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Abstract. The systematic bioturbation of single particles
(such as foraminifera) within deep-sea sediment archives
leads to the apparent smoothing of any temporal signal
as recorded by the downcore, discrete-depth mean signal.
This smoothing is the result of the systematic mixing of
particles from a wide range of depositional ages into the
same discrete-depth interval. Previous sediment models that
simulate bioturbation have specifically produced an output
in the form of a downcore, discrete-depth mean signal.
However, palaeoceanographers analysing the distribution of
single foraminifera specimens from sediment core intervals
would be assisted by a model that specifically evaluates
the effect of bioturbation upon single specimens. Taking
advantage of advances in computer memory, the single-
specimen SEdiment AccuMUlation Simulator (SEAMUS)
was created for MATLAB and Octave, allowing for the
simulation of large arrays of single specimens. This model
allows researchers to analyse the post-bioturbation age
heterogeneity of single specimens contained within discrete-
depth sediment core intervals and how this heterogeneity
is influenced by changes in sediment accumulation rate
(SAR), bioturbation depth (BD) and species abundance.
The simulation also assigns a realistic 14C activity to each
specimen, by considering the dynamic 114C history of
the Earth and temporal changes in reservoir age. This
approach allows for the quantification of possible significant
artefacts arising when 14C-dating multi-specimen samples
with heterogeneous 14C activity. Users may also assign
additional desired carrier signals to single specimens (stable
isotopes, trace elements, temperature, etc.) and consider
a second species with an independent abundance. Finally,
the model can simulate a virtual palaeoceanographer by

randomly picking whole specimens (whereby the user can
set the percentage of older, “broken” specimens) of a
prescribed sample size from discrete depths, after which
virtual laboratory 14C dating and 14C calibration is carried
out within the model. The SEAMUS bioturbation model
can ultimately be combined with other models (proxy and
ecological models) to produce a full climate-to-sediment
model workflow, thus shedding light on the total uncertainty
involved in palaeoclimate reconstructions based on sediment
archives.

1 Introduction

Deep-sea sediment archives provide valuable insight into
past changes in ocean circulation and global climate. The
most often studied carrier vessels of the climate signal
are the calcite tests of foraminifera. The tests of these
organisms incorporate isotopes and trace elements of the
ambient water at the time of calcification before sinking
to the seafloor sediment archive after death. Each discrete-
depth interval of a sediment core (typically 1 cm core slices)
retrieved from the sea floor can contain many thousands
of specimens. Owing to technical constraints, researchers
have typically had to combine many tens or hundreds of
single tests into a single sample for successful analysis
using mass spectrometry. Furthermore, post-depositional
sediment mixing (e.g. bioturbation; Berger and Heath, 1968)
of deep-sea sediment means that foraminifera specimens
of vastly differing ages can be mixed into the same
discrete-depth interval. The main consequence of this
mixing is that a downcore, discrete-depth multi-specimen
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reconstruction of a specific climate proxy will appear to be
strongly smoothed out (on the order of multiple centuries
or millennia) when compared to the original temporal
signal (Pisias, 1983; Schiffelbein, 1984; Bard et al., 1987).
Moreover, machine analysis of multi-specimen samples
will only report the mean value and machine error, thus
hiding the true distribution of values within the sample.
Advances in mass spectrometry eventually allowed the
analysis of single specimens (Killingley et al., 1981) and,
since single specimens capture a single year or season
of the climate signal, researchers can in principle study
the full distribution of isotope or trace element values
obtained within various discrete depths of sediment cores,
thereby making inferences regarding variability in climate,
habitat or specimen morphology for various specific time
periods during the Earth’s history (Spero and Williams,
1990; Tang and Stott, 1993; Billups and Spero, 1996;
Ganssen et al., 2011; Wit et al., 2013; Ford et al., 2015;
Metcalfe et al., 2015; Ford and Ravelo, 2019; Metcalfe
et al., 2019b). However, the accuracy with which the
aforementioned studies can quantify time-specific variation
for a particular climate period, habitat or morphological
variable is strongly dependent upon the constraint of the age
range of the specimens contained within a given discrete-
depth interval. The aforementioned studies still rely upon the
age–depth method to assign an age range to all specimens
contained within a discrete-depth interval, and previous
models of single-specimen analysis in sediment cores do
not include bioturbation (Thirumalai et al., 2013; Fraass and
Lowery, 2017). Such an approach can be problematic if,
to give but one example, an assumed Holocene-age 1 cm
slice of sediment core were to also contain a significant
number of Late Glacial specimens, which could lead to
a spurious interpretation of Holocene climate variability.
Ultimately, this problem can be circumvented through the
application of paired analysis of both radiocarbon (14C)
and stable isotopes on single specimens (Lougheed et al.,
2018), but the current mass requirements of 14C accelerated
mass spectrometry (AMS) necessitates very large specimens
(> 100 µg), whereas most planktonic foraminifera used
in palaeoceanography are an order of magnitude smaller.
Until such time that single-specimen 14C methods become
systematically applicable to planktonic specimens, and for
periods older than the analytical limit of 14C dating (>
50 ka), a sediment accumulation model specifically designed
for the analysis of single specimens can help shed light
on the age (and proxy) value distributions of planktonic
foraminifera contained within discrete depths.

Quantifying the distribution of specimen ages within
discrete-depth sediment intervals is also important for 14C
dating applied to multi-specimen samples, which can be
expected to have heterogeneous radiocarbon (14C) activity.
In addition to bioturbation, this 14C heterogeneity is also
influenced by the Earth’s dynamic 114C history, temporal
changes in species abundance, sediment accumulation rate

(SAR) and local 14C reservoir age. The resulting temporal
changes in sample 14C heterogeneity have the potential to
induce downcore age–depth artefacts when 14C analysis and
14C calibration are applied to multi-specimen samples. The
ability to make a quantitative estimate of downcore changes
in the 14C heterogeneity and its effect upon 14C dating would
help to improve 14C-based chronologies.

Here, we present the 114C-enabled single-specimen
SEdiment AccuMUlation Simulator (SEAMUS), which
can help researchers quantify the affect of bioturbation
upon single foraminifera, as well as upon the mean
downcore signal. This forward model takes advantage of
advances in computing power to simulate a large array of
single specimens, with the possibility to apply temporally
dynamic input parameters. Single-specimen populations are
essentially transferred from the time domain to the depth
domain, thus simulating the sedimentation and bioturbation
history of a sediment archive. The model can be used to
quantify the contribution of bioturbation uncertainty or bias
which, when combined with resources for understanding
analytical uncertainty (Ho et al., 2014; Tierney and Tingley,
2015; Tierney et al., 2019), ecological uncertainty (Lombard
et al., 2011; Roche et al., 2018; Metcalfe et al., 2019a), etc.,
can help the end user gain a total picture of palaeoclimate
reconstructions retrieved from deep-sea sediment archives.

2 Model description

2.1 Bioturbation understanding and previous models

The most commonly used mathematical model of biotur-
bation in deep-sea sediments is the so-called Berger–Heath
bioturbation model, which assumes a uniform, instantaneous
(on geological timescales) mixing of the bioturbation depth
(BD), the uppermost portion of a sediment archive where
oxygen availability allows for the active bioturbation of
sediments (Berger and Heath, 1968; Berger and Johnson,
1978; Berger and Killingley, 1982). Observations of uniform
mean age in the uppermost intervals of sediment archives
do indeed support this mixing model (Peng et al., 1979;
Boudreau, 1998), and the BD itself has been shown to be
related to the organic carbon flux at the seafloor (Trauth
et al., 1997). Researchers wishing to carry out transient
bioturbation simulations with dynamic input parameters
have incorporated the Berger–Heath mathematical model
into their computer models, most notably the FORTRAN77
model TURBO (Trauth, 1998), its updated MATLAB
version TURBO2 (Trauth, 2013) and the more recent
R model Sedproxy (Dolman and Laepple, 2018). In the
case of TURBO2, the user inputs a number of idealised,
non-bioturbated stratigraphical levels with assigned age,
depth, carrier signal and abundance. Subsequently, TURBO2
outputs the bioturbated carrier signal and abundance
values corresponding to the inputted stratigraphic levels.
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Consequently, TURBO2 is of most interest for researchers
who would like to understand the perturbation of the mean
downcore signal. Sedproxy allows the user to input a
climate data in the time domain, along with sediment core
variables (such as SAR and BD), after which mathematical
computations are used to produce the equivalent bioturbated
climate data also in the time domain, whereby single-
specimen distributions can also be quasi-inferred.

2.2 The SEAMUS model

2.2.1 Short description of the model

SEAMUS can be described as a stochastic model, in contrast
to the probabilistic models TURBO2 and Sedproxy. The
stochastic approach offers a number of advantages for the
single-foraminifera applications for which SEAMUS has
been developed. Firstly, the stochastic approach allows for
a relatively straightforward execution of transient runs with
temporally dynamic time series inputs for SAR, species
abundance, BD, 14C reservoir age, 114C and any desired
carrier signal(s), especially with respect to understanding
the single-foraminifera distribution within discrete sediment
depth intervals. Secondly, the sedimentation and bioturbation
history of a limited population of foraminifera contained
within a real sediment archive is in itself the result of a
stochastic process, i.e. no two sediment core archives formed
under identical conditions will be exactly the same. With this
stochastic nature of sediment archives in mind, a stochastic
model approach allows for the end user to use an ensemble of
sediment archive simulations to quantify the signal-to-noise
ratio of sediment archives.

The SEAMUS simulation uses an iterative approach
that actively simulates the sedimentation process of single
specimens on a per time step basis, whereby input data in
the time domain are converted into the core depth domain.
For each time step, a number of new specimens are added to
the top of the simulated core, with bioturbation subsequently
being carried out. SEAMUS uses the sedimentation and
species abundance variables inputted into the time domain
(SAR in the form of an age–depth model, BD vs. time,
species abundance vs. time) to simulate a number of new
single specimens per time step. Each of these specimens
are assigned an age, 14C activity, reservoir age and carrier
signal corresponding to the time step. Subsequently, the
new specimens are added to the top of the existing core,
after which bioturbation is carried out. The simulation takes
advantage of contemporary advances in computer memory
capacity to keep track of the depths, ages, 14C activities,
species types and number of bioturbation cycles for all
single specimens in the simulation. Such an approach,
which is optimised for single specimens, allows the user
to use logical indexing to quickly access all variables
for given single specimens for given depths, ages and/or
species. Subsequently, users can subject the simulated

sediment archive to a picking procedure (with a prescribed
number of randomly picked whole specimens per sample)
to create virtual subsamples from each discrete core depth,
whereby one can also consider the presence of broken
(non-picked) specimens, which have been through more
bioturbation cycles and are therefore older. From these
virtual subsamples, mean carrier signal values and species
abundances can be calculated, allowing users to evaluate
their downcore reconstructions for the possible presence
of artefacts. Furthermore, these virtual subsamples can be
used to calculate virtual laboratory 14C dates, which are
subsequently calibrated within SEAMUS using the MatCal
(Lougheed and Obrochta, 2016) 14C calibration software.
Calibrated age distributions for a discrete depth can be
compared to their associated simulated true age distribution,
thus evaluating the accuracy of the 14C dating and calibration
process.

The SEAMUS simulation is broken down into two
main functions that the user can call. The first function
seamus_run, carries out the actual single-specimen sedimen-
tation simulation based on the input parameters designated
by the user. The second function, seamus_pick, can be best
described as a “virtual palaeoceanographer and laboratory”,
in that it carries out downcore analysis of the simulated
sediment core, including discrete-depth sample picking,
calculation of subsample mean carrier signals, 14C analysis
by virtual AMS, 14C calibration, etc. The seamus_run and
seamus_pick functions, as well as their associated input and
output variables, are detailed in Sect. 2.2.2 and 2.2.3.

2.2.2 The sediment core simulation (seamus_run)

The seamus_run module uses the required and optional input
parameters specified by the user (see the documentation in
the script) to synthesise n number of single specimens being
net-added to the historical layer of the sediment core per
simulation time step, whereby n is scaled to the capacity
of the synthetic sediment archive being simulated (input
variable fpcm) and to the SAR of the time step as predicted by
an inputted age–depth relationship. The simulation creates
large single-specimen arrays of matching dimensions for
age (corresponding to the time step) and “unbioturbated”
sediment depth (according to the age–depth input), as well
as a 14C age (in 14C yr) and 14C activity (in F14C). The user
also has the option to input a 14C blank value. Furthermore,
all single specimens can be assigned carrier signal values.
It should be noted that the user is not required to enter
input values for every time step: for example, an age–depth
relationship can simply be inputted with a handful of data
points and the model will automatically linearly interpolate
to create age and depth values for every simulation time step.
The same principle holds true for other temporally dynamic
inputs such as species abundance, reservoir age and carrier
signals.
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After the creation of all new single specimens within the
synthetic core, a per time step bioturbation simulation of the
depth array is carried out. Specifically, for each time step
the depth values corresponding to all simulated specimens
within the time-step-specific active BD are each assigned a
new depth value by way of uniform random sampling of the
BD interval. In this way, uniform mixing of specimens within
the BD is simulated following the established understanding
of bioturbation. The per time step bioturbation simulation is
carried out in seamus_run as follows. First, the simulation
finds the indices for all specimen depth values present in the
contemporaneous BD.

ind = find(depths >= addepths(s) & depths
< addepths(s) + biodepths(s))

Here, addepths(s) is the depth corresponding to the age for
time step s, i.e. addepths(s) is analogous to the time step’s
core top, and where biodepths(s) is the BD corresponding to
the age for time step s.

Subsequently, all specimen depth values corresponding to
the active BD are assigned new depth values by uniform
random sampling of the active BD itself.

depths(ind) = rand(length(ind),1) *
biodepths(s) + addepths(s)

The simulation uses a simple counter array to keep track
of how many times each single specimen has been subjected
to a bioturbation cycle.

cycles(ind) = cycles(ind) + 1

All of the aforementioned processes are repeated for every
simulation time step until such point that the end of the age–
depth input (i.e. the final core top) is reached. Currently,
the simulation carries out bioturbation according to a per
time step uniform random sampling, but users wishing to
experiment with other types of bioturbation (i.e. partial
bioturbation, etc.) can modify the aforementioned lines of the
script.

It is recommended that users initiate the seamus_run
simulation with sufficient spin-up time. The necessary spin-
up time can vary, dependent upon the SAR and BD being
studied, but for most applications (SAR> 5 cm kyr−1), a
spin-up time of at least 20 kyr should suffice. In other words,
if one is studying a period of interest that commences at
50 kyr ago, then the simulation can be started at 70 kyr ago.
The required input parameters should be inputted into the
command line as follows.

seamus_run(simstart, siminc, simend, btinc,
fpcm, realD14C, blankbg, adpoints, bdpoints,
savename)

Optional parameters can be additionally specified as
follows, e.g. in the case of including the array arrayname
containing temporal changes in reservoir age for Species A.

seamus_run(simstart, siminc, simend,
btinc, fpcm, realD14C, blankbg, adpoints,
bdpoints, savename, ‘resageA’, arrayname)

The seamus_run module outputs a .mat file containing a
number of very large one-dimensional arrays of the same
size, whereby each position in each array corresponds to
the same simulated single specimens. Output arrays are
described in the script documentation. To improve simulation
performance and data retrieval, all output arrays for all
species are of the same dimension. In other words, carrier
signals specific to Species A (stored in array carrierA) are
simulated for both Species A and Species B. As all output
variables are of the same dimension, one can easily isolate
the carrierA signals specific to the specimens of Species A
(types value of 0) using logical indexing.

carrierA(types == 0 , :)

This can also be done from a specific core depth interval
(e.g. between 16 and 17 cm).

carrierA(types == 0 & depths >= 16 & depths
< 17 , :)

2.2.3 Virtual picking of the simulated sediment core
(seamus_pick)

The seamus_pick module carries out a simple picking sim-
ulation upon the simulated core generated by seamus_run.
Users are able to set a specific sample size (i.e. the number
of single specimens to be randomly picked per sample)
and sample picking interval (i.e. core slice thickness) and
optionally include information about the amount of broken or
non-whole specimens. The latter parameter is set as a fraction
of the entire specimen population, whereby the fraction of
the population that has been through the most bioturbation
cycles is assumed to be broken. For example, if the user sets
the fraction of broken specimens to 0.25, then the simulation
will only randomly pick from the specimen population with
bioturbation cycles between the 1st and 75th percentiles. In
this way, the preference of a palaeoceanographer to pick
whole specimens is simulated.

Within seamus_pick, virtual 14C laboratory analysis is
carried out on the picked subsamples by calculating the
mean 14C activity (in F14C), after which the resulting
mean F14C value is converted into 14C age (in 14C yr).
A realistic measurement error is also assigned to each
14C age. A 14C determination of 1.0 F14C is assumed to
have an error of 30 14C yr, and a determination with the
F14C value e(blankvalue−1)/−8033 (i.e. one 14C yr younger
than the blank value) is assigned an error of 200 14C yr
(this value can be customised by the user in the input
parameters). Errors (in 14C yr) for intermediate dates are
linearly interpolated to F14C. The MatCal (Lougheed and
Obrochta, 2016) calibration software is used to calibrate
14C ages and associated errors within the simulation after
the application of a user-prescribed calibration curve and
downcore reservoir age.

The seamus_pick function is called from the MATLAB
command line interface.
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seamus_pick(matfilein, matfileout, calcurve,
pickint, Apickfordate, Bpickfordate)

Optional parameters can be additionally specified as
follows, e.g. in the case of including the array arrayname
containing downcore changes in the fraction of broken
specimens in Species A.

seamus_pick(matfilein, matfileout, calcurve,
pickint, Apickfordate, Bpickfordate,
‘Abroken’, arrayname)

After running seamus_pick, one could consider, if wanted,
adding Gaussian noise to the outputted discrete-depth carrier
signals, thus simulating the uncertainty associated with
machine measurement. For example, the following is to add
a Gaussian uncertainty of ±0.1 to the first carrier signal in
Adisccarmean.

Adisccarmean(:,1) = Adisccarmean(:,1) +
randn(size(Adisccarmean(:,1)).*0.1

2.2.4 Suggested input data

Users are free to use any input data they please, so
long as it abides by the specified requirements as listed
in the function documentation. This freedom can allow
users to carry out abstract modelling experiments to
increase our understanding of the relationship between input
parameters, the resulting downcore single-specimen vales
and trends in downcore discrete-depth means. Alternatively,
users can try to forward-model an actual sediment core
record in order to investigate for the possible presence of
bioturbation or abundance artefacts within their sediment
core record. An existing age–depth model of a sediment
core could be used as the dynamic age–depth input for the
SEAMUS simulation, although users must be aware that
age–depth models may themselves contain artefacts caused
by the interaction between bioturbation and abundance.
Data regarding downcore abundance estimates could be
used as abundance estimates, but similarly, users should be
aware that observed downcore abundance in the core depth
domain is not the same as original abundance in the time
domain. Users could, therefore, experiment in using multiple
temporal abundance and bioturbation depth combinations as
simulation input and rerunning the simulation with different
temporal abundance and bioturbation depth combinations
until such time that generated abundance data in depth
are similar to the observed abundance in depth. Input
climate data for simulations could be based on experimental
(fictional) scenarios, geological records or generated from
isotope-enabled climate models (Roche, 2013) coupled
to, for example, a foraminifera ecology model such as
FORAMCLIM (Lombard et al., 2011) or FAME (Roche
et al., 2018; Metcalfe et al., 2019a) to produce a fully
parameterised “climate-to-sediment-core” model workflow.

3 Model evaluation

3.1 Comparison with TURBO2

In order to evaluate the performance of the SEAMUS
model, it is compared here to the output of the established
TURBO2 bioturbation model (Trauth, 2013), which was
also authored in the MATLAB environment. The most
notable difference between SEAMUS and TURBO2 is that
the latter outputs data in the form of the perturbation
of the mean downcore signal, whereas SEAMUS takes
advantage of recent increases in available computer memory
to store and output a very large array of single elements
(foraminifera specimens). The two models can be compared,
therefore, by comparing the mean downcore output from
TURBO2 with the SEAMUS downcore mean value derived
from discrete-depth single-specimen populations. To achieve
this comparison, the NGRIP δ18O record on the GICC05
timescale (North Greenland Ice Core Project members,
2004; Rasmussen et al., 2014; Seierstad et al., 2014)
is used here as a reference signal to represent the
“unbioturbated” climate signal (Fig. 1a). This 50-year
temporal resolution signal is subsequently inputted into
both SEAMUS and TURBO2 using identical run conditions
comprising a constant SAR of 10 cm kyr−1, a constant
BD of 10 cm and a single foraminiferal species with
a constant abundance. The SEAMUS simulation is run
using a 10-year time step. The TURBO2 and SEAMUS
core simulations (i.e. single specimens in the case of
SEAMUS) are directly assigned the oxygen isotope values
from the NGRIP record. One would obviously not expect
that foraminifera in the open ocean would have the same
oxygen isotope values as an ice sheet record (due to
fractionation effects, habitat effects, oceanographic effects,
seasonal overprint, etc), but the purpose here is simply to
compare the output of the respective bioturbation algorithms
in SEAMUS and TURBO2 using some kind of high
temporal-resolution climatic input signal. Furthermore, using
the NGRIP record allows for the isolation of the bioturbation
effect upon a hypothesised single-specimen record. The
respective mean downcore bioturbated signals produced by
SEAMUS and TURBO2 are shown in Fig. 1b and exhibit a
significant correlation (r2

= 0.99, p < 0.01), indicating that
the SEAMUS approach incorporates the same understanding
of bioturbation as TURBO2.

3.2 Processing speed and computing requirements

Where possible, the processing of arrays for simulation
time steps has been vectorised (i.e. not processed within an
iterative loop), in order to maximise processing speed. For
example, the per time step assignment of single-specimen
arrays corresponding to ages and carrier signals all occurs
within fully vectorised code. However, the bioturbation
simulation (i.e. the bioturbation of the assigned depth values)
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Figure 1. (a) NGRIP δ18O record (North Greenland Ice Core Project members, 2004) plotted using the latest GICC05 timescale (Rasmussen
et al., 2014; Seierstad et al., 2014), adjusted by 50 years so that 1950 CE is equivalent to “present”. (b) Result of SEAMUS run using the
NGRIP δ18O data as temporal input data. SEAMUS run settings are shown in the panel inset. Also shown is the average of 10 runs of
TURBO2 (Trauth, 2013), based on the same NGRIP input data and using a SAR of 10 cm kyr−1 and a constant BD of 10 cm.

Table 1. Approximate run times and memory use in MATLAB and Octave in the case of a 70 kyr simulation run with 10-year iterations and
sediment archive capacity of 102, 103 and 104 specimens per centimetre depth. The runs were carried out on a 64-bit system (Ubuntu 18.04)
with 16 GB of RAM and an Intel i7-2600 processor, using MATLAB 2019a or Octave 5.1.0. Reported memory use is the additional memory
load on the system (rounded up to the nearest 10 Mb) while running the simulations (i.e. excluding the general background memory use by
MATLAB or Octave).

102 specimens cm−1 103 specimens cm−1 104 specimens cm−1

seamus_run (MATLAB) 1.2 s/10 Mb 9.7 s/10 Mb 104 s/680 Mb
seamus_run (Octave) 5.3 s/10 Mb 29 s/40 Mb 263 s/660 Mb
seamus_pick (MATLAB) 9.4 s/10 Mb 12 s/10 Mb 37 s/360 Mb
seamus_pick (Octave) 25 s/10 Mb 36 s/40 Mb 151 s/380 Mb

is not vectorised and is carried out within a single-thread
iterative loop, due to each iteration of the bioturbation
simulation being dependent upon the results of the previous
iteration. In order to optimise the processing time on 64-bit
computers, all arrays are stored as 64-bit. Should the user
wish to save memory, it is possible to select the do32bit
option when accessing seamus_run from the command line
(see the function documentation). Indicative run times and
memory use are shown in Table 1.

The SEAMUS model was developed in MATLAB 2017b
and has been tested as compatible with Octave 5.1.0. The

seamus_run module can be run using the basic MATLAB
environment, with no extra toolboxes. The seamus_pick
module runs more efficiently when the Statistics and
Machine Learning toolbox (specifically, the prctile function)
is installed, but when it is detected that users do not have
access to that toolbox, seamus_pick will revert to using a
modified version of an equivalent function (Kienzle, 2001),
which has been embedded into the script. The seamus_pick
function also uses the Matcal (Lougheed and Obrochta,
2016) 14C calibration script, which has been embedded in
the SEAMUS download package.
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Figure 2. (a) Heat map (in greyscale) of downcore single-specimen δ18O value probability. For each 1 cm discrete depth, foraminifera
δ18O probability (in 0.25 ‰ bins) is calculated and plotted as a heatmap. Also shown (in orange) are the discrete-depth mean δ18O and
corresponding 95.45 % intervals. (b, c, d, e) Single-specimen δ18O histograms for various 1 cm discrete-depth intervals (these discrete
depths are also indicated in panel a).

4 Potential model applications

4.1 Analysing downcore specimen population
distributions

As outlined in the introduction, advances in stable isotope
mass spectrometry have allowed for routine single-specimen
analysis, which has led to increased interest in using
geochemical analysis of single-specimen populations from
discrete depths as a potentially powerful tool with which
to reconstruct past changes in climate variability. Such an
application tool, however, still relies upon median downcore
age by assigning an age estimate to all single specimens
from a single depth. Climate variability or seasonality
interpretations are clouded, therefore, when single specimens
from a wide range of ages are mixed into the same depth,
especially if the interpretation relies upon detecting extreme
climate events in the form of single-specimen outliers. Using
the previously described (Sect. 3.1; Fig. 1b) SEAMUS
simulation, it is possible to construct a probability heatmap

and 95.45 % intervals for the simulated single-specimen
δ18O (Fig. 2a) data. The shape and range of these 95.45 %
intervals relative to a glacial–interglacial change is similar to
what has been calculated in previous studies (Schiffelbein,
1986), albeit in the case of the Termination II deglaciation.
Using SEAMUS, histograms of single-specimen δ18O values
for discrete depths can also be explored, for example
for sediment core intervals with a median downcore age
corresponding to the early Holocene (Fig. 2b), mid-Holocene
(Fig. 2c), Younger Dryas (Fig. 2d) and Late Glacial
Maximum (Fig. 2e). This analysis demonstrates the potential
for the presence of single specimens with glacial climate
values being present in samples with an interglacial mean
value. For example, in the early Holocene depth interval
(Fig. 2c), 15 % of the simulated single specimens have a
δ18O value less than or equal to −36 ‰. Of course, some
sediment archives may have much higher or lower SAR
than the constant 10 cm kyr−1 simulated in this example. The
contribution of older specimens to a particular depth interval
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is dependent upon a number of factors: temporal changes
in SAR, BD, species abundance and the susceptibility of
older specimens within a discrete depth to be broken and/or
dissolved as a consequence of having been through more
bioturbation cycles (Rubin and Suess, 1955; Ericson et al.,
1956; Emiliani and Milliman, 1966; Barker et al., 2007).
Using the SEAMUS model it is possible to run dynamic
sediment scenarios to investigate the influence of the mixing
of specimens of different ages upon interpretations based
upon single-specimen analysis.

4.2 Analysing 14C calibration skill

As outlined earlier, it is possible to assign 14C activities to
single specimens in the sedimentation simulation by using
suitable records of the Earth’s 114C history (e.g., IntCal).
Subsequently, SEAMUS uses the 14C activities of the
specimens contained within each discrete depth to calculate
an expected laboratory 14C determination and measurement
uncertainty. Using the MatCal software, it is subsequently
possible to calibrate the aforementioned 14C age, in
combination with a calibration curve and reservoir age
estimate, to produce an expected calibrated age distribution.
The calibrated age distribution for the discrete depth can
be compared with the true age distribution for the discrete
depth, as recorded by the simulation, to evaluate the skill
with which current 14C dating and calibration processes can
reproduce the true age distribution of a particular sediment
core slice. A graphical representation of the aforementioned
output for a discrete-depth interval is shown in Fig. 3,
once again using the SEAMUS bioturbation simulation
carried out in Sect. 3.1. This analysis demonstrates that,
for the applied simulation parameters and for the discrete-
depth interval analysed in Fig. 3 (121–122 cm), the 14C
calibration process would produce a median calibrated age
of 12.21 cal ka BP, whereas the true median age is 11.79 ka,
meaning that there is a 420-year difference between the
two. Furthermore, the 14C calibration process produces a
95.45 % credible interval of 12.64–11.65 cal ka BP (a range
of 990 cal yr), whereas the true 95.45 % interval of the single
specimens within the simulation is 14.95–11.16 ka (a range
of 3788 years), meaning that the 14C dating and calibration
process considerably underestimates, by some 2800 years,
the age uncertainty for this particular interval of simulated
sediment core. A MATLAB script enabling users to produce
a figure similar to Fig. 3 is included within the tutorial
script (tutorial.m) that is bundled with SEAMUS. Users can
subsequently explore downcore changes in the effectiveness
of 14C dating to accurately estimate true age under
various dynamic simulation conditions, including abundance
changes, SAR changes, bioturbation depth changes, reservoir
age changes, as well as during periods of dynamic 114C.

Figure 3. Example of using output from a SEAMUS simulation
to estimate 14C calibration skill for a particular discrete-
depth subsample. The green histograms represent the SEAMUS
simulation output: on the x axis the true age distribution of
the discrete-depth single specimens (with the green diamond
corresponding to the median true age) and on the y axis the 14C
age distribution of the single specimens (with the green diamond
corresponding to the mean 14C age). All histograms are shown
using 100 (14C)-year bins. The orange probability distribution on
the y axis represents a normal distribution corresponding to an
idealised laboratory 14C analysis of the single specimens, where
the orange square corresponds to the expected mean laboratory 14C
age. The orange probability distribution on the x axis represents
the calibrated age distribution arising from the calibration of the
laboratory 14C analysis using Marine13 (Reimer et al., 2013). Also
shown, for reference, are the Marine13 calibration curve 1σ (dark
grey) and 2σ (light grey) confidence intervals. Simulation output
shown in the figure is based on the SEAMUS run in Fig. 1b, with
14C activities assigned to single specimens according to Marine13
with a constant 1R of 0±0 14C yr. For the picking and calibration,
all single specimens within the 121–122 cm discrete depth are
picked, and calibration is carried out using MatCal (Lougheed and
Obrochta, 2016) with Marine13 and a 1R of 0± 0 14C yr.

4.3 Investigating noise created by the picking process

When picking discrete-depth samples from discrete-depth
specimen populations, palaeoceanographers randomly pick
whole specimens to produce a downcore mean signal. The
seamus_pick module can be used to test for random noise
introduced upon the mean signal by the picking process.
The module can be repeatedly run with a set number of
randomly picked whole specimens per sample, and the
resulting picking runs can be compared to an ideal picking
run that picks all available whole specimens for each discrete
depth. Such an approach is investigated here, once again
using the same SEAMUS bioturbation simulation that was
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carried out in Sect. 3.1, for picking scenarios each with
1 specimen per sample (Fig. 4a), 2 specimens per sample
(Fig. 4b), 3 specimens per sample (Fig. 4c), 5 specimens per
sample (Fig. 4d), 10 specimens per sample (Fig. 4e) and 20
specimens per sample (Fig. 4f). Such simulations can allow
researchers to isolate and quantify the effect of the picking
process upon their downcore multi-specimen reconstructions
for their particular sediment core scenario. It can be noted
that for the 10 cm kyr−1 simulation carried out here, larger
sample sizes (n≥ 10) tend to produce downcore sampling
runs close to the total population mean (Fig. 4e and f),
although the true spread of values is hidden. Furthermore,
even with larger samples sizes there is still the possibility
of the generation of picking-noise-induced peak or trough
values which could be erroneously interpreted as a precise
indication of the timing of a particular climate feature.
In the case of very small sample sizes (Fig. 4a and b),
researchers can get an idea of the total spread of values within
single core intervals. With advances in mass spectrometry
making the analysis of single specimens ever more routine
and cost-effective, the ideal approach in the future may
involve exclusively analysing single specimens, with single-
specimen values from discrete depths used to both estimate
the signal distribution and calculate a downcore mean signal,
thus facilitating a “best of both worlds” approach.

4.4 Investigating noise created by absolute specimen
abundance

The interaction between total specimen abundance and
bioturbation creates downcore noise in the sedimentary
record. In Fig. 5, the downcore, discrete-depth median age
increase per centimetre for three SEAMUS simulations,
all with an idealised constant SAR of 10 cm kyr−1 and
constant BD of 10 cm, is shown, with the number of
outputted specimens per centimetre being set differently for
each simulation, namely at 102 specimens cm−1 (Fig. 5a),
103 specimens cm−1 (Fig. 5b) and 104 specimens cm−1

(Fig. 5c). In all three scenarios the downcore, discrete-
depth increase in median age clusters around 100 yr cm−1,
which is what would be expected in the case of a
10 cm kyr−1 sediment core. As expected, the signal-to-
noise ratio is higher in cases of higher abundance. An
interesting side effect of a decreased signal–noise ratio is
the increased likelihood of the generation of apparent age–
depth reversals. For example, in the abundance scenario with
102 specimens cm−1 (Fig. 5a), 21.7 % of the discrete-depth
(1 cm) age–depth points produce an apparent age–depth
reversal. Due to the fact that many age–depth modelling
software packages often consider such age–depth reversals
as outliers (Blaauw and Christen, 2011; Lougheed and
Obrochta, 2019), palaeoceanographers should be aware
that the apparent age–depth reversals generated by very
noisy downcore signals caused by low specimen abundance
may result in age–depth models that are biased towards

Figure 4. Estimating noise induced by subsample size during the
picking process. Based on the SEAMUS simulation in Fig. 1b,
six sample size scenarios are considered: (a) 1 specimen per
sample; (b) 2 specimens per sample; (c) 3 specimens per sample;
(d) 5 specimens per sample; (e) 10 specimens per sample;
(f) 20 specimens per sample. In each scenario, the downcore picking
process is repeated 10 times, and each picking run is represented by
a coloured line. Also shown in all panels is the mean δ18O value for
all single specimens within discrete-depth intervals (black line) and
95.45 % intervals (filled grey area).
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Figure 5. Estimating downcore age–depth noise induced by absolute species abundance in three scenarios all involving a constant SAR
of 10 cm kyr−1 and constant bioturbation depth of 10 cm. In all three panels, the data points (circles) indicate the downcore discrete-depth
median age increase for each centimetre of core depth. Green circles correspond to positive downcore median age change, while orange data
points correspond to negative downcore median age change (i.e. apparent age reversals). The horizontal black line in each panel denotes the
perfect downcore age change of +100 yr cm−1 that would be associated with a constant SAR of 10 cm kyr−1. The yellow interval denotes
the still-active BD (10 cm) at the core top. The signal-to-noise ratio (SNR) is also computed for each scenario as the ratio between the
summed squared magnitudes of the signal and of the noise. The still-active BD at the core top is excluded from the SNR calculation. Three
different abundance scenarios are shown: (a) constant abundance of 102 specimens cm−1; (b) constant abundance of 103 specimens cm−1;
(c) constant abundance of 104 specimens cm−1.

young ages. Also, while palaeoceanographers often quantify
relative abundance as a ratio between different species, it is
additionally important to quantify the absolute abundance of
a particular species being studied in the form of the number
of specimens per specific sediment volume or sample, as this
can give clues regarding the expected signal-to-noise ratio
ascertained from a discrete-depth analysis.

4.5 Investigating artefacts created by dynamic
specimen abundance

In the previous sections, scenarios involving constant
specimen abundance were explored. SEAMUS is specifically
designed with the ability to process multiple temporally
dynamic inputs. In Fig. 6, the effect of temporally dynamic
species abundance for a theorised Species A is studied, once
again using a scenario with a constant SAR of 10 cm kyr−1

and constant BD of 10 cm. Past studies using simpler mixing
models have previously shown that the downcore δ18O
signal for particular species can display offsets that are in
fact an artefact of the interplay between abundance and
bioturbation (Löwemark and Grootes, 2004; Trauth, 2013).
Here, the single-specimen SEAMUS simulation is used to
investigate the effects of abundance and bioturbation upon
the age–depth signal produced by single specimens. In this
scenario SEAMUS is driven using a dynamic input with
six temporal maxima in Species A specimen flux centred
upon 10, 16 18, 28, 32 and 36 ka (Fig. 6a). The resulting
post-simulation absolute abundance of Species A in the
depth domain (Fig. 6b) is smoothed out as a result of
bioturbation. The interaction between dynamic abundance
and bioturbation also has consequences for the discrete-
depth age–depth relationship of Species A. For example, the
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Figure 6. Investigating the effect of temporal changes in a species’ abundance upon its discrete-depth age–depth signal in the case of a
simulated sediment core with a constant SAR of 10 cm kyr−1 and constant BD of 10 cm. In all panels, the yellow interval denotes the still-
active BD (10 cm) at the core top. (a) The temporal abundance for a given species “Species A” used in the SEAMUS simulation, inputted into
the model as a fraction of the per time step specimen flux. (b) The resulting simulated downcore, discrete-depth (1 cm) absolute abundance
(number of specimens) for Species A. Vertical grey bands correspond to the depth of the abundance peaks. (c) The downcore, discrete-depth
(1 cm) change in median age based on samples containing only Species A specimens. Green circles denote downcore increase in discrete-
depth apparent median age (i.e. positive apparent SAR) and orange circles denote downcore decrease in discrete-depth median age (i.e.
apparent age reversals). The horizontal black line in each panel denotes the perfect downcore age change of +100 yr cm−1 that would be
associated with a constant SAR of 10 cm kyr−1. (d) The 95.45 % age range of for Species A for each discrete 1 cm depth. (e) The offset
between the median age of Species A (MedA) and the median age of all specimens (Medall). Shown in the panel is MedA−Medall. The
horizontal black line corresponds to zero (i.e. no offset).
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downcore change in discrete-depth median age for Species
A (Fig. 6c) is less noisy (i.e. less likely to produce outliers)
for intervals close to the absolute abundance peaks but is
negatively offset from the ideal discrete-depth median age
change of 100 yr cm−1 that would be associated with the
10 cm kyr−1 sediment core simulation. This effect would
manifest itself in a high depth-resolution age–depth model
as an age–depth plateau near to an abundance peak.

Similarly, the 95.45 % discrete-depth age range for
Species A is much more constrained in the case of depth
intervals located close to the abundance peaks (Fig. 6d)
but less representative of the median age for the total
sediment (all specimens), with Species A being biased
towards ages that are too young (Fig. 6e). This bias is an
interesting finding, seeing as it has long been assumed that
pooled specimen samples used for dating (e.g. 14C dating)
should be retrieved from abundance peaks (Keigwin and
Lehman, 1994; Waelbroeck et al., 2001; Galbraith et al.,
2015). This assumption is largely based on the fact that
14C dates sampled from abundance peaks are younger than
the immediately surrounding sediment (Rafter et al., 2018).
However, the SEAMUS simulation suggests that abundance
peaks can result in ages that are anomalously young when
compared to the total sediment (Fig. 6e).

5 Conclusions

Deep-sea sediment archives are subject to systematic biotur-
bation, which can complicate palaeoclimate reconstructions
sourced from sediment cores. Complications can include
artefacts and/or spurious offsets in 14C age of other
carrier signals (such as δ18O) sourced from multi-specimen
samples. The SEAMUS model allows users to interactively
investigate how such artefacts and/or spurious offsets can
be attributed to the mixing of single specimens. The model
is suitable for users who are investigating the downcore
mean signal and how it is affected by dynamic changes
in input variables. The model is especially interesting for
researchers who are using single-specimen foraminifera
analysis to quantify past changes in seasonality or multi-
centennial amplitude in regional climate variability, as it
can assist researchers in understanding the influence of
bioturbation upon their results and interpretation. Users can
also consider combining the model with proxy and ecological
models to attain a total picture of sediment archive climate
reconstructions. The model is also useful as a teaching
resource; for example, users can keep all but one input
variable constant and learn to understand the influence of
dynamic changes in that particular input variable upon the
downcore specimen record. Subsequently, multiple dynamic
variables can be introduced into the mix, allowing for an
incremental learning experience.

Code availability. The latest release version of the SEAMUS
model and accompanying interactive tutorial (for both MATLAB
and Octave) can be downloaded from the Zenodo public repository
(https://doi.org/10.5281/zenodo.3251654, Lougheed, 2019). The
Zenodo repository also contains a link to SEAMUS on Github
(https://github.com/bryanlougheed/seamus).
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