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Abstract. For the purpose of providing reliable and robust
air quality predictions, an air quality prediction system was
developed for the main air quality criteria species in South
Korea (PM10, PM2.5, CO, O3 and SO2). The main caveat of
the system is to prepare the initial conditions (ICs) of the
Community Multiscale Air Quality (CMAQ) model simula-
tions using observations from the Geostationary Ocean Color
Imager (GOCI) and ground-based monitoring networks in
northeast Asia. The performance of the air quality predic-
tion system was evaluated during the Korea-United States
Air Quality Study (KORUS-AQ) campaign period (1 May–
12 June 2016). Data assimilation (DA) of optimal interpola-
tion (OI) with Kalman filter was used in this study. One major
advantage of the system is that it can predict not only partic-
ulate matter (PM) concentrations but also PM chemical com-
position including five main constituents: sulfate (SO2−

4 ), ni-
trate (NO−3 ), ammonium (NH+4 ), organic aerosols (OAs) and
elemental carbon (EC). In addition, it is also capable of pre-
dicting the concentrations of gaseous pollutants (CO, O3 and
SO2). In this sense, this new air quality prediction system
is comprehensive. The results with the ICs (DA RUN) were

compared with those of the CMAQ simulations without ICs
(BASE RUN). For almost all of the species, the application
of ICs led to improved performance in terms of correlation,
errors and biases over the entire campaign period. The DA
RUN agreed reasonably well with the observations for PM10
(index of agreement IOA = 0.60; mean bias MB =−13.54)
and PM2.5 (IOA = 0.71; MB =−2.43) as compared to the
BASE RUN for PM10 (IOA = 0.51; MB =−27.18) and
PM2.5 (IOA = 0.67; MB =−9.9). A significant improve-
ment was also found with the DA RUN in terms of bias.
For example, for CO, the MB of −0.27 (BASE RUN) was
greatly enhanced to −0.036 (DA RUN). In the cases of O3
and SO2, the DA RUN also showed better performance than
the BASE RUN. Further, several more practical issues fre-
quently encountered in the air quality prediction system were
also discussed. In order to attain more accurate ozone predic-
tions, the DA of NO2 mixing ratios should be implemented
with careful consideration of the measurement artifacts (i.e.,
inclusion of alkyl nitrates, HNO3 and peroxyacetyl nitrates –
PANs – in the ground-observed NO2 mixing ratios). It was
also discussed that, in order to ensure accurate nocturnal pre-
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dictions of the concentrations of the ambient species, accu-
rate predictions of the mixing layer heights (MLHs) should
be achieved from the meteorological modeling. Several ad-
vantages of the current air quality prediction system, such as
its non-static free-parameter scheme, dust episode prediction
and possible multiple implementations of DA prior to actual
predictions, were also discussed. These configurations are all
possible because the current DA system is not computation-
ally expensive. In the ongoing and future works, more ad-
vanced DA techniques such as the 3D variational (3DVAR)
method and ensemble Kalman filter (EnK) are being tested
and will be introduced to the Korean air quality prediction
system (KAQPS).

1 Introduction

Air quality has long been considered an important issue in
climate change, visibility and public health, and it is strongly
dependent upon meteorological conditions, emissions and
the transport of air pollutants. Air pollutants typically con-
sist of atmospheric particles and gases such as particulate
matter (PM), carbon monoxide (CO), ozone (O3), nitrogen
dioxide (NO2) and sulfur dioxide (SO2). These aerosols and
gases play important roles in anthropogenic climate forcing,
both directly (Bellouin et al., 2005; Carmichael et al., 2009;
IPCC, 2013; Scott et al., 2014) and indirectly (Breon et al.,
2002; IPCC, 2013; Penner et al., 2004; Scott et al., 2014)
influencing the global radiation budget. Among the various
air pollutants, PM and surface O3 are the most notorious
health threats, as has been stated by several previous studies
(Carmichael et al., 2009; Dehghani et al., 2017; Khaniabadi
et al., 2017).

With the stated importance of atmospheric aerosols and
gases, considerable research efforts have been made to mon-
itor and quantify their amounts in the atmosphere through
satellite-, airborne- and ground-based observations as well
as chemistry-transport model (CTM) simulations. In South
Korea, the Korean Ministry of the Environment (KMoE)
provides real-time chemical concentrations as measured by
ground-based observations for six air quality criteria air
pollutants (PM10, PM2.5, O3, CO, SO2 and NO2) at the
Air Korea website (https://www.airkorea.or.kr, last access:
8 March 2020). PM10 or (PM2.5) refers to the atmospheric
particulate matter that has an aerodynamic diameter less than
10 (or 2.5) µm. In addition, the National Institute of Environ-
mental Research (NIER) of South Korea provides air qual-
ity predictions using multiple CTM simulations. Air quality
predictions are another crucial element for protecting public
health through the forecasting of high air pollution episodes
in advance and alerting citizens about these high episodes.
In this context, reliable and robust air quality forecasts are
necessary to avoid any confusion caused by poor predictions
given by CTM simulations.

Although there are various datasets representing air qual-
ity, limitations remain in the observations and model outputs.
Specifically, observation data are, in general, known to be
more accurate than model outputs, but they have spatial and
temporal limitations. These limitations will be overcome by
improving spatial and temporal coverage via future geosta-
tionary satellite instruments such as the Geostationary En-
vironment Monitoring Spectrometer (GEMS) over Asia, the
Tropospheric Emissions: Monitoring of Pollution (TEMPO)
over North America and the Sentinel-4 over Europe. In addi-
tion, the TROPOspheric Monitoring Instrument (TROPOMI)
on board the Copernicus Sentinel-5 Precursor satellite was
successfully launched into low earth orbit (LEO) on 13 Octo-
ber 2017 and is providing information on the chemical com-
position in the atmosphere with a higher spatial resolution of
3.5km× 7km.

Unlike observational data, models can provide meteoro-
logical and chemical information without any spatial and
temporal data discontinuity, but they do have an issue of inac-
curacy. The major causes of uncertainty in the results of CTM
simulations are introduced from imperfect emissions, mete-
orological fields, initial conditions (ICs), and physical and
chemical parameterizations in the models (Carmichael et al.,
2008). In order to minimize the limitations and maximize the
advantages of observation data and model outputs, there have
been numerous attempts to provide accurate and spatially as
well as temporally continuous information on chemical com-
position in the atmosphere by integrating observation data
with model outputs via data assimilation (DA) techniques.

Although the Korean numerical weather prediction (NWP)
carried out by the Korea Meteorological Administration
(KMA) employs various DA techniques, almost no previous
efforts have been made to develop an air quality prediction
system with DA in South Korea. Therefore, in the present
study, the air quality prediction system named as Korean Air
Quality Prediction System version 1 (KAQPS v1) was devel-
oped by preparing ICs via DA for the Community Multiscale
Air Quality (CMAQ) model (Byun and Schere, 2006; Byun
and Ching, 1999) using satellite- and ground-based observa-
tions for particulate matter (PM) and atmospheric gases such
as CO, O3 and SO2. The performances of the system were
then demonstrated during the period of the Korea-United
States Air Quality Study (KORUS-AQ) campaign (1 May–
12 June 2016) in South Korea.

In this study, the optimal interpolation (OI) method with
the Kalman filter was applied in order to develop the air qual-
ity prediction system, since this method is still useful and
viable in terms of computational cost and performance. The
performance of the method is almost comparable to that of
the 3D variational (3DVAR) method, as shown in Tang et
al. (2017). More complex and advanced DA techniques are
currently being and will continue to be applied to current air
quality prediction systems. These works are now in progress.

In addition, this paper also discusses several practical is-
sues frequently encountered in the air quality predictions
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such as (i) DA of NO2 mixing ratios for accurate ozone pre-
diction with a careful consideration of measurement artifacts;
(ii) the issue of the nocturnal mixing layer height (MLH)
for nocturnal predictions; (iii) predictions of dust episodes;
(iv) the use of non-static free parameters; and (v) the influ-
ences of multiple implementations of the DA before the ac-
tual predictions.

The details of the datasets and methodology used in this
study are described in Sect. 2. The results of the developed
air quality prediction system are discussed in Sect. 3, and
then a summary and conclusions are given in Sect. 4.

2 Methodology

The air quality prediction system was developed using the
CMAQ model along with meteorological inputs provided by
the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2008). The ICs for the CMAQ model sim-
ulations were prepared via the DA method using satellite-
retrieved and ground-based observations. The performances
of the developed prediction system were evaluated using
ground in situ data. The models, data and DA technique are
described in detail in the following sections.

2.1 Meteorological and chemistry-transport modeling

2.1.1 WRF model simulations

The WRF model has been developed for providing mesoscale
numerical weather prediction (NWP). It has also been used
to provide meteorological input fields for CTM simulations
(Appel et al., 2010; Chemel et al., 2010; Foley et al., 2010;
Lee et al., 2016; Park et al., 2014). In this study, WRF
v3.8.1 with the Advanced Research WRF (ARW) dynami-
cal core was applied to prepare the meteorological inputs for
the CMAQ model simulations. Dynamical and physical con-
figurations for the WRF model simulations were selected as
follows: the Yonsei University (YSU) scheme for planetary
boundary layer (Hong et al., 2006); the WRF single-moment
6-class (WSM6) scheme for the microphysics (Hong and
Lim, 2006); the Grell–Freitas ensemble scheme for cumu-
lus parameterization (Grell and Freitas, 2014); the Noah-MP
land surface model (Niu et al., 2011; Yang et al., 2011); the
Rapid Radiative Transfer Model for Global Circulation Mod-
els (RRTMG) for shortwave/longwave options (Iacono et al.,
2008); and the revised MM5 scheme for surface layer options
(Jimenez et al., 2012). The National Centers for Environmen-
tal Prediction (NCEP) Final (FNL) Operational Global Anal-
ysis data on 1◦×1◦ grids were chosen for the ICs and bound-
ary conditions (BCs) for the WRF simulations. In order to
minimize meteorological field errors for the applications of
ICs and BCs to the WRF simulations, the objective analysis
(OBSGRID) nudging was conducted using the NCEP Auto-
mated Data Processing (ADP) Global Upper Air Observa-
tions/Surface Observational weather data via the Cressman’s

(1959) successive correction method. The adjusted meteoro-
logical variables were temperature, geopotential height, rela-
tive humidity and zonal/meridional winds.

The model domain for the WRF simulations covers north-
east Asia with a horizontal resolution of 15km×15km, hav-
ing a total of 223 latitudinal and 292 longitudinal grid cells.
The size of the WRF domain is slightly larger than that of the
CMAQ domain, as shown in Fig. 1. The meteorological data
have 27 vertical layers from the surface (1000 hPa) to 50 hPa.
The WRF meteorological fields (e.g., temperature, pressure,
wind, humidity, and clouds) were then transformed into the
CMAQ-ready format via the Meteorology-Chemistry Inter-
face Processor (MCIP; Otte and Pleim, 2010) v4.3, which
is a software to serve for transforming horizontal and verti-
cal coordinates while trying to maintain dynamic consistency
between WRF and CMAQ model simulations.

2.1.2 CMAQ model simulations

The CMAQ v5.1 model was used to estimate the concen-
trations of the atmospheric chemical species over the do-
main, as shown in Fig. 1. The CMAQ domain has 204 lat-
itudinal and 273 longitudinal grid cells in total and also has
a 15km× 15km horizontal resolution and 27 vertical lay-
ers. The CMAQv5.1 model was configured to use. Chemi-
cal and physical configurations for the CMAQ model sim-
ulations were selected as follows: SAPRC07tc for the gas-
phase chemical mechanism (Hutzell et al., 2012); AERO6
for aerosol thermodynamics (Appel et al., 2013); Euler Back-
ward Iterative (EBI) chemistry solver (Hertel et al., 1993),
which is a numerically optimized photochemistry mecha-
nism solver; M3DRY for dry deposition velocity (Pleim and
Xiu, 2003; Xiu and Pleim, 2001); global mass-conserving
scheme (Yamartino and WRF) for horizontal and vertical
advection (Colella and Woodward, 1984); MULTISCALE
(Louis, 1979), which is a simple first-order eddy diffusion
scheme for horizontal diffusion; and the Asymmetric Con-
vective Model, version 2 (ACM2; Pleim, 2007a, b), for ver-
tical diffusion.

For anthropogenic emissions, KORUS v1.0 emissions
(Woo et al., 2012) were used. The emissions cover almost
all of Asia and are based on three emission inventories:
the Comprehensive Regional Emissions inventory for Atmo-
spheric Transport Experiment (CREATE) for East Asia ex-
cluding Japan; the Model Inter-Comparison Study for Asia
(MICS-Asia) for Japan; and the Studies of Emissions and
Atmospheric Composition, Clouds and Climate Coupling by
Regional Surveys (SEAC4RS) for South and Southeast Asia.

Biogenic emissions were prepared by running the Model
of Emissions of Gases and Aerosols from Nature (MEGAN
v2.1; Guenther et al., 2006, 2012) with a grid size identical to
that of the CMAQ model simulations. For the MEGAN sim-
ulations, the MODIS land cover data (Friedl et al., 2010) and
improved leaf area index (LAI) based on MODIS datasets
(Yuan et al., 2011) were utilized. Pyrogenic emissions were
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Figure 1. Domains of GOCI sensor (dark green line) and CMAQ model simulations (blue line). Red-colored dots denote the locations of Air
Korea sites in South Korea. Orange-colored dots represent the locations of ground-based observation stations in China. Blue stars show the
locations of seven supersites in South Korea. During the KORUS-AQ campaign, observation data were obtained from 1514 stations in China
as well as 264 Air Korea and seven supersite stations in South Korea. NCL (2019) was used to draw this figure.

obtained from the Fire Inventory from NCAR (FINN; Wied-
inmyer et al., 2006, 2011). The lateral BCs for the CMAQ
model simulations were prepared using the global model re-
sults of the Model for Ozone and Related chemical Tracers,
version 4 (MOZART-4; Emmons et al., 2010) at every 6 h.
The mapping and regridding of the MOZART-4 data were
conducted by matching the CMAQ grid information.

2.2 Observation data

2.2.1 Satellite-based observations

A Korean geostationary satellite of Communication, Ocean
and Meteorological Satellite (COMS) was launched on
26 June in 2010 over the Korean Peninsula. The COMS is a
geostationary orbit satellite, and it is stationed at an altitude
of approximately 36 000 km at a latitude of 36◦ N and a lon-
gitude of 128.2◦ E, with a horizontal coverage of 2500km×
2500km (refer to Fig. 1). Among the three payloads of the
COMS, Geostationary Ocean Color Image (GOCI) is the
first multichannel ocean color sensor with visible and near-
infrared channels. The GOCI instrument provides hourly
spectral images with a spatial resolution of 500m× 500m
from 00:30 to 07:30 coordinated universal time (UTC) for
eight spectral (six visible and two near-infrared) channels at
412, 443, 490, 555, 660, 680, 745 and 865 nm.

The Yonsei aerosol retrieval (YAER) algorithm for the
GOCI sensor was initially developed by Lee et al. (2010)
to retrieve the aerosol optical properties (AOPs) over ocean
areas and was then improved by expanding to consider non-
spherical aerosol optical properties (Lee et al., 2012). Choi
et al. (2016) further extended the algorithm for application
to land surfaces, and the algorithm was referred to as the
GOCI YAER version 1 algorithm. With the GOCI YAER
algorithm, hourly aerosol optical depths (AODs) at 550 nm
were produced over East Asia. Choi et al. (2016) compared

the retrieved GOCI AODs with other satellite-retrieved and
ground-based observations and found several errors in the
cloud masking and surface reflectances. These errors were
corrected in the recently updated second version of the GOCI
YAER algorithm (Choi et al., 2018), which used the updated
cloud masking and more accurate surface reflectances. In this
study, the most recent GOCI AOD products from the GOCI
YAER version 2 algorithm were used.

2.2.2 Ground-based observations

In addition to the satellite data, ground-based observations
in South Korea and China were also collected for use in the
air quality prediction system for PM and gas-phase pollu-
tants. The orange, red and blue dots in Fig. 1 represent the
ground-based observation sites in China, Air Korea and su-
persite stations in South Korea, respectively. These observa-
tions provide real-time concentrations of air quality criteria
species such as PM10, PM2.5, CO, O3, SO2 and NO2.

Throughout the period of the KORUS-AQ campaign,
ground-based observation data were obtained from 1514 sta-
tions in China, 264 Air Korea stations and seven supersite
stations in South Korea. In this study, 80 % of the ground-
based observations in China and Air Korea stations in South
Korea were randomly selected for use in the prediction sys-
tem. The other 20 % of the data and supersite observations
were used to evaluate the performances of the developed air
quality prediction system.

In addition, AErosol RObotic NETwork (AERONET)
AODs were used to conduct an independent evaluation of
the air quality prediction system. AERONET is a federated
global ground-based sun photometer network (Holben et al.,
1998). Cloud-screened and quality-assured level 2.0 AODs
for the AERONET were used in this study.
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2.3 Air quality prediction system

In the present study, the air quality prediction system was
developed by adjusting the ICs for the CMAQ model sim-
ulations based on DA with satellite-retrieved and ground-
measured observations. Two parallel WRF-CMAQ model
runs were conducted. The first experiment that involved ad-
justing ICs via DA is referred to as DA RUN (see Fig. 2).
In order to evaluate the prediction system, a second exper-
iment, in which the ICs were originated from the previous
CMAQ model simulations without assimilations, was also
conducted. This CMAQ run is referred to as BASE RUN.

2.3.1 AOD calculations

CMAQ AODs are calculated by integrating the aerosol ex-
tinction coefficient (σext) using the following equation:

AOD(λ)=

z∫
0

σext (λ)dz, (1)

where z represents the vertical height; σext is defined as the
sum of the absorption coefficient (σabs) and the scattering co-
efficient (σsca); and σabs and σsca can be estimated by Eqs. (3)
and (4), respectively, as shown below.

σext (λ)= σabs (λ)+ σsca(λ) (2)

σabs (λ)
[
Mm−1

]
=

n∑
i

m∑
j

{(1−ωij (λ)) ·βij (λ)

· fij (RH) · [C]ij } (3)

σsca (λ)
[
Mm−1

]
=

n∑
i

m∑
j

{ωij (λ) ·βij (λ)

· fij (RH) · [C]ij }, (4)

where i and j denote the particulate species and size bin
(or particle mode), respectively; ωij (λ) is the single scatter-
ing albedo; βij (λ) is the mass extinction efficiency (MEE)
of particulate species i for the size bin or particle mode j ;
[C]ij is the concentration of particulate species including
(NH4)2SO4,NH4NO3, black carbon, organic aerosols (OA),
mineral dust and sea-salt aerosols; RH is the relative humid-
ity; fij (RH) is the hygroscopic factor; and the single scatter-
ing albedo (ω) implies to the fraction (portion) of scattering
in the total extinction.

Using Eqs. (2)–(4), AODs were calculated from the
aerosol composition and RH. There have been intensive tests
using different β and f (RH) values in the following three
previous studies: (1) Chin et al.’s (2002) study with the God-
dard Chemistry Aerosol Radiation and Transport (GOCART)
model; (2) Martin et al.’s (2003) study with the GEOS-Chem
model; and (3) Malm and Hand’s (2007) study with the
CMAQ model. Lee et al. (2016) tested these methods and
then found that Chin et al.’s (2002) method reproduced the

best results in estimating AODs at 550 nm over East Asia. On
the basis of Lee et al.’s (2016) work, σext was estimated with
the β and f (RH) values suggested by Chin et al. (2002). Af-
ter that, σext was integrated with respect to altitude, in order
to calculate the AODs. The calculated AODs were used in
the air quality prediction system in order to prepare the ICs
for the PM predictions.

2.3.2 Data assimilation (DA)

The ground-based observations, together with GOCI-derived
AODs, were used to prepare the ICs for the air quality predic-
tions with the CMAQ model simulations. In order to achieve
this, the following steps were taken: (i) the CMAQ-calculated
concentrations of CO, O3 and SO2 were combined with the
concentrations of CO, O3 and SO2 obtained from ground-
based observations in South Korea (Air Korea) and China;
(ii) the CMAQ-calculated AODs were assimilated with the
GOCI AODs; (iii) the assimilated AODs were converted into
PM10; (iv) the converted PM10 was again assimilated at the
surface in South Korea and China; and (v) after the DA at
the surface, the ratios of the assimilated species concentra-
tions to the original CMAQ-simulated concentrations were
applied so as to the adjust vertical profiles of the chemical
species above the surface. In the air quality prediction sys-
tem, the DA cycle is 24 h, and the assimilation takes place
every day at 00:00 UTC (refer to Fig. 3).

The optimal interpolation (OI) method with the Kalman
filter was chosen in the air quality prediction system. The OI
method was originally used for meteorological applications
(Lorenc, 1986) and has also been used in the assimilations
for trace gases (Khattatov et al., 1999, 2000; Lamarque et
al., 1999; Levelt et al., 1998). Recently, the OI technique has
also been applied to aerosol fields (Collins et al., 2001; Yu
et al., 2003; Generoso et al., 2007; Adhikary et al., 2008;
Carmichael et al., 2009; Chung et al., 2010; Park et al., 2011,
2014; Tang et al., 2015, 2017).

Aerosol assimilation using the OI method was first applied
by Collins et al. (2001) as follows:

τ ′m = τm+K(τo−Hτm) (5)

K= BHT(HBHT
+O)−1 (6)

O= [(foτo)
2
+ (εo)

2
]I (7)

B(dx,dz)= [(fmτm)
2
+ (εm)

2
]

exp
[
−
d2
x

2l2mx

]
exp

[
−
d2
z

2l2mz

]
, (8)

where τ ′m, τm and τo represent the assimilated products by
the OI method, the modeled values and the observed values,
respectively; K is the Kalman gain matrix; H is the obser-
vation operator (or forward operator), which is an interpola-
tor from model to observation space; B and O are the back-
ground and observation error covariance matrices, respec-
tively; (·)T denotes the transpose of a matrix; fo is the frac-
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Figure 2. Schematic diagram of the Korean air quality prediction system developed in this study. The initial conditions (ICs) of the CMAQ
model simulations are prepared by assimilating CMAQ outputs with satellite-retrieved and ground-measured observations. The data process
for preparing the ICs is shown in the box with dashed gray lines.

Figure 3. Schematic diagram of the Korean air quality prediction
system for particulate matter (PM) and gas-phase pollutants. The
data assimilation (DA) cycle is 24 h for both PM and gas-phase pol-
lutants such as CO, O3 and SO2. The DA of NO2 is excluded in the
current study, the reason for which is discussed in the text.

tional error in the observation-retrieved value; εo is the min-
imum root-mean-square error in the observation-retrieved
values; I denotes the unit matrix; fm is the fractional error
in the model estimates; εm is the minimum root-mean-square
error in the model estimates; dx is the horizontal distance
between two model grid points; lmx is the horizontal correla-
tion length scale for the errors in the model; dz is the vertical
distance between two model grid points; and lmz is the ver-
tical correlation length scale for the errors in the model. In
this work, the OI technique was applied for the DA of atmo-
spheric gaseous species as well as particulate species.

Six free parameters (fm, fo, εm, εo, lmx and lmz) were used
to calculate the error covariance matrices of the observations

and model, the mathematical formalisms of which are de-
scribed in Eqs. (7) and (8), respectively. Several previous
studies have used fixed values for free parameters (Collins
et al., 2001; Yu et al., 2003; Adhikary et al., 2008; Chung et
al., 2010). These runs are called “static” runs. In contrast to
those previous studies, “non-static” free parameters were ap-
plied in this study by minimizing the differences between the
assimilated values and observations via an iterative process
at each assimilation time step. This non-static free-parameter
scheme is possible due to the fact that the OI technique with
the Kalman filter is much less costly in terms of computation
time than other DA techniques, such as the 3D or 4D vari-
ational methods. This is another advantage of using the OI
technique in this system. It typically takes less than 20 min
with a workstation environment (dual Intel Xeon 2.40 GHz
processor).

2.3.3 Allocation of the assimilated PM10 & PM2.5 to
particulate composition

In the procedure of DA, PM10 was assimilated in this study,
because the PM10 data were more plentiful than PM2.5. The
assimilated PM10 then needs to be allocated to the PM com-
position for the CMAQ-model prediction runs. In order to
achieve this, the differences between the assimilated PM10
and background PM10 (1PM10) were first calculated. Then,
1PM2.5 was estimated using the ratios of PM2.5 to PM10
from the background CMAQ model runs (i.e., 1PM2.5 =

1PM10×PM2.5/PM10). 1PM2.5 was then allocated to the
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Figure 4. Average PM2.5 composition (a) observed at the supersite
stations and (b) simulated by the CMAQ model during the KORUS-
AQ campaign. The averaged PM2.5 measured from the supersites
and calculated from the CMAQ model simulations over the period
of the KORUS-AQ campaign are 28 and 19.9 µgm−3, respectively.
The mass of organic aerosols (OAs) was calculated by multiplying
organic carbon mass by 1.6.

PM2.5 composition according to the comparison between two
PM2.5 compositions observed at the seven supersites and
simulated from the CMAQ model runs over South Korea.
Both of the compositions are shown in Fig. 4. In Fig. 4, the
PM “OTHERS” indicates the remaining particulate matter
species after excluding sulfate, nitrate, ammonium, organic
aerosol (OA) and elementary carbon (EC). The PM OTH-
ERS occupies 25 % of the total PM2.5 observed at supersites.
The other fraction,1PM10×(1−PM2.5/PM10), was also dis-
tributed to the coarse-mode particles (PM2.5–10) as crustal el-
ements.

3 Results and discussions

The performances of the air quality prediction system were
evaluated by comparing them with ground-based observa-
tions from the Air Korea network and supersite stations in
South Korea. Several sensitivity analyses were also con-
ducted in order to assess the influences of the DA time in-
tervals on the accuracy of the air quality prediction.

3.1 Evaluation of the air quality prediction system

3.1.1 Time-series analysis

Figure 5 shows the time-series plots of PM10, PM2.5, CO,
O3 and SO2 concentrations from the BASE RUN and the DA
RUN. Here, the observation data (OBS) obtained from the
Air Korea network were compared with the results of the
two sets of the CMAQ model simulations, i.e., (1) BASE
RUN and (2) DA RUN. As mentioned previously, 20 % of
the Air Korea observations used in the evaluation were ran-
domly selected during the period of the KORUS-AQ cam-
paign. The other 80 % of the Air Korea data were used in

Figure 5. Time-series plots of hourly (a) PM10, (b) PM2.5, (c) CO,
(d) SO2 and (e) O3 concentrations at 264 Air Korea stations. Open
black circles (OBS) represent the observed concentrations. Blue and
red lines show the results simulated from the BASE RUN and DA
RUN over South Korea, respectively.

the DA at 00:00 UTC. For the forecast hours from 01:00
to 23:00 UTC, all of the ground observations (254 Air Ko-
rea and seven supersite stations) were used to evaluate the
performances of the developed air quality prediction system.
As shown in Fig. 5, we achieved some improvements in the
prediction performances by applying the ICs to the CMAQ
model simulations. The BASE RUN significantly underpre-
dicted PM10, PM2.5 and CO, while the DA RUN produced
concentrations that were more consistent with the observa-
tions than those of the BASE RUN.

In the case of CO, the observed CO mixing ratios were
about 3 times higher than those from the BASE RUN. These
large differences are well known and have been attributed
to the underestimated emissions of CO (Heald et al., 2004).
However, when the DA was applied, the predictions of the
CO mixing ratios improved. Similarly, the performances of
the PM10 and PM2.5 predictions improved with the applica-
tion of the DA. Unlike PM10, PM2.5 and CO, the O3 mixing
ratios and its diurnal trends from both the BASE RUN and
DA RUN tend to be well matched with the observations. By
contrast, the poorest performances of the BASE RUN and the
DA RUN were shown for SO2.

In addition, a dust event took place between 6 and 8 May.
This event is captured by the DA RUN (check red peaks in
Fig. 5a and b), while the BASE RUN cannot capture this dust
event. This demonstrates the capability of the current system
to possibly predict dust events in South Korea. In the DA
RUN, dust information is provided to the CMAQ model runs
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Figure 6. Aggregated average concentrations of (a) PM10,
(b) PM2.5, (c) CO and (d) SO2 at 264 Air Korea stations over the
KORUS-AQ campaign period. Open black circles denote the ob-
servations obtained from 264 Air Korea stations in South Korea.
Blue and red lines represent the predicted concentrations from the
BASE RUN and DA RUN, respectively. The DA was conducted at
00:00 UTC every day throughout the KORUS-AQ campaign period.

Figure 7. Comparison of CMAQ-simulated O3 mixing ratios
(BASE RUN with blue lines and DA RUN with red lines) with O3
mixing ratios from Air Korea stations (open black circles). DA RUN
was carried out by assimilating CMAQ outputs with Air Korea ob-
servations using (a) only O3 mixing ratios and (b) both O3 and NO2
mixing ratios.

through both/either GOCI AOD and/or ground PM observa-
tions measured along the dust plume tracks.

The effectiveness of the DA with respect to prediction time
was also analyzed by calculating the aggregated average con-
centrations of atmospheric species (see Figs. 6, 7 and 9). Fig-
ure 6 depicts the CMAQ-calculated average concentrations
of PM10, PM2.5, CO and SO2 against the Air Korea observa-
tions. Our air quality prediction system regenerated relatively
well-matched concentrations for PM10, PM2.5 and CO from
the DA RUN.

Figure 7 shows the case of ozone from the DA RUN by
assimilating CMAQ outputs with Air Korea-observed (a) O3
mixing ratios and (b) both O3 and NO2 mixing ratios for a
preliminary test run. The ozone mixing ratios from the DA
RUN in Fig. 7a were reasonably consistent with the observa-
tions at 00:00 UTC but disagreed with those between 04:00
and 09:00 UTC (13:00 and 18:00 KST), when solar insola-
tion is the most intense. This may be attributed to the chemi-
cal imbalances between ozone production and ozone destruc-
tion (or titration). However, if CMAQ NO2 was assimilated
with ground-based observations in South Korea (Air Korea)

Figure 8. Comparison of WRF-simulated mixing layer height
(MLH) (denoted by dashed blue line) with lidar-measured MLH
(denoted by open black circles) at Seoul National University (SNU)
in Seoul. KST stands for Korean standard time.

and China, the predicted ozone mixing ratios became sub-
stantially closer to the observations, as shown in Fig. 7b. This
is clearly due to the fact that NOx is an important precursor
of ozone. In the prediction of the ozone mixing ratios, both
1 h peak ozone (around 15:00 KST) and 8 h averaged ozone
mixing ratios (between 09:00 and 17:00 KST) are important.
Figure 7 clearly shows that the prediction accuracies of both
the ozone mixing ratios were improved after the DA of NO2
mixing ratios.

Although the DA for NO2 provided better ozone predic-
tions, one should take caution in using the NO2 observa-
tions. The NO2 mixing ratios measured at Air Korea sites are
known to be contaminated by other nitrogen gases such as
nitric acid (HNO3), peroxyacetyl nitrates (PANs) and alkyl
nitrates (ANs), since the Air Korea NO2 mixing ratios are
measured through a chemiluminescent method with catalysts
of gold or molybdenum oxide at high temperatures. These
are known to be “NO2 measurement artifacts” (Jung et al.,
2017), which is one of the reasons that the DA of NO2 was
not shown in Fig. 6. The NO2 mixing ratios are corrected
from the Air Korea NO2 data and are then used to prepare the
ICs via the DA for more accurate ozone and NO2 predictions.
Currently, such corrections of the observed NO2 mixing ra-
tios are being standardized with more sophisticated year-long
NO2 measurements. After the corrections of the NO2 mea-
surement artifacts, more evolved schemes of ozone and NO2
predictions will be possible in the future. As shown in Fig. 7,
about a 20 % reduction (average fraction of non-NO2 mixing
ratios in the observed NO2 mixing ratios) was made for these
demonstration runs (Jung et al., 2017).

Another practical issue is now discussed. Although the as-
similation with the observed NO2 mixing ratios can enhance
the accuracy of the predictions of the daytime ozone mixing
ratios, the nighttime ozone mixing ratios tend to be consis-
tently overpredicted in the aggregated plot of the ozone mix-
ing ratios at the observation sites (see Fig. 7). This can be
caused by underestimated NO2 mixing ratios and thus not
enough nighttime ozone titration. As mentioned before, re-
liable NO2 prediction via the correction of the NO2 mea-
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Figure 9. Aggregated average concentrations of (a) PM10,
(b) PM2.5, (c) OC, (d) EC, (e) sulfate, (f) nitrate and (g) ammonium
as predicted by CMAQ model during the period of the KORUS-AQ
campaign. The others are the same as those shown in Fig. 7, except
for the fact that the observation data used here were obtained from
the seven supersite stations in South Korea.

surement artifacts will be made in the future. Another pos-
sible reason of the overpredicted ozone mixing ratios dur-
ing the nighttime can be underestimation of the mixing layer
height (MLH). Figure 8 shows a comparison between lidar-
measured MLH (black dashed line) and WRF-calculated
MLH (with the option of the Yonsei University planetary
boundary layer scheme by Hong et al., 2006; see red line). As
shown in Fig. 8, the nocturnal lidar-measured MLH is about
2 times higher than the nocturnal WRF-calculated MLH as
measured at a lidar site inside the campus of Seoul National
University (SNU) in Seoul. Such underestimated MLH in
the model tends to compress the ozone molecules within the
mixing layer during the nighttime, which leads to consis-
tently overpredicted nocturnal ozone mixing ratios. Based on
this discrepancy shown in Fig. 8, more intensive comparison
study is being carried out by comparing lidar-measured MLH
with model-calculated MLH at multiple sites in South Korea.

In this work, the aerosol composition (including EC, OA,
sulfate, nitrate and ammonium) was further compared with
the composition observed at the supersites shown in Fig. 9.
As shown in Fig. 9, agreement was observed between the DA
RUN and observations for all of the major PM constituents.
Again, a strong capability of our DA system is to improve
the predictions of the aerosol composition.

3.1.2 Spatial distribution

Figure 10 shows the spatial distributions and bias of PM and
chemical species throughout the entire period of the KORUS-
AQ campaign over the Seoul metropolitan area (SMA). No-
ticeable improvements are observed to have been achieved
in the spatial distributions by applying the ICs to the CMAQ
model simulations, particularly for PM10 (Fig. 10a), PM2.5
(Fig. 10b) and CO (Fig. 10c). As shown in Fig. 10, the un-
derpredicted concentrations of PM10, PM2.5 and CO were
adjusted to concentrations closer to the observations. In the
case of SO2 (see Fig. 10d), the DA RUN produced better
agreement with the observations than the BASE RUN, but
there were still underpredicted SO2 concentrations over the
northeastern part of the SMA.

By contrast, relatively lower ozone mixing ratios from the
DA RUN against the BASE RUN were found in the south-
western part of the SMA (see Fig. 10e). Due to the non-
linear relationship between NOx and O3, high mixing ra-
tios (or emissions) of NOx in the SMA can lead to deple-
tion of ozone. In these runs, the precursors of ozone such
as NOx and volatile organic compounds (VOCs) were ex-
cluded in the preparation of the ICs for CMAQ model sim-
ulations. Again, this is because the Air Korea NO2 mixing
ratios are contaminated by several reactive nitrogen species,
so the data cannot be directly used in the assimilation pro-
cedures. In the case of VOCs, a limited number of datasets
are available in South Korea for the DA. Improvements in
the prediction of ozone mixing ratios can be achieved when
the NO2 mixing ratios are corrected and a sufficient amount
of VOC data (possibly from satellite data in the future) are
available.

3.1.3 Statistical analysis

In order to achieve a better understanding of the perfor-
mances of the DA RUN, analyses of statistical variables such
as index of agreement (IOA), Pearson’s correlation coeffi-
cient (R), root-mean-square error (RMSE) and mean bias
(MB) were conducted using observations from the Air Korea
stations for PM10, PM2.5, CO, SO2 and O3 (see Fig. 11). Def-
initions of the statistical variables are given in Appendix A.

After the applications of the ICs, both RMSE and MB be-
came lower, while the correlation coefficient became higher
for the entire set of predictions. In addition, it was found
that the differences between the BASE RUN and the DA
RUN tended to diminish as the prediction time progressed.
The results of the statistical analysis are listed in Table 1.
The results of the DA RUN were reasonably consistent with
the observations for PM10 (IOA = 0.60; R = 0.40; RMSE
= 34.87; MB=−13.54) and PM2.5 (IOA= 0.71; R = 0.53;
RMSE = 17.83; MB =−2.43), as compared to the BASE
RUN for PM10 (IOA = 0.51; R = 0.34; RMSE = 40.84;
MB =−27.18) and PM2.5 (IOA = 0.67; R = 0.51; RMSE
= 19.24; MB =−9.9). In terms of bias, an improvement
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Figure 10. Spatial distributions (first and second columns) and bias (third and fourth columns) of (a) PM10, (b) PM2.5, (c) CO, (d) O3 and
(e) SO2 over Seoul metropolitan area (SMA) for the entire period of the KORUS-AQ campaign. Colored circles of first and second columns
represent the concentrations of the air pollutants observed at the Air Korea stations in the SMA.

was found for C, with MB = -0.036 for the DA RUN and
MB =−0.27 for the BASE RUN. Regarding O3 and SO2,
the DA RUN showed slightly better performances than the
BASE RUN.

Table 2 presents the results of the statistical analysis at
00:00 UTC when the DA was conducted, with the results
clearly showing how much closer the DA makes the CMAQ-
calculated chemical concentrations to the observed concen-

trations. Collectively, the DA improved model accuracy by
a large degree in terms of R, particularly for PM10 (R:
0.3→ 0.75; slope: 0.17→ 0.66) and O3 (R: 0.09→ 0.61;
slope: 0.07→ 0.42). In addition, for all species, MB and
RMSE decreased significantly with the DA RUN as com-
pared with the BASE RUN.
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Figure 11. Time-series plots of four performance metrics (IOA, R, RMSE and MB) for (a) PM10, (b) PM2.5, (c) CO, (d) SO2 and (e) O3
forecasts. The DA was conducted at 00:00 UTC. The units of RMSE and MB are micrograms per cubic meter and parts per million by volume
for PM concentrations and for gaseous species, respectively. The definitions of the four performance metrics are shown in Appendix A.

3.2 Sensitivity test of DA time interval

3.2.1 AOD

In this section, a sensitivity analysis was conducted with dif-
ferent implementation time intervals of the DA (i.e., 24, 6 and
3 h) for AOD (refer to Fig. 12). As shown in Fig. 12, more

frequent implementation of the DA is expected to make the
predicted results closer to the observations. Although the DA
RUN with a shorter assimilation time interval tends to pro-
duce a better prediction, it is not always the most appropri-
ate choice, since the shorter assimilation time interval results
in increased computational cost. Therefore, an optimized as-
similation time interval should be found to achieve the best
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Table 1. Statistical metrics from BASE RUN and DA RUN with Air Korea observations over the entire period of the KORUS-AQ campaign.

PM10 PM2.5 CO SO2 O3

BASE RUN DA RUN BASE RUN DA RUN BASE RUN DA RUN BASE RUN DA RUN BASE RUN DA RUN

N 101 852 65 383 101 764 101 764 101 836

IOA 0.51 0.60 0.67 0.71 0.41 0.51 0.34 0.35 0.69 0.70
R 0.34 0.40 0.51 0.53 0.28 0.21 0.14 0.15 0.50 0.52
RMSE 40.8 34.87 19.2 17.83 0.31 0.19 0.0068 0.0066 0.020 0.02
MB −27.2 −13.54 −9.9 −2.43 −0.27 −0.04 −0.0009 −0.0004 0.003 −0.0024
ME 30.1 24.20 15.3 13.48 0.27 0.15 0.004 0.0034 0.015 0.015
MNB −50.0 −18.17 −30.1 5.32 −62.0 3.14 3.1 17.77 48.0 30.22
MNE 60.7 52.35 62.6 62.77 62.9 40.67 93.1 93.56 70.2 61.34
MFB −84.3 −41.61 −63.6 −24.41 −94.1 −10.00 −56.4 −40.20 11.1 −0.82
MFE 91.1 62.32 81.6 60.01 94.9 39.49 91.4 82.91 40.7 40.64

Table 2. Statistical metrics from BASE RUN and DA RUN with Air Korea observations at 00:00 UTC when the DA was conducted during
the KORUS-AQ campaign.

PM10 PM2.5 CO SO2 O3

BASE RUN DA RUN BASE RUN DA RUN BASE RUN DA RUN BASE RUN DA RUN BASE RUN DA RUN

N 1057 695 1024 1007 1043

IOA 0.48 0.86 0.63 0.74 0.41 0.62 0.36 0.44 0.45 0.75
R 0.30 0.75 0.46 0.59 0.28 0.43 0.097 0.27 0.09 0.61
RMSE 47.2 23.92 21.5 18.21 0.35 0.16 0.0061 0.0039 0.023 0.012
MB −32.2 −5.46 −11.5 2.80 −0.31 −0.01 −0.0019 −0.0009 0.015 0.002
ME 34.5 16.03 17.2 13.25 0.31 0.12 0.0039 0.0023 0.018 0.009
MNB −54.9 −0.53 −33.2 26.17 −64.3 9.69 −20.1 7.35 100.4 27.45
MNE 64.0 36.07 63.1 59.77 64.8 30.69 86.7 55.27 107.8 43.81
MFB −92.8 −13.38 −67.3 0.56 −98.7 1.81 −75.9 −17.39 43.7 12.16
MFE 98.8 38.41 84.3 48.30 99.1 27.14 99.9 56.23 52.9 31.53

performances from the given DA system with the considera-
tion of its own computational ability.

3.2.2 PM and gases

In addition, sensitivity analyses of the developed air quality
prediction system applied to multiple implementations of the
DA with different time intervals were also investigated for
(a) PM10, (b) PM2.5, (c) CO, (d) SO2 and (e) O3, shown in
Fig. 13. Figure 13 shows a soccer plot analysis for BASE
RUN (blue crosses) and DA RUNs with different DA time
intervals of 24 h (OI; red circles), 2 h (2 h OI; black dia-
monds) and 1 h (1 h OI; dark-green triangles). This set of
testing was designed based on the fact that the performances
are expected to improve if the DAs are implemented multiple
times prior to the actual predictions at 00:00 UTC. Here, for
the 2 h OI run, the DA was implemented three times a day
at 20:00, 22:00 and 00:00 UTC, while for the 1 h OI run, the
DA was implemented at 22:00, 23:00 and 00:00 UTC. The
performances of all of the chemical species excluding ozone
improved, as expected, with DA RUNs with more frequent
and longer DA time intervals (i.e., three-time implementation
with a 2 h time interval in our cases). In the case of ozone,

the best performance was found for the air quality prediction
system with the DA time interval of 24 h.

Unsurprisingly, more frequent DAs prior to the actual pre-
diction mode (i.e., before 00:00 UTC in our system) with a
longer time interval (such as 2 h) will be computationally
costly. There will certainly be a tradeoff between the preci-
sion of air quality prediction and the computational cost. The
system should be designed under the consideration of these
two factors.

4 Summary and conclusions

In this study, the air quality prediction system was developed
by preparing the ICs for CMAQ model simulations using
GOCI AODs and ground-based observations of PM10, CO,
ozone and SO2 during the period of the KORUS-AQ cam-
paign (1 May–12 June 2016) in South Korea. The major ad-
vantages of the developed air quality prediction system are
its comprehensiveness in predicting the ambient concentra-
tions of both gaseous and particulate species (including PM
composition) and its powerfulness in terms of computational
cost.
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Figure 12. Variations in three performance metrics (R, RMSE and
MB) with time intervals of data assimilations. For these tests, the
GOCI AODs were used in the DA to update the initial condi-
tions of the CMAQ model simulations. The results from the three
CMAQ model simulations were compared with AERONET AODs
(“ground truth”). The blue squares represent the performances from
the BASE RUNs and the red squares indicate the performances from
the DA RUNs. The three experiments were carried out with the as-
similation time intervals of 24, 6 and 3 h, respectively. Here, the DA
RUN with the 24 h time interval is referred to as “air quality predic-
tion”, and the DA RUNs with the 6 and 3 h time interval are referred
to as “air quality reanalysis”.

The performances of the developed prediction system
were evaluated using near-surface in situ observation data.
The CMAQ model runs with the ICs (DA RUN) showed
higher consistency with the observations of almost all of
the chemical species, including PM composition (sulfate, ni-
trate, ammonium, OA and EC) and atmospheric gases (CO,
ozone and SO2), than the CMAQ model runs without the
ICs (BASE RUN). Particularly for CO, the DA was able
to remarkably improve the model performances, while the
BASE RUN significantly underpredicted the CO concentra-
tions (predicting about one-third of the observed values). In
the case of ozone, both the BASE RUN and DA RUN were
in close agreement with observations. More reliable predic-
tions of ozone mixing ratios will be achieved via the DA
of the observed NO2 mixing ratios and the corrections of
model-simulated mixing layer height (MLH). For SO2, the
performances of both the BASE RUN and the DA RUN were
somewhat poor. Regarding this issue, more accurate SO2
emissions are required to achieve better SO2 predictions, and
these can be estimated through inverse modeling using satel-
lite data (e.g., Lee et al., 2011). The adjustments of both ICs
and emissions may be able to improve the performances of
the air quality prediction system, and this will be examined
in future studies.

Figure 13. Soccer plot analyses for (a) PM10, (b) PM2.5, (c) CO,
(d) SO2 and (e) O3. The CMAQ-predicted concentrations were
compared with the Air Korea observations. Blue crosses, red cir-
cles, dark-green triangles and black diamonds represent the perfor-
mances calculated from the BASE RUN, the DA RUNs with the OI
system, the 1 h OI system and the 2 h OI system, respectively.

Moreover, the developed air quality prediction system will
be upgraded by using the new observation data that will
be retrieved after 2020 from the Geostationary Environment
Monitoring Spectrometer (GEMS) with a high spatial reso-
lution of 7km×8km as well as a high temporal resolution of
1 h over a large part of Asia. In addition, the current DA tech-
nique of the OI with the Kalman filter can also be upgraded
with the use of more advanced DA methods such as varia-
tional techniques of 3DVAR and 4DVAR methods, as well
as with the ensemble Kalman filter (EnK) method. These re-
search endeavors are currently underway.

In conjunction with improving the air quality modeling
system, artificial intelligence (AI)-based air quality predic-
tion systems are also currently being developed in several
ways (e.g., Kim et al., 2019). Actually, Kim et al. (2019) de-
veloped an AI-based PM prediction system based on a deep
recurrent neural network (RNN) in South Korea. The AI-
based prediction system was optimized by iterative model
trainings with the inputs of ground-observed PM10, PM2.5,
and meteorological fields including wind speed, wind direc-
tion, relative humidity, and precipitation. The AI-based pre-
diction system showed better performances at several sites
than the CMAQ model simulations. However, it works only
for the observation sites in South Korea where ground-based
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observations are available. By taking advantage of both the
CTM-based air quality prediction and the AI-based predic-
tion systems, both systems will be eventually combined so
as to create a more accurate hybrid air quality prediction sys-
tem over South Korea. This will be the ultimate goal of the
series of our research work.
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Appendix A: Formulas for statistical evaluation indices

The formulas used to evaluate the performances of the air
quality prediction system are defined as follows:

Index of agreement (IOA)=

1−

n∑
1
(M −O)2

n∑
1

(∣∣M − Ō∣∣+ ∣∣O − Ō∣∣)2 (A1)

Correlation coefficient (R)=

1
(n− 1)

n∑
1

((
O − Ō

σO

)(
M − M̄

σm

))
(A2)

Root-mean-square error (RMSE) =

√√√√√ n∑
1
(M −O)2

n
(A3)

Mean bias (MB) =
1
n

n∑
1
(M −O) (A4)

Mean normalized bias (MNB)=

1
n

n∑
1

(
M −O

O

)
× 100% (A5)

Mean normalized error (MNE)=

1
n

n∑
1

(
|M −O|

O

)
× 100% (A6)

Mean fractional bias (MFB)=

1
n

n∑
1

(M −O)(
M+O

2

) × 100% (A7)

Mean fractional error (MFE)=

1
n

n∑
1

|M −O|(
M+O

2

) × 100%. (A8)

In Eqs. (A1)–(A8), M and O represent the model and obser-
vation data, respectively. N is the number of data points, and
σ means the standard deviation. The overbars in the equa-
tions indicate the arithmetic mean of the data. The units of
RMSE and MB are the same as the unit of data, while IOA
and R are dimensionless statistical parameters.
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Code and data availability. WRF v3.8.1
(https://doi.org/10.5065/D6MK6B4K, Skamarock et al., 2008)
and CMAQ v5.1 (https://doi.org/10.5281/zenodo.1079909,
US EPA Office of Research and Development, 2015)
models are both open source and publicly available.
Source codes for WRF and CMAQ can be downloaded at
http://www2.mmm.ucar.edu/wrf/users/downloads.html (Ska-
marock et al., 2008) and https://github.com/USEPA/CMAQ
(US EPA, 2020), respectively. Data from the KORUS-AQ
field campaign can be downloaded from the KORUS-AQ
data archive (http://www-air.larc.nasa.gov/missions/korus-aq,
NASA, 2020a). Other data were acquired as follows.
Ground-based observation data were downloaded from the
Air Korea website (http://www.airkorea.or.kr, Korea En-
vironment Corporation of the Ministry of Environment,
2020) for South Korea and from https://pm25.in (CNEMC,
2020) for China. AERONET data were downloaded from
https://aeronet.gsfc.nasa.gov (NASA, 2020b). The KAQPS v1
(https://doi.org/10.5281/zenodo.3659551, Lee, 2020) code can be
obtained by contacting Kyunghwa Lee (lkh1515@gmail.com) or
from https://github.com/AIR-Codes/KAQPSv1 (Lee, 2020). NCL
(2019; https://doi.org/10.5065/D6WD3XH5) was used to draw the
figures.
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