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Abstract. Budget analysis of a tendency equation is widely
utilized in numerical studies to quantify different physical
processes in a simulated system. While such analysis is of-
ten post-processed when the output is made available, it is
well acknowledged that the closure of a budget is difficult
to achieve without temporal and/or spatial averaging. Nev-
ertheless, the development of errors in such calculations has
not been systematically investigated. In this study, an inline
budget retrieval method is first developed in the WRF v3.8.1
model and tested on a 2D idealized slantwise convection case
with a focus on the momentum equations. This method ex-
tracts all the budget terms following the model solver, which
gives a high accuracy, with a residual term always less than
0.1 % of the tendency term. Then, taking the inline values
as truth, several offline budget analyses with different com-
monly used simplifications are performed to investigate how
they may affect the accuracy of the estimation of individual
terms and the resultant residual. These assumptions include
using a lower-order advection operator than the one used in
the model, neglecting grid staggering, or following a mathe-
matically equivalent but transformed format of the governing
equations. Errors in these post-processed analyses are found
mostly over the area where the dynamics are the most ac-
tive, thus impairing the subsequent physical interpretation.
A maximum 99th percentile residual can reach > 50 % of
the concurrent tendency term, indicating the danger of ne-
glecting the residual term as done in many budget studies.
This work provides general guidance not only for budget di-
agnoses with the WRF model but also for minimizing the
errors in post-processed budget calculations.

1 Introduction

The atmosphere is a complex system with different scales
of motion. Its dynamics are governed by a set of fluid equa-
tions based on the fundamental laws of physics. Although the
equation set cannot be solved analytically, numerical mod-
els can be used to simulate the observed weather and cli-
mate systems to improve our understanding of the atmo-
sphere. Due to the complexity and nonlinearity of the nu-
merical models, budget analysis is often employed to inter-
pret the results by quantifying the contribution of each term
(i.e., physical process) in a tendency equation that governs
the evolution of a certain quantity in the simulated system.
The accuracy of a given budget analysis can be estimated
from the residual term, defined as the difference between the
tendency term on the left-hand side (lhs) of the equation and
the summation of all the forcing terms on its right-hand side
(rhs). Budget analysis has been performed on diverse prop-
erties (e.g., momentum, temperature, water vapor, vorticity)
of many systems on various scales, including the Madden–
Julian oscillation (MJO; e.g., Kiranmayi and Maloney, 2011;
Andersen and Kuang, 2012), tropical cyclones (e.g., Zhang
et al., 2000; Rios-Berrios et al., 2016; Huang et al., 2018),
squall lines (e.g., Sanders and Emanuel, 1977; Gallus and
Johnson, 1992; Trier et al., 1998), supercell thunderstorms
(e.g., Lilly and Jewett, 1990), and so on.

Despite the popularity of the budget analysis, it is gener-
ally acknowledged that, in model post-processing analysis,
obtaining a closed budget with a negligible residual is diffi-
cult (e.g., Kanamitsu and Saha, 1996) and has been accom-
plished mostly in time- or domain-averaged budget calcula-
tions (e.g., Lilly and Jewett, 1990; Balasubramanian and Yau,
1994; Arnault et al., 2016; Kirshbaum et al., 2018; Duran and
Molinari, 2019). Even in the case of averaged budgets, the
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residual term that contains non-explicitly diagnosed physics
can be larger than the tendency term (e.g., Liu et al., 2016),
and many studies simply do not display the residual, making
the proper interpretation of the budget analysis difficult.

The “residual analysis method” is sometimes utilized to
obtain an indirect estimation of the physical processes that
are hard to diagnose or are unresolved in a set of analysis
or observational data. In such cases, a non-negligible resid-
ual is sometimes used to gain insight into such processes.
However, as just discussed, the residual term also contains
the inaccuracies associated with the calculations within the
budget analysis (e.g., Kornegay and Vincent, 1976; Abarca
and Montgomery, 2013). It is thus unclear whether the un-
resolved physics in such data sets do indeed comprise the
main component of the residual without considering the con-
tributions of other sources of errors in the budget calculation
(Kuo and Anthes, 1984). Whereas it is almost impossible to
separate the subgrid-scale, unresolved processes from other
errors in reanalysis or observational data (e.g., Hodur and
Fein, 1977; Lee, 1984), the focus of this study is on numer-
ical model data where the local tendency and all the asso-
ciated resolved and parameterized physics can be obtained
from the model. Thus, the residual term in this study specifi-
cally refers to errors in the budget calculation.

To reduce the residual, an inline budget analysis that ex-
tracts all the terms of a prognostic equation directly from
the model during its integration is generally the most accu-
rate. However, the procedure has been reported only in a few
studies (e.g., Zhang et al., 2000; Lehner, 2012; Moisseeva,
2014; Moisseeva and Steyn, 2014; Potter et al., 2018; see
Appendix A for a summary and comparison among these
works). Most other studies still conduct the offline or post-
processing budget analysis when the output is made avail-
able after the model integration. Some specific suggestions
have been given in the past regarding how to reduce the er-
ror of post-processed budget analysis. For example, Lilly and
Jewett (1990) emphasized the importance of evaluating terms
using the same differencing scheme, grid stretching, and grid
staggering as that used in the simulation model. However, it
is uncertain whether these rules have been widely followed,
and how much of a reduction in residual can be obtained with
this approach.

In some post-processed budget analyses, transformed
equations with different assumptions from those in the model
are used and naturally lead to errors in the budget results. On
the other hand, even when the same form of the equations
is followed, errors can still arise from multiple sources dur-
ing the post-processing. Some errors are inherent in the time
discretization scheme of the model, some are traced to the
numerical methods in solving the temporal or spatial deriva-
tives with finite differencing (e.g., Kuo and Anthes, 1984),
and others might emerge during the interpolation or extrapo-
lation from model grids to analysis grids (e.g., Lilly and Jew-
ett, 1990). While the tendency term is often the result of a few
cancelations among competing forcing terms, the seemingly

non-dominant terms may be as important as the large forcing
terms in determining the sign and the value of the tendency.
Thus, an incorrect estimation of even a small term may re-
sult in a residual with magnitude comparable to the tendency
term, hindering the subsequent physical interpretation.

A few models, such as the Cloud Model 1 (CM1; Bryan
and Fritsch, 2002) and the High Resolution Limited Area
Model (HIRLAM; Undén et al., 2002), include inline bud-
get diagnoses that users can choose to include in the
model output. However, many other commonly used models
(e.g., Fifth-Generation NCAR/Penn State Mesoscale Model
(MM5; Grell et al., 1994), Weather Research and Forecasting
Model (WRF; Skamarock et al., 2008), the Advanced Re-
gional Prediction System (ARPS; Xue et al., 2000, 2001),
and the Regional Atmospheric Modeling System (RAMS;
Pielke et al., 1992)) do not have this capability. In this study,
we develop an inline momentum budget retrieval tool in the
Advanced Research WRF model, one of the most widely
used numerical weather prediction models. During the pe-
riod 2011–2015, there were on average 510 peer-reviewed
journal publications involving WRF per year (Powers et al.,
2017). Given the widespread use of WRF for both real-case
and idealized modeling, such a budget tool may prove use-
ful in numerous applications. In our budget diagnosis, each
contributing term is extracted during the model integration
and stored as a standard output. In so doing, we essentially
solve the prognostic variables as done in the model so that
the two sides of the tendency equation are always in balance
regardless of the output time interval. By taking the results
from the inline budget analysis as truth, we then perform
several different post-processing budget analyses with com-
monly made simplifications or a different format of equation.
Comparisons between the post-processed budgets and the in-
line/true values are made to investigate the potentially large
errors in each forcing term and the resultant residuals.

2 Model and numerical setup

2.1 Model and momentum equations

The WRF configuration used in this study is a two-
dimensional [(y, z); no variation in the x direction], fully
compressible, non-hydrostatic, and idealized version of the
Advanced Research WRF model, version 3.8.1 (Skamarock
et al., 2008). Here we briefly revisit the parts that are rele-
vant to the momentum budget analysis. The governing equa-
tions in the WRF model are cast on a terrain-following dry-
hydrostatic pressure coordinate. This vertical coordinate, η,
is defined as

η =
(
pdh−pdh_top

)
/µd,

where pdh is the hydrostatic pressure of the dry air and µd
represents the mass of the dry air per unit area in the column;
µd = pdh_sfc−pdh_top, where pdh_sfc and pdh_top indicate the
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values of pdh at the surface and the top of the dry atmosphere,
respectively.

To ensure conservation properties, the model equations are
formulated in flux form, with the prognostic variables cou-
pled with µd. The flux-form momentum components are de-
fined as

U = µdu, V = µdv, W = µdw, �= µd
dη
dt
,

where u, v, and w are the two horizontal and vertical veloc-
ities, respectively. Note that the dry-mass-coupled velocities
(U , V ,W ) on coordinates (x, y, z) have units of pascal meter
per second, and the dry-mass-coupled vertical velocity on η
coordinate, �, has a unit of pascal per second. For the ideal-
ized 2D case on an f plane as in this study, the momentum
equations in the WRF model are written as

∂V

∂t︸︷︷︸
V tendency

= −∇ · (V v)︸ ︷︷ ︸
advection

ADV

−µdα
∂p

∂y
−
α

αd

∂p

∂η

∂φ

∂y︸ ︷︷ ︸
horizontal pressure gradient force

PGF

−fU︸ ︷︷ ︸
Coriolis

COR

−

(
vW

re

)
︸ ︷︷ ︸
curvature

CUV

+ PV︸︷︷︸
remaining

(parameterized)
physics

+ res,

(1)

∂W

∂t︸︷︷︸
W tendency

=−∇ · (Vw)︸ ︷︷ ︸
advection

ADV

+ g

(
α

αd

∂p

∂η
−µd

)
︸ ︷︷ ︸

net vertical pressure gradient
and buoyancy force

PGFBUOY

+

(
uU + vV

re

)
︸ ︷︷ ︸

curvature
CUV

+ PW︸︷︷︸
remaining

(parameterized)
physics

+ res,

(2)

where

−∇ · (V a)=−
∂ (Ua)

∂x
−
∂ (V a)

∂y
−
∂ (�a)

∂η
(3)

is the flux-form advection, p is the full pressure with in-
clusion of vapor, φ is the geopotential, f is the Cori-
olis parameter, re is the mean earth radius, and α and
αd are the full and dry-air specific volume, respec-
tively. In our selected microphysics scheme (Thompson et
al., 2008), six hydrometeors are included, and thus α =

αd
(
1+ qv+ qc+ qr+ qi+ qs+ qg

)−1, where qv, qc, qr, qi,
qs and qg are the mixing ratios for water vapor, cloud, rain,
ice, snow, and graupel, respectively. The rhs forcing terms for
the V tendency include the flux-form advection (ADV), hor-
izontal pressure gradient force (PGF), Coriolis force (COR),
vertical (earth-surface) curvature (CUV), and the remaining
physics (PV ). For the W tendency, the rhs forcings contain
the flux-form advection (ADV), net force between the ver-
tical pressure gradient and buoyancy (PGFBUOY), curva-
ture effect (CUV), and the remaining physics (PW ). The re-
maining physics may include diffusion, damping processes,
and other parameterized physics, depending on the model
setup. Note that for closing the budget analysis, all the known
physics processes that come into play should be explicitly
written in the equation and be diagnosed or directly retrieved
from the model. The residual (res) is added on the last rhs
term in Eqs. (1) and (2) to represent the imbalance between
the two sides of the equation during budget analysis, but it is
not part of the original equations solved in the model.

To develop an inline budget retrieval tool, it is important
to understand how these prognostic variables are advanced
in the WRF model. Governing equations are first recast to
perturbation forms with respect to a dry hydrostatically bal-
anced reference state that is a function of height only (de-
fined at initialization) to reduce truncation errors and ma-
chine rounding errors. Specifically, variables of p, φ, αd, and
µd are separated into reference and perturbation components,
e.g., p(x,y,η, t)= p(z)+p′(x,y,η, t). The introduction of
these perturbation variables only changes the expressions for
the rhs terms PGF and PGFBUOY in Eqs. (1) and (2), which
will not be shown here for simplicity. Readers can refer to
Skamarock et al. (2008, chap. 2.5) for more details.

Based on Skamarock et al. (2008), Fig. 1 summarizes the
WRF integration strategy. The integration is wrapped by a
third-order Runge–Kutta (RK3) scheme, in which the prog-
nostic variables (generalized as 8 here) are advanced from t

to t +1t given their corresponding partial differential equa-
tions, ∂8

∂t
= F(8), following a three-step strategy:

8∗ =8t +
1t

3
F(8t ),

8∗∗ =8t +
1t

2
F(8∗),

8t+1t =8t +1tF
(
8∗∗

)
, (4)

where1t is the model integration time step and F , the large-
step forcing, represents the summation of all the rhs terms of
Eqs. (1) and (2) excluding the residual. Although the param-
eterized forcings stay fixed from step one to three as most of
the parameterization schemes are called only once at the first
RK3 step, the rest of the non-parameterized forcings and thus
the total F are changed with the updated 8∗ and 8∗∗ at the
second and third RK3 step. Within each RK3 step, a subset
of integration with a relatively smaller time step is embedded
to accommodate high-frequency modes for numerical stabil-
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ity (Wicker and Skamarock, 2002; Klemp et al., 2007; Ska-
marock et al., 2008). A maximum number of small steps in
one model integration step can be specified by the user. To
improve accuracy in the temporal solver, the variables be-
ing advanced in this small-step integration are the temporal
perturbation fields, defined by the deviation from their more
recent RK3 predictors: 8′′ =8−8t∗, where 8t∗ =8t , 8∗

and 8∗∗ for the first, second, and third RK3 step, respec-
tively. Thus, the perturbation momentum equations to be
solved are driven by the large-step forcings and the small-
step (sometimes referred as “acoustic-step” although it deals
with both acoustic and gravity wave modes (e.g., Klemp et
al., 2007; Skamarock et al., 2008)) corrections:

∂V ′′

∂t︸︷︷︸
V ′′ tendency

=


−∇ · (V v)︸ ︷︷ ︸

ADV

−µdα
∂p

∂y
−
α

αd

∂p

∂η

∂φ

∂y︸ ︷︷ ︸
PGF

−fU︸ ︷︷ ︸
COR

−

(
vW

re

)
︸ ︷︷ ︸

CUV

+PV


︸ ︷︷ ︸

large-step forcings (F )

t∗

−
αt∗

αdt∗

[
µd

t∗
(
αd
t∗ ∂p

′′τ

∂y
+αd

′′τ ∂p
∂y
+
∂φ′′

τ

∂y

)
+
∂φt∗

∂y

(
∂p′′

∂η
−µ′′d

)τ]
︸ ︷︷ ︸

small-step modes (ACOUS)

, (5)

∂W ′′

∂t︸ ︷︷ ︸
W ′′ tendency

=


−∇ · (Vw)︸ ︷︷ ︸

ADV

+ g

(
α

αd

∂p

∂η
−µd

)
︸ ︷︷ ︸

PGFBUOY

+

(
uU + vV

re

)
︸ ︷︷ ︸

CUV

+PW


︸ ︷︷ ︸

large-step forcings (F )

t∗

+g

{(
αt∗

αdt∗

)[
∂

∂η

(
C
∂φ′′

∂η

)
+
∂

∂η

(
c2

s
αt∗

2′′

2t∗

)]
−µ′′d

}τ
︸ ︷︷ ︸

small-step modes(ACOUS)

,

(6)

where τ indicates the time in the small-step integration, and
C as well as c2

s are sound-wave-related terms (Skamarock
et al., 2008, chap. 3.1.2). Here we leave out the details re-
garding the small-step terms that are irrelevant to the inline

budget retrieval. Note that the overbar in Eq. (6) indicates a
forward-in-time averaging operator for the small-step modes
to damp instabilities associated with vertically propagating
sound waves (see Eq. 3.19 in Skamarock et al., 2008). Equa-
tions (5) and (6) are the ones used to integrate the prognostic
momentum fields in the WRF model. For each RK3 step, af-
ter the total large-step forcing F is determined, V ′′ and W ′′

are defined and advanced within the small-step scheme by
a loop that adds F multiplied by a time interval, 1τ (varies
with different RK3 steps; see Fig. 1), and the small-step forc-
ing (ACOUS). After the small-step integration loop ends, V
and W are then recovered from their temporal perturbation
fields and moved forward to the next RK3 step. While it
is not relevant to the momentum equations discussed here,
for some variables directly contributed by the microphysics
scheme, the associated contribution should be considered af-
ter the RK3 integration loop ends as the microphysics are
integrated externally using an additive time splitting (Fig. 1)
(Skamarock et al., 2008, chap. 3.1.4).

2.2 Experimental setup

The main discussion of this study will focus on a 2D (y,
z) idealized simulation of slantwise convection. This pro-
cess releases conditional symmetric instability (CSI), which
can be idealized by assuming no flow variations along the
direction of thermal winds (denoted as the x direction in
our setup; Markowski and Richardson, 2010, chap. 3.4). The
initial field consists of a thermally balanced uniform west-
erly wind shear in x. This baroclinic environment contains
no conditional (gravitational) instability, no inertial stability,
and no dry symmetric instability but does contain some CSI.
A two-dimensional bubble containing perturbations of po-
tential temperature and zonal wind is added to initiate con-
vection and a slanted secondary circulation (v, w). See Ap-
pendix B for more details about the experimental setup. The
domain size is 1600 and 16 km in the y and z direction, re-
spectively, with a horizontal grid length of 10 km and 128
vertical layers. The model integration time step is 1 min. For
simplicity, the only parameterization used is the Thompson
microphysics scheme (Thompson et al., 2008). In addition,
the upper-level implicit Rayleigh vertical velocity damping
(damp_opt= 3) is also activated (Skarmarock et al., 2008,
chap. 4.4.2). The former does not directly contribute to the
momentum fields (although it can affect the momentum field
indirectly through density and pressure variations), and the
latter, contained in PW in Eqs. (2) and (6), affects only the
W momentum budget. No subgrid turbulence scheme is used
(diff_opt= 0). The WRF model offers different orders of ad-
vection operators, and the default third- and fifth-order oper-
ators are selected for the vertical and horizontal in this case,
respectively. Most of the subsequent analyses and discussion
are based on this slantwise convection case with a 10 km grid
length unless specified otherwise. Two other simulations, one
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Figure 1. The time integration strategy for advancing a state variable (generalized as8) in the WRF model based on Skamarock et al. (2008).
In this given example, four acoustic steps are specified for one integration time.

of which uses the same setup but with an increased horizontal
resolution of 2 km, will be discussed in Sect. 4.

Figure 2 shows the 48 h evolution of the 99th percentiles
of v and w (hereafter the lowercase indicates that the cal-
culation uses the uncoupled momentum field) and their ten-
dencies. For the 10 km case, the horizontal velocity reaches
its peak in about 20 h, a few hours after the vertical veloc-
ity reaches its maximum, and then undergoes a weakening.
Both v and w tendencies are maximized at around 15 h. To
understand the evolution of the associated flow dynamics, a
momentum budget analysis serves as a natural choice. How-
ever, as a preliminary step prior to carrying out such analysis,
we focus only on the technical discussion of the budget anal-
ysis methodology. The physical interpretation of the motion

is beyond the current scope and will be presented in a subse-
quent paper.

3 Methodology and results

3.1 Inline momentum budget analysis

For the inline budget analysis, all the terms are retrieved di-
rectly from the model for all the integration time steps, and
therefore they represent the “instantaneous” terms that act
over the specified short integration time window. For the
large-step forcing, the WRF model accumulates all forcing
terms at the beginning of each RK3 step. To separate them,
we simply take the difference before and after WRF calls the
subroutine for each large-step forcing, store their values sep-
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Figure 2. Evolutions of the 99 percentiles of (a) horizontal velocity,
v (black; axis on the left), and vertical velocity, w (gray; axis on
the right) in the simulation of slantwise convection. Panel (b) is the
same as (a) but for their tendencies (black and gray lines for v andw
tendencies, respectively). Solid lines are for the 10 km simulation,
while the dotted ones are for the 2 km case.

arately, and output only the values at the third RK3 step (the
total forcing is F (8∗∗)1t as shown in Fig. 1). As for the
contribution of the small-step modes, they are obtained by
accumulating over all the small steps in the third RK3 step
(ACOUS sum shown in Fig. 1). It is worth noting that Eq. (6)
is a vertically implicit equation that couples with the geopo-
tential tendency equation (Skarmarock et al., 2008; Klemp et
al., 2007). A tri-diagonal equation for the vector W (involv-
ing three grid points in the vertical direction) is thus solved
(Satoh, 2002). This means that W (the scalar at a given grid
point) is not advanced by linear additions in the small-step or
acoustic scheme. To ensure the closure of the inline retrieval
budget, we simply take the total changes that are contributed
by the implicit solver in the acoustic scheme as small-step
modes of W in the third RK3 step. Note that this way does
not violate the original W equation in Eq. (6). The contribu-
tion from these accumulated small-step modes in the V and
W tendency budgets are combined with their large-step PGF
and PGFBUOY, respectively, as they share the same mathe-
matical expressions. Finally, we add the inline calculation for
the tendency term outside of the RK3 integration loop, after
the microphysics scheme:

∂8

∂t

t+1t

≡
8t+1t −8t

1t
, (7)

where 1t is the model integration time step and 8 repre-
sents V or W (coupled momentum; hereafter the momen-
tum tendency with capital V or W refers to the lhs term de-
rived for the budget analysis). The values of 8 at times t and
t+1t , the latter denoted by superscripts, are termed the cur-
rent and predicted states, respectively. Note that while vari-
ables of momentum tendencies (specifically named “ru_tend,
rv_tend and rw_tend”) can be directly outputted from the
WRF model by modifying the registry file, these variables
do not necessarily represent the actual momentum changes
that consider all the physical (e.g., microphysics, small-step
modes) and non-physical processes (e.g., damping) but only
the summation of all the large-step forcings.

Figures 3 and 4 present the results of the inline budget
analysis for horizontal momentum and vertical momentum,
respectively, at three selected times (6, 12, and 16 h). To
demonstrate the momentum changes in a common physical
unit (velocities; meter per second), every term of the flux-
form budget equation shown in this paper is divided by the
dry-air mass, µd

t+1t (so that, for example, the V tendency
has a unit of meter per second squared). The magnitude of
the V tendency intensifies during this period with local max-
ima on the order of 10−4 to 10−3 ms−2 (Fig. 3). Two forc-
ing terms, PGF and COR, are a few times larger than the
ADV term but generally offset each other, making the ADV
term of comparable importance in determining the tendency.
The CUV term for V tendency is generally small and thus
not shown in Fig. 3. The residual, obtained from Eq. (1)
with PV equal to 0, is always smaller than 10−7 ms−2 during
the entire 48 h simulation (not shown). To understand how
the peak error evolves with time and to avoid reaching mis-
leading conclusions based on one or more outlying values,
the evolution of the 99th percentile magnitude of the resid-
ual term is shown. Figure 5 shows that it reaches a value of
about 7×10−9 ms−2 at around 15 h. Recall that the 99th per-
centile magnitude of the simulated v tendency has a peak
of 7× 10−4 ms−2 (Fig. 2b). Thus, the relative magnitude
of the 99th percentile residual is about 0.001 % of the 99th
percentile tendency term during the peak intensifying stage.
Compared to the V tendency, the W tendency exhibits nar-
rower features in the horizontal direction (Fig. 4) with an
overall smaller magnitude in every term. The two largest
forcings, PGFBUOY and CUV, usually have opposite signs,
so their combined effect is on the same order as the ADV and
theW tendency term. While the contribution from the upper-
layer vertical velocity damping is not shown in Fig. 4, it is
included as part of the rhs (PW ) of Eq. (2) when calculat-
ing the residual for the inline budget analysis. The residual
in the inline W budget is generally 4 orders of magnitude
smaller than its tendency term. The 99th percentile residual
for W budget is about 2× 10−10 ms−2, around 0.0003 % of
the 99th percentile w tendency during the peak intensifying
stage of the convection (not shown).
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Figure 3. Inline budget analysis of horizontal momentum, V , with each term extracted directly from the model. In each row, the shading
in each subplot from the left to right shows the term of V tendency, flux-form advection (ADV), horizontal pressure gradient force (PGF),
Coriolis force (COR) (white contours indicate the values exceeding the color bar), PGF+COR, and residual (Eq. 1; PV is 0 and the generally
small curvature term (CUV) is not shown). All terms are divided by µd and thus have units of meters per second squared. The black contours
indicate the horizontal velocity v of 2 and 6 m s−1 (positive and negative values shown in solid and dashed lines, respectively). Each row
from top to bottom illustrates the budget analysis at 6, 12, and 16 h, respectively.

Figure 4. Inline budget analysis of vertical momentum, W , with each term extracted directly from the model. In each row, the shading
in each subplot from the left to right shows the term of W tendency, advection (ADV), net vertical pressure gradient and buoyancy force
(PGFBUOY), curvature (CUV) (white contours indicate the values exceeding the color bar), PGFBUOY+CUV, and residual (Eq. 2; PW is
considered but not shown here). All terms are divided by µd and thus have units of meters per second squared. The black contours indicate the
vertical velocity w of 5 and 15 cm s−1 (positive and negative values shown in solid and dashed lines, respectively). The red (blue) contours
shown in the rightmost column, laid on top of the residual (shading), indicate the small-step components of PGFBUOY with a positive
(negative) value of 3× 10−4 ms−2. Each row from top to bottom illustrates the budget analysis at 6, 12, and 16 h, respectively.
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3.2 Post-processed momentum budget analyses

3.2.1 Key features and methodologies

In contrast to extracting terms directly from the model during
its integration, most of the studies in which the momentum
budget analysis is conducted use the model output files after
the completion of the integration. Note that since the sub-
output time-step information is not available between suc-
cessive outputs, only the large-step forcing terms can be es-
timated in these post-processed budget analyses. Generally,
the neglect of the acoustic or small-step modes is expected
to have little impact on the results as the high-frequency
modes are often considered meteorologically insignificant.
However, it is mentioned in Klemp et al. (2007) and Ska-
marock et al. (2008) that the WRF small-step integration
scheme includes not only the acoustic-wave but also some
gravity-wave modes, which may not be insignificant. These
gravity-wave modes form during the small-step integration
due to the designated terms that are required for acoustic-
wave propagation and “Consequently, in this vertical coordi-
nate (i.e., terrain-following hydrostatic pressure coordinate),
the terms governing the acoustic and gravity wave modes
are intermingled to the extent that it does not appear feasi-
ble to evaluate any of the gravity wave terms on the large
time steps, even if one desired to do so” (Klemp et al., 2007).

Most of the studies did not reveal the complete details
about how their analysis was done, so we cannot presume
their methodologies and the possible errors. However, a few
simplifications commonly made in the post-processed budget
analyses may introduce errors that result in deviations from
the simulated results and thus a significant residual. Below
we revisit the relevant features of the WRF model that should
be considered and discuss how they might affect the post-
processed budget if they are ignored. Then, the results are
shown for different post-processed budget analyses with dif-
ferent simplifications (Table 1). The aim herein is to identify
these potential errors hidden in the budget calculation and
show how severely they affect the resulting interpretation.

(a) Diagnosed tendency

In a post-processed budget analysis, the tendency term of a
given variable is approximated by the difference between the
value of this variable at two successive output times divided
by the output time interval. Thus, the accuracy may be sen-
sitive to the output time interval. The value at the predicted
state has a form of

∂8

∂t

t+1t
∣∣∣∣
diagnosed

≈
8t+1t −8t+1t−1toutput

1toutput
. (8)

If the output interval is longer than the model integration time
step, the diagnosed tendency would deviate from the model
prediction of the instantaneous tendency. To increase the ac-

curacy, the output time interval 1toutput needs to be similar
to the integration time step 1t .

(b) Spatial discretization on the C staggered grid

For computational efficiency and accuracy, WRF utilizes a
C-grid staggering system (Arakawa and Lamb, 1977). This
staggering system is pertinent to the numerical solution for
spatial derivatives. For most of the spatial derivatives other
than advection (e.g., the pressure gradient force), the second-
order finite difference operator is used in the WRF model.
For example, the y derivative of variable 8 is calculated us-
ing the discrete operator:

∂8

∂y i,j,k
=

1
1y

(
8
i,j+ 1

2 ,k
−8

i,j− 1
2 ,k

)
. (9)

The index (i,j,k) corresponds to a location with (x,y,η)=
(i1x,j1y,k1η), where1x,1y and1η are the grid lengths
in the two horizontal and vertical directions (can be vertically
stretched), respectively. The same expression applies for the
x or the η derivatives. Grid staggering implies that different
variables may be located on different grids, i.e., shifted by
a half-grid point from the others as illustrated in Fig. 6. De-
pending on what variable the spatial derivatives are intended
for, Eq. (9) should be carried out on the corresponding grid,
which is not necessarily the same as the 8 grid. For exam-
ple, for the V tendency, all the associated forcing terms in-
volving the spatial derivatives should be performed on the V
grid. More specifically, to calculate the PGF term for the V
tendency equation, the term ∂p

∂y
and the term ∂p

∂η
in Eq. (1)

should be calculated on the V grid but not the pressure grid
(p grid). Applying Eq. (9) for ∂p

∂y
, the V grid with location in-

dices of (i,j− 1
2 ,k) and (i,j+ 1

2 ,k) falls exactly on the p grid
and hence no interpolation is required (red arrows in Fig. 6a).
However, for ∂p

∂η
, the pressures on the V grid with indices of

(i,j,k− 1
2 ) and (i,j,k+ 1

2 ) must be obtained (red arrows in
Fig. 6b) through linear interpolation using their surrounding
closest four pressure values, e.g.,

p
V -grid

(
i,j,k+ 1

2

)

=

1
2

(
pp-grid(i,j−1,k)+pp-grid(i,j,k)

) 1ηk+1
2

1
2 (1ηk +1ηk+1)

+

1
2

(
pp-grid(i,j−1,k+1)+pp-grid(i,j,k+1)

) 1ηk
2

1
2 (1ηk +1ηk+1)

, (10)

which is weighted by the irregular (stretched) vertical grid-
lengths (Fig. 6b).

If the C-grid staggering is not considered during the post-
processing analysis, i.e., all the variables have been interpo-
lated on the universal grids before carrying out the budget
calculation, in addition to the potential errors brought on by
the interpolation method, the term ∂p

∂y
, for example, would es-

sentially involve pressure differences over a larger grid inter-
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Table 1. A summary of all different approaches for the post-processed horizontal momentum budget analysis that are applied to the model
output after the integration finishes.

Calculated
Order of on C

Form of Output time (vertical; horizontal) Forcing terms diagnosed using staggering
the equation interval advection operators the explicit or implicit method grids

Slantwise convection simulation with a grid length of 10 km and integration time step of 1 min

POST10min-E Flux form 10 min 3; 5 Explicit Yes
POST1min-E Flux form 1 min 3; 5 Explicit Yes
POST10min-I Flux form 10 min 3; 5 Implicit Yes
POST10min-(E+I)/2 Flux form 10 min 3; 5 Average of explicit and implicit Yes
POST2oadv-(E+I)/2 Flux form 10 min 2; 2 Average of explicit and implicit Yes
POSTnonstag-(E+I)/2 Flux form 10 min 3; 5 Average of explicit and implicit No
POSTadvF-(E+I)/2 Advective form 10 min 3; 5 Average of explicit and implicit Yes

Slantwise convection simulation with a grid length of 2 km and integration time step of 10 s

POST10min-I-2km Flux form 10 min 3; 5 Implicit Yes
POST10min-(E+I)/2-2km Flux form 10 min 3; 5 Average of explicit and implicit Yes
POST1min-(E+I)/2-2km Flux form 1 min 3; 5 Average of explicit and implicit Yes

Squall line simulation with a grid length of 250 m and integration time step of 3 s

POST3sec-E Flux form 3 s 3; 5 Explicit Yes

Figure 5. Evolution of the 99th percentile of the residual magnitude (meters per second squared) of the horizontal momentum V budget
analysis. For the residual calculation, (a) uses the true V tendency (derived during the integration of the model) and (b) uses the post-
diagnosed V tendency (Eq. 8) as the lhs term. Different colors indicate different post-processed methods for estimating the rhs forcing terms.
The residuals obtained from the inline budget retrieval are in black. Solid and dashed lines are for the 10 km run and 2 km run, respectively.

val of 2×1y instead of1y, with larger associated truncation
errors.

(c) Advection operators

For advection, higher-order operators for finite differencing
are provided as the default WRF setup. Taking the y compo-

nent of the flux-form advection for V momentum in Eq. (3)
as an example, with a fifth-order operator as selected in the
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Figure 6. (a) Horizontal and (b) vertical C staggering grids for different variables in the WRF model. Note that variables φ and W are
allocated on the same grid as �; µ, α, and q∗ are on grid same as p. The red arrows indicate the grids that would be used to calculate the
second-order spatial derivative term for the V momentum at the V grid (i, j , k).

present simulation, it is written as

−
∂ (V v)

∂y i,j,k

≈−
1
1y

(
V
i,j+ 1

2 ,k
v5th
i,j+ 1

2 ,k

−V
i,j− 1

2 ,k
v5th
i,j− 1

2 ,k

)
, (11)

where V and v are the mass-coupled and mass-uncoupled
velocities, respectively:

v5th
i,j− 1

2 ,k
= v6th

i,j− 1
2 ,k
− sign

(
V
i,j− 1

2 ,k

) 1
60[(

vi,j+2,k − vi,j−3,k
)
− 5

(
vi,j+1,k − vi,j−2,k

)
+10

(
vi,j,k − vi,j−1,k

)]
and

v6th
i,j− 1

2 ,k
=

1
60
[37

(
vi,j,k − vi,j−1,k

)
− 8

(
vi,j+1,k + vi,j−2,k

)
+ 1

(
vi,j+2,k + vi,j−3,k

)
].

The odd-order advection operators include a spatially cen-
tered even-order operator and an upwind diffusion term. A
detailed discussion on the advection scheme in the WRF
model with different-order operators can be found in Wicker
and Skamarock (2002) and Skamarock et al. (2008). Sim-
plifying the advection estimation using an operator with an
order that differs from the numerical setup would contribute
to errors in the ADV estimation.

(d) Forward or backward Euler method

Conceptually, the WRF model can be considered more of
a forward scheme, i.e., using the known variables from the
current state to calculate the forcing and then advancing the
variables forward until reaching the prediction time. How-
ever, there are a few implicit components during the integra-
tion. For example, as discussed in Sect. 2.1, the large-step

forcings are updated using a predictor–corrector method in
the second and third RK3 steps. In addition, the W equa-
tion is coupled with the geopotential tendency equation and
includes a forward-in-time weighting that utilizes predicted
states of the geopotential and temperature in solving the W
(Eq. 3.11, 3.12, and 3.19 in Skamarock et al., 2008).

In numerical analysis for solving ordinary differential
equations, the (explicit) forward Euler method approximates
the change of a system from t to t +1t using the current
states (t), while the (implicit) backward Euler method finds
the solution using the predicted states (t +1t):

∂8

∂t

t+1t

≈ F
(
8t
)

forward Euler method, (12)

∂8

∂t

t+1t

≈ F
(
8t+1t

)
backward Euler method. (13)

Consistent with this concept, the rhs forcing terms of a bud-
get equation can be estimated using two different instan-
taneous states in analogous ways. However, we emphasize
that the post-processed budget analysis does not solve the
tendency equation per se but only diagnoses the relation-
ship between the two sides of the equation. Note that for
post-processing analyses, the availability of the data depends
on the output time interval (1toutput), which is often much
larger than the integration time step (1t). Thus, for the ten-
dency at a given time t+1t , when applying the forward Eu-
ler method to estimate the associated rhs forcings, the “cur-
rent states” one can use are the most recent prior output at
t +1t −1toutput (see Fig. 7):

∂8

∂t

t+1t

≈ F
(
8t+1t−1toutput

)
forward Euler method

for post-processing. (14)

If1toutput is the same as1t , Eq. (14) reverts to Eq. (12). If
1toutput is much larger than 1t , the backward Euler method
using predicted states at t +1t may better estimate the true
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Figure 7. Schematic plot showing the explicit (forward) and im-
plicit (backward) solvers for the rhs forcing terms, as well as the
diagnosed and the true (calculated inline during the integration of
the model) lhs tendency term defined in this study.

model forcing terms as they are calculated using variables
at a closer time to the real integration window in the model
(Fig. 7).

The above two diagnostic methods estimate the forcing
terms using instantaneous states. However, as mentioned in
Sect. 3.2.1(a), the diagnosed lhs tendency depends on two
successive model output times. Thus, an average between
forcings diagnosed explicitly and implicitly are often con-
sidered. For a post-processed analysis, this translates into es-
timating the forcings using both predicted states and the most
recent prior available current states:

∂8

∂t

t+1t
∣∣∣∣
diagnosed

≈
1
2

[
F
(
8t+1t−1toutput

)
+F

(
8t+1t

)]
. (15)

(e) Flux or advective form of equation

While the momentum equations solved in the WRF model
are in flux form, their corresponding advective forms can be
derived and are often used for post-processed budget analy-
ses for convenience. To derive the advective form, the flux-
form V momentum equation (Eq. 1 excluding residual) is

first multiplied by a factor of 1
µd

and V is rewritten as µdv:

1
µd

∂(µdv)

∂t︸ ︷︷ ︸
V tendency

=−
1
µd
∇ · (µdvv)︸ ︷︷ ︸

advection
ADV

+
1
µd

[
−α

∂p

∂y
−
α

αd

∂p

∂η

∂φ

∂y

]
︸ ︷︷ ︸

horizontal pressure gradient force
PGF

−
1
µd
fU︸ ︷︷ ︸

Coriolis
COR

−
1
µd

(
vW

re

)
︸ ︷︷ ︸

curvature
CUV

+
1
µd
PV︸ ︷︷ ︸

remaining
(parameterized)

physics

. (16)

Then, by adding the mass continuity equation in WRF (mul-
tiplied by a factor of v

µd
):

v

µd

[
∂µd

∂t
+∇ · (µdv)

]
= 0

to the rhs of Eq. (16), we obtain

1
µd

∂(µdv)

∂t︸ ︷︷ ︸
V tendency

=
v

µd

∂µd

∂t
+
v

µd
∇ · (µdv)−

1
µd
∇ · (µdvv)︸ ︷︷ ︸

advection
ADV

+
1
µd

[
−α

∂p

∂y
−
α

αd

∂p

∂η

∂φ

∂y

]
︸ ︷︷ ︸

horizontal pressure gradient force
PGF

−
1
µd
fU︸ ︷︷ ︸

Coriolis
COR

−
1
µd

(
vW

re

)
︸ ︷︷ ︸

curvature
CUV

+
1
µd
PV︸ ︷︷ ︸

remaining
(parameterized)

physics

.

(17)

Moving the first term on the rhs of Eq. (17) to the lhs, the sec-
ond rhs term can be combined with the flux-form advection
using the vector identity ∇ · (µdv)= µd (∇ · v)+ v · (∇µd).
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Then, the advective form of the horizontal momentum equa-
tion is obtained as

∂v

∂t︸︷︷︸
v tendency

in advective form

= −v · ∇v︸ ︷︷ ︸
advection ADV

in advective form

+
1
µd

[
−α

∂p

∂y
−
α

αd

∂p

∂η

∂φ

∂y

]
︸ ︷︷ ︸

horizontal pressure gradient force
PGF

−
1
µd
fU︸ ︷︷ ︸

Coriolis
COR

−
1
µd

(
vW

re

)
︸ ︷︷ ︸

curvature
CUV

+
1
µd
PV︸ ︷︷ ︸

remaining
(parameterized)

physics

. (18)

3.2.2 Results of horizontal momentum budget

Table 1 summarizes all the post-processed budget analyses
tested in this study. In the present section, we first present
the results one by one, and then a qualitative intercompari-
son among them and the inline retrieval method is discussed.
The first post-processed method (POST10min-E) for V bud-
get follows all the approaches in the model as closely as pos-
sible using the 10 min output data. The flux-form equation,
C staggering grids, and the same orders of advection oper-
ators as the experimental setup are used. The diagnosis of
the large-step forcing is applied directly to the model out-
puts on η levels using the explicit or forward Euler method
as shown in Eq. (14). The diagnosed forcing terms are com-
pared with their corresponding true values from the inline
retrieval (Fig. 8). Errors smaller than, but on the same order
of 10−4 ms−2 as the V tendency, are observed in all terms
including the diagnosed tendency term. These errors grow in
magnitude and areal coverage with the growth of the distur-
bance. Aside from COR, the absolute errors in the tendency,
ADV and PGF can exceed 6× 10−4 ms−2, the former two
of which are more than 50 % of the magnitude of their true
(instantaneous) values locally.

The second post-processed analysis (POST1min-E) is
done following the same approach but applied to the 1 min
(same as the integration time step for this simulation) out-
put data, and the results show strongly reduced errors in all
terms (Fig. 9). The errors that remain are mostly in the PGF
term and likely stem from the fact that the small-step modes
and the RK3 integration scheme are not considered in the

post-processed budget. These inherent errors result in a small
residual term with a general order of 10−5 ms−2, 1 to 2 or-
der(s) smaller than the maximum V tendency. In terms of
local maxima, the 99th percentile magnitude of the residual
obtained in POST1min-E gives a relative magnitude of about
7 % of the 99th percentile v tendency during the peak intensi-
fying stage of the convection at around 15 h (Figs. 2b and 5).
Although reducing the model output interval to be close to
the integration time step helps to balance the budget without
the need for inline diagnoses, it is computationally expensive
especially for large, data-intensive simulations.

Given that computational cost is often a major consider-
ation, we also test whether the implicit or backward Euler
method (POST10min-I) can improve the estimation of in-
stantaneous forcing terms relative to the explicit method for
the same 10 min output data (POST10min-E). POST10min-I
follows the same strategy as POST10min-E except that all
the rhs terms, following Eq. (13), are diagnosed with the
predicted states instead of the previous output states. As de-
picted in Fig. 10, POST10min-I does indeed better capture
the true model estimated forcing values as errors in all the
rhs forcing terms diminish greatly to an accuracy similar to
POST1min-E. However, as these forcings are calculated at
a given instant, the imbalance of the budget would remain
if the diagnosed tendency term is not calculated instanta-
neously (the second column from the right in Fig. 10). There-
fore, if budget analysis at an instant of time is desired, we rec-
ommend adding the tendency calculation within the model as
a standard output and diagnosing the forcing terms implicitly,
which yields a residual term on a similar order to the one ob-
tained in POST1min-E (the rightmost column in Fig. 10 and
Fig. 5a).

For the more common situation, the post-processed anal-
yses diagnose rhs terms using two successive outputs over
an output time interval, i.e., taking the averages of the ex-
plicitly and implicitly calculated forcings using Eq. (15) on
the 10 min output (POST10min-(E+I)/2). Comparing the av-
eraged rhs forcings with the analogously diagnosed lhs mo-
mentum tendency (Eq. 8) gives a small residual to a similar
accuracy level as POST1min-E and POST10min-I (the right-
most column in Figs. 11 and 5b).

We now investigate the impact of other common simpli-
fications on top of the reference experiment, POST10min-
(E+I)/2. The first such simplification is to approximate
the flux-form advection term using the second-order oper-
ator (Eq. 9) for both vertical and horizontal components
(POST2oadv-(E+I)/2) instead of the third- and fifth-order op-
erators as used in the model setup. In our simulation, such
inconsistency of advection operators introduced errors in the
ADV term with a maximum value > 3× 10−4 ms−2, more
than 50 % of its true magnitude along the slantwise convec-
tive band (Fig. 12). Next, we repeated POST10min-(E+I)/2
but the calculation is applied after all the model output vari-
ables have been interpolated to the universal or un-staggered
grid (pressure grid) (POSTnonstag-(E+I)/2). This is a com-
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Figure 8. The difference between the post-processed (POST10min-E; with an explicit or forward method on 10 min output) and inline budget
analysis for the horizontal momentum, V . All terms have been divided by µd and thus have a uniform unit of meters per second squared. In
each row, from left to right indicates the difference for V tendency, ADV, PGF, and COR. The rightmost column indicates the residual term
obtained in the post-processed budget analysis. Each row from top to bottom shows the results at 6, 12, and 16 h, respectively.

Figure 9. Same as Fig. 8, but the post-processed budget analysis is applied to the data with an output time interval of 1 min (POST1min-E).

mon way to post-process model output data for plotting pur-
poses. As mentioned earlier, this approach would reduce the
accuracy when solving the spatial differential terms, and in-
deed, the results do indicate significant errors over a large
area in both ADV and PGF (Fig. 13). Their combined er-
rors result in widespread residual values > 3× 10−5 ms−2

even over the area where the tendency term is smaller than
1× 10−4 ms−2 (error is at least of 30 % magnitude of the

tendency term over a wide area and is reaching 100 % over
the band head).

Finally, a different format of the V equation, the advec-
tive form, is used for post-processed analysis (POSTadvF-
(E+I)/2). Mathematically, the flux-from momentum equation
can be rewritten in the advective form without making any
additional approximation, only with the aid of the conser-
vation law of dry-air mass in the WRF model as shown in
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Figure 10. Same as Fig. 8, but the post-processed rhs terms are diagnosed using the implicit or backward method (POST10min-I) and an
extra column is added on the rightmost showing the residual from the true tendency (i.e., the instantaneous value obtained from the model).

Figure 11. Same as Fig. 8, but the forcing terms diagnosed in the post-processed budget analysis are the averages of explicit and implicit
methods (POST10min-(E+I)/2). To represent the same time window as the post-processed analysis, the inline budget results used here for
the difference calculation are the 10 min averages (corresponding to the output interval) instead of the instantaneous values.

Eqs. (16)–(18). However, during the interchange of the ex-
pression for the tendency and advection terms, truncation er-
rors may be introduced. We reiterate that the tendency term
in the advective form is not equivalent to the one in the flux
form divided by µd; however, calculation suggests that they
are approximately equal, i.e.,

1
µd

∂(µdv)

∂t
≈
∂v

∂t
,

with a maximum error that is on the order of 10−7
∼

10−8 ms−2 (3 orders of magnitude smaller than the simu-

lated v tendency) in our study. The summation of the ten-
dency term and advection term in these two forms of the
momentum equation should be mathematically identical, so
we would expect to see a small difference in the advection
term as in the tendency term. However, we find that the
advection term in the advective form has a strong positive
bias compared to that in the flux form (Fig. 14). The resid-
ual term in the POSTadvF-(E+I)/2 is thus negatively biased
over the entire convective band with a magnitude exceeding
1.2× 10−4 ms−2 (reaching 100 % error near the upper half
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Figure 12. Same as Fig. 11, but the post-processed analysis uses a second-order operator for advection calculation (POST2oadv-(E+I)/2).

of the convective band). If the residual is neglected or not
shown, authors and/or readers may falsely consider the ad-
vection process to be the dominant term governing the evo-
lution of the slantwise updraft.

A quantitative comparison of the 99th percentile of the
magnitude of the residual term in the domain (excluding the
boundaries) among different analysis methods is shown in
Fig. 5. The residuals between the instantaneously diagnosed
forcings and the true model tendency term (calculated in-
line) are shown in Fig. 5a while the ones between the aver-
aged forcings of two consecutive outputs and the diagnosed
tendency term are shown in Fig. 5b. The evolution of the
99th percentile residual shows generally larger magnitudes
when the momentum tendency is larger (Fig. 2b), suggesting
that these errors may amplify in stronger convection cases.
While the post-processed budget analysis in POST1min-
E, POST10min-I, and POST10min-(E+I)/2 can achieve a
relatively small 99th percentile residual (peak at ∼ 5×
10−5 ms−2 , or about 7 % of the concurrent 99th percentile v
tendency), the inline budget analysis always gives a much
smaller magnitude (< 10−8 ms−2, or 0.001 % of the ten-
dency, during the entire simulation). Figure 5 also shows that
any simplification that is inconsistent with the model solver
can severely degrade the accuracy of the post-processed
budget analysis. Both POSTnonstag-(E+I)/2 and POSTadvF-
(E+I)/2 can lead to a 99th percentile of the residual magni-
tude peaking at around 4× 10−4 ms−2 or more, which cor-
responds to > 50 % of their concurrent 99th percentile sim-
ulated v tendency, respectively. Generally, a higher relative
magnitude of residual to v tendency is reached if the max-
imum instead of the 99th percentile is examined (despite
larger fluctuation with time). We also examined the 95th per-
centile of the residual magnitude and obtained qualitatively

similar results although the relative magnitudes of such cho-
sen residuals among the three post-processing methods with
simplifications (POST2oadv-(E+I)/2, POSTnonstag-(E+I)/2,
and POSTadvF-(E+I)/2) vary due to their different error dis-
tributions.

3.2.3 Results of vertical momentum budget

For theW equation, the closure of the post-processed budget
appears not to be practicable even when the output time in-
terval is reduced to the integration time step (Fig. 15). One
partial reason is that the spatially noisy small-step modes, ne-
glected in the offline budget analysis, are surprisingly large
with a general order of 10−4 ms−2 over the growing band,
which is 1 order of magnitude larger than the W tendency
(see the blue and red contours overlapped on the residual
subplots in Fig. 4). These high-frequency modes not only in-
clude vertically propagating sound waves but also some grav-
ity wave modes (Klemp et al., 2007). Furthermore, as indi-
cated in Eq. (6) and mentioned in Sect. 3.1, the W equation
solved in the WRF model is implicit, coupled with geopoten-
tial tendency equation and includes a forward-in-time aver-
aging operator that is applied to the small-step modes:

(ACOUS)
τ
=

1+β
2

(ACOUS)τ+1τ +
1−β

2
(ACOUS)τ ,

where β is a user-specified parameter and 1τ indicates the
small time step in the acoustic scheme. This means that the
small-step modes at a current small step, (ACOUS)

τ
, are cal-

culated using information (e.g., geopotential, potential tem-
perature and density) at the forecast time τ+1τ (see Eq. 3.11
and 3.12 in Skamarock et al., 2008). All these components
are not feasible for an offline budget calculation.
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Figure 13. Same as Fig. 11, but the post-processed analysis does not consider C staggering grids (POSTnonstag-(E+I)/2).

Figure 14. Same as Fig. 11, but the post-processed analysis is applied using the advective-form equation (POSTadvF-(E+I)/2).

The application of POST1min-E for the W tendency
shows that this method accurately estimates most of the pro-
cesses, but large errors > 2×10−3 ms−2 remain in the PGF-
BUOY term resulting in a widespread residual that reaches
the same magnitude of the peak W tendency term (Fig. 15).
The fact that these errors exceed the small-step modes (con-
tributing to PGFBUOY) suggests that such imbalance does
not solely come from the neglect of the small-step modes.
A close comparison of the post-processed and the inline
PGFBUOY shows that our estimation is close to the inline
value to an accuracy of at least three significant figures at the
first RK3 step before the acoustic contribution is considered

(not shown). However, this large-step forcing term adjusts
rapidly, sometime even with a sign change, from step to step
within the RK3 integration. Although it is feasible to esti-
mate F(8t ) via post-processing, it is however impossible to
retrieve F (8∗∗) in Eq. (4), leading to the poor estimation of
vertical pressure gradient and buoyancy force in the W bud-
get. This result also suggests that the budget closure for ver-
tical velocity is difficult by nature due to its rapid variation
on small scales.
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Figure 15. The difference between the post-processed (POST1min-E) and the inline budget analysis for vertical momentum W . All terms
have been divided by µd and thus have a uniform unit of meters per second squared. In each row, the subplots from left to right indicate the
difference of true W tendency, ADV, PGFBUOY, and CUV. The rightmost subplot indicates the residual term obtained in the post-processed
budget analysis. Each row from top to bottom shows the results at 6, 12, and 16 h, respectively.

4 Tests on different cases or with different horizontal
resolutions

The growth of the residual as the convection intensifies
(Fig. 5) motivates a test for a different case with stronger mo-
mentum tendencies. A WRF idealized 2D squall line test case
(em_squall2d_y; Skamarock et al., 2008) is selected with a
horizontal resolution of 250 m and 3 s integration time step,
and the simulation is integrated for 1 h. A subgrid turbu-
lence scheme based on the prognostic turbulent kinetic en-
ergy equation is activated (diff_opt=2 and km_opt=2; Ska-
marock et al., 2008, chap. 4.2.4). The simulated v tendency
in this case is 2 orders of magnitude stronger than the one
in the slantwise convection case. The inline retrieval budget
tool works well with 99th percentile residuals generally 2 or-
ders smaller than the tendency terms in the domain during
this simulation. However, as compared to the slantwise con-
vection case, this case features a larger relative magnitude
of 99th percentile residual to the 99th percentile tendency
term of about 0.1 %. Furthermore, the post-processed budget
analysis applied to the output data with an output interval the
same as the integration time step (analogous to POST1min-E
but in this case, it is termed POST3sec-E; Fig. 16), with no
simplification made, does not work as well as in the slantwise
convection case. POST3sec-E shows that the largest error ap-
pears in the PGF term with a magnitude of 50 % of its true
value at a given instant. The error in diffusion only accounts
for about 10 % of the error at the same time. One possible
reason is that unlike the case of slantwise convection where
the PGF exhibits a horizontally rather uniform structure with

almost the same sign (Fig. 3), the PGF term in this case has
a more complex spatial structure with several sign changes
over a horizontal distance of 10–15 km. Thus, large errors ap-
pear at the edge of these positive or negative patches where
the sign changes. Despite the small spatial scales of these
errors, the large error magnitude would render accurate in-
terpretation of the physical process difficult based on such
post-processed budget analysis. This result suggests that the
post-processed budgets, even when done with care, do not
always work well, and that the associated residual or errors
might be sensitive to the intensity of the simulated system,
the spatial or temporal resolution, and the nature of the phys-
ical processes governing the different systems.

While an increase in spatial resolution often requires a
shorter integration time step for numerical stability and may
result in stronger simulated convection, it is almost impos-
sible to separate all these factors. We can, however, conduct
the same slantwise convection simulation with a higher reso-
lution of 2 km (and a shorter integration time step of 10 s) to
exclude the effect of different physical processes in different
systems and discuss the changes in the accuracy of the bud-
get analysis when spatial resolution is increased from 10 km.
As shown in Fig. 2b, in the 2 km simulation the maximum of
the simulated 99th percentile v tendency is 1.2×10−3 ms−2,
almost twice the magnitude in the 10 km run. The magni-
tude of the residual from the inline budget analysis also be-
comes larger with the 99th percentile value almost 1 order
larger than that in the 10 km simulation (Fig. 5). However,
its relative magnitude is still small and amounts to about
0.005 % of the tendency in the 2 km case. For the post-
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Figure 16. Upper row shows the inline budget analysis of horizontal momentum, V , for the WRF ideal test case of 2D squall line at 20 min
of simulation time. Shading in subplots from left to right represents the term of V tendency, advection (ADV), horizontal pressure gradient
force (PGF), diffusion, and residual (multiplied by 10 to emphasize its small magnitude as compared to the other terms). All terms are divided
by µd and thus have units of meters per second squared. The black contours show the velocity, v, with an interval of 6ms−1. The bottom
row shows the difference between the post-processed (POST3sec-E) and the inline budget analysis.

processed budget analysis applied to the 2 km simulation,
the 99th percentile residual with the instantaneous calcula-
tion of POST10min-I-2km appears only slightly larger yet
sometimes smaller than those in its 10 km case (Fig. 5a). For
the method using two model outputs for both diagnosed ten-
dency and forcing terms, the peak 99th percentile residual
in POST10min-(E+I)/2-2km is about 4 times larger than that
in its 10 km counterpart (POST10min-(E+I)/2). This is likely
due to the larger deviation caused by the longer diagnosed
window (10 min) with respect to the integration time step
(10 s) in the 2 km case. In addition, it appears that the simu-
lated fields adjust more rapidly with more complex structures
on smaller scales in the 2 km simulation as compared to the
10 km simulation (not shown). If the same analysis is per-
formed using the 1 min output (POST1min-(E+I)/2-2km) as
opposed to the 10 min output, the residual can be greatly re-
duced to be similar to that obtained in POST10min-(E+I)/2
(Fig. 5b).

The results presented above suggest that the relative mag-
nitude of errors in budget analysis vary with different sys-
tems or cases. Furthermore, while the absolute errors in the
inline momentum budget analyses do indeed increase with
increasing horizontal resolution, the relative magnitude with
respect to the simulated tendency does not increase substan-
tially. The accuracy of the post-processed budget analysis us-
ing the averages of two consecutive model outputs is highly
dependent on the ratio of the output interval and the inte-
gration time step. A ratio of 10 as used in the POST10min-

(E+I)/2 results in an acceptable accuracy (99th percentile
residual of about 7 % of the tendency), while a lower value
of 6 is required for high-resolution simulations (e.g., the 2 km
case) to reach a similar accuracy. For cases with a more com-
plex physical process like the squall line test case, the inline
budget retrieval appears necessary for adequate budget clo-
sure.

5 Discussion and summary

Budget analysis is a commonly employed tool in numerical
studies to understand the underlying mechanisms for cer-
tain simulated features of interest. However, many studies
still have difficulties in achieving a balanced or closed bud-
get especially when a full-physics model is used and when
the budget is calculated instantaneously over a local area.
Aside from the complexity of various (some implicit) pa-
rameterization schemes, the main challenge in closing the
budget involves the analysis of post-processed data using al-
gorithms that are inconsistent with the model solver. In this
study, an inline momentum budget retrieval tool is devel-
oped for the WRF model, and its advantages for momentum
budget analysis are demonstrated. The 99th percentile resid-
ual obtained from this inline retrieval is always smaller than
or about 0.1 % of the actual tendency term in all the tested
cases, which include idealized, 2D simulations of slantwise
convection and squall lines. Taking the results from the in-
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line retrieval as “truth”, we investigate the potential errors in
each term and the resultant residual for post-processed bud-
get analyses under different assumptions.

The comparison among different post-processed diag-
noses is focused on the horizontal momentum (V ) budget.
The reason is that post-processed vertical momentum (W )
budget analysis fails to produce reasonably accurate results
due to the noisy vertical pressure gradient and buoyancy
forces that are tied closely to the small time-step modes and
the implicit scheme used for the vertical momentum inte-
gration. Thus, inline retrieval is necessary for an accurate
W budget analysis. The errors in the post-processed V bud-
get arise from both the left-hand-side tendency term and the
right-hand-side (rhs) forcing terms. To improve the accuracy
of the diagnosed momentum tendency estimation, one can
reduce the output interval to the model integration time step,
which incurs a large computational cost and consumes a large
amount of disk space. An alternative and cheaper solution is
to add the tendency calculation within the model as a stan-
dard output. Our test case of slantwise convection shows that
the diagnosed tendency using two successive model outputs
with a 10 min interval to approximate the instantaneous true
tendency (with an integration time step of 1 min) could create
an error exceeding 50 %, which greatly limits the effective-
ness of such a budget for physical interpretation.

For the rhs forcing terms in the V equation, errors can be
limited if the post-diagnosis is done with care using the same
form of the model equation, the same spatial discretization,
and the same order of the advection operators and perform-
ing the calculation on the original (e.g., C staggering and
vertically stretched) model grids. However, these steps are
necessary but not necessarily sufficient for the closure of the
budget, as the forcing term diagnosis also largely depends
on the selected input states. If the budget at an instant of
time is desired, the explicit or forward Euler method using
the previous states might result in large and widespread er-
rors in the advection and horizontal pressure gradient terms
(local peak errors are about 50 % and 25 % of their true val-
ues in our simulation, POST10min-E) unless the output in-
terval is reduced to the integration time step. In the latter case
(POST1min-E), an error < 5 % for each individual term and
a residual generally 1 to 2 order(s) smaller than the maxi-
mum tendency can be achieved (the 99th percentile residual
is about 7 % of the 99th percentile v tendency). An alterna-
tive way to reach a similar level of accuracy for instantaneous
fields without compromising the computational cost is to di-
agnose the rhs forcings using the implicit or backward Euler
method (POST1min-I). This method diagnoses the forcings
using the predicted states and thus can better capture the true
model forcings by using inputs at a closer time to the model
integration window.

Instead of performing the calculation using model output
at one given instant, a more general post-processed budget
analysis can use two successive model outputs (POST10min-
(E+I)/2). This method seems to work well with the 99th per-

centile residual being about 7 % of the 99th percentile v ten-
dency in our 10 km slantwise convection case with 10 min
output intervals. However, the accuracy of this method varies
among the test cases of different systems and is sensitive to
the ratio of the output interval to the integration time step.
Among the tests conducted in this study, an upper limit of 10
for this ratio is suggested, and it should be even smaller for
high-resolution simulations of high-amplitude weather sys-
tems, as rapid adjustments occur on the small scales.

Three other common assumptions in post-processing anal-
ysis are made on top of the POST10min-(E+I)/2 to exam-
ine their potential impacts on the accuracy of the horizon-
tal momentum budget analysis. First, utilizing an advection
operator with a lower order than the one used in the model
setup degrades the accuracy of the advection term with up to
50 % error over the area where the advection is the strongest
(POST2oadv-(E+I)/2). Second, the neglect of the staggering
grids would negatively impact the estimation of all the spa-
tial differential terms, leading to a widespread residual of
at least 30 % of the local tendency (POSTnonstag-(E+I)/2).
Last, when the advective form of the momentum equation is
used for post-diagnosis rather than the flux form, although
it is mathematically equivalent to the flux form solved in
the model solver, a strong negatively biased residual re-
sults (POSTadvF-(E+I)/2). Both POSTnonstag-(E+I)/2 and
POSTadvF-(E+I)/2 give a peak 99th percentile residual of
about > 50 % of the concurrent 99th percentile of the v ten-
dency. All the above errors do not just appear randomly;
rather, they are spread over the area where the dynamics are
the most active, thus undermining the physical interpretation
of the dynamics of the simulated system. We thus empha-
size the importance of revealing the magnitude of the resid-
ual (relative to the tendency term) in publications on budget
analysis, to enable readers to gauge the validity of the results.

While the post-processed V budget analysis can reach an
acceptable accuracy in some cases, the resultant residual may
vary from case to case even when the same analysis method
is adopted. Our test of an idealized squall line case with
strong momentum tendencies shows that the application of
the post-processed budget analysis method without any sim-
plification using the 3 s (same as the model integration time
step) output data nevertheless results in a large relative er-
ror magnitude (∼ 50 %) in the horizontal pressure gradient
force, with very small-scale error structures.

In summary, different assumptions or simplifications made
in a post-processed budget analysis may severely impact the
estimation of each forcing term and result in a large imbal-
ance of the budget. Based on our experiments, we conclude
that the inline retrieval method like that developed herein is
the most reliable one for budget analysis in numerical stud-
ies. While the budget analyses shown in this study are only
for V and W momentum under the 2D idealized configura-
tions, this newly developed budget tool also retrieves budget
terms for U momentum and potential temperature. It can be
applied to 3D idealized and real cases as the map projection
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is also considered, following the original governing equa-
tions as shown in Skamarock et al.’s (2008) Eq. (2.23)–(2.25)
with map factors, which are equal to 1 for an idealized setup
on the Cartesian coordinate. We also stress that in some bud-
get studies where a coordinate transformation is necessary
(e.g., from Cartesian to polar), some errors are unavoidable.
In such cases, it is best to perform the budget calculation us-
ing the inline retrieval method on the model grid and then
transform the budget to a new coordinate (e.g., Zhang et al.,
2000). Finally, in situations where the inline coding cannot
be done, this study also provides general guidance to mini-
mize the error in the budget. Thus, our results are beneficial
to budget analyses in numerical studies in general and are not
limited to the WRF model.
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Appendix A

To our knowledge, there are at least three other similar in-
line budget retrieval works that have been done in the WRF
model:

1. Lehner (2012) applied to v3.2.1:

Lehner (2012) provides a very detailed instruction of
how an inline budget retrieval is done for the WRF
model. The method or code was utilized in Lehner and
Whiteman (2014) to study the mechanisms of the ther-
mally driven cross-basin circulation. However, the code
was never made publicly available. From the document,
it appears that Lehner’s (2012) general procedure of re-
trieving the rhs budget terms during the model integra-
tion is essentially the same as our approach, which con-
siders both the large time-step and the small or acous-
tic time-step contributions. Furthermore, the individual
contribution from different parameterization schemes
that are activated in her study was also separately re-
trieved. While the general method appears highly sim-
ilar to our code, the momentum budget retrieval in
Lehner (2012) only applies to the horizontal momen-
tum (U and V ) whereas our tool includes the budget
retrieval for the vertical momentum (W ) as well.

2. Moisseeva (2014) and Moisseeva and Steyn (2014) with
v3.4.1:

The code is publicly available. The developed budget
retrieval is also for the horizontal momentum equa-
tions only. The method is simpler than Lehner (2012)
as it does not include the acoustic or small-step correc-
tion terms. Furthermore, while the large time-step, non-
parameterized terms (e.g., pressure gradient terms, ad-
vection, Coriolis terms) are individually retrieved, their
modified registry file only outputs one (summarized)
term for all the parameterized physics.

3. Potter et al. (2018) with v3.8.1:

The code is publicly available. This budget retrieval
uses the code adapted from Moisseeva (2014), taking
references from Lehner (2012), and is applied to the
same version of the WRF model as used in this study
(v3.8.1). More components are added from the ver-
sion used in Moisseeva (2014), including the potential
temperature budget, vertical velocity budget, the sixth-
order diffusion term, the parameterized physics term de-
composed to boundary layer, and radiation schemes. A
major difference from our retrieval tools exists in that
the small-step components are neglected in Potter et
al. (2018). Comparing the budget analysis results using
our retrieval tool with those using theirs for the same
idealized test case of the 2D squall line, the largest dif-
ferences appear in terms that involve the small-step con-
tributions (e.g., PGF and PGFBUOY), which result in

larger residual terms with Potter et al.’s (2018) retrieval
method (not shown). While the relative magnitudes of
such residuals to the tendency term still appear small for
the horizontal momentum budget, they become larger
for the vertical momentum budget. This is consistent
with our result that the small-step modes are more im-
portant in the W budget equation than in the V budget
equation, and thus ignoring them results in larger errors.

Furthermore, calculations of the lhs tendency terms are
added as new variables in our tool while the tendency terms
used in the above studies are the model variables ru_tend,
rv_tend, rw_tend, etc., which only represent the summation
of all the large-step forcings to their corresponding fields
(can be directly outputted via changing the WRF registry file)
instead of their true local changes with time.

Appendix B

To construct an initial condition that contains conditional
symmetric instability (CSI) but to avoid dry symmetric insta-
bility and dry and conditional (gravitational) instability is a
challenging task (Persson and Warner, 1995). Therefore, the
initial profile in our test case is decided by a trial-and-error
method and follows the following steps.

1. We first prescribe a horizontally uniform Brunt–
Väisäilä frequency, N2

=
g
θv

∂θv
∂z

with a vertical profile
ofN2

=

1.25× 10−4

9× 10−5

5× 10−4
s−2 for

z < 0.5 km
5 km≤ z < 10.5 km,

z ≥ 13.5 km
(B1)

where z is the height and there is a linear transition
for the layers 0.5km≤ z < 5km and 10.5km≤ z <
13.5km using the specified values beneath and above
the layers.

2. A constant geostrophic vertical zonal wind shear is
given: ∂Ug

∂z = 5.8× 10−3 s−1. Thermal wind balance
gives

∂Ug

∂z
=−

g

f θv

∂θv

∂y
. (B2)

3. Based on Eqs. (B1) and (B2), we can specify the value
of θv at any point and then derive the θv for the entire do-
main. In this case, θv (y0,z0)= 287.5 K, where (y0,z0)

indicates the grid at the surface on the southern bound-
ary.

4. The relative humidity (RH) field is constructed by
specifying a horizontally uniform background profile
(RHbackground) with some enhancement (RHbubble) over
an elliptical area where the initial perturbation will be
later added. The enhanced humidity over a limited area

www.geosci-model-dev.net/13/1737/2020/ Geosci. Model Dev., 13, 1737–1761, 2020



1758 T.-C. Chen et al.: Momentum budget analyses in the WRF (v3.8.1) model

hastens the release of CSI and avoids convection devel-
oping near the southern boundary.

RHbackground (z)=


0.81

min
[

0.81,1− 0.9
(
z−5
7.5

)0.8
]

0.1

for
z ≤ 5 km

5 km< z < 12.5 km
z ≥ 12.5 km

,

RHbubble (y,z)= RHbackground (z)× fenhancement (y,z) ,

where

fenhancement (y,z)=
1.22

1.22− 0.11(e− 1)
1

for
e ≤ 1

1< e ≤ 3
e > 3

,

where e =
(
y−410
eb

)2
+

(
z−1
ea

)2
, eb = 100,ea = 3, and

y and z are the horizontal distance from the southern
boundary and height, respectively, with units of kilo-
meters. The constructed initial profile has a maximum
RH of 98.82 % over an elliptical area centered at y =
410 km and z= 1 km.

5. A constant surface pressure is specified: psfc =

1000 hPa.

6. We then iteratively solve for the hydrostatically bal-
anced pressure, water vapor mixing ratio, potential
temperature, dry and full (moist) air density, and
geostrophic zonal wind for the entire domain.

The constructed initial environment contains some CSI,
which is identified by the presence of negative saturated
geostrophic potential vorticity (Chen et al., 2018). In this test
case, CSI only exists over the southern half of the domain
and never extends higher than 5 km.

To initiate convection, a 2D bubble of potential temper-
ature and zonal wind perturbations is inserted in the area
where RH is maximized and where the saturated geostrophic
potential vorticity has a value of about−0.2∼−0.1 pvu. The
center of the bubble, located at yc = 400 km and zc = 1.5 km,
has a maximum potential temperature perturbation 1θmax =

0.5 K and zonal wind perturbation 1umax =−6 ms−1. Both
perturbation fields decrease to 0 with radius, following1θ =
1θmaxcos2(0.5πr) and 1u=1umaxcos2(0.5πr), for r <=

1, where r =
√
(
y−yc
R
)2+ ( z−zc

H
)2, R = 50 km is the horizon-

tal radius, and H = 1.5 km is the vertical radius.
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Code availability. The standard version of WRF v3.8.1 is publicly
available at http://www2.mmm.ucar.edu/wrf/users/download/
get_sources.html (last access: 6 June 2019; National Center
for Atmospheric Research, 2016). The inline budget retrieval
tool in the WRF v3.8.1 described in this study can be found at
https://doi.org/10.5281/zenodo.3373872 (Chen, 2019). In this
repository, all the files that remain unchanged from the defaults
are tagged as “Initial commit”. The modified files for the budget
retrieval include the Registry.EM_COMMON within the directory
registry; module_diag_misc.F, module_diagnostic_driver.F, and
module_physics_addtendc.F within the directory phys; mod-
ule_after_all_rk_steps.F, module_big_step_utilities_em.F, mod-
ule_em.F, module_first_rk_step_par2.F, module_small_step_em.F,
and solve_em.F within the directory dyn_em. The current ver-
sion includes retrieval for terms of local tendency, advection,
horizontal pressure gradient force, net force resulting from ver-
tical pressure gradient and buoyancy, Coriolis force, curvature,
upper damping (damp_opt= 2 and 3), turbulence or diffusion
(diff_opt= 2), vertical-velocity damping (w_damping= 1) and
parameterized physics from the planetary boundary layer scheme
(bl_pbl_physics), the radiation scheme (ra_lw_physics and
ra_sw_physics), the cumulus scheme (cu_physics), and the shallow
cumulus scheme (shcu_physics).
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