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Abstract. Calculating and plotting the normalized states of
stress for viscous–plastic sea ice models is a common di-
agnostic for evaluating the numerical convergence and the
physical consistency of a numerical solution. Researchers,
however, usually do not explain how they calculate the nor-
malized stresses. Here, we argue that care must be taken
when calculating and plotting the normalized states of stress.
A physically consistent and numerically converged solution
should exhibit normalized stresses that are inside (viscous) or
on (plastic) the normalized yield curve. To do so, two possi-
ble mistakes need to be avoided. First, when using an implicit
solver, normalized stresses should be computed from viscous
coefficients and replacement pressure calculated using the
previous numerical iterate and the strain rates at the numera-
tor calculated from the latest iterate. Calculating the stresses
only from the latest iterate falsely indicates that the solution
has numerically converged. Second, for both implicit and ex-
plicit (i.e., the EVP) solvers, the stresses should be normal-
ized by the ice strength and not by the replacement pressure.
Using the latter, normalized states of stress only lie on the
yield curve (i.e., falsely indicating there are no viscous states
of stress).

1 Introduction

Sea ice deformations, associated with the formation of leads,
pressure ridges and shear lines, strongly influence the evo-
lution of the sea ice cover in both polar oceans. As they af-
fect the thickness distribution, sea ice deformations have an
important impact on the exchange of heat, moisture and mo-
mentum between the atmosphere and the underlying ocean.

To properly represent these processes in a model, it is essen-
tial that rheology (i.e., the relation between applied stresses,
material properties and resulting deformations) is correctly
formulated.

Although some authors have recently proposed new sea
ice rheologies (e.g., Girard et al., 2011), most sea ice models
are still based on the viscous–plastic (VP) formulation in-
troduced by Hibler (1979). With the VP rheology, the ice is
treated as a very viscous fluid (creep flow) when the internal
stresses are small. However, once the stresses reach critical
values defined by a yield curve, the ice flows as a plastic ma-
terial and large deformations (i.e., large spatial gradients of
the velocity field) can occur.

Calculating and plotting the normalized states of stress
with respect to the normalized yield curve is a useful di-
agnostic for assessing the physical consistency and numer-
ical convergence of a VP solution. Indeed, this method can
confirm whether a sea ice rheology is properly implemented
in a model. The method is also helpful for evaluating nu-
merical convergence. This is especially true for the explicit
elastic-VP (EVP) solver (e.g., Hunke, 2001), which does not
include a measure of convergence such as a residual. Unfor-
tunately, researchers usually do not explain how they calcu-
late this diagnostic (e.g., Zhang and Hibler, 1997; Hunke,
2001; Lemieux and Tremblay, 2009; Wang and Wang, 2009;
Kimmritz et al., 2015). As demonstrated here, care must be
taken when calculating the normalized stresses as two poten-
tial mistakes could lead to a misinterpretation of modeling
results. The purpose of this article is to provide a short guide
on how to calculate and plot the normalized states of stress
for assessing physical consistency and convergence of nu-
merical solutions.
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2 The viscous–plastic sea ice rheology

With the Hibler (1979) VP rheology, the components σij of
the stress tensor are given by

σij = 2ηε̇ij + [ζ − η]ε̇kkδij −Ppδij/2, i,j = 1,2, (1)

where δij is the Kronecker delta, ε̇ij are the strain rates de-

fined by ε̇11 =
∂u
∂x

, ε̇22 =
∂v
∂y

and ε̇12 =
1
2

(
∂u
∂y
+

∂v
∂x

)
with u

and v the components of the horizontal sea ice velocity vec-
tor, ε̇kk = ε̇11+ ε̇22, ζ is the bulk viscosity, η is the shear vis-
cosity and Pp is the ice strength (we follow the notation of
Kreyscher et al., 2000).

The formulation of the viscosities depends on the yield
curve and the flow rule. In the following, ζ and η are based
on the widely used elliptical yield curve with a normal flow
rule (Hibler, 1979):

ζ =
Pp

21
, (2)

η = ζe−2, (3)

where 1=
[
(ε̇11+ ε̇22)

2
+ e−2(ε̇11− ε̇22)

2
+ 4e−2ε̇2

12
] 1

2 ,
and e is the aspect ratio of the ellipse, i.e., the ratio of the
long and short axes of the elliptical yield curve.

When1 tends toward zero, Eqs. (2) and (3) become singu-
lar. To avoid this problem, Hibler (1979) proposed to limit the
maximum values of viscosities which is equivalent to limit-
ing the minimum value of 1. Hence, ζ is expressed as

ζ =
Pp

21∗
, (4)

where 1∗ =max(1,1min) with 1min = 2× 10−9 s−1. Note
that other approaches for limiting the viscous coefficients
have been proposed (e.g., Kreyscher et al., 2000; Lemieux
and Tremblay, 2009).

A drawback of the standard VP rheology is that the term
−Ppδij/2 in Eq. (1) can cause the ice to deform even in the
absence of forcing. To remedy this problem, −Ppδij/2 is re-
placed by −Pδij/2, where P is a function of the strain rates.
The simplest formulation of P is

P = Pp
1

1∗
, (5)

where P tends toward zero for small deformations while it
tends toward Pp for large deformations.
P is sometimes referred to as the replacement pressure

(e.g., Hunke and Lipscomb, 2010). The use of a replacement
method such as the one described above is now widely used
in VP sea ice models (e.g., Wang and Wang, 2009; Losch
et al., 2010; Hunke and Lipscomb, 2010).

3 The normalized yield curve

Using Eqs. (1), (3), (4), (5) and the definition of 1, one can
obtain

P 2
p

(
1

1∗

)2

= [σ11+ σ22+P ]2
+ e2

[
(σ11− σ22)

2
+ 4σ 2

12

]
. (6)

Introducing the principal stresses σ1 and σ2 given by

σ1,σ2 =
σ11+ σ22

2
±

√(
σ11− σ22

2

)2

+ σ 2
12, (7)

Eq. (6) becomes

P 2
p

(
1

1∗

)2

= [σ1+ σ2+P ]2
+ e2

[
(σ1− σ2)

2
]
. (8)

As demonstrated below, the correct way to normalize the
stresses in Eq. (8) is to divide them by the ice strength Pp,
which leads to(
1

1∗

)2

=

[
σ1+ σ2+P

Pp

]2

+ e2
[
σ1− σ2

Pp

]2

. (9)

Defining σ n1 = σ1/Pp and σ n2 = σ2/Pp, we obtain(
1

1∗

)2

=

[
σ n1 + σ

n
2 +

P

Pp

]2

+ e2[σ n1 − σ n2 ]2, (10)

which describes a family of ellipses that depend on the ratio
1/1∗ for their size and on the ratio P/Pp for their center.
Equation (10) with 1/1∗ = P/Pp = 1 defines what we re-
fer to as the normalized yield curve in principal stress space.
Hence, according to our rheology, normalized plastic stresses
should fall on the normalized yield curve, while normalized
viscous stresses should lie on smaller ellipses inside the nor-
malized yield curve (Geiger et al., 1998).

4 Experimental setup

The divergence of the stress tensor (described in Sect. 2),
which is ∇ · σ , is one of the terms of the sea ice momentum
equation. The momentum equation is discretized in space
and in time (see for example Lemieux et al., 2012, for de-
tails). It is either solved implicitly with a Picard solver (e.g.,
Zhang and Hibler, 1997; Losch et al., 2010) or with a New-
ton solver (e.g., Lemieux et al., 2012; Losch et al., 2014;
Mehlmann and Richter, 2017) or it is solved explicitly with
the EVP approach (Hunke, 2001) or using the modified EVP
with pseudo-time stepping (e.g., Kimmritz et al., 2015).

The numerical simulations for this paper were conducted
with the Picard solver of the McGill sea ice model (see
Lemieux and Tremblay, 2009, for details). The spatial resolu-
tion is 10 km and the time step is 30 min. All the experiments
with the elliptical yield curve were done with the ice strength
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parameter P ∗ set to 27.5× 103 Nm−2 and e = 2. The model
was restarted on 1 January 2002 at 12:00 UTC from a long-
term simulation. The states of stress were calculated from
solutions obtained at the first time level (i.e., 12:30 UTC).
We will discuss later how our conclusions apply to the other
types of solvers.

With a Picard solver, one has to solve a nonlinear system
of equations that can be concisely written as A(u)u= b(u),
where u is a vector that contains all the u and v velocity com-
ponents on the grid, A is a sparse matrix and b is a vector that
contains terms such as the atmospheric stress. It is important
to mention that the elements of the matrix A depend on the
viscous coefficients ζ and η and that the vector b contains
the replacement pressure P . Implicit solvers such as Picard
solve a series of linearized systems of equations in order to
find the solution u of the nonlinear system of equations. This
algorithm can be expressed as
1. Start with an initial iterate u0

do k = 1, kmax
2. Solve A(uk−1)uk = b(uk−1) with a linear

solver
3. Stop if ||F (uk)||< γnl||F (u

0)||

enddo,
where F (uk)= A(uk)uk − b(uk) is the residual at iteration
k, the symbol || || denotes the Euclidean norm and γnl < 1 is
the nonlinear convergence parameter. The iterations of this
loop are referred to as nonlinear iterations or as in Lemieux
and Tremblay (2009) as outer loop iterations. The maximum
number of iterations kmax is set here to a very high value
(10 000). A “fully” converged solution for u is characterized
by a very small residual (γnl needs to be set to a value� 1).
As the stresses are function of u, a “fully” converged veloc-
ity vector leads to states of stress that are either on (plastic)
or inside (viscous) the yield curve.

In order to shorten the article, the presentation of the al-
gorithm above has been simplified. For numerical stability,
the water stress should be linearized with (uk−1

+uk−2)/2
(Hibler and Ackley, 1983). Lemieux and Tremblay (2009)
also linearized the rheology term with (uk−1

+uk−2)/2. For
faster convergence of the Picard solver, we recommend to use
(uk−1

+uk−2)/2 only for the water stress and to linearize the
rheology term with uk−1. Hence, it is important to notice that
when linearizing the system of equation (in step 2), ζ , η and
P are expressed as a function of uk−1.

5 The calculation of normalized states of stress

The steps for calculating and plotting the normalized stresses
are given below.

1. Solve the nonlinear system of
equations for uk ∼ u

2. Calculate
σij = 2η(uk−1)ε̇ij (u

k)+ [ζ(uk−1)−

η(uk−1)]ε̇kk(u
k)δij −P(u

k−1)δij/2, i,j=1,2

3. Calculate
σ n1 ,σ

n
2 =

σ11+σ22
2Pp

±
1
Pp

√(
σ11−σ22

2

)2
+ σ 2

12

4. Plot the σ n1 ,σ
n
2 using symbols such as

circles

5. Plot the normalized yield curve[
σ n1 + σ

n
2 + 1

]2
+ e2[σ n1 − σ n2 ]2 = 1

as a reference,

where the calculations in steps 2 and 3 should be done for all
the ice-covered grid cells (here grid cells with a concentration
larger than 0.5 are considered). The σij (step 2) and σ n1 ,σ

n
2

(step 3) are calculated so that they are collocated at the tracer
point of our model C-grid. Step 2 should be omitted for the
standard and modified EVP; the time-stepped stresses should
be used directly for step 3. Note that normalized stresses can
also be plotted using the stress invariants σI = (σ1+ σ2)/2
and σII = (σ1− σ2)/2.

Following this method allows one to assess the physical
consistency and the numerical convergence of the solution.
We mean by physical consistency and numerical conver-
gence that the states of stress are at their final position inside
(viscous) or on (plastic) the yield curve. Many authors (e.g.,
Zhang and Hibler, 1997; Lemieux and Tremblay, 2009) have
indeed shown that an approximate solution that has not suf-
ficiently converged exhibits unrealistic states of stress that
are outside the yield curve. This is shown in Fig. 1. For 2
(Fig. 1a) or 10 nonlinear iterations (Fig. 1b), the approxi-
mate solution has not converged and shows unrealistic states
of stress. The fully converged solution (Fig. 1c) demonstrates
physical consistency and numerical convergence. The fully
converged solution was obtained by setting γnl to 1× 10−8.
Note that, in general, the fact that states of stress are on or
inside the yield curve does not imply full convergence; the
final positions (on and inside the yield curve) are obtained
once uk is the fully converged solution (Lemieux and Trem-
blay, 2009).

Two mistakes need to be avoided in order to obtain similar
results as in Fig. 1 and therefore to be able to evaluate the
numerical convergence of the solution and physical consis-
tency.

First, one has to consider the way the nonlinear system of
equations is solved. It is crucial to note that the σij in step
2 should be calculated from ζ , η and P , which are a func-
tion of the previous iterate uk−1, and the strain rates at the
numerator from the latest iterate uk . Let us consider that one
calculates the stresses only based on the latest iterate uk , i.e.,
the viscous coefficients ζ and η, and the replacement pres-
sure are functions of uk instead of uk−1. Figure 2 shows the
normalized states of stress that are obtained in this case af-
ter only two nonlinear iterations. One might conclude from
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this figure that the solution has converged as all the states of
stress appear to be VP while we know this is not the case
from Fig. 1a. This is important because a “true” converged
solution exhibits better defined sea ice leads (and deforma-
tions; Lemieux and Tremblay, 2009), where large moisture–
energy–salt fluxes are present between the sea ice, the ocean
and the atmosphere.

This apparent numerical convergence of the solution is a
consequence of the use of a rate-independent plastic rheol-
ogy. This can be easily understood by considering a 1D VP
example. Assuming that sea ice does not have tensile strength
and that it exhibits a large convergent deformation, the 1D re-
lation between the stress (σ ) and the deformation (ε̇ = ∂u

∂x
) is

given by

σ = ζ ε̇−
P

2
, (11)

where ζ = Pp
2|ε̇| and P = Pp for a large plastic deformation.

Correctly expressing ζ as a function of uk−1 and ε̇ as a
function of uk (with ε̇k = ε̇(uk)), we obtain

σ =
Pp

2|ε̇k−1|
ε̇k −

Pp

2
, (12)

which is equal to −Pp only once the numerical solution has
converged.

On the other hand, expressing both ζ and ε̇ as a function
of uk leads to

σ =
Pp

2| ˙εk|
ε̇k −

Pp

2
, (13)

which is always equal to −Pp whatever the velocity field uk

used.
A second possible mistake would be to normalize the prin-

cipal stresses in step 3 with the replacement pressure P in-
stead of using Pp. Indeed, dividing Eq. (8) by P 2, we get

1=
[
σ1+ σ2+P

P

]2

+ e2
[
σ1− σ2

P

]2

. (14)

Defining σ n1 = σ1/P and σ n2 = σ2/P , we obtain

1=
[
σ n1 + σ

n
2 + 1

]2
+ e2[σ n1 − σ n2 ]2, (15)

which is the equation of an ellipse with a size and a cen-
ter that are fixed. Equation (15) is in fact the same equa-
tion as the one for the normalized yield curve (i.e., Eq. 10
with 1/1∗ = P/Pp = 1). Simulated stresses normalized by
P indeed converge toward this fixed ellipse. This is shown
in Fig. 3 for 2 (a), 10 (b) and the fully converged solution
(c). The converged normalized states of stress do not exhibit
a realistic solution as all the stresses appear to be plastic.

Figure 1. Principal stresses normalized by the ice strength Pp af-
ter 2 (a), 10 (b) nonlinear iterations and the fully converged solu-
tion (c).

[
σn1 + σ

n
2 + 1

]2
+e2[σn1 − σn2 ]2 = 1 with e = 2 is the nor-

malized yield curve (solid black line).
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Figure 2. Principal stresses after two nonlinear iterations calculated
only from uk and normalized by the ice strength Pp . The solu-
tion appears to be numerically converged because the σij are only a

function of uk .
[
σn1 + σ

n
2 + 1

]2
+ e2[σn1 − σn2 ]2 = 1 with e = 2 is

the normalized yield curve (solid black line).

6 Broader considerations

The recommendations given above remain the same if an-
other approach is used for limiting the viscous coefficients
(see Eq. 4). Numerical experiments with the approach of
Kreyscher et al. (2000) or with the hyperbolic tangent of
Lemieux and Tremblay (2009) allow one to draw the same
conclusions (not shown).

While it is not recommended to linearize the rheology
term with the previous two iterates (as done by Lemieux
and Tremblay, 2009), the stresses in step 2 (see begin-
ning of Sect. 5) should in this case be obtained from σij =

2η(ul)ε̇ij (uk)+[ζ(ul)−η(ul)]ε̇kk(uk)δij −P(ul)δij/2 with
ul = (u

k−1
+uk−2)/2.

If one does not use a replacement pressure, the stresses
in step 2 should be calculated the same way with P = Pp.
Instead of lying on ellipses defined by Eq. (10), the normal-
ized viscous states of stress would lie on concentric ellipses
centered at σ n1 = σ

n
2 =−0.5 (Geiger et al., 1998).

As demonstrated below, our recommendations also apply
when using other yield curves in a VP framework. As an
example, additional numerical experiments were conducted
with a Mohr–Coulomb yield curve with compressive capping
(Ip et al., 1991). This different constitutive law is obtained by
expressing the viscous coefficients and the replacement pres-
sure as

Figure 3. Principal stresses normalized by the replacement pressure
P after 2 (a), 10 (b) nonlinear iterations and the fully converged
solution (c).

[
σn1 + σ

n
2 + 1

]2
+ e2[σn1 − σn2 ]2 = 1 with e = 2 is the

normalized yield curve (solid black line).
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Figure 4. Stress invariants after two nonlinear iterations calculated
only from uk and normalized by the ice strength Pp . The solu-
tion appears to be numerically converged because the σij are only
a function of uk . The yield curve (solid black line) is based on a
Mohr–Coulomb failure criterion with compressive capping.

ζ =
Pp

2|ε̇∗I |
, (16)

P = 2ζ |ε̇I|, (17)

η =

(
P
2 − ζ ε̇I

)
sinφ

2ε̇∗s
, (18)

where ε̇I = ε̇11+ ε̇22 is the divergence, |ε̇∗I | =max(|ε̇I|,dmin)

with dmin a small deformation similar to 1min, φ

is the angle of friction, ε̇∗s =max(ε̇s, smin) with ε̇s =[(
ε̇11−ε̇22

2

)2
+ ε̇2

12

]1/2

the maximum shear strain rate and

smin another small deformation, here set equal to dmin. In
terms of the stress invariants, the Mohr–Coulomb failure
criterion is simply written as σII =−σI sinφ. This Mohr–
Coulomb implementation assumes a pure shear flow rule. Di-
vergence (larger than dmin) can only occur at the tip of the
triangle and convergence when σI =−Pp.

It is observed that with this new rheology, the Picard
solver really struggles to obtain a numerically converged
solution. With P ∗ = 27.5× 103 Nm−2, dmin = 2× 10−9 s−1

and sinφ = 0.5 (i.e., φ = 30◦), the solver does not converge.
When calculating the normalized stresses the correct way (as
in step 2 in Sect. 5), there are states of stress outside the yield
curve (not shown). However, similar to the results obtained
with the elliptical yield curve (see Fig. 2), the normalized
stresses (shown in Fig. 4 in stress invariant space) after two
nonlinear iterations appear to have converged if only uk is
used for calculating the σij .

Figure 5. Fully converged stress invariants normalized by the re-
placement pressure P . The yield curve (solid black line) is based
on a Mohr–Coulomb failure criterion with compressive capping.

To obtain a fully converged solution (with γnl = 1×10−8),
P ∗, dmin and sinφ were respectively set to 5× 102 Nm−2,
1× 10−8 s−1 and 0.01. Consistent with the results obtained
with the ellipse, the converged stresses normalized by Pp are
either on or inside the yield curve (not shown). Again, nor-
malizing the converged stresses by the replacement pressure
falsely indicates there are no stresses in the viscous regime
(Fig. 5). Strangely, there are no states of stress on the long
side of the triangle; all the states of stress appear to be at the
tip and the short side of the triangle. This can be easily under-
stood by using Eqs. (16) and (17) to calculate the normalized
first stress invariant

σ nI =
σI

P
=
ζ ε̇I

P
−
P

2P
=

ε̇I

2|ε̇I|
−

1
2
, (19)

which is equal to zero (tip of the triangle) when ε̇I > 0 and
equal to −1 (short side of the triangle) when ε̇I < 0.

7 Conclusions

We have described how the normalized states of stress should
be calculated and plotted in order to assess the numerical
convergence and physical consistency of a VP solution. To
do so, modelers should avoid two possible mistakes.

First, to evaluate the numerical convergence of an approx-
imate solution, one should calculate stresses from viscous
coefficients and replacement pressure that are a function of
the previous iterate uk−1 and the strain rates at the numera-
tor from the latest iterate uk . This conclusion applies to all
implicit solvers. As the EVP and modified EVP approaches
include time-stepping equations for the stresses, one simply
needs to calculate the normalized stresses from the stress
outputs. This issue of misinterpretation of numerical conver-
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gence with normalized stresses is therefore more prone to
occur with Picard and Newton solvers.

Second, the stresses should be normalized by the ice
strength – not by the replacement pressure. Using the lat-
ter causes all the normalized stresses to lie on the normalized
yield curve, falsely indicating there are no stresses in the vis-
cous regime. This issue can affect the implicit solvers as well
as the EVP and modified EVP approaches.

This article should serve as a guide on how to calculate
and plot normalized VP states of stress for assessing phys-
ical consistency and convergence of numerical solutions. It
also complements and gives more details about one of the
sea ice diagnostics suggested for the CMIP6 sea-ice inter-
comparison project (Notz et al., 2016).
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with some modifications for including the Mohr–Coulomb
rheology, was used for the numerical experiments de-
scribed in this article. The code is available on Zenodo at
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