been to increase
the number of tiles in such a way that a certain number
of age classes or structurally similar stands can be distin-
guished. A pioneer study is found in the paper by Shevli-
akova et al. (2009), using the model LM3 with a fixed num-
ber of in total 12 secondary land tiles for all PFTs and a
similarity-based merging of tiles in order to maintain the
number of tiles despite further land use or disturbances.
Comparably, ORCHIDEE-MICT (Yue et al., 2018b) intro-
duced a fixed number of six tiles per woody PFT, with tile
merging upon exceeding predefined woody biomass bound-
aries. In ORCHIDEE-CAN three tiles per woody PFT with
tile merging upon exceeding diameter thresholds have been
used, while further within-stand structuring has been applied
in each tile by accounting for a user-defined diameter distri-
bution (Naudts et al., 2015). An increase in tiles has also been
chosen in ISAM (Yang et al., 2010) and LPX-Bern (Stocker
et al., 2014a, b); in these models, however, only one addi-
tional tile per PFT has been introduced in order to distinguish
primary and secondary vegetation. A common drawback of
the hitherto existing implementations is the missing trace-
ability of the actual age of the forests as soon as tiles are
merged. Merging of tiles, however, is a necessity when the
number of age classes is constrained by computation costs.

The alternative approach for extending the number of
tiles to represent subgrid forest age structure in tile-based
DGVMs is to keep the information about the forest structure
in a separate module. For ORCHIDEE-FM (Bellassen et al.,
2010), for example, ORCHIDEE has been coupled to a for-
est management module (FMM). FMM takes the tile wood
increment calculated in ORCHIDEE as input, allocates the
increment to tracked individual trees, conducts self-thinning
and forest management, and feeds back the leaf area index
(LAI), biomass, and litter to the tile. A comparable coupling
is described in Haverd et al. (2018), where the DGVM CA-
BLE is coupled to the Population Orders Physiology (POP)
module for woody demography and disturbance-mediated
landscape heterogeneity (Haverd et al., 2014). POP has a
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detailed description of the forest structure and simulates the
growth of age or size classes of trees competing for soil re-
sources and light. For each forest tile, POP gets the stem net
primary production (NPP) from CABLE and returns woody
vegetation height, mortality, and sapwood mass. Whilst such
a use of a separate module principally enables tracking the
exact age of the forest in a grid cell, it has the drawback of us-
ing average tile information to compute simulated processes,
such as photosynthesis. Age dependencies of these processes
can thus not be represented.

In this paper we bridge the two approaches for extend-
ing tile-based DGVMs to represent subgrid forest age in the
sense that we present a way to trace the actual age of the
forests in a grid cell despite following the first approach us-
ing a restricted number of additional tiles and thus required
merges. The suggested approach is applicable for any tile-
based DGVM, provided the tiles are structured in a hierarchi-
cal way. We describe the implementation of our approach in
the DGVM JSBACH4 and use the new model version to con-
duct test simulations with different numbers of age classes
and age distribution schemes. Subsequently, we compare the
different simulation results against observation-based data to
investigate the compromise between computation costs and
error reduction.

2 Methods

2.1 JSBACH4

The DGVM JSBACH4 is used as the LSM in the ICON-
ESM (Giorgetta et al., 2018). In addition, JSBACH4 is de-
veloped with a flexible interface, such that it is also us-
able within MPI-ESM1.2 (Mauritsen et al., 2019) and as a
standalone model driven by climate data. JSBACH4 is a re-
implementation of JSBACH3, the original LSM used in MPI-
ESM1.2 (Mauritsen et al., 2019), but with a more flexible
and extendable structure via a hierarchical representation of
tiles (Fig. 1). The implementations described in this paper
are based on the current version (4.20p7), which includes
most of the processes implemented in JSBACH3, such as
land physics, photosynthesis, carbon allocation, and natural
disturbances, but is still lacking JSBACH3’s representation
of anthropogenic land cover change (Reick et al., 2013). Fur-
thermore, the current version does not provide an infrastruc-
ture for the horizontal exchange of properties among tiles,
such as, for example, the movement of area fractions from
one PFT to another.

As an important amendment to the current version
(4.20p7), we ported a new JSBACH3 development, which
we implemented in a recent independent study (Naudts et al.,
2020): while previous JSBACH3 versions assumed a PFT-
dependent but constant maximum leaf area index (LAI), that
is the LAI value that can maximally be reached at the peak
of a season, Naudts et al. (2020) introduced a dependency of

Figure 1. The hierarchical tile structure of JSBACH4. In our study,
the default tile structure of JSBACH4 (in black) has been extended
by a variable number N of forest age classes (ACs) below each of
the K forest plant functional types (PFTs; in blue).

the maximum LAI on the available leaf biomass. Such a de-
pendency is a prerequisite for simulating forest regrowth and
thus for the introduction of age classes.

2.2 JSBACH4–FF

As outlined in the introduction, we aimed for a scheme that
allows subgrid forest age structures to be introduced in hi-
erarchical tile-based models in a computationally efficient
way, i.e. using a restricted set of age classes, but never-
theless with exact tracing of the age of the forest. For our
new JSBACH4 git feature “forests” (JSBACH4–FF) we took
advantage of the existing hierarchical tile organisation of
JSBACH4, which allows us to introduce different processes
and associated state variables on different levels of the tile
hierarchy (Fig. 2). Already existing processes which are spe-
cific to the development of an age class, such as photosyn-
thesis and carbon allocation, are still executed on the leaves,
i.e. now per age class. However, processes related to several
age classes, such as natural disturbances and the newly intro-
duced ageing and harvesting processes, are implemented on
the PFT level, which we use to manage associated age classes
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Figure 2. Unified Modelling Language diagram showing the re-
lation between tiles, forest plant functional types (PFTs), and for-
est age classes (ACs) in JSBACH4–FF, together with a selection
of example state variables and functions (in italics). Forest PFTs
and ACs are distinct types of tiles, with each PFT having N asso-
ciated ACs. Each tile hosts certain state variables, for example the
grid-cell fraction that it covers, as well as functions, for example
to navigate the tile hierarchy. Different types of tiles add further
variables and functions. Tiles representing ACs host variables and
functions required for processes calculated on the lowest level of
the tile hierarchy, such as photosynthesis or carbon allocation. Tiles
representing PFTs host variables to maintain meta-information, for
example the fractPerAge vector, which contains the fraction cov-
ered by each age, i.e. one entry per year up to the maximum tracked
age (maxAge). Furthermore, PFTs host functions altering more than
one associated AC, for example ageing or harvest.

and to maintain meta-information about the forest age struc-
ture.

In JSBACH4–FF we introduced a fixed user-defined num-
ber N of age classes preset in the configuration file for all
forest PFTs (Fig. 1). In addition, an upper age bound per
age class ACK (maxAK ) as well as a total maximum age
(maxAge) were introduced, which also have to be predefined.
maxAge determines the oldest age up to which the age of
an area is tracked, i.e. the length of the fractPerAge vector
(Fig. 2). Area fractions with ages exceeding maxAge are not
further distinguished and are refereed to as old-grown forest.
For a maximum age of 150 years, for example, each forest
PFT would contain a vector with a length of 150 to track
the exact age of the entire forest area up to 150-year-old for-
est. Each ACK covers a certain interval of years [maxAK−1,
maxAK ) (Fig. 3), with the youngest AC (AC1) always cov-
ering the range of year 0 to 1 and the oldest ACN cover-

ing all forest older than maxAN−1, i.e. [maxAN−1,∞), with
maxAN−1 ≤maxAge.

In JSBACH4–FF we implemented three processes on the
PFT level which can cause shifts of area fractions from one
AC to another (Fig. 3), each tracking changes in age fractions
in the fractPerAge vector.

Ageing The newly implemented process of forest “ageing”
happens annually: upon ageing each tracked forest frac-
tion gets 1 year older. Yet, a shift from one age class to
the next age class only happens for the area of the oldest
age (maxAK−1−1) of an age class ACK−1; i.e. only the
forest area which upon getting 1 year older exceeds the
upper age bound maxAK−1 of the ACK−1 needs to be
shifted into ACK . Thanks to the tracking of the age in
the fractPerAge vector, the exact area fraction with age
maxAK−1− 1 is known.

Harvest In the current version, we implemented harvest as
a clear-cutting of a certain fraction of an AC, which can
happen annually. Harvest causes a shift of the harvested
fraction of the affected AC to the youngest AC. Since
the exact age of each forest fraction is tracked in the
fractPerAge vector, age-based harvest rules can be spec-
ified.

Disturbances Following JSBACH3 (Brovkin et al., 2009)
wind and fire disturbances can happen daily in
JSBACH4 and are assumed to clear certain area frac-
tions of vegetation. In JSBACH4–FF disturbances were
partly re-implemented. While the calculation of the dis-
turbed area is still conducted on each leaf, i.e. on each
AC (calc_disturbed_area in Fig. 2), the movement of
area between ACs is managed on the PFT level (man-
age_disturbed_area in Fig. 2). This separation was re-
quired since the state variables used to determine the
disturbed area, such as available fuel, need to be de-
rived on the lowest layer of the hierarchy. Disturbances
are realised as shifts of fractions of affected ACs to the
youngest AC (AC1).

Since JSBACH4 so far does not provide the infrastruc-
ture for the horizontal exchange of properties among tiles
(Sect. 2.1), we had to implement such an infrastructure
in JSBACH–FF, redistributing area fractions and associated
state variables such as the carbon pools or the maximum
LAI. This redistribution has been realised in two steps: in
the first step, each of the three processes described above
determines required redistributions on the PFT level (sched-
ule_state_changes in Fig. 2) according to Eqs. (1) and (2).
Here, fa is the area fraction moved from one AC to another,
e.g. upon ageing; VS is the value of the state variable of the
source ACS and delta_VS and delta_VT are the scheduled
changes of the state variable on the source ACS and the target
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Figure 3. Visualisation of forest age-class (AC) boundaries, the fractPerAge vector, and processes causing shifts from one AC to another
in JSBACH–FF. Each AC covers a certain interval of ages. The first AC contains all forest younger than 1 year; an arbitrary ACK covers
[maxAK−1, maxAK ), i.e. the ages in the right-open interval of the upper age boundary of the previous AC (maxAK−1) and its own upper
age boundary (maxAK ); finally the last class ACN covers all forest older than and including the upper age boundary of the next younger
class (maxAN−1), with maxAN−1 being smaller or equal to the total maximum age (maxAge). The information on the area covered by the
different ages (indicated in red) is tracked in the fractPerAge vector of the associated forest PFT. Three processes can lead to the movement
of area fractions among ACs: ageing leads to the movement of the fraction exceeding the maximum age of an AC; harvest and disturbances
lead to the movement of fractions to the first AC.

ACT, respectively.

delta_VS = delta_VS− (VS · fa) (1)
delta_VT = delta_VT+ (VS · fa) (2)

In the second step, the redistributions are applied to the
ACs (apply_state_changes in Fig. 2) according to Eq. (3).
Here, VAC represents the affected state variable of the age
class AC, delta_VAC the scheduled change, fa is the incom-
ing and fc the current area of the age class AC.

V ′AC =
VAC · fc+ delta_VAC

(fc+ fa)
(3)

2.3 Simulation set-up and measures of model
performance

The main purpose of JSBACH is to conduct global appli-
cations, often in a mode coupled to an ESM. Therefore, we
assess the ability of different set-ups without and with dif-
ferent numbers of age classes to reproduce the annual cy-
cle and large-scale spatial patterns of gross primary produc-
tion (GPP), forest LAI, and forest above-ground biomass
(AGB) by comparing simulated variables against global
observation-based products for different seasons and regions.
We conducted simulations following a protocol described be-
low (Sect. 2.3.2), with the aim to simulate actual 2010 forest
age distributions and forest states. Forest GPP, forest LAI,
and forest AGB simulated for 2001 to 2010 were compared
to GPP, LAI, and AGB data based on observations using a
normalised root mean squared error (NRMSE; Sect. 2.3.5).

In addition, we created Taylor diagrams for each variable,
season, and region (see Figs S5.5–S5.11 in the Supplement).

2.3.1 Observation-based data

We used 2010 MODIS LAI (Myneni et al., 2002) and GPP
data obtained from machine learning methods trained on
flux-tower measurements (Tramontana et al., 2016). These
LAI and GPP datasets had already been mapped to JS-
BACH’s forest PFTs in a previous study (see Supplement
Nyawira et al., 2016). From these datasets seasonal means
were calculated and expressed per forest area by dividing
them by the sum of the forest cover fractions used for
the JSBACH4–FF simulations (Sect. 2.3.2). The AGB per
forest area (Avitabile et al., 2016) was downloaded from
the GEOCARBON data portal (http://www.bgc-jena.mpg.
de/geodb/projects/Data.phd, last access: 19 October 2017)
and remapped to T63 using the conservative remapping op-
erator of the climate data operators (CDOs, version 1.9.5).
Figures S4.2–S4.4 in the Supplement show maps of the pre-
processed observation-based data.

2.3.2 General simulation set-up

We conducted simulations with JSBACH4 (4.20p7) fea-
ture/forest in standalone mode hosted within the MPI-ESM
environment (see Supplement Sect. S1 for further infor-
mation). We used JSBACH’s default set-up comprising 12
PFTs, of which 4 are of a forest type: tropical evergreen and
deciduous forest (TE and TD) and extratropical evergreen
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Table 1. Conducted simulations with number of age classes and applied age distribution scheme. The “+1” in the number of age classes
refers to the youngest age class, which always covers the years 0 to 1 in JSBACH4–FF.

Simulation name PFT EAS03 IAS03 EAS06 IAS06 EAS08 IAS08 EAS11 IAS11 EAS13 IAS13 EAS16 IAS16

Number of age classes – 2+ 1 2+ 1 5+ 1 5+ 1 7+ 1 7+ 1 10+ 1 10+ 1 12+ 1 12+ 1 15+ 1 15+ 1
Age distribution scheme – EASa IASb EAS IAS EAS IAS EAS IAS EAS IAS EAS IAS

a EAS: equal age spacing. b IAS: increasing age spacing.

and deciduous forest (ETE and ETD). Simulations started in
1860 from scratch, i.e. with empty vegetation carbon stocks,
and were run up to 2010. Empty carbon stocks are a simpli-
fication used in the absence of global knowledge on the state
of the forest in 1860 but have no influence on our results
since in simulations with JSBACH4 (4.20p7) LAI, GPP, and
AGB only depend on the age since the last clearing event,
not on the history before that. The starting date of 1860 was
chosen such that it covers at least one full cycle of regrowth,
as the oldest age resolved in the simulations matches that of
the observation-based data (Poulter et al., 2018). We used
T63 resolution (192 longitudes×96 latitudes; 1.9◦× 1.9◦),
a climate forcing based on GSWP3 (Kim et al., 2012), and
CO2 from the collection of greenhouse gas concentrations
for CMIP6 (Meinshausen et al., 2017). To obtain forest age
distributions comparable to those observed for 2010 (Poul-
ter et al., 2018), harvest was conducted following prescribed
maps (Sect. 2.3.4) and natural disturbances were switched
off in order to not additionally alter forest age. The simula-
tions were conducted with a static land-use map for 2010,
based on TRENDYv4 JSBACH3 output (Le Quéré et al.,
2015). The TRENDYv4 JSBACH3 simulation started from
a potential vegetation map extrapolated from remote sens-
ing (Pongratz et al., 2008) and was forced by the Land-use
Harmonization dataset LUH1 (Hurtt et al., 2011). We con-
ducted simulations with different numbers and distributions
of age classes (Sect. 2.3.3). All simulations were conducted
on Mistral, the high-performance computing system of the
German Climate Computing Center (DKRZ), using an iden-
tical number of CPUs.

2.3.3 Simulated number of age classes and age
distribution schemes

Table 1 lists the conducted simulations. We used differ-
ent numbers of age classes and two different age distribu-
tion schemes described below. The selected numbers of age
classes are arbitrary; however, the finest resolution into 15+1
age classes was motivated by the age map discretisation in
Poulter et al. (2018) using 15 age classes that cover 10 years
each. In addition to simulations with age classes, we per-
formed one simulation only using PFTs, i.e. without age
classes.

The two applied age distribution schemes are defined as
follows:

EAS The equal age-spacing (EAS) distribution scheme
spreads the age classes evenly over the age space. For
example, a maximum traced age of 150 years distributed
evenly over 10+ 1 age classes (EAS11 in Table 1) re-
sults in age classes covering 15 years with the follow-
ing upper age bounds: 1, 16, 31, 46, . . . , 136,∞. This
distribution scheme was motivated by the equal spacing
applied in the forest age map by Poulter et al. (2018).

IAS The increasing age-spacing (IAS) distribution scheme
uses an increasing age range, i.e. younger age classes
cover smaller intervals in the age space than older age
classes. The upper age bound of a forest age class K

(uLimK ) is defined following Eq. 5.

spacing=
maxAge∑N−1

i=1 i
(4)

uLimK =


1, if K = 1
∞, K =N

uLimK−1+ int(spacing ·K), else
,

(5)

with maxAge being the maximum age and N being the
number of age classes. A maximum age of 150 years
distributed with IAS over 10+1 age classes (IAS11 in
Table 1) results in age classes with the following upper
age bounds: 1, 3, 8, 16, 26, 39, 55, 74, 95, 119, ∞2.
This second distribution scheme was motivated by the
fact that young forests usually have larger incremen-
tal changes in most variables than old ones (see, e.g.,
Amiro et al., 2006; Martínez-Vilalta et al., 2007; Leslie
et al., 2018).

Both distribution schemes are applied in a static way,
i.e. the age-class boundaries do not change during runtime.
Figure 4 shows the division into age classes resulting for
the different simulation set-ups for an example grid cell in
Canada.

2.3.4 Harvest maps

Harvest maps were derived such that the observed 2010 for-
est age distribution given by Poulter et al. (2018) is reached
in the final simulation year 2010 for simulations using age
classes. The observed forest age map of course not only re-
flects forest harvest, but all processes influencing the age
of a forest, i.e. also natural disturbances and anthropogenic
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Figure 4. Division into age classes (ACs) for the different simulations listed in Table 1 (EAS: equal age spacing; IAS: increasing age spacing).
Purple lines mark the upper age boundary of each age class. The blue bars show the relative fraction for each year resulting for an example
cell in Canada (lat 47.5639, long 286.875) in the simulation year 2010. Note that no harvest was conducted in the final simulation year 2010;
therefore the smallest age class is empty.

land cover change. Because assigning the observed age struc-
ture to forest harvesting vs. natural disturbances vs. anthro-
pogenic land cover change would come with uncertainties
and is not relevant for our study (as only the affected frac-
tion of an age class matters, independently of the underlying
causes), we apply only forest harvest to obtain the observed
age distribution.

The map by Poulter et al. (2018) provides a grid with a
0.5◦ resolution of the global forest age distribution of four
forest PFTs: needleleaf evergreen (NE) and needleleaf decid-
uous (ND), as well as broadleaf evergreen (BE) and broadleaf
deciduous (BD). The map uses a discretisation into 15 age
classes, covering 10 years each, with the last class containing
all area with an age > 140 years. In a preprocessing step, the
map was remapped to T63 using the conservative remapping
operator of the CDOs. Subsequently, the area sums of the two
evergreen and the area sums of the two deciduous PFTs from
Poulter et al. (2018) were used to derive the age-class maps
for JSBACH’s evergreen and deciduous PFTs, respectively,
following Eq. (6):

cf_agei_PFTk = (cf_agei_N + cf_agei_B)

·
cf_PFTk∑15

i=1(cf_agei_N + cf_agei_B)
, (6)

where i is one of the 15 age classes from Poulter et al. (2018)
and k refers to one of the four forest PFTs of JSBACH. N

(needleleaf) and B (broadleaf) refer to the PFTs in Poulter
et al. (2018), where either both are evergreen (in case PFTk

is evergreen) or both are deciduous PFTs (in case PFTk is
deciduous).

From these age maps, we derived harvest maps for each
simulation year such that the simulated age distribution in
simulations with age classes conforms with the observed one
in 2010, assuming that the fractions given by Poulter et al.
(2018) are equally distributed over the 10 years covered by

each age class (see Supplement Sect. S2 for more details).
In the first (1860) and in the last simulation year (2010) no
harvest was conducted.

In different simulation types – with or without age classes
– the same harvest maps were used, but different forest
management schemes were applied. In simulations with age
classes, clear-cutting according to the fractions in the harvest
map was taken from the oldest age class. In the simulation
without age classes, the PFT simulation, we used the same
harvest fractions as in the simulations with age classes, but
harvest was applied as done in JSBACH3 (Reick et al., 2013),
i.e. by diluting the wood carbon of the harvested PFT tile.

2.3.5 NRMSE

We calculated the area-weighted root mean squared error
(RMSE) according to Eq. (7) based on difference maps be-
tween “OBS”, the observation-based data (Sect. 2.3.1), and
“SIM”, the results of each simulation (see Table 1). The
RMSE was calculated for 2001–2010 simulation output av-
erages, separately for each variable “V ” and three selected
regions “R”. Each selected region defines a latitudinal band,
including all forested land on a subset of the 96 latitudes and
the entire 192 longitudes (see Table 2 for the regions, their
latitudinal boundaries and the latitude indices b1 and b2).
For GPP and LAI the four seasons “S” (DJF, MAM, JJA,
SON) were calculated separately. The RMSE for each vari-
able, region, and season was subsequently normalised with
the range (max–min) observed for that variable, region, and
season (Eq. 8).

RMSEV,S,R =√√√√√ 192∑
k=1

b2∑
m=b1

(
(OBSV,S,lon(k),lat(m)−SIMV,S,lon(k),lat(m))

2

·
AREAlon(k),lat(m)

AREAR

)
192 · (b2− b1+ 1)

(7)
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Table 2. Selected regions used for the comparison of simulation results and observation-based data and their latitudinal boundaries and
indices.

Abbr. Region Max lat b1 Min lat b2

BOR Boreal 90◦ 1 50◦ 21
NH-TMP Northern Hemisphere temperate 50◦ 22 30◦ 32
TROP Tropical 30◦ 33 −30◦ 64

NRMSEMax−Min,V ,S,R =

RMSEV,S,R

Max(OBSV,S,R)−Min(OBSV,S,R)
(8)

To more easily assess changes in performance when
increasing the number of age classes the different
NRMSEMax−Min values were subsequently aggregated per
variable by averaging over the regions (for AGB) and in
addition over the seasons (for GPP and LAI), using equal
weights.

2.3.6 Computational costs

In addition to determining the NRMSE for different vari-
ables, we also determined the computation costs of the dif-
ferent set-ups. We calculated the average CPU time recorded
for the simulation years 2001–2010. Whilst absolute com-
putation times are of less interest here, particularly since
JSBACH4 is still highly under development and currently
does not reach the targeted performance, relative differences
among the set-ups depict the costs of the introduction of sub-
grid forest age structures.

3 Results and discussions

Having forest age classes in JSBACH4–FF facilitates a finer
discretisation in each grid cell and is a precondition for any
implementation of age-based forest management. The num-
ber of age classes in JSBACH4–FF is flexible, and in the
following we describe the evaluation of simulation results
using different numbers of age classes and age distribution
schemes and discuss the compromise between computation
costs and error reduction, when selecting a certain number
of age classes (Sect. 3.1). Subsequently, we more closely
examine differences between an example simulation with a
selected number of age classes and a simulation only using
PFTs, i.e. without age classes, to investigate the benefits of
having age classes in JSBACH4–FF (Sect. 3.2). Finally, we
discuss assets and drawbacks of alternative schemes intro-
ducing age classes in tile-based DGVMs (Sect. 3.3).

3.1 Evaluation

In this section we use the NRMSEMax−Min for different re-
gions/seasons as an aggregated measure to compare the dif-

ferent simulation set-ups. A closer examination between a
simulation with and without age classes including a spatially
explicit comparison follows in Sect. 3.2.

Introducing age classes improves the comparison to
observation-based data for nearly all compared variables, re-
gions, and seasons (Fig. 5), with the only notable exception
of the AGB in the boreal region, where the PFT simulation
was more similar to the observation-based data than the sim-
ulations with age classes (Fig. 5c). For most comparisons, the
NRMSEMax−Min indicates a small but distinct improvement
over not representing a forest age structure for all simulated
numbers of age classes and both age distribution schemes.

Averaging the NRMSEMax−Min, giving each region and
each season the same weight, results in an NRMSEMax−Min
decreasing with the number of age classes for GPP and
LAI (Fig. 6a and b) but saturating for larger numbers of
age classes. This shape holds for all regions, with a faster
decrease and an earlier saturation for the Northern Hemi-
sphere temperate and tropical regions than for the boreal re-
gion (Fig. S3.1a–f). The NRMSEMax−Min for AGB shows
a slowly saturating increase with the number of age classes
for the boreal region (Fig. S3.1g) and only small differences
among the different numbers of age classes in the Northern
Hemisphere temperate and the tropical regions (Fig. S3.1h
and i). The observed increase in NRMSEMax−Min for the
boreal AGB is due to an increased underestimation when
accounting for more young forest, as is also discussed be-
low (Sect. 3.2). Apart from the boreal AGB comparison,
all comparisons show a smaller NRMSEMax−Min for simula-
tions using the IAS distribution scheme (Figs. 6 and S3.1),
i.e. a distribution applying an increasing age space (visu-
alised in Fig. 4). This decrease in NRMSEMax−Min is due
to the finer discretisation of younger age classes which have
fast-changing LAI and GPP, which saturates for older age
classes (see, e.g., Fig. 7 for LAI). In summary, a finer dis-
cretisation, particularly of the younger age classes, is leading
to values closer to the observation-based data, even though
the benefit of increasing the number of age classes is slowly
saturating towards larger numbers of age classes (Fig. 6).

We performed the averaging of the NRMSEMax−Min to
more easily assess differences among the simulations per-
formed (Table 1). For this, we equally weighted the se-
lected regions because we wanted to equally account for
these regions, which strongly differ in simulated PFTs and
land–atmosphere interactions. Alternatively, we could have
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Figure 5. Evaluation of the conducted simulations (Table 1) with observation-based data by means of the normalised root mean squared error
(NRMSEMax−Min, Sect. 2.3.5). Depicted are calculated NRMSEMax−Min (Sect. 2.3.5) values for each simulation for the gross primary
production (GPP; panel a), the leaf area index (LAI; panel b), and the above-ground biomass (AGB; panel c). The NRMSEMax−Min is
calculated as the root mean squared error of observation-based data and simulation results, normalised with the range (max–min) of the
according variable for each of the selected regions (Table 2) and for LAI and GPP also for each of the four seasons.

Figure 6. Change in the normalised root mean squared error (NRMSEMax−Min, Sect. 2.3.5) and in the CPU time when increasing the number
of age classes. Panels (a) to (c) show the averaged NRMSEMax−Min (see also Fig. 5). Averaging has been conducted giving equal weights
to all selected regions (Sect. 2.3.5) for AGB (c) and in addition to all four seasons for GPP and LAI (a, b). Figure S3.1 in the Supplement
shows the same data separately for each region. Panel (d) shows the computation time required per simulation year averaged over the years
2001–2010.

weighted the regions by area, which would have led to an
increasing weight of the tropical region and thus to an ear-
lier saturation of the NRMSEMax−Min with increasing age
classes.

Comparisons of required CPU times show a near-linear
increase with an increased number of age classes (Fig. 6d)
and neither a difference between the two age distribution
schemes nor a striking offset as compared to the PFT sim-
ulation. A near-linear increase with an increasing number of
age classes was expected, since the processes requiring most
of the computing time, such as the calculation of photosyn-
thesis, carbon allocation, and respiration, are conducted on
the age classes. The absence of a striking offset comparing
the PFT simulation with the age-class simulations indicates
that the introduced organisational overhead on the PFT level
in simulations with age classes, i.e. tracing of the exact forest
age and redistributions of area fractions and other state vari-
ables among tiles, does not dominate the computation times.

As expected, the optimal number of age classes is a com-
promise between computation costs and reduction of the er-

ror, which is a logical and commonly observed aspect when
dealing with discretisation in models (see, e.g., Nabel, 2015;
Fisher et al., 2018). In the end, the choice of the number of
age classes to be used in a JSBACH4–FF simulation will de-
pend on the application. Simulations comparing different for-
est management regimes in detail might, for example, aim for
a fine discretisation, while more general simulations covering
long time spans might tend to aim for fewer age classes. For
the remaining parts of this paper, one set-up has been selected
as an illustrative example: IAS11 (see Table 1), i.e. the simu-
lation with 10+1 age classes and the age distribution scheme
with increasing age space. This set-up is a compromise be-
tween the error reduction for GPP and LAI comparisons on
the one hand and CPU time on the other. However, the main
findings will not depend on the exact number of age classes
selected, particularly not as long as they are in the satura-
tion part of the decreasing function regarding GPP and LAI
comparisons.
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3.2 On the benefit of having age classes

The evaluation with observation-based GPP, LAI, and AGB
data showed that simulations with age classes were closer to
the observation-based data for nearly all comparisons (Figs. 5
and 6). Spatially explicit comparisons of the results from the
PFT simulation and observation-based data (“OBS-PFT” in
Figs. S4.2–S4.4, column 2) indicate several areas of underes-
timation (red) and of overestimation (blue) for all variables.
In Fig. 7 we compare results of a JSBACH4–FF simulation
with age classes, a simulation only using PFTs, as repre-
sentative of a DGVM without forest age structures, and the
observation-based data of spring (MAM) LAI. The compar-
ison is done for illustrative grid points that were selected to
cover areas of both over- and underestimation and to rep-
resent different typical land-use histories or forest manage-
ment regimes, resulting in different age distributions: a grid
point with an age distribution matching historically continu-
ous clear-cuttings and some more recent changes in land-use
intensity in Germany (Fig. 7a); a grid point with uniform age
distribution resulting from a continuous, steady clear-cutting
in Finland (Fig. 7b); a grid point with untouched old-grown
forest on the one hand and young managed forest on the other
hand in India (Fig. 7c); a grid point with intensive harvest or
disturbances in the south-east of the US (Fig. 7d); a heavily
deforested example in east South America resulting nearly
exclusively in young forest (Fig. 7f); a grid cell with recent
afforestation in China (Fig. 7e); and a grid cell with predom-
inantly old-grown forests in central Africa (Fig. 7g). In gen-
eral, the simulation with age classes results in smaller GPP,
LAI, and AGB values (Figs. 7 and S4.2–S4.4, column 3),
which is expected, since GPP, LAI, and AGB are non-linearly
increasing and saturating with age (see, e.g., Fig. 7). There-
fore, a harvested age-less forest in the PFT simulation has
higher values for these variables than a fraction-weighted
average of an age-structured forest in the same grid cell in
the simulation with age classes (Fig. 7). Since the simula-
tion with age classes generally results in smaller GPP, LAI,
and AGB values, overestimations can be alleviated, caus-
ing a decrease in the NRMSEMax−Min, while underestima-
tions can become more severe, causing an increase in the
NRMSEMax−Min. The comparison of the differences between
observation-based data (OBS) and the PFT simulation re-
sults on the one hand and OBS and the IAS11 simulation
results on the other hand accordingly shows a higher sim-
ilarity in several areas where the PFT simulation indicated
overestimation (areas which are blue in columns 2 and 4 in
Figs. S4.2–S4.4) and less similarity in some areas with un-
derestimation (areas which are red in columns 2 and 4 in
Figs. S4.2–S4.4). Figure 7 shows several grid-point exam-
ples with increased underestimations of spring LAI (Fig. 7a
and e), reduced overestimations (panel b and c), and grid
points where the previous overestimation is now replaced by
a slight underestimation (Fig. 7d and f). Globally, reduced
overestimations become particularly visible for LAI in the

east of South America, and for several seasons also for ex-
ample over China, North America, and Europe (Fig. S4.3d,
h, i, p). For GPP (Fig. S4.2d, h, i, p) and AGB (Fig. S4d)
the pattern is more mixed, with reduced overestimations par-
ticularly in the east of North America and China and partly
for the east of South America. In addition, there are several
areas of under- and overestimation which are very similar in
the two simulations (areas coloured in column 2 and white
in column 4 in Figs. S4.2–S4.4). These are particularly ar-
eas with predominantly old-grown forests, i.e. without a dis-
tinct age structure, such as central Africa, the central Ama-
zon, and Siberia, where the PFT and the age-class simulation
led to similar results (see, e.g., Fig. 7g). In summary, simu-
lations using age classes led to a decrease in the simulated
GPP, LAI, and AGB values due to their non-linear increase
with a saturation for older ages. This caused a decrease in
the NRMSEMax−Min in areas where the PFT simulation was
biased high and an increase in the NRMSEMax−Min in areas
where the PFT simulation was biased low. Thus, if such a
forest age structure would be implemented in a DGVM being
predominately biased low, the difference to the observation-
based data could increase. In this context, caveats regarding
the observation-based data themselves also need to be raised.
A known caveat regarding MODIS LAI data is the problem
of reflectance saturation in dense canopies making the re-
flectance insensitive to changes in LAI (Myneni et al., 2002).
This problem which is particularly relevant to the tropical re-
gion could lead to a general high bias of the model compared
to the observation-based data. However, since this problem
is more typical for denser, old-grown forests, this high bias
would also occur in simulations with age classes. Regard-
ing the GPP data from Tramontana et al. (2016), a recent
study by Besnard et al. (2018) criticised that the applied em-
pirical upscaling techniques do not directly consider forest
age, making it unclear how well they can capture age-related
dynamics. In their study, Besnard et al. (2018) advocate the
development of alternative global datasets considering forest
age as a predictor.

Importantly, besides the error reduction observed for
JSBACH4–FF simulations, the newly implemented forest
age structure adds further functionality to JSBACH4–FF. It
facilitates keeping the coarse resolution required in ESM
simulations while nevertheless capturing some of the sub-
grid-scale heterogeneity that is important to better resolve
several of the simulated processes. Furthermore, the forest
age structure is a precondition for any implementation of for-
est management regimes while simultaneously accounting
for differences in the productivity and the standing stocks.
The grid-point examples shown in Fig. 7 highlight the rele-
vance of a distinction of age classes, since they demonstrate
the non-linear relationship between LAI and forest age. A
similar relationship can be found for AGB and GPP. Conse-
quently, the ability to distinguish age classes enables a more
accurate simulation of the biogeochemical consequences of
land use and particularly prescribed harvest regimes. For ex-
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ample, harvesting of younger age classes will lead to lower
land-use emissions, as also described in other studies (e.g.
Shevliakova et al., 2009; Yue et al., 2018a). Similarly, being
able to distinguish forest age classes will also affect biophys-
ical land–atmosphere interactions, since younger forests, for
example, have lower LAI and higher albedo (e.g. Bright
et al., 2013). A constantly thinned age-less forest will there-
fore always lead to a lower albedo than a young forest re-
growing after clear-cutting.

3.3 Limitations and alternative schemes

In the previous sections we compared a JSBACH4–FF simu-
lation when only using PFTs with simulations including for-
est age classes and discussed associated trade-offs and bene-
fits. In this section we discuss limitations and advantages of
the applied and of alternative schemes.

Since JSBACH is a tile-based DGVM, the introduction
of an individual- or cohort-based approach as used in some
other DGVMs (e.g. Sato et al., 2007; Fisher et al., 2015;
Bayer et al., 2017) would be very complex. Regarding forest
age structures these models have the essential advantage of
naturally providing forest demography (Fisher et al., 2018).
Due to their complexity, however, they are less commonly
used as fully coupled LSMs for ESMs. Being fully coupled
with an ESM, however, is one major aspect and purpose of
JSBACH, which historically has been part of the MPI-ESM
(Mauritsen et al., 2019) and is now also part of the ICON-
ESM (Giorgetta et al., 2018).

For tile-based DGVMs, there is at least one option men-
tioned in the literature that provides an alternative to sim-
ply increasing the number of tiles: the coupling of a sep-
arated module dealing with the woody demography (see,
e.g., Bellassen et al., 2010; Haverd et al., 2018). On the one
hand, this approach shares the advantage with individual-
or cohort-based DGVMs that it provides a forest demogra-
phy and thus principally enables the tracking of forest age.
On the other hand, this approach has the important limita-
tion of still calculating key land surface processes at the ag-
gregated tile level; i.e. in this approach, processes such as
photosynthesis and respiration, are not computed for sepa-
rate age classes. This restriction impairs the calculation of
biogeochemical and biophysical interactions, due to the non-
linearity of forest growth and the associated non-linear rela-
tionships of those key processes with forest age (e.g. as de-
picted for spring LAI in Fig. 7). This limitation can only be
avoided by increasing the number of tiles.

Building on the approach of increasing the number of tiles,
the scheme suggested in this paper adds an important benefit
of the alternative schemes by explicitly tracking forest age. It
thereby enables the implementation of age-based forest man-
agement schemes that historically were common in temper-
ate forests and are still the dominant management type in
boreal forests (Kuusela, 1994; Pan et al., 2011; Puettmann
et al., 2015; Kuuluvainen and Gauthier, 2018). Another ad-

vantage of the explicit tracking concerns the discretisation
error. While the presented approach does require frequent
area-weighted merges in order to maintain a limited number
of age classes, it only requires shifting the actually affected
parts of an age class and not entire age classes or “cohorts”,
as was common in previous applications (e.g. Shevliakova
et al., 2009; Yue et al., 2018b). Upon ageing, for example,
in our approach only those fractions of an age class will be
shifted that are actually at the age limits of an age class. An
important restriction of the approach presented in this paper
is that it is only applicable for a DGVM with a tile hierar-
chy and would not be applicable for a DGVM with a flat tile
organisation, such as JSBACH3, since the different layers of
the tile hierarchy are used to introduce different processes. In
a DGVM with a flat tile organisation, the PFT level associ-
ated with the age classes on the leaf level of the tile hierarchy
would be missing, which we use for the management of the
forest age classes and for the tracking of the exact forest age.

With regard to previous studies that increased the number
of tiles in order to introduce a more detailed representation
of the forest state, our evaluation indicates that the number of
additional tiles used in previous applications might have been
too few. Solely separating primary and secondary forests
(e.g. Yang et al., 2010; Stocker et al., 2014a, b) or introduc-
ing only a few age classes or cohorts (e.g. Shevliakova et al.,
2009; Yue et al., 2018b) might not be sufficient to discretise
non-linear relationships with forest age (see, e.g., Fig. 7, and
also Fig. 6), at least not on the coarse resolutions that are
common in global model studies dealing with human land
use (e.g. Le Quéré et al., 2018).

In this paper, we presented two different approaches to dis-
tribute the age space onto the available age classes: the equal
age distribution scheme EAS, which spreads the age classes
evenly, and IAS, a scheme that increases the age space with
increasing age. The evaluation indicated the second approach
to be superior to the first (Fig. 6), which can be explained by
the finer discretisation of younger age classes that more accu-
rately resolves the steep part of the non-linear age-dependent
relationship of GPP, LAI, and AGB (see, e.g., Fig. 7). There
are, however, other possible age distribution schemes. One
could, for example, use smaller age classes for old ages in
addition to the smaller age classes used for young ages in the
IAS scheme. With such a scheme, one could better cover age-
related declines as described in Zaehle et al. (2006) and Bel-
lassen et al. (2010). Another possibility would be to replace
the static distribution schemes that are equally applied to all
grid cells with a dynamic scheme creating individual distri-
butions for each grid cell. In such a dynamic scheme, age
classes could be defined depending on the demand for each
grid cell, with merging based on similarity criteria (see, e.g.,
Shevliakova et al., 2009); i.e. age classes sharing similar val-
ues for a selected variable (e.g. GPP) could be merged creat-
ing space for new age classes covering an age space with less
similar values. Such an approach could potentially further
decrease the discretisation error, particularly for cells with
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Figure 7. Example grid points comparing 2001–2010 mean spring leaf area index (MAM LAI) from the simulations without (PFT) and with
age classes (IAS11) to observation-based data (OBS). The map in the centre shows the difference of differences between the observation-
based data and the simulations (abs(OBS-PFT)-abs(OBS-IAS11)); i.e. it shows where the results from the simulation with age classes
(IAS11) deviate less (blue) or more (red) from the observation-based data than the PFT simulation results (see also Figs. S4.2–S4.4, column
4). Dashed lines in the map mark the three selected regions (see Table 2). The plots (a)–(g) show the LAI of selected PFTs (ETD: extratropical
deciduous; ETE: extratropical evergreen; TD: tropical deciduous; TE: tropical evergreen) as well as their according area fractions per age
class and per year at the labelled grid points. Centre latitude, longitude, and grid-cell cover fraction (cf) of the depicted PFT are indicated.
The x axis reflects the age from 0–151 (purple) with the age classes (black) indicated at the age centres. The two right y axes represent the
bars: depicted are the 2010 area fractions relative to the area of the depicted PFT. Blue bars are per age class (black y axes) and depict the
fraction of each age class (i.e. one bar per age class); the yellow framed purple bars depict the fraction of each age (i.e. one bar per year).
The left y axis depicts the LAI. Stars mark the simulated LAI per age class and the lines the LAI of the depicted PFT – blue dashed line:
IAS11 simulation; black line: PFT simulation; green line: 2010 value from the observation-based data. Note: (1) the age-class LAI is only
depicted for age classes having non-zero fractional cover over the whole time span 2001–2010 (this is not the case for the age classes 9 and
10 in panels c, f, and g); (2) age and age-class fractions of classes 2–8 in panel (g) are very small and therefore not visible above the x axis;
(3) since we did not apply any harvest in the final simulation year 2010, the first year and accordingly the youngest age class are always
empty.

only infrequent disturbances or harvest events. A drawback
could be an increase in the organisational overhead caused
by the similarity tests required for each merging step. How-
ever, the additional computational effort is not expected to be
very large, considering that currently the organisational over-
head seems to be very small (no striking offset as shown in
Fig. 6d) and particularly since in the current set-up dynamic
merges would only be required once a year.

4 Summary and outlook

In this paper we described a new scheme to introduce for-
est age structure in a hierarchical tile-based DGVM and pre-
sented its implementation in JSBACH4. JSBACH4–FF al-
lows key land surface processes to be simulated in depen-
dence of forest age and, simultaneously, to trace the exact
forest age, which is a precondition for any implementation
of age-based forest management schemes in JSBACH4–FF.

JSBACH4 itself is still highly under development regard-
ing infrastructure and processes integrated from JSBACH3.
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In the version used for this paper (4.20p7), the representation
of natural and anthropogenic land cover change, in particular,
has not yet been ported from JSBACH3. Upon implementa-
tion, new processes will have to be integrated with the age
structure. In addition, other developments would be desir-
able: harvest, for example, has so far only been implemented
as area clear-cutting, following the implementation of other
disturbances in JSBACH3 (see Brovkin et al., 2009). For a
representation of different forest management strategies in-
cluding intermediate thinning before a final felling, an imple-
mentation of forest thinning would be required (Otto et al.,
2014; Naudts et al., 2015). Anthropogenic thinning could be
implemented in JSBACH4–FF by keeping the number of in-
dividuals as a state variable for each age class that is manipu-
lated upon thinning, with anthropogenic thinning overruling
the already implemented self-thinning.

Despite planned and potential extensions, together with
the newly implemented age classes, JSBACH4–FF already
now provides a valuable tool to study forest management ef-
fects, particularly due to its integration with the ICON-ESM.

Code and data availability. The hosting MPI-ESM model ver-
sion (MPI-ESM 1.2.01p1) is made available under a ver-
sion of the MPI-M Software License Agreement and can be
obtained after registration from https://www.mpimet.mpg.de/en/
science/models/mpi-esm/users-forum/ (last access: 20 Decem-
ber 2019, Max Planck Institute for Meteorology, 2019). Data
and scripts used in the analysis, the JSBACH4 (4.20p7; git
feature/forests) code, a patch to the hosting MPI-ESM re-
quired to run JSBACH4–FF, and other supplementary infor-
mation are archived by the Max Planck Institute for Mete-
orology (https://pure.mpg.de/pubman/faces/ViewItemFullPage.jsp?
itemId=item_3032727, last access: 20 December 2019, Max Planck
Society, 2019) and can be obtained by contacting publica-
tions@mpimet.mpg.de.
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