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Abstract. We present a new capability of the ice sheet model
SICOPOLIS that enables flexible adjoint code generation via
source transformation using the open-source algorithmic dif-
ferentiation (AD) tool OpenAD. The adjoint code enables
efficient calculation of the sensitivities of a scalar-valued ob-
jective function or quantity of interest (QoI) to a range of
important, often spatially varying and uncertain model input
variables, including initial and boundary conditions, as well
as model parameters. Compared to earlier work on the ad-
joint code generation of SICOPOLIS, our work makes sev-
eral important advances: (i) it is embedded within the up-
to-date trunk of the SICOPOLIS repository – accounting for
1.5 decades of code development and improvements – and
is readily available to the wider community; (ii) the AD tool
used, OpenAD, is an open-source tool; (iii) the adjoint code
developed is applicable to both Greenland and Antarctica,
including grounded ice as well as floating ice shelves, with
an extended choice of thermodynamical representations. A
number of code refactorization steps were required. They are
discussed in detail in an Appendix as they hold lessons for
the application of AD to legacy codes at large. As an ex-
ample application, we examine the sensitivity of the total
Antarctic Ice Sheet volume to changes in initial ice thickness,
austral summer precipitation, and basal and surface temper-

atures across the ice sheet. Simulations of Antarctica with
floating ice shelves show that over 100 years of simulation
the sensitivity of total ice sheet volume to the initial ice thick-
ness and precipitation is almost uniformly positive, while the
sensitivities to surface and basal temperature are almost uni-
formly negative. Sensitivity to austral summer precipitation
is largest on floating ice shelves from Queen Maud to Queen
Mary Land. The largest sensitivity to initial ice thickness is at
outlet glaciers around Antarctica. Comparison between total
ice sheet volume sensitivities to surface and basal tempera-
ture shows that surface temperature sensitivities are higher
broadly across the floating ice shelves, while basal tempera-
ture sensitivities are highest at the grounding lines of float-
ing ice shelves and outlet glaciers. A uniformly perturbed
region of East Antarctica reveals that, among the four con-
trol variables tested here, total ice sheet volume is the most
sensitive to variations in austral summer precipitation as for-
mulated in SICOPOLIS. Comparison between adjoint- and
finite-difference-derived sensitivities shows good agreement,
lending confidence that the AD tool is producing correct ad-
joint code. The new modeling infrastructure is freely avail-
able at http://www.sicopolis.net (last access: 2 April 2020)
under the development trunk.
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1 Introduction

An important ingredient to characterizing and quantifying
our uncertainty in expected climate change outcomes is our
understanding of ice sheet dynamics. A key approach for
increasing such understanding is the development of more
sophisticated ice sheet models. Scientists have made signifi-
cant strides in improving model sophistication, with the lat-
est class of ice sheet models resolving all three dimensions
of the ice sheet’s internal stress balance (as opposed to pre-
vious classes of models, which employed various approxi-
mations to the stress field to save computational cost). How-
ever, while advances in computational glaciology have en-
abled us to simulate ice sheet behavior more accurately, re-
maining uncertainties in the range of independent input vari-
ables required for ice sheet simulations, in particular initial
conditions, surface forcings, basal boundary conditions, and
internal parameters, comprise crucial weaknesses in ice sheet
– and ultimately climate system – prediction or projection
(Goelzer et al., 2018; Seroussi et al., 2019). As such, ice
sheet modeling is facing similar issues of robust model ini-
tialization for prediction as those faced by the climate model-
ing community at large (e.g., Meehl et al., 2014; Balmaseda,
2017).

Ice flow critically depends on quantities that we either
cannot easily measure (such as the friction or thermal forc-
ing between ice and the bedrock below it), that parameterize
subgrid-scale processes or empirical constitutive laws (such
as the routing of meltwater or fracture propagation), or that
we may never be able to measure in the present day (such
as the rate of snowfall in the past). These unknown or un-
certain variables can be construed as sets of parameters that
we must infer or calibrate if we are to make projections with
ice sheet models, and these parameters must both satisfy, by
some measure, the assumed model physics and the sparsely
made observations across such large bodies. In the language
of optimal estimation and control theory, these parameters
are referred to as control variables (Gelb, 1974).

If we are to integrate ice sheet model projections into soci-
etally relevant discussions on sea level rise, we may wish to
know the sensitivity of ice-sheet-integrated or derived quan-
tities of interest to a range of uncertain model inputs. For
example, we wish to know how the total ice volume (above
flotation) of an ice sheet is influenced by climatically rele-
vant quantities (such as surface atmospheric forcings) or en-
vironmental variables (such as the melting at the base of an
outlet glacier or floating ice shelf that drains an ice sheet).
A computationally costly method for deriving such sensitivi-
ties might use individually made perturbations to the bottom
melting rate at each location of the ice sheet’s base, in par-
ticular at its margins that are in contact with ocean water.
This means that the ice sheet dynamics must be integrated
throughout time for each simulation experiment in which a
point-wise perturbation has been applied in order to assem-
ble a sensitivity map across the entire domain to this control

variable (basal melting). While the target of this approach re-
mains of paramount importance – relating the output of an ice
sheet model to poorly known inputs – the means are compu-
tationally expensive: understanding, for instance, the Antarc-
tic Ice Sheet’s sensitivity to changes in melting or basal fric-
tion means simulating the entire ice sheet throughout time for
every perturbation made at each point in the domain. In this
case the computational cost of such a method scales with the
dimension of the domain grid, and as such it is prohibitive.

Fortunately, adjoint models provide us with a means to
this end whereby the computational cost of deriving sensi-
tivity maps does not depend on the dimension of the control
variable space. The adjoint model is in effect the transpose
of the linearized operator of the ice sheet model. Compared
to the parent model, which propagates model inputs via the
prognostic model state to model outputs, the adjoint propa-
gates the dual of the ice sheet model state in reverse order,
from the sensitivity of model outputs to sensitivities in the
model inputs (which, for time-dependent models, amounts to
a backward-in-time propagation of sensitivities). It thereby
simultaneously calculates the sensitivity of a chosen quantity
of interest (e.g., the volume of an ice sheet) with respect to
the prescribed set of control variables (e.g., the basal melt-
ing beneath the ice, surface accumulation, or initial condi-
tions). Thus, unlike the tangent linear model, which com-
putes the impact of one input perturbation on all model out-
puts at the cost of one execution (directional derivative), the
adjoint model computes the sensitivity of one output quantity
of interest (QoI) with respect to all model inputs (gradient).
This is useful not only for understanding the sensitivity of
some scientifically or societally interesting quantity to model
inputs, but further (and perhaps more interesting) enables the
recovery of other forcing or initial conditions (e.g., initial ice
sheet geometry or rate of snow accumulation throughout time
and space) through formal inversion.

1.1 Algorithmic differentiation (AD) and its uses

Generally, adjoint models arise in at least two classes of geo-
physical investigations.

1.1.1 PDE-constrained, gradient-based optimization

Adjoint-enabled optimization problems that are constrained
by partial differential equations (PDEs), which are solved by
using adjoint methods, may be posed in the following man-
ner, beginning by formulating a scalar-valued cost function
based on a least-squares model–data misfit subject to prior
information on the uncertainty of the control variables:

J =[x0− xb]
T C−1

pr [x0− xb]

+

N∑
i=0
[y(ti)−Ei(x(ti))]

T C−1
err [yi −Ei(x(ti))] , (1)

where x0, xb, and x(ti) are the initial, background, and time-
varying model state at time ti , respectively; yi is the set of
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observations at time ti and Ei(x(ti)) is a projection of the
model state at time ti to space of observations yi (or the data–
model misfit). Cpr is a prior error covariance matrix (usually
diagonal as its structure is not fully known), and Cerr is an ob-
servational error covariance matrix. This form is typical for
a problem in which uncertain initial conditions are subject
to variation to reduce the model–data misfit, and with prior
information available (xb and Cpr). The formulation may be
readily extended to include variation of boundary conditions
or model parameters, and the collective set of all such input
variables that are being subject to variation are called con-
trol variables (see Wunsch and Heimbach, 2007, for a more
comprehensive treatment).

PDE-constrained optimization seeks to find the gradient
of J with respect to the control variables (here x0), subject
to the requirement that the (in general nonlinear) model L
is fulfilled, rendered by a set of partial differential equations
that step the state x from time ti to ti+1, i.e.,

x(ti+1) = L (x(ti)). (2)

This problem is efficiently solved by means of the Lagrange
multiplier method (Wunsch and Heimbach, 2007). Lagrange
multipliers have a direct interpretation as dual-state adjoint
sensitivities or gradients of the cost function (Eq. 1) with re-
spect to the control variables, ∂J

∂x0
. They are used to seek a

state of the system, x∗, that is tolerably close to the minimum
of J . As such, gradient information is essential in recovering
the optimal x∗, which minimizes model–data misfit as pre-
sented by Eq. (1). This procedure is done in an iterative fash-
ion, with an initial guess of the state x0 that is successively
updated to achieve optimal control variables that produce an
optimal prognostic model state throughout the model’s sim-
ulation.

A model that can optimally reproduce the behavior of, e.g.,
an ice sheet throughout time with respect to observations pos-
sesses the advantage that model-derived predictions might
be made with greater confidence, having been initialized by
dynamics that are informed by spatiotemporal observations.
In other words, the commonly termed “spin-up” of an ice
sheet may produce more faithful projections when forced by
optimally recovered initial and boundary conditions, and an
optimal state estimate, which may be recovered by a time-
dependent adjoint model. A model initialized and projected
under such circumstances might better reproduce what can be
inferred about its past state by observations, subject to the ad-
ditional constraint of the assumed and (perhaps more subtle,
but equally important) conserved model physics throughout
time. Thus, the constrained optimization problem of recover-
ing boundary and initial conditions, and the model’s optimal
internal state dynamics throughout space and time, might be
approached first through the task of obtaining reliable adjoint
sensitivities.

1.1.2 Sensitivity analysis

Beyond applications in optimization, the adjoint may also be
widely applied to the comprehensive analysis of linear sen-
sitivities (the subject of the work presented here) of QoIs to
uncertainly known inputs (in particular, forcings or parame-
ters) in nonlinear models. Errico and Vukicevic (1992) and
Marotzke et al. (1999) provide example applications in the
context of atmosphere and ocean modeling, respectively. For
a general scalar-valued function J , now termed the quan-
tity of interest (QoI), the tangent linear model (TLM) L of
a given (in general nonlinear) model L (Eq. 2) acts as a di-
rectional derivative, as it propagates small perturbations in
the control variable, δx, to corresponding perturbations in
the QoI, δJ . In turn, the adjoint model (ADM), formally the
transpose LT of the tangent linear model, propagates the sen-
sitivities of the QoI to each component of the control space,
i.e., the partial derivatives of the augmented space of all con-
trol variables in reverse order of the execution of the forward
model L (which, for time-dependent models, amounts to the
integration backward in time of the adjoint model equations).
Thus, whereas the TLM produces directional derivatives of
J , the adjoint produces the gradient of J . A detailed treat-
ment in the context of ice sheet modeling is provided by
Heimbach and Bugnion (2009) and Goldberg and Heimbach
(2013). For the present purpose we summarize the way in
which these sensitivities are formally obtained by way of al-
gorithmic differentiation in the following.

1.2 Formal reverse mode of AD

The concept of the adjoint of a numerical model may be best
understood in terms of the forward, original code construc-
tion and execution. If one wishes to know the sensitivity of
some QoI (e.g., the volume of the Antarctic Ice Sheet) with
respect to some model inputs or control variable (e.g., the
average surface air temperature in July), one method of pur-
suing knowledge about such a sensitivity might be perturb-
ing the control variable, in sequence, at each single point
within the discretized domain and propagating the perturba-
tion forward in time. The perturbation to the control variable
results in a change in the QoI, and one can proceed to cal-
culate the sensitivity of the QoI with respect to the control
variable everywhere in the domain. Herein these are termed
the finite differences 1J

1x
of the QoI J with respect to the

(in general vector-valued) control variable x in the direc-
tion 1x, where J is calculated as in Eq. (1). An adjoint
model code may be demonstrated as acceptable or reliable
if the finite-difference-derived sensitivities approximate the
adjoint-derived sensitivities (within some tolerance); for ex-
ample, for a centered finite difference we obtain

1J
1xε

n̂ =
J (x+ ε δx)−J (x− ε δx)

2ε
n̂ ≈

∂J
∂x

n̂

∀ε � ||x||, (3)
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where ε is the magnitude of the perturbation to the control
and n̂= δx

||δx||
is the unit vector pointing in the direction of

δx. In this work ε varies depending on the examined control.
Other finite-difference schemes may of course be employed,
but for the purposes of this work we have selected the central
difference for simplicity.

Adjoint models have been common in oceanic and atmo-
spheric contexts (Talagrand and Courtier, 1987; Thacker and
Long, 1988; Errico and Vukicevic, 1992) for decades. The
method’s popularity has been increasing steadily. MacAyeal
et al. (1991) provide us with the earliest use of adjoint-
model-derived sensitivities of a simplified ice stream model.
Observed velocities were used to invert for optimal basal fric-
tion parameters. While that study employed a simplified ver-
sion of the Stokes equations and lacked time dependence,
other researchers have since undertaken the task of using ad-
joint sensitivities in a variety of ice-related applications with
more complexity. Inversions of basal (Gillet-Chaulet et al.,
2012; Goldberg and Sergienko, 2011; Joughin et al., 2009;
Morlighem et al., 2010, 2013; Vieli and Payne, 2003) and
rheological (Larour et al., 2005; Khazendar et al., 2007) pa-
rameters were produced based on regional implementations
of steady-state models of the Antarctic Ice Sheet, with vary-
ing degrees of approximations to the internal stress balance.
Brinkerhoff and Johnson (2013) and Perego et al. (2014) used
the method with an emphasis on producing optimal initial
conditions for prediction. Waddington et al. (2007) provide
one of the few examples to date for inferring surface bound-
ary conditions (accumulation rates) from internal radar layer
observations. The extended problem of inversion in the con-
text of transient ice sheet models was considered by Gold-
berg and Heimbach (2013), Goldberg et al. (2015, 2016), and
Larour et al. (2014). Use of higher-order derivatives (in par-
ticular, Hessian) to extend the inverse problem to the prob-
lem of quantifying uncertainties in the inferred parameters
was treated by Petra et al. (2012) and Isaac et al. (2015).
Mosbeux et al. (2016) provided an intercomparison of two
assimilation methods for inferring basal parameters by com-
paring a sequential and an adjoint approach.

Compared to the literature cited above, and specifically in
contrast to the work by Heimbach and Bugnion (2009) and
Goldberg and Heimbach (2013), our work presents several
technical (model development) and scientific (application of
the capability developed) novel aspects:

1. we develop the capability to generate the adjoint of a
thermomechanically coupled ice sheet model by means
of source-to-source transformation algorithmic differ-
entiation (AD) using an open-source AD tool;

2. the code for source-to-source transformation is the an
up-to-date version of the SICOPOLIS model, which
should enable easy maintenance of the AD capability
and wider use by the interested research community;

3. compared to Heimbach and Bugnion (2009) the cur-
rent SICOPOLIS model (5-dev) has several choices of
thermodynamic representations and the ability to aug-
ment the shallow-ice approximation for grounded ice
with a shallow-shelf approximation for ice floating in
the ocean. This study will derive continent-wide sensi-
tivities of changes in Antarctic ice volume to changes in
sub-ice-shelf melt rates.

An inherent problem in the numerical simulation of ice dy-
namics is the nonlinearity of the forward model. This arises
due to the nonlinear dependence of viscosity on a stress
or strain rate formulation in ice. Because of this compli-
cation, hand-coded adjoints can be as labor-intensive (and
error-prone) to develop as their nonlinear parent model. As
an alternative to hand-coding the adjoint model, algorith-
mic differentiation (AD) provides a method for obtaining
adjoint codes via rigorous exploitation of the chain (and
product) rule (Griewank and Walther, 2008; Forth et al.,
2012; Naumann, 2012) (http://www.autodiff.org, last access:
2 April 2020). AD has been used in an array of applications
in the geosciences and computational fluid dynamics and has
one substantive advantage over handwritten adjoint codes:
it is flexible. Changes in the prescribed QoI, the control
variables, or the underlying assumed and discretized model
physics may lead to adjoint models of different structure. As
models become more complicated due to time dependence
and the inclusion of improved representation of ice physics,
accurate, hand-coded adjoint solutions may be even more
difficult to derive. In such contexts, AD methods provide a
powerful alternative means for producing adjoint solutions
to time-dependent problems that are up to date with respect
to their parent forward model code.

Adjoint models developed by AD exploit the chain and
product rules for the computation of the derivatives of a
function (J ) with respect to a set of input variables (u).
For simplicity, here we only consider the case in which the
control variables consist of the initial state of the model,
u= x(t0)= x0 (for a complete treatment, see Wunsch and
Heimbach, 2007). To demonstrate how a scalar QoI, J , is
related to a control vector u, consider the following time-
dependent statement of the problem, where t ∈ (t0, tf) repre-
sents marching the model forward through discretized time
steps:

x(tf)= L(x0)= LNt−1(· · ·(L1(L0(x0)))), (4)

where x(tf) is the model’s state at the end of the simulation,
L represents the overall mapping of the control vector to the
final state of the model, and L is the nonlinear system of
equations (or forward model) applied successively to the ini-
tial state of the model. The subscripting of L refers to the
time marching of the model, where tf =1t Nt , and Ln maps
the model state at time n to n+ 1. As our interest here is to
show how gradients are generated by this method, consider
then how linear perturbations to the control space result in
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changes to the cost function, J , through a Taylor series ex-
pansion:

J (x0+ δx)= J (x0)+ δJ +O(δJ 2). (5)

Assuming O(δJ 2) is negligible, and considering another
simplifying case in which J only depends explicitly on the
final state x(tf ), δJ is shown (in the forward sense) to be

δJ =
〈 ∂J
∂x0

, δx0

〉
=

〈 ∂J
∂x(t1)

,
∂x(t1)

∂x0
δx0

〉
=

〈 ∂J
∂x(t2)

, L1
∂x(t1)

∂x0
δx0

〉
=

〈 ∂J
∂x(t3)

, L2L1
∂x(t1)

∂x0
δx0

〉
...

=

〈 ∂J
∂x(tf)

, LNt−1· · ·L2L1
∂x(t1)

∂x0
δx0

〉
, (6)

where 〈· , ·〉 is the inner product and Ln =
∂x(tn+1)
∂x(tn)

is the tan-
gent linear model of M, a linearization of L at time tn about
x0. It follows from Eq. (6) that the adjoint model LT(where
LT is the transpose of L) equivalently defines δJ :

δJ =
〈 ∂x(t1)T
∂x0

LT
1L

T
2 · · ·L

T
Nt−1

∂J
∂x(tf)

, δx0

〉
=

〈 ∂J
∂x0

, δx0

〉
. (7)

Equation (7) demonstrates that the sought gradient, ∂J
∂x

, is
computed by projecting the cost function to the model’s fi-
nal state, ∂J

∂x(tf)
, and mapping it backward in time, ultimately

to the dependence of the model on its (user-selected) input
or control variables. Figure 1 presents a small example of
the computational flow of the full nonlinear forward sweep
(blue arrow and variables) and the adjoint (reverse) mode
of OpenAD (black arrow) applied to a single model, F :
y = sin(a× b)× c, where the gradient of ∇F = [ad ,bd ,cd ]
is sought (see Heimbach and Bugnion, 2009, for a related
schematic of the relationship between forward and adjoint
code via source-to-source transformation AD).

As soon as a numerical model is implemented as a code, it
is in fact translated as a sequence or composition of elemen-
tary operations like those shown in Fig. 1, with a single line
representing one single algorithmic step. Via AD methods,
then, the tangent linear and adjoint of a numerical model are
provided by exhaustive application of the chain and product
rules, line by line, to the model. The forward (Sect. 2.1) or
reverse (adjoint) mode of the model may be thought of as
the composition in forward or reverse order of the Jacobian
matrices and their transpose of the full forward code’s line-
by-line algorithmic elements: that is, L in Eq. (6) and LT in
Eq. (7).

Figure 1. Schematic of AD applied to a simple function,
F(a,b,c)= y = sin(a · b)c (see top). Intermediate results of the
function evaluation are stored in the intermediate variables t1 and
t2. We wish to determine the gradient of F with respect to all
inputs a,b, and c, symbolically expressed as ∇F = [ad , bd , cd ].
In SICOPOLIS-AD, the entire forward code is composed of many
lines of simple functions, like F , in sequence (blue downward-
pointing array on the left). OpenAD provides ∇F by relating the
partials of t1 and t2 to intrinsically differentiable functions, like
sin(), here the red text, p1 (black upward-pointing array on the
right). The partial derivatives of F are computed via the writing to
memory of intermediate partial quantities, like dy (the adjoint or
dual of y) , dt1, and dt2. Thus, the sought sensitivity of a QoI, F ,
is related to input parameters a, b, and c in this algorithmic (albeit
much simplified) manner.

2 Model description

2.1 Forward model SICOPOLIS

We begin with the ice sheet model SICOPOLIS (SImulation
COde for POLythermal Ice Sheets) and sketch the develop-
ment of its adjoint model from version 5-dev (Greve, 2019;
Rückamp et al., 2019) (http://www.sicopolis.net, last access:
2 April 2020). SICOPOLIS is open source and written in
Fortran; it has a relatively long and stable history (Greve,
1997). SICOPOLIS has remained a relevant and powerful
tool for the cryosphere community and continues to partici-
pate in model intercomparison exercises (e.g., Goelzer et al.,
2018; Seroussi et al., 2019). The model couples ice sheet dy-
namics and thermodynamics (solving for the ice thickness,
extent, velocity, temperature, water content, and age) over
three-dimensional domains including, among others, Green-
land, Antarctica, paleo-ice sheets on Earth, and the polar
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caps of Mars. It employs simplified versions of the three-
dimensional Stokes equation (internal stress balance). These
include the shallow-ice approximation for ice resting on land
(Hutter, 1983; Morland, 1984), the shallow-shelf approxima-
tion for ice floating in the ocean (Morland, 1987; MacAyeal,
1989; Weis et al., 1999), and the shelfy-stream approxima-
tion for fast-flowing ice streams with limited coupling to the
bed (Bernales et al., 2017). For a detailed treatment of the nu-
merical methods employed in the model, readers are referred
to Greve and Calov (2002), Greve and Blatter (2009, 2016),
and Bernales et al. (2017).

SICOPOLIS employs four different thermodynamics rep-
resentations: (1) a two-layer polythermal scheme, which al-
lows for the computation and effects of liquid water within
a warmer temperate layer; (2) a purely cold-ice scheme in
which no liquid water is present; and (3, 4) two flavors of
the one-layer enthalpy scheme that combine the physical ad-
equateness of (1) with the greater numerical simplicity of
(2) (Aschwanden et al., 2012; Greve and Blatter, 2016). In
all cases, horizontal diffusion of the thermodynamic fields
(temperature, water content, or enthalpy) is neglected. The
solvers employed use an implicit discretization scheme for
the vertical derivatives and an explicit scheme for the hori-
zontal derivatives.

SICOPOLIS simulates ice as a nonlinear viscous fluid
by employing Glen’s flow law (Glen, 1955) amended as in
Greve and Blatter (2009):

η =
1

2A(T ′)[σ n−1
e + σ n−1

0 ]
, (8)

where η is the ice viscosity, T ′ is the temperature difference
relative to the pressure-melting point, σe is the effective shear
stress, and σ0 is a small constant used to prevent singularities
when σe is very small. n is the flow law exponent (taken as
3), and A is a temperature- and pressure-dependent rate fac-
tor (Cuffey and Paterson, 2010) that is modified in temperate
regions containing liquid water following Lliboutry and Du-
val (1985).

Basal sliding under grounded ice links the sliding veloc-
ity, vb, to the basal shear traction, τb, and the basal normal
stress, Nb (counted positive for compression), in the form of
a Weertman–Budd-type sliding law (e.g., Weertman, 1964;
Budd et al., 1984):

vb =−Cb
τ
p

b

N
q

b
, (9)

whereCb is the sliding coefficient, and p and q are the sliding
law exponents.

2.2 Adjoint model of SICOPOLIS generated with
OpenAD

As described in Sect. 1.1, the construction of an adjoint
model of a nonlinear, time-dependent forward model often

presents a formidable task when solved analytically or hand-
coded (e.g., Goldberg and Sergienko, 2011; Gillet-Chaulet
et al., 2012; Morlighem et al., 2013; Isaac et al., 2015). In
previous works, the variational forward and adjoint equations
are derived first and then discretized. As an alternative, AD
produces adjoint code through the differentiation of source
code using source transformation or operator overloading
tools. As the standard of numerical models (in various con-
texts) has risen to more complicated physical representations,
the use of AD has become increasingly popular (e.g., Heim-
bach and Bugnion, 2009; Goldberg et al., 2016; Hascoët and
Morlighem, 2018, using source transformation – Brinkerhoff
and Johnson, 2013; Larour et al., 2014; Hoffman et al., 2018,
using operator-overloading and code-templating).

The adjoint of the ice sheet model SICOPOLIS is largely
generated automatically by the application of the freely avail-
able source transformation tool OpenAD (Utke et al., 2008)
developed at Argonne National Laboratory, the University
of Chicago, and Rice University (http://www.mcs.anl.gov/
OpenAD, last access: 2 April 2020). It is a flexible and mod-
ular tool that parses a given model written in Fortran to gen-
erate a Fortran version of the model’s adjoint code. As op-
posed to adjoint models that are analytically derived and dis-
cretized, the adjoint model of SICOPOLIS furnished by AD
yields not one unique adjoint code but many possible con-
figurations of the adjoint model, whose constituent parts are
selected at compile time by options in the header files. Thus,
there no single, core adjoint code; there is instead a flexible
adjoint code that evolves in tandem with the forward model
of SICOPOLIS and can accommodate updated empirical re-
lationships and boundary conditions.

The adjoint model of SICOPOLIS produced by OpenAD
results in approximately 50 000 executable lines, represented
in a much simplified schematic in Fig. 1 by the composition
of the blue, red, and black algorithmic steps. Like many com-
plex, time-evolving geophysical models, SICOPOLIS comes
with a range of choices of model configuration, in particu-
lar numerical schemes, which the user may choose from. As
a matter of convenience, the preferred implementation is to
make all of these choices (or options) available at runtime
to minimize the need for recompiling the model. The same
convenience is available, in principle, to the AD-generated
adjoint model. The control flow analysis of the AD tool iden-
tifies all possible flows of forward model execution and pro-
duces corresponding adjoint flow paths. However, close to
2 decades of experience with the application of AD to com-
plex, time-evolving geophysical models, all of which have a
range of numerical schemes that users may choose from (He-
imbach et al., 2002, 2005; Forget et al., 2015), has shown that
for the specific application of adjoint modeling, it is prefer-
able to remove code that will not be executed in a given appli-
cation from adjoint code generation (and subsequent compi-
lation). The two main reasons for proceeding in this manner
are the following.
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i. The exclusion of forward model code that the user
knows will not be executed may significantly simplify
the AD tool’s dependency and flow control analysis,
avoid spurious dependencies that the AD tool may de-
tect, and lead to more streamlined source code for the
adjoint.

ii. Because of the reverse mode and requirement to store
required variables in time-reversed order (e.g., those
used for evaluating state-dependent conditions and non-
linear expressions), adjoint models will have a substan-
tially larger memory footprint than their parent forward
model (Heimbach et al., 2005). Memory requirements
may be significantly increased if the adjoint model is
required to keep track of a large range of conditional
branches for execution.

For these practical considerations, removing nonused for-
ward model code at the time of adjoint code generation and
subsequent compilation has proven to be highly preferable
(although not strictly required). It is implemented here via
C preprocessor (CPP) options that are enabled or disabled
prior to generating the adjoint code (and prior to compila-
tion time). We note that the implementation keeps runtime
parameters and flags in place such that the forward model
default to keep all code available at runtime is not compro-
mised. By pairing SICOPOLIS with the source transforma-
tion tool OpenAD, the adjoint model of SICOPOLIS may be
generated automatically for a large variety of forward model
configurations (including detailed choices of model domain,
numerics, control variables, and QoI).

A number of algorithmic aspects of the code needed one-
time editing or refactoring for OpenAD to be able to suc-
cessfully parse the source code and provide correct adjoint
code. For example, non-smooth functions – such as piece-
wise linear functions represented by if statements or abso-
lute values – are inherently non-differentiable and sometimes
required special treatment before the adjoint could be ob-
tained by AD. Because of its importance in the development
of a forward model that works properly within the frame-
work of the AD tool, we have devoted a detailed description
in Appendix B of the aspects of SICOPOLIS that required
code refactoring. Further technical details on how to set up,
compile, and run reference configurations are documented in
a quick-start manual (Logan et al., 2019).

3 Example application: Antarctic Ice Sheet volume
sensitivities

Because SICOPOLIS is capable of simulating many different
aspects of ice flow at the continental scale, we have designed
a set of configurations each focusing on particular aspects of
the model so that the resulting adjoint values and patterns
may be more readily interpreted. Where we could have ap-
plied more complicated relationships, for example in the ini-

tialization in temperature, geothermal flux, or calving laws,
we have opted instead for simplicity, as the exhaustive exam-
ination of such choices in simulation is left to future studies.
The adjoint values are calculated for specific configurations
of the original forward code of SICOPOLIS.

3.1 Antarctic model configuration

We simulate Antarctica for 100 years of model time with a
20 km horizontal resolution and 81 terrain-following vertical
layers. The dynamic and thermodynamic time steps (which
can be chosen to differ) were both set to 0.2 years, as this was
found to be the most stable value for the forward model sim-
ulation. Land ice, floating ice, and ice streams are approx-
imated by the shallow-ice approximation (SIA), shallow-
shelf approximation (SSA), and shelfy-stream approxima-
tion (SStA) formulations, respectively, described in Bernales
et al. (2017). Ice thickness evolves freely and without adjust-
ment. Solutions to the SSA portion of SICOPOLIS are aided
by invoking the external Library of Iterative Solvers (LIS;
https://www.ssisc.org/lis/, last access: 2 April 2020). Ther-
modynamics are formulated by the conventional enthalpy
scheme (Sect. 2.1). We use Glen’s flow law (Eq. 8) with
a stress exponent n= 3, a residual stress σ0 = 104 Pa, uni-
form flow enhancement factors E = 5 for grounded ice and
E = 1 for floating ice, and a rate factor A(T ′) as in Cuf-
fey and Paterson (2010). Horizontal and vertical advection
in the temperature and age equations are discretized via a
first-order upstream stencil of interpolated velocities and ad-
vection terms on the main grid, and topography gradients are
evaluated with a fourth-order discretization. The ice temper-
ature is initialized as a uniform value of −10 ◦C, as the goal
of this exercise is a proof of concept and not an exhaustive
examination of all aspects of the Antarctic Ice Sheet. For the
same reason, a uniform geothermal flux of 55 m W m−2 is
applied. Parameterization of the mean annual and mean Jan-
uary surface temperatures is according to Fortuin and Oer-
lemans (1990), and the applied surface temperature is held
constant throughout the simulation. Accumulation is applied
at present-day levels throughout the simulation (Le Brocq
et al., 2010; Arthern et al., 2006). The fraction of solid
precipitation is a linear function of the monthly mean sur-
face temperature according to Marsiat (1994). Surface ab-
lation is parameterized by the positive degree day method,
and rainfall is assumed to run off instantly. Floating ice is
removed at calving fronts for thicknesses less than 30 m.
The parameters for the basal sliding law (Eq. 9) are chosen
as Cb = 11.2 m yr−1 Pa−1, p = 3, and q = 2. Basal melting
under floating ice is set to 30 m water equivalent per year
around the grounding zone (adjacent grounded and floating
grid points) and zero elsewhere, for simplicity. Sea level is
constant, and there is no special treatment of subglacial hy-
drology. The initial geometry is taken from the present day
(Fretwell et al., 2013). No isostatic bedrock adjustment is
simulated in our configuration. No special pretreatment or
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Table 1. A sample of comparisons between adjoint-derived and finite-difference-based sensitivities. All regions in column (2) refer to
either selected point-wise perturbations δxi = ε ei (with unit vector ei of the ith component) or perturbations applied over an extended
box delineated in Fig. 1a. Columns (3) and (5) are adjoint-derived quantities, while columns (4) and (6) are derived via finite-difference
perturbations either at a single point in the domain or integrated over a patch, as shown in Fig. 2a. Validation of the adjoint model is sought
by comparing finite differences (4) and adjoint values (3) in a percent deviation metric (7). Column (7) is calculated as |col.(4)−col.(3)|

col.(4) ×100.
Point-wise ice thickness as well as surface and basal temperatures compare well, with a percent deviation of less than 10 %. Summer
precipitation has a higher disagreement, at 12 %. Patch-wide comparisons have a considerably higher percent deviation. We also performed
a test for the Greenland Ice Sheet, shown in more detail in Appendix A.

Variable Region (from Fig. 2a) (∇J )i
1J
1xi

1Vadj 1Vfd % deviation
(1) (2) (3) (4) (5) (6) (7)

Surface temperature 1 −4.87× 107
−4.67× 107 – – 4.43

Basal temperature 1 −1.25× 108
−1.15× 108 – – 8.74

January precipitation 2 7.50× 1016 8.53× 1016 – – 12.09
Ice thickness 3 3.62× 108 3.68× 108 – – 1.40

Surface temperature 4 – – −7.26× 103
−1.45× 104 49.85

Basal temperature 4 – – −1.22× 107
−2.88× 107 57.52

January precipitation 4 – – 5.89× 1018 5.54× 1018 6.25
Ice thickness 4 – – 1.12× 1011 1.32× 1011 15.01

“spin-up” of the model is applied prior to the 100-year sim-
ulation; rather, the above conditions are set and the model
evolves for 100 years.

We note that the operation underlying calving (see above)
amounts to a conditional statement. From an AD perspective,
the following steps occur: (i) derivative codes are generated
for each condition; (ii) code to store and restore the required
variable is added to properly evaluate the conditional deriva-
tive. For legacy code the operation may not be differentiable
at the exact condition (see Appendix B for practical details).
This should be taken into account when performing gradient-
based optimization.

3.2 Results

The motivation for developing an adjoint of a numerical
model stretches far beyond providing comprehensive sensi-
tivity experiments; often, an adjoint model is developed so
that the sensitivities may be used in a gradient-based PDE-
constrained optimization problem to invert for uncertain ini-
tial conditions, boundary conditions, or model parameters,
thereby producing a data-constrained estimate for the evolu-
tion of the state of the system. Here, however, we are inter-
esting in understanding model sensitivities. We present the
sensitivity of the volume of the Antarctic Ice Sheet with re-
spect to several control variables as a proof of concept, rather
than extending the work in the direction of optimization,
which will be the subject of future studies. The purpose is to
gain physical insight into the model’s linear response char-
acteristics and to ascertain correctness and interpretability of
the adjoint. The adjoint-derived sensitivities are compared to
finite-difference perturbations, either at single points or over
a patch of the domain that has been uniformly perturbed, to

demonstrate that the adjoint model is sufficiently consistent
with sensitivities derived via finite differences. Those com-
parisons are shown in Table 1. Lastly, compared to Heimbach
and Bugnion (2009), we present this work for the novel ap-
plication of examining Antarctic-wide adjoint-generated sen-
sitivity maps. To the authors’ knowledge, such a presentation
has not been formally examined heretofore.

Figures 2 and 3 respectively show the raw and logarithm
of the absolute value (log10| • |) of the adjoint sensitivities.
We have chosen to present the adjoint values in both ways
so that the general pattern and sign of the adjoint values are
readily apparent (Fig. 2) as is the order of magnitude of the
adjoint values (Fig. 3), which can vary widely across the
Antarctic Ice Sheet depending on the control variable. Fur-
ther, we have chosen the locations shown in Fig. 2a so that
the included dynamics and solvers invoked in the code can be
tested in three different and important regions and regimes:
location 1, the fast-moving Thwaites Glacier, which directly
discharges into the Amundsen Sea Embayment; location 2,
the middle of the Ross Ice Shelf; and location 3, Slessor Ice
Stream, which feeds the Ronne–Filchner Ice Shelf. Testing
the agreement between adjoint and finite-difference values at
these locations offers a broad sense of the performance of the
adjoint model in very different and important environments
and dynamical regimes across the Antarctic Ice Sheet. The
control variables we have selected to test involve either ini-
tial (ice thickness) or boundary conditions (summer precip-
itation, surface and basal temperature) and are independent
inputs to either the conservation of mass (ice thickness and
summer precipitation) or conservation of enthalpy (surface
and basal temperature) equations.

The sensitivity of total Antarctic ice volume to the ini-
tial ice thickness compares well with the calculated finite-
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Figure 2. Adjoint sensitivities, δJ
δXi

, for the Antarctic Ice Sheet, whereXi is the control variable shown. Control variables are the (a) initial ice

thickness (m2), (b) mean January precipitation (m2 yr), (c) surface temperature (m3 ◦C−1), and (d) basal temperature (m3 ◦C−1). Locations
in (a) numbered 1–4 are compared to finite-difference values in Table 1.

difference-based value (Table 1, column 7), differing only
by about 1 % at the fast-moving Slessor Ice Stream (Fig. 2a,
location 3). Thickness sensitivities are relatively uniform and
positive across the ice sheet over the 100-year simulation, ex-
cept for a few outlet glaciers. A positive adjoint value in ice
thickness indicates that a positive perturbation in ice thick-
ness leads to a positive change in total volume, and vice
versa. The Antarctic Ice Sheet is shown to have almost en-
tirely positive adjoint values, as shown in Fig. 2a, except for
a few marginal outlet glaciers. These few outlet glaciers that
display negative ice thickness adjoint sensitivities contrast
with other areas of ice discharge, notably the large floating
ice shelves, which do not show any negative adjoint values.
Figure 3a shows that the order of magnitude of this field of
adjoint values is between 108 and 109 m2, except for several
very sensitive outlet glaciers, including Thwaites and Pine Is-
land Glacier, glaciers in Marie Byrd, Oates, and Wilkes Land,
and Byrd Glacier.

The pattern of the January (austral summer) precipitation
adjoint values largely mirrors that of the ice thickness, with
several distinctions. The order of magnitude is much larger,
ranging instead between 1015 and 1017 m2 (Fig. 3b). Out-
let glaciers in Marie Byrd, Oates, Wilkes, and Queen Mary
Land exhibit weaker sensitivities compared to the average
Antarctic-wide summer precipitation sensitivities. Portions

of floating ice shelves from Queen Maud eastward all the
way to Queen Mary Land show the highest sensitivities over-
all to summer precipitation, while the larger ice shelves ex-
hibit some of the lowest sensitivity to summer precipitation
across the entire continent, almost an order of magnitude
lower than the floating ice fringing the coast between Queen
Maud and Queen Mary Land, from 1017 to 1016 m2. Simi-
lar to the sensitivities to ice thickness, precipitation sensitiv-
ities are almost entirely positive, and the very lowest sensi-
tivities are largely at the ice fronts (Fig. 3b). Table 1 shows
less agreement in the January precipitation field calculated in
the middle of the Ross Ice Shelf at point 2 (Fig. 2a), approx-
imately a 12 % difference.

Sensitivities to surface and basal temperature (Fig. 2c and
d) show much more structure than those of ice thickness and
precipitation, with extended regions of positive and negative
sensitivities. The sensitivities of total ice sheet volume to sur-
face and basal temperature are largely negative, with the most
negative values at the margins of the ice sheet and approach-
ing zero toward the interior. The orders of magnitude of the
surface and basal temperature sensitivities (Fig. 3c and d) are
comparable to each other, with maximum values of approxi-
mately 1010 m3 ◦C−1.

Over the 100-year simulation, high sensitivities to surface
and basal temperature at the margins extend inward toward
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Figure 3. Logarithms of the absolute value of adjoint sensitivities, log | δJ
δXi
|, for the Antarctic Ice Sheet, where Xi is the control variable

shown. Control variables are the (a) initial ice thickness (m2), (b) mean January precipitation (m2 yr), (c) surface temperature (m3 ◦C−1),
and (d) basal temperature (m3 ◦C−1).

the middle of the ice sheet following glacier drainage basins
(Fig. 3c and d). There are two distinct differences between
the sensitivities to surface and basal temperature seen in the
adjoint fields. First, the highest sensitivities to basal tem-
perature are higher than the highest sensitivities to surface
temperature, indicating that the total ice sheet volume is in
general more sensitive to changes in the applied basal tem-
perature of the ice rather than at the surface in SICOPOLIS.
Second, Fig. 3d shows that the location of those most sensi-
tive areas to changes in basal temperature are at the ground-
ing lines of ice shelves and glaciers, while the most sensi-
tive areas to changes in surface temperature are all across the
surface of the floating portions of ice, with the sensitivity in-
creasing (becoming more negative) toward the ice fronts. The
adjoint values of surface and basal temperature compare well
with finite-difference-based sensitivities, differing by about
4 % and 8 %, respectively.

Table 1 also shows the results of a finite volume change
calculation performed for the tile shown in Fig. 2a, region 4.
Each control variable shown in column (1) is perturbed, as
in the single point location finite differences, by ±5 % of the
initial value of that field.

Columns (5) and (6) in Table 1 are computed in the fol-
lowing ways: 1Vadj =

∫
�4
∇J · n̂dA is the area-integrated

(or area-summed for discretized domains) volume change us-

ing the adjoint-derived gradient information, where�4 is the
area of the tile in Fig. 2a corresponding to the domain of
control variable x. 1Vfd =

V (X+δX)−V (X−δX)
2 is the finite-

difference-derived volume change, where X+ δX is taken
over the entire tile in region 4. In creating a sub-domain
of Antarctica over which to calculate these finite volume
changes, we selected an area of uniform sign. Areas with a
great deal of sign variation might be more difficult to inter-
pret since the adjoint values would tend to cancel each other.

The utility of this comparison is to convert the sensitivi-
ties into meaningful quantities that can be compared against
each other to assess, for example, which control variable im-
pacts the cost function the most given a perturbation of ex-
pected magnitude, in addition to providing another metric by
which we may measure the adequacy of the adjoint model
of SICOPOLIS. The percent difference between 1Vadj and
1Vfd over the 100-year time integration over tile 4 is largely
higher than the point-wise measurements, ranging as high as
57 % for volume changes due to basal temperature pertur-
bations uniformly in tile 4. Summer precipitation compares
well, however, with a 6 % difference. Perhaps more inter-
esting, the calculations in columns (5) and (6) suggest that,
overall, summer precipitation has the largest impact on to-
tal ice sheet volume, with an approximate volume change
of 1018 m3, compared against initial ice sheet thickness as
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well as surface and basal temperature perturbations, which at
the lowest resulted in a volume loss of 103 or 104 m3 over
100 years. This result helps to explain the largest relative dif-
ferences between adjoint and finite-difference sensitivities.
These are large where the sensitivities are very small com-
pared to the QoI, strongly suggesting that numerical noise
plays an important role in either of these sensitivity calcula-
tions.

Lastly, the adjoint model of SICOPOLIS runs serially and
completed 100 years of model runtime in 20, 75, and 600 min
of wall clock time on a Linux box (Intel Xeon CPU E5-2650
at 2.00 GHz) for resolutions of 64, 40, and 20 km. The results
shown in Figs. 2 and 3 are for 20 km resolution. To facilitate
the adjoint computation SICOPOLIS-AD uses checkpoint-
ing, which is discussed in Appendix B.

4 Discussion

The results presented here are not meant to be exhaustive.
Rather, they present initial adjoint sensitivity applications of
the newly AD-enabled SICOPOLIS model, underscore the
interpretable nature of adjoint-derived sensitivity fields, and
are presented as a proof of concept for further investigation.
They invite users to take advantage of this new infrastructure
for their science applications. We leave an exhaustive study
of sensitivities to different control variables in SICOPOLIS
to future work, as here we only wish to examine a few im-
portant dynamic and thermodynamic controls and assess the
validity of the adjoint model.

As a measure of the adjoint model’s correctness, we com-
pared gradients obtained from the adjoint model computed
via finite-difference perturbations. Adjoint values compared
acceptably against finite differences for ice thickness as well
as surface and basal temperatures, with less than 10 % devia-
tion. Austral summer precipitation adjoint values saw a larger
disagreement with finite differences, of up to 12 %. Part of
the higher discord may be due to the fact that the cost values
(total Antarctic Ice Sheet volume) are very large, emphasiz-
ing numerical noise for sensitivity fields that are very small.
Ice sheet volume changes calculated by the adjoint model
and finite differences disagree more, although the largest dis-
crepancy occurred with the smallest overall volumes calcu-
lated (both surface and basal temperature) and are thus likely,
again, to be affected by numerical noise arising in the calcu-
lation. Control variables related to the conservation of mass
equation provided the best agreement across measured met-
rics (ice thickness for point-wise sensitivities and precipita-
tion for finite volume calculations). This is readily explained
by the primarily linear nature of precipitation changes (seen
as a volume flux) in changing total ice volume.

The general similarity between ice thickness and precip-
itation adjoint sensitivities (Fig. 2a and b) is reassuring, as
ice thickness and precipitation are both terms in the conser-
vation of mass equation and as such are closely linked al-

gorithmically. In particular, we might expect adjoint sensi-
tivities to be linearly related. Similarly, we might expect the
sensitivity to summer precipitation to be much larger than
the sensitivity to initial ice thickness, as a perturbation in an
initial condition is applied only once at model initialization,
while a (constant in time) perturbation in the surface bound-
ary condition is iterated for every time step throughout the
100 years of model runtime. One of the largest apparent dif-
ferences between Fig. 2a and b is the appearance of high sen-
sitivity on the floating portions of ice off the coasts between
Queen Maud Land eastward to Queen Mary Land. Assum-
ing that the “direct” linear effect of increased precipitation
(volume flux) has the same effect everywhere on increasing
the ice sheet volume, the difference between thin floating ice
shelves and the ice sheet interior may be explained by the dy-
namical effect of increased ice shelf buttressing (i.e., reduced
mass flux through the grounding line) as a consequence of
ice shelf mass accumulation. This underscores the adjoint
model’s ability to accumulate local effects (direct effect on
volume by thickening) and nonlocal effects mediated by ice
sheet dynamics (thickening increases buttressing).

In a related manner, the overall similarity of the surface
and basal temperature sensitivities is reassuring as both of
these are components in the same conservation of energy
equation. Both fields of sensitivities delineate the drainage
basins of glaciers and ice shelves, with very small sensitiv-
ity in the center of the ice sheet that increases by orders of
magnitude toward the coasts. The surface temperature sen-
sitivities more uniformly affect total ice volume over the ice
shelves, while the basal temperature sensitivities indicate that
positive perturbations in basal temperature at the grounding
lines of glaciers and ice shelves have a larger effect on total
ice volume and that, when compared with each other, vari-
ations in basal temperature are more powerfully felt across
the Antarctic Ice Sheet. This seems to indicate that changes
in ocean temperature at the grounding lines around Antarc-
tica have much more potential to have a lasting impact on the
volume of the ice sheet than temperature changes in the at-
mosphere. However, this conclusion must be tempered by the
fact that our current simulation of the surface of ice does not
account for complex surface, englacial, or subglacial hydrol-
ogy, e.g., meltwater ponding and induced catastrophic fail-
ure, as has been observed in the past at the Larsen B Ice Shelf,
for example (Glasser and Scambos, 2008). In other words,
the enormous difference in magnitude between sensitivity to
summer precipitation and sensitivity to surface or basal tem-
perature may change in other locations of the ice sheet where
different physics are included (and must be differentiated in
the sensitivity calculation).

Algorithmic differentiation relies on algorithms being dif-
ferentiable, line by line, in a code. Numerical disagreement
can accumulate for even simple reasons, such as the use of
piecewise linear functions represented algorithmically by if
statements (Appendix B presents a discussion on how un-
structured or non-smooth code introduces error in adjoint
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codes developed by AD). Differentiable programming has
recently emerged as a new programming paradigm in a phys-
ical system (Liao et al., 2019) and is certainly recognized to
be of value for applications such as this work, wherein para-
metric sensitivities are being explored.

5 Conclusions

This work presents a new capability of the ice sheet model
SICOPOLIS to enable flexible adjoint code generation using
the open-source AD tool OpenAD. The flexibility is afforded
by allowing a wide range of choices of model domains, nu-
merical algorithms for specific configurations, and the con-
trol variables (independent variables) and quantities of inter-
est (dependent variables; cost functions) defined when gen-
erating the adjoint code. We demonstrate the utility, correct-
ness, and interpretability of adjoint-derived sensitivity maps
for Antarctic-wide simulations, with the total volume of the
Antarctic Ice Sheet chosen as the quantity of interest. We
compute the quantities’ sensitivity to initial and boundary
conditions over a 100-year simulation from the present day.
Examining, ascertaining, and understanding the information
contained in such sensitivity maps, which are formally gradi-
ents of scalar-valued functions with respect to model inputs,
is a useful and natural first step in the use of these sensitiv-
ities in gradient-based optimization problems, which will be
the subject of future work. Such work, enabled by the adjoint
model of SICOPOLIS, could include understanding how dif-
ferent parameterizations of precipitation, melting, and other
interesting higher-order processes of ice flow affect quanti-
ties of interest.

One suggested outcome of the sensitivity analysis is that,
as a controlling variable, mean monthly applied summer pre-
cipitation influences the total integrated Antarctic Ice Sheet
volume more than the initial ice geometry or surface and/or
basal temperatures do for representative values of perturba-
tion in each of these variables. Another hypothesized (and
perhaps unsurprising) relationship derives from a compari-
son between the surface and basal ice temperatures: changes
in basal temperature, particularly at grounding lines, affect
total ice volume much more than those in surface tempera-
ture.

Much remains to be learned and further examined in the
context of this model, including the degree to which re-
sults may be applicable to other models. Our results are spe-
cific for a given configuration of SICOPOLIS, with empha-
sis placed on the initial use of simple parameterizations for
(often) the most interesting aspects of ice flow, including
how basal melting and firn compaction are represented (both
processes would be affected by the control variables cho-
sen here). Our metrics of model validity evaluated point-wise
show that the adjoint model is mostly accurate to within 10 %
compared to sensitivities obtained via the finite-difference
method. One likely reason for larger disagreements in some

of the calculated metrics may be the regimes of very weak
sensitivities, in which case numerical noise becomes a lead-
ing factor in the inferred differences.

Another cost function may be formulated as a model–
data misfit based on, for example, the modeled versus ob-
served spatiotemporal ice elevation change. Additionally,
over-reliance on inherently non-differentiable piecewise lin-
ear functions for important aspects of surface mass balance
terms may introduce discrepancies that could be minimized
with the use of smoother functions or smooth implementa-
tions of parameterization schemes. These are valid and im-
portant aspects of code that are not easily addressed (Has-
coët and Utke, 2016). We have described in some the detail
code refactorization steps required for SICOPOLIS to com-
ply with code parsing and analysis steps undertaken by Ope-
nAD in Appendix B. Many of the issues described in the Ap-
pendix are frequently encountered when subjecting legacy
code to AD or when considering the development of new
code that should be subjected to AD. The Appendix thus pro-
vides insights for coding best practices in the context of AD
beyond the application to SICOPOLIS.

As glaciologists strive to make ever more confident pro-
jections in the future behavior of ice sheets, tools that rigor-
ously determine the relationship between often poorly known
input parameters and important model outputs are increas-
ingly needed. SICOPOLIS-AD is one such tool that is freely
available to the cryosphere community (Logan et al., 2019)
and, as demonstrated here, can help elucidate relationships
between model inputs and outputs that were previously un-
known or untested.
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Appendix A: Greenland ice volume sensitivities

Here we present the results of a 100-year sensitivity study of
Greenland Ice Sheet volume to basal ice temperature. This is
added as an Appendix as Greenland sensitivities have been
produced previously by Heimbach and Bugnion (2009), al-
beit with a different AD tool, Transformation of Algorithms
in Fortran (TAF; Giering et al., 2005), for a version of the
SICOPOLIS model that is more than a decade old and that
was not maintained as part of the SICOPOLIS main devel-
opment trunk. Since then, SICOPOLIS has been updated to
include a more state-of-the-art representation of thermody-
namics via the enthalpy method, and work here represents an
advance on what was presented before.

The forward simulation of Greenland is configured in
much the same way as for Antarctica, with an emphasis
on simplicity for proof of concept. Unless otherwise stated
below, choices of numerical schemes, physical parameteri-
zations, and forcing approaches are the same. We simulate
Greenland for 100 years from the present day at a 10 km hor-
izontal resolution with 81 terrain-following vertical layers.
The dynamic and thermodynamic time steps take the value
of 0.5 years. The dynamics now are only SIA, as we have re-
stricted our simulation to grounded ice. The thermodynamic
formulation is again via the conventional enthalpy method,
with ice initialized at a constant temperature of −10 ◦C. The
constitutive law and physical parameters are exactly the same
as in the Antarctic case, including the flow enhancement fac-
tor, geothermal flux, and all parameters for the sliding law.
The ice initial geometry is from Bamber et al. (2013). Sur-
face temperature is from Ritz (1997) and is held constant
throughout. The monthly precipitation fields are created with
the regional energy and moisture balance model REMBO us-
ing the setup described in Robinson et al. (2010) taken on the
grid provided by Bamber et al. (2001). The temperature and
humidity boundary conditions are from Uppala et al. (2005).
These monthly climatological fields are averaged over 1958–
2001 and applied as lateral boundary conditions to REMBO.

Table A1. Comparison between adjoint-derived (column 3) and finite-difference-derived (column 4) point-wise sensitivities for Greenland
ice volume as QoI (symbols as in Table 1). All regions in column (2) refer to points from Fig. A1a. Column (5) is a percent deviation metric,
which is calculated as |col.(4)−col.(3)|

col.(4) × 100.

Variable Region (from Fig. A1a) (∇J )i
1J
1xi

% deviation
(1) (2) (3) (4) (5)

July precipitation 1 2.72× 1016 2.72× 1016 3.37× 10−3

Surface temperature 2 −5.61× 104
−5.57× 104 7.18× 10−1

Basal temperature 2 −3.80× 106
−3.80× 106 8.20× 10−3

Ice thickness 3 4.86× 102 4.89× 102 5.04× 10−1

Figure A1 shows the total Greenland Ice Sheet volume
sensitivity to the initial condition of ice thickness and the
boundary conditions in July (boreal summer) for precipita-
tion as well as surface and basal temperatures. Table A1
shows that, in general, the Greenland simulation performs
much better than the Antarctic simulation, with all of the per-
cent deviations between adjoint values and finite-difference-
based gradients less than 1 %. We attribute this to the lack
of SSA dynamics involved and the accompanying use of an
external solver library.

Interestingly, whereas in Antarctica the ice thickness sen-
sitivities were almost entirely positive, substantial portions
of the Greenland Ice Sheet lose volume when perturbed pos-
itively in ice thickness, a phenomenon previously inferred by
Heimbach and Bugnion (2009) and thus a robust feature of
SIA models. This could be due to the dynamic drawdown of
glaciers that experience a sudden increase in driving stress
due to the increase in ice thickness. The increase in driving
stress leads to increases in velocity, which, when subjected
to the land-ice-only mask for the SIA dynamics used in this
setup of Greenland, results in the immediate cutoff of ice.

Sensitivity to precipitation, as in the case of Antarctica,
is almost entirely positive and again dwarfs the other control
variables tested here by many orders of magnitude. The over-
all larger magnitude of basal temperature sensitivities com-
pared to surface temperatures is consistent with the Antarctic
simulation. Completion of Greenland serial simulations on a
Linux box (Intel Xeon CPU E5-2650 at 2.00 GHz) took 5, 10,
and 140 min for horizontal resolutions of 40, 20, and 10 km,
respectively. The results shown here are for 10 km resolution.
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Figure A1. Adjoint sensitivities, δJ
δXi

, for the Greenland Ice Sheet, where i is the control variable shown. Control variables are the (a) initial

ice thickness (m2), (b) mean July precipitation (m2 yr), (c) surface temperature (m3 ◦C−1), and (d) basal temperature (m3 ◦C−1). Locations
in (a) numbered 1–3 are compared to finite-difference values in Table A1.

Appendix B: Modifying SICOPOLIS

We made several modifications to SICOPOLIS to enable
source transformation and differentiation via OpenAD. The
changes that were made enabled efficient AD in some cases
and overcame some limitations of the AD tool used in oth-
ers. The modifications are guarded by C preprocessor (CPP)
directive ALLOW_OPENAD and do not affect the original be-
havior of SICOPOLIS in any way. Below, we discuss the
noteworthy changes.

– Data types. SICOPOLIS determines the number of
bits for its data types at runtime through the calls
selected_int_kind() and kind(). Because
OpenAD requires full knowledge of the types for static
analysis, it does not support this behavior. We therefore
determine the number of bits per type separately for the
machine being used and specify the value directly in the
code.

– Unstructured code. The adjoint model of OpenAD re-
verses the control flow of the original code, including
that of loops. It uses the following criteria to evaluate
whether the loops are simple.

a. Loop variables are not updated within the loop

b. The loop condition does not use .ne.
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c. The loop condition’s left-hand side consists only of
the loop variable

d. The stride in the update expression is fixed

e. The stride is the right-hand side of the top level .+
or .- operator

f. The loop body contains no index expression with
variables that are modified within the loop body

SICOPOLIS contained several cases of statements
injected to break out of loops that cause them not to
be simple. To differentiate non-simple loops correctly,
OpenAD stores which array indices are actually used
per loop iteration. This approach causes significant
memory usage and performance loss. Therefore, we
removed the exit statements by rewriting the loop
body to include a conditional statement that executes
the loop only when the original loop would not exit.
Restricting code to comply with “simple loops” is
common in models subject to AD and is good coding
practice in general, as it supports compiler optimization
of loops.

– Non-smoothness. Non-smoothness in the underlying
mathematics of a model can be caused by the use
of the absolute value, ceiling, and floor functions.
Non-smooth models can be non-differentiable at a few
or many points of the input space. Techniques such
as piecewise linear differentiation and the absnormal
form have been studied to differentiate non-smooth

applications (Streubel et al., 2014). While SICOPOLIS
employs all three functions, they are either used to
index into lookup tables or used in portions not differen-
tiated by OpenAD. Because OpenAD does not include
abs, ceiling, and floor as functions within its
intrinsic library, we created custom subroutines of these
functions to be differentiated.

– The sqrt function. The derivative of
√
x is 1

√
x

. When
x = 0.0, the result is a kink in the adjoint model and
the appearance of NaN in the adjoint computation. The
intended behavior of the adjoint model is to treat the
derivatives as 0.0. Therefore, wherever the function
sqrt() appears in SICOPOLIS, we use a conditional
to check if the input to sqrt() is 0.0, and in those
cases we use 0.0 instead of calling sqrt().

– Array declaration and array assignments. SICOPOLIS
uses dynamic memory allocation for some arrays in
the code. Because the handling of dynamic memory
and pointers by source transformation AD tools such
as OpenAD remains a topic of active research, we
replaced the dynamic allocation with static allocation.
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SICOPOLIS uses constructs such as where and
elsewhere to elegantly assign values to array
elements. Because OpenAD does not support these
constructs, we rewrote them using loops and if
statements.

– Intent of variables. SICOPOLIS passes the indices of
two- and three-dimensional arrays as arguments with
intent(in) to subroutines that act upon particular
portions of the array. When these variables are not
the type of active variable (usually real(dp)), their
declarations must be changed to intent(inout).
For variables that are active OpenAD changes the intent
automatically.

– Solvers. SICOPOLIS employs an array of solvers de-
pending on the domain (e.g., Greenland versus Antarc-
tica) or physics chosen by the user: a successive over-
relaxation (SOR) solver, a tridiagonal solver, and (for
Antarctic domains) the library of iterative solvers (LIS)
for computing a system of linear equations:

A · x = b→ x := solve(A,b).

To differentiate the above formulation efficiently, an AD
tool must not naively differentiate through the solver
code. OpenAD uses its template mechanism instead
to encode the formulation below (Giles, 2008) to com-
pute the adjoints Ā and b̄ from x̄ using the original
solver call:

AT · b̄ = x̄→ b̄ := solve(AT , x̄),

Ā := −xT · b̄. (B1)

When SICOPOLIS uses the SOR solver for a system
of linear equations wherein the matrix storage is in
compressed sparse row (CSR) format, arrays are rep-
resented by lgs_a_value (values), lgs_a_index
(indices), and lgs_a_ptr (pointers). While the
symbolic differentiation of the solver can be handled as
above, the formation of the CSR representation requires
us to change the type of the indices into real(dp) so
that the indices are stored in the forward sweep for use
in the reverse sweep.

– Checkpointing. For adjoint models, the memory re-
quirement to compute the adjoint information is propor-
tional to the operation count of the model being differ-
entiated. We found that the memory requirements of the
adjoint model of SICOPOLIS for even small number
of time steps will quickly exceed the available memory
of most machines. Therefore, we implemented a bino-
mial checkpointing scheme using the library revolve
(Griewank and Walther, 2000). This approach uses the
recomputation of time steps in the original model to re-
duce the memory requirements of the adjoint model.
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Code availability. SICOPOLIS is free and open-source software
available through a persistent Subversion repository that is hosted
by the FusionForge system AWIForge of the Alfred Wegener In-
stitute for Polar and Marine Research (AWI) in Bremerhaven, Ger-
many (https://swrepo1.awi.de/, AWI FusionForge, 2020). Detailed
instructions for obtaining and compiling the code are at http://www.
sicopolis.net (SICOPOLIS.net, 2020). The adjoint generation ca-
pability of SICOPOLIS is a part of the main trunk of the current
developmental version (5-dev). The development and tests were
performed using SICOPOLIS v5-dev (revision 1414), tagged as
SICOPOLIS-AD v1. It can be specifically downloaded at https://
swrepo1.awi.de/svn/sicopolis/tags/ad-v1 (last access: 2 April 2020)
(using “svn checkout” with “anonsvn” as the username and pass-
word). A snapshot non-revocable code archive of SICOPOLIS-AD
v1 has been created at https://doi.org/10.5281/zenodo.3686393 (Lo-
gan et al., 2020).

The AD tool used to generate adjoint source code is
OpenAD. A snapshot non-revocable code archive of OpenAD
can be downloaded at https://doi.org/10.5281/zenodo.3361744
(Narayanan, 2019). Detailed instructions on how to download and
build the tool are at https://www.mcs.anl.gov/OpenAD/ (last access:
2 April 2020). Technical details on how to set up, compile, and run
reference configurations of SICOPOLIS-AD are documented in a
quick-start manual (Logan et al., 2019), a version of which has also
been placed in the SICOPOLIS-AD Zenodo archive.
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