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Abstract. High-quality wave prediction with a numerical
wave model is of societal value. To initialize the wave
model, wave data assimilation (WDA) is necessary to com-
bine the model and observations. Due to imperfect numerical
schemes and approximated physical processes, a wave model
is always biased in relation to the real world. In this study,
two assimilation systems are first developed using two nearly
independent wave models; then, “perfect” and “biased” as-
similation frameworks based on the two assimilation systems
are designed to reveal the uncertainties of WDA. A series of
biased assimilation experiments is conducted to systemati-
cally examine the adverse impact of model bias on WDA.
A statistical approach based on the results from multiple as-
similation systems is explored to carry out bias correction, by
which the final wave analysis is significantly improved with
the merits of individual assimilation systems. The frame-
work with multiple assimilation systems provides an effec-
tive platform to improve wave analyses and predictions and
help identify model deficits, thereby improving the model.

1 Introduction

Ocean waves, referring to the ocean surface gravity waves
driven by wind, are important physical processes in the
study of multiscale coupled systems. Many studies show
that ocean waves are necessary for upper-ocean mixing pro-

cesses, whether in small-scale coastal simulations or large-
scale global climate simulations (e.g., Babanin et al., 2009;
Huang and Qiao, 2010; Qiao et al., 2004, 2010). The exis-
tence of ocean waves can modify the structures of both at-
mospheric and marine boundary layers by providing sea sur-
face roughness, wave-induced bottom stress, breaking-wave-
induced mixing and so on, which ultimately influence air–
sea momentum and heat exchange. Therefore, ocean waves
are an important component in atmosphere–ocean interaction
flux processes (e.g., Chen et al., 2007; Doyle, 2002; Liu et al.,
2011; Warner et al., 2010). In addition, the study of ocean
waves can reduce and prevent marine disasters and provide
guidance for the development of the social economy (e.g.,
Folley and Whittaker, 2009; Rusu, 2015; Wei et al., 2017).
Thus, studying ocean waves is of great scientific and social
significance.

At present, ocean wave observational techniques are con-
stantly being improved (e.g., Daniel et al., 2011; Hisaki,
2005). Except for traditional buoy observations (e.g., Mit-
suyasu et al., 1980; Rapizo et al., 2015; Walsh et al., 1989),
satellites can provide much near-real-time wave observa-
tional information, which is beneficial for understanding the
state of ocean waves (e.g., Gommenginger et al., 2003; Lza-
guirre et al., 2011; Queffeulou, 2004). However, observations
always represent scattered samples in time and space in the
real world and therefore do not represent the complete three-
dimensional structure and temporal evolution of real-world
waves.
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Numerical wave models are a powerful tool for study-
ing the physical processes of ocean waves and predict-
ing future wave states. Following the development of the
previous two generations, third-generation wave models,
such as WAve Modeling (WAM) (WAMDI Group, 1988),
WaveWatch III (WW3) (Tolman, 1991), Simulating Waves
Nearshore (SWAN) (Booij et al., 1999), and MArine Science
and Numerical Modeling (MASNUM) (Yang et al., 2005),
integrate the spectral action balance equation describing the
two-dimensional ocean wave spectrum evolution without ad-
ditional ad hoc assumptions regarding the spectral shape, and
these third-generation models are more robust for arbitrary
wind fields than previous models. However, there are gener-
ally three error sources in wave models. One error source
is from an incomplete understanding of the physical pro-
cesses, approximate expressions of the numerical discretiza-
tion schemes and so on, which causes systematic errors that
are usually referred to as wave model bias. The second error
source is due to inaccurate wind forcings of wave models.
The third error source is from the initial-condition uncertain-
ties, which can grow due to the nonlinearity of the model
equations during model forwarding. In this sense, the model-
simulated waves do not represent the real world either.

Given the scattering nature of observational information
and the approximate characteristics of wave modeling, wave
model data assimilation (WDA) is necessary to combine the
advantages of both the model and observations. WDA op-
timizes the model initial conditions to produce more accu-
rate wave forecasts and produces a more accurate evolution
of three-dimensional wave states to elucidate the underly-
ing mechanisms; this approach dates back to the 1980s (e.g.,
Esteva, 1988; Janssen et al., 1989). Since then, many ad-
vanced WDA methods have been developed (e.g., Abdalla
et al., 2013; Bauer et al., 1996; Greenslade and Young, 2004;
Jesus and Cavaleri, 2015; Lionello et al., 1992; Sun et al.,
2017; Vorrips et al., 1999), and their applications have been
assessed (e.g., Francis and Stratton, 1990; Heras et al., 1994;
Stopa and Cheung, 2014). Furthermore, various observation
types, such as buoy, radar and satellite, have been applied
to WDA (e.g., Bhatt et al., 2005; Breivik et al., 1998; Feng
et al., 2006; Greenslade, 2001; Hasselmann et al., 1997; Qi
and Cao, 2016; Voorrips, 1999; Waters et al., 2013), and
the wave forecasts have also been directly addressed (e.g.,
Almeida et al., 2016; Emmanouil et al., 2012; Lionello et al.,
1995; Qi and Fan, 2013; Sannasiraj et al., 2006; Voorrips,
1999; Wang and Yu, 2009; Zhang et al., 2003).

Due to the approximate nature of the numerical discretiza-
tion and physical processes, a systematic difference between
a model and the real world (i.e., model bias) exists. As noted
by Zhang et al. (2012), since model bias is not well defined in
observational space, the influence of model bias on data as-
similation is a challenging research topic. Alternatively, one
can simulate model bias using a pair of models and study
the adverse impacts on data assimilation. Inspired by pre-
vious work (e.g., Dee, 2005; Zhang et al., 2012), here, we

use a simple data assimilation scheme with two wave mod-
els (WW3 and SWAN) to explore the influences of different
error sources on WDA. The adverse impacts of wind forc-
ing errors and initial-condition uncertainties as well as wave
model bias on WDA are studied first, and then two simple
statistical methods for bias correction are developed to miti-
gate assimilation errors and improve wave analysis.

This paper is organized as follows. After the introduction,
the methodology is presented in Sect. 2, including a brief
description of the employed models and observations, the
development of the two WDA systems using the WW3 and
SWAN models, as well as the design of experiments through-
out the study. Section 3 presents the model bias analysis and
the adverse impacts of model bias on WDA. In Sect. 4, the
method used to mitigate model bias influences on wave as-
similation is explored. Finally, the discussion and conclusion
are given in Sect. 5.

2 Methodology

2.1 Models and data

2.1.1 Three models

In the wave models, the variance spectrum or energy density
E(σ,θ) is a quantity that represents the wave energy distri-
bution in the radian frequency (σ ) and propagation direction
(θ). Without ambient ocean currents, the variance or energy
of a wave package is conserved. However, if the current is
involved, due to the work done by the current on the mean
momentum transfer of waves (Longuet-Higgins and Stewart,
1961, 1962), the energy of a spectral component is no longer
conserved. In general, an action density spectrum defined as
N = E/σ is considered within the models. Then, the govern-
ing equation of the wave model can be written as follows:

∂N

∂t
+∇x · (cgN)+

∂cσN

∂σ
+
∂cθN

∂θ
=
Stot

σ
. (1)

The left-hand side of this equation is the kinematic pro-
cess during wave propagation. The second term describes the
wave energy propagation in two-dimensional geographical
space denoted by x. The cg is the group velocity that follows
the dispersion relation. The third term represents the effect of
shifting the radian frequency due to variation in depth. The
fourth term represents the depth-induced refraction. cσ and
cθ are wave velocities in the frequency σ and direction θ ,
respectively. On the right-hand side, Stot is the nonconser-
vative source–sink term representing all physical processes
that generate, dissipate or redistribute wave energy. Typi-
cally, there are three important physical processes that con-
tribute to Stot, which include the atmosphere–wave interac-
tion, nonlinear wave–wave interaction and wave–ocean inter-
action. In a shallow-water case, additional processes must be
considered, such as wave–bottom interaction, depth-induced
breaking and triad wave–wave interaction.
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In this study, we use three advanced third-generation spec-
trum models – WAM (Cycle 4.5.4) (WAMDI Group, 1988),
WaveWatch III (WW3, version 5.16) (Tolman, 1991) and
SWAN (version 41.20) (Booij et al., 1999) – which have im-
proved a lot from their predecessors, such as numerical and
physical approaches. These wave models have the same form
of governing equation; however their numerical implement
processes are different due to different considerations. For
example, SWAN is more focused on wave propagation pro-
cesses in shallow water, while WAM and WW3 pay more
attention to deep water. For more comparisons, please see
Sect. 2.2.

2.1.2 Model configurations

Three wave models use two-dimensional spectral space con-
taining 29 frequencies that cover from 0.035 to 0.555 Hz
with a logarithmic distribution and 24 equidistant direc-
tions. The geographic space is from 180◦W to 180◦ E in the
zonal direction and 75◦ S to 75◦ N in the meridional direc-
tion with a 1◦× 1◦ grid resolution. The topography in this
study is taken from the high-resolution ETOPO1 dataset pro-
vided by NOAA (website: https://www.ngdc.noaa.gov/mgg/
global/, last access: 3 March 2020). The wind forcing has
two sources, both of which have 6 h time intervals. The first
dataset is the ERA-Interim reanalysis from the European
Centre for Medium-Range Weather Forecasts (ECMWF),
with a resolution of 0.75◦× 0.75◦ (http://apps.ecmwf.int/
datasets/data/interim-full-daily/, last access: 3 March 2020).
The second dataset is the CFSRv2 dataset from NCEP, with
a resolution of 0.205◦(longitude)× 0.204◦(latitude) (https:
//rda.ucar.edu/datasets/ds094.1/, last access: 3 March 2020).
The time step of all three models is 15 min. All relevant pa-
rameters above are set to be identical for every wave model
(WW3, SWAN and WAM) in this study.

2.1.3 Data

The AVISO (Archiving, Validation and Interpolation of
Satellite Oceanographic) data (https://www.aviso.altimetry.
fr/en/data/products/, last access: 3 March 2020) are the satel-
lite observational products used in this study. For ocean
waves, the AVISO has two satellite altimetry products:
along-track data and gridded data. The along-track data are
used as the observational data source for the wave data in the
simulation (sampled from “truth” in the “twin” experiments).
The gridded data are used to validate the wave simulation
and assimilation (1◦× 1◦ resolution with 1 d time intervals).
During wave simulation, the significant wave height (SWH)
is used as a basic observational variable for data assimila-
tion, which is provided from three ongoing satellites: Jason-
2, Jason-3, and Satellite for Argos and ALtiKa (SARAL).
Figure 1 shows a one-cycle ground orbit by taking Jason-2
and SARAL as examples. Jason-3 is the successor of Jason-
2, and both satellites share the same orbit.

2.2 Different modeling strategies in WW3 and SWAN

Since the observations are only a sample of real-world infor-
mation, the model bias (i.e., systematic difference between
a numerical wave model and the real world) is not well de-
fined against the real world. In this study, we use the sys-
tematic difference between the WW3 and SWAN models to
simulate the model bias and study the influences on wave
data assimilation (WDA).

First, let us identity the difference in physical and numeri-
cal aspects to comprehend the causes of “bias” between these
two models. In general, WW3 addresses global scales, and
SWAN is more applicable in shallow water. Although the two
models have most of the same physical processes, such as the
wind input and nonlinear wave–wave interactions, each can
provide multiple parameterization schemes to choose. For
example, the nonlinear wave–wave interactions in SWAN in-
clude the discrete interaction approximation (DIA) (Hassel-
mann et al., 1985) and the Webb–Resio–Tracy (Resio and
Perrie, 1991; Van Vledder, 2006; Webb, 1978), while there
are more choices in WW3, such as the Generalized Multi-
ple DIA (Toman, 2004, 2013), the two-scale approximation
and full Boltzmann integral (Perrie et al., 2013; Perrie and
Resio, 2009; Resio et al., 2011; Resio and Perrie, 2008), as
well as the nonlinear filter scheme (Tolman, 2011). In order
to reduce more uncertainties, the same scheme is chosen for
the same physical process. In numerical aspects, there exist
different implementation strategies such as the differencing
method, which also contributes to bias.

2.3 Two data assimilation systems using WW3 and
SWAN

To explore the model bias influences on WDA, we develop
two data assimilation systems based on WW3 and SWAN in
this study.

Generally, based on the program structure of wave mod-
els, we insert the assimilation module between calculations
of the two-dimensional wave spectrum and outputs of wave
parameters so that at the assimilation time, we call on the as-
similation module to update the spectrum and SWH. When
building the data assimilation systems, we need to consider
the different structures of parallelism method, data storage
and information exchange in WW3 and SWAN models as
noted in Sect. 2.2.

To clearly demonstrate the influences of model bias on
WDA and minimize its adverse impact, the analysis scheme
in both assimilation systems is optimal interpolation (OI),
which also is low cost and easy to operate. We implement
the OI analysis in three to four steps. The first step uses
two Gaussian convolutions of the background and observed
SWHs to compute the observational increment of SWH at
the observational location. The second step projects the SWH
observational increment onto the model grids centered at the
observational location but within an impact radius using lin-
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Figure 1. The ground projection tracks of satellite Jason-2 (blue line, with an inclination of 66◦ N(S)) and SARAL (red line, with an
inclination of 88◦ N(S)) in one cycle over approximately 10 d and 35 d, respectively, in the (a) global and (b) East Asia domains (zoomed
out of green box in a).

ear regression. The third step transforms the analyzed SWH
to update the spectrum of model waves. The fourth step cor-
rects wind forcing using the observational SWH.

Step 1: computing observational increment by
convolution of two Gaussians

Starting from the idea of the ensemble adjustment Kalman
filter (Anderson, 2001), an observational increment at the ob-
servational location k, 1HO

k (H represents SWH), is com-
puted by the convolution of two Gaussians of the model
background and observation, which can usually be obtained
from model ensemble members and observational samples.
1HO

k is formulated as follows (Zhang et al., 2007):

1HO
k =

1
(σM)

2H
M
+

1
(σ o)2

H
O

1
(σM)

2 +
1

(σO)
2

+
1HM

k√
1+

(
σM

σO

)2
−HM

k . (2)

Here, the first and second terms on the right-hand side of
the equation adjust the ensemble mean and ensemble spread,
respectively, and 1HM

k represents the prior model spread.
Superscripts “O” and “M” denote the observation and prior
quantity estimated by the model, respectively. σ is the cor-
responding error standard deviation of SWH and varies in
time and space and differs in every wave model. The overbar
denotes the ensemble mean. In this simplified case, we spec-
ify σM

= 0.6m, σO
= 0.25m, assuming that σ is constant in

all conditions similarly to previous studies (e.g., Qi and Fan,
2013), and use single-model and observational values as the
ensemble mean.

Step 2: regressing the observational increment onto
model grids

The second step projects the observational increment 1HO
k

onto the related model grids using background error co-
variance, which is a key step in the analysis. To sim-
plify the problem and improve the computational efficiency,
many studies use a flow-independent distance function to
sample the background error covariance for computing the
analysis increment at the model grid i, 1HA

i , as 1HA
i =

(σ s
i )

2 exp
(
−

(
di,k
L

))
×1HO

k . Usually, such an expression is
only a symmetrical approximation of the correlation function
and cannot represent the spatial structure and propagation
characteristics of waves. Here, with the assumption that wave
covariance has the same structure as wave error covariance,
we modify the covariance formula to increase its represen-
tativeness for wave structure by superimposing a statistical
correlation coefficient obtained from the outputted SWH of
model simulation onto the formula. After analysis, the equa-
tion becomes

1HA
i =

σ s
i

σ s
k

rs
i,k exp

(
−

(
di,k

L

))
×1HO

k , if di,k ≤ R (3)

1HA
i = 0, if di,k >R,

where L is the characteristic length and di,k is the distance
between the model grid i and observational point k. When
di,k is larger than the impact radius R, there is no observa-
tional impact on this model point from observation k. All
variables with superscript “s” represent the model statistics
from free model control results. For example, rs

i,k is the
SWH covariance between the model grid i and observation
k, which is evaluated from the model data time series in cor-
responding experiments. To ensure the local characteristics
of ocean waves, in this study, the characteristics length L and
impact radiusR (or the largest di,k) are the same, causing this
incremental projection to reach to the e-folding scale. Refer-
ring to previous studies (e.g., Lionello et al., 1992; Qi and
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Fan, 2013), we tested different values of L and R as 300, 800
and 1000 km and found no essential improvement with larger
L and R values. Trading-off with computational efficiency,
we set L and R to 300 km throughout this study. As shown in
Fig. 2, the new covariance represents more wave physics; i.e.,
the correlation has more asymmetrical and wave-dependent
characteristics.

Step 3: transforming the SWH to wave spectrum

The assimilation SWH HA
i is a sum of the prior HM

i and the
analysis increment from step 2 (HA

i =H
M
i +1H

A
i ). In the

wave model, the form of ocean waves is a two-dimensional
wave spectrum that is distributed over frequency and phase.
Thus, transforming the assimilation SWH to a wave spec-
trum is necessary to update other wave parameters. Follow-
ing the previous study (Qi and Fan, 2013), we assume that
the change in wave spectrum is proportional to the energy
change that is expressed by the square of SWH. Then, the
analyzed spectrum SAi (f,θ) can be written as follows:

SAi (f,θ)=

(
HA
i

HM
i

)2

SM
i (f θ), (4)

where f is the wave frequency and θ is the phase direction.

Step 4: correcting wind forcing using SWH data

If the assimilation only adjusts the wave spectrum as de-
scribed in Step 3, the updated spectral structure may be
quickly overwritten by erroneous wind. In this step, we de-
scribe a simple scheme using the observed SWH data to cor-
rect the wind forcing. Starting from a first guess of wind (the
ERA-Interim reanalysis, for instance), the analyzed wind
WA
i,j at model grid (i,j) can be written as follows:

WA
i,j =W

M
i,j +1Wi,j , (5)

whereW represents either the u or the v component of wind.
1Wi,j is the corrected wind increment transformed from
the updated SWH. While the details of the transformation
scheme can be found in Lionello et al. (1992, 1995), we com-
ment on certain aspects relevant to our study. Regardless of
boundaries, in general, the energy of ocean waves is deter-
mined by the wind speed and duration, which can also be
expressed by SWH. In that sense, a function equation can be
built, in which the left-hand side is an expression of wind
speed and duration, while the right-hand side is an expres-
sion of SWH, and they are balanced through wave energy.
Then, the analyzed wind speed can be resolved under the as-
sumption that the duration is the same in both the prior and
the analyzed fields.

With respect to the configuration of wave model data as-
similation, the model time step is 15 min and the assimila-
tion interval is 1 h. At the assimilation time, we assimilate

the along-track observations within a 1 h time window cen-
tered at the time. After 10 d, all the observations will cover
the global area. The wind data from the reanalysis products
(ERA-Interim and NCEP-CFSR in this case) are available
every 6 h. To incorporate the wind correction into the wind
forcing of the model, we distribute the wind correction to
the adjacent two time levels of wind data. As the process is
looped forward as the wave model state is updated, the wind
forcing is adjusted through the SWH assimilation.

2.4 Experimental design

Throughout this study, we use the symbol MAWF
O(s) as the

name for the assimilation experiment. Here, “MA” stands
for the “assimilation model” and the subscript “O(s)” (or
superscript “WF”) represents the observing system (or wind
forcing) in the assimilation. The wind forcing is either the
ECMWF ERA-Interim (hereafter known as ERAI) or NCEP-
CFSR wind (hereafter known as CFSR). Wind forcing can
also be corrected by observations of SWH (under this cir-
cumstance, the superscript “WF” is replaced by “ASSW”).
The observations used in the assimilation could be the model
data but are projected on the along-track points of satellite(s)
if being used for the twin experiments. Under this circum-
stance, “O” represents the “model that produces observa-
tions” and “(s)” represents the satellite tracks used (J2-Jason-
2, J3-Jason-3 and SA-SARAL, for instance). Otherwise, in
the real-data assimilation experiments, the subscript “O(s)”
directly lists the satellites that measure the SWH. For exam-
ple, a symbol named WW3ERAI

SWAN(J2) means that the assim-
ilation model is WW3 (here, “MA”= “WW3”) forced by
ERA-Interim wind (“WF”= “ERAI”), and the model pro-
ducing observation is SWAN with the Jason-2 satellite track
(“O”= “SWAN” and “(s)”= “(J2)”).

2.4.1 Twin experiments

Twin experiments refer to a type of observing system simula-
tion experiment (OSSE), in which a model simulation is used
to define the “true” solution of a data assimilation problem
and the other model simulation is used to start the assimila-
tion. The “observations” are samples of the truth with some
white noise to simulate the observational errors. When the
truth and assimilation are conducted by different (or identi-
cal) models, the framework is a “biased” (or “perfect”) model
twin experiment. Within a twin experiment framework, any
aspect of assimilation skills can be measured as the degree to
which the truth is recovered through the assimilation.

(a) Perfect twin experiment

In a perfect twin experiment, we assume that the assimilation
model and the observation are unbiased; i.e., both the instru-
ment measuring and numerical modeling processes are sam-
pling the same stochastic dynamical system. Such sampling
only has random sampling errors without any systematic dif-
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Figure 2. Spatial distributions of (a) background correlation coefficients by the empirical correlation model (blue), model data statistics
(green) as well as their combination (red) of Eq. (3), (b) background adjustment increments of SWH projected from the observational
increment with the empirical correction model (blue line) and their combination model (red filled), and (c) the difference in background
adjustment increments of SWH from (b) by an analysis process given the single observation obtained at 18.90◦ N, 114.09◦ E, denoted by the
asterisk (unit: m).

ference (bias). We can build this perfect model framework by
using the same model to produce the truth as the assimilation
model but with different initial conditions and wind forcings.

The observations from the observational time window
(1 h) centered at the assimilating time can be created by sam-
pling the truth SWH with the tracks of Jason-2, Jason-3 and
SARAL, which will cover the global area in 10 d. In this cir-
cumstance, if WW3 (or SWAN) is used as the assimilation
model, the truth is produced by the same WW3 (or SWAN)
model. In the assimilation, we may start the model with dif-
ferent initial conditions and/or wind forcings to examine the
influences of initial errors and wind forcing errors on the
wave assimilation. Such a perfect twin experiment can be
named WW3WF

WW3(s) or SWANWF
SWAN(s).

(b) Biased twin experiment

To study the impact of model errors on wave assimilation, we
use two models to design a biased twin experiment. Again,
due to the scattering nature of the observations, it is difficult
to obtain a complete picture of the model bias against the real
world. Given the difference between the WW3 and SWAN
models described in Sect. 2.2, we use these two models and
their assimilation systems here to simulate the model bias
and examine its influences on the WDA. We use the ERA-
Interim reanalysis wind to force the WW3 (or SWAN) to
produce the truth and observations but use the SWAN (or
WW3) assimilation system to assimilate the observations.
The degree to which the truth produced by different model-
based assimilation systems is recovered by assimilating the
observations is an assessment of the model bias influences
on the WDA. Such a biased twin experiment can be named
WW3WF

SWAN(s) or SWANWF
WW3(s).

Under the biased twin experiment framework, we also
conduct experiments to examine the impacts of ob-
serving systems on wave assimilations by increasing
the observational information based on multiple satel-
lite tracks. For example, we can examine the assim-
ilation results of WW3WF

SWAN(J2), WW3WF
SWAN(J2+J3) and

WW3WF
SWAN(J2+J3+SA) (or SWANWF

WW3(J2), SWANWF
WW3(J2+J3)

and SWANWF
WW3(J2+J3+SA)) to understand the impacts of ob-

serving systems on different model-based assimilations.

2.4.2 Real-data assimilation experiments

In this study, we also conduct real-data assimilation experi-
ments using WW3 and SWAN assimilation systems with real
track data from Jason-2, Jason-3 and SARAL. Through real-
data assimilation experiments with different model-based as-
similation systems, we can (1) increase our understanding of
the influences of model errors on the WDA and (2) study the
method to reduce the model error influences on the assimi-
lation results. The real-data assimilation experiments can be
directly named, i.e., WW3WF

J2+J3+SA or SWANWF
J2+J3+SA.

3 Error sources in wave models and WDA

3.1 Influences of initial and wind forcing errors

Usually, wave numerical simulation can be improved by
three methods: (1) reducing the errors in the initial condi-
tions, (2) enhancing the accuracy of the wind forcing, and
(3) improving the representation of the wave model and its
parameterization.

In this section, we use perfect model twin experiments
(as described in Sect. 2.4.1) to exclude model errors and
explore the impact of wind forcings and initial conditions

Geosci. Model Dev., 13, 1035–1054, 2020 www.geosci-model-dev.net/13/1035/2020/
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Table 1. List of perfect model twin experiments.

Exp. name Model Wind force Assimilation or not Role

WW3ERAI WW3 ERA-Interim No Truth for WW3 assimilation

WW3CFSR WW3 NCEP-CFSR No Model control for WW3 assimila-
tion reference

WW3CFSR
WW3(J2) WW3 NCEP-CFSR Yes (using Jason-2 track) Impact of observational system

WW3CFSR
WW3(J2+J3) WW3 NCEP-CFSR Yes (using tracks of Jason-2 and Jason-3)

WW3CFSR
WW3(J2+J3+SA) WW3 NCEP-CFSR Yes (using tracks of Jason-2, Jason-3 and

SARAL)

SWANERAI SWAN ERA-Interim No Truth for SWAN assimilation

SWANCFSR SWAN NCEP-CFSR No Model control for SWAN assimila-
tion reference

SWANCFSR
SWAN(J2) SWAN NCEP-CFSR Yes (using Jason-2 track) Impact of observational system

SWANCFSR
SWAN(J2+J3) SWAN NCEP-CFSR Yes (using tracks of Jason-2 and Jason-3)

SWANCFSR
SWAN(J2+J3+SA) SWAN NCEP-CFSR Yes (using tracks of Jason-2, Jason-3 and

SARAL)

on the wave simulations. To compare the performances of
the WW3 and SWAN models, we conduct separate exper-
iments with these two models. The truth and model control
runs are two basic experiments of the perfect twin experiment
framework. We use the ERA-Interim wind to drive WW3 (or
SWAN) and generate a long time series of model states as
the “truth,” which is called WW3ERAI (or SWANERAI) for the
WW3 (or SWAN) perfect model twin experiment. The obser-
vations are created by interpolating the corresponding truth
SWH onto the along-track points of satellite orbits. Then,
we use the NCEP-CFSR wind to force WW3 (or SWAN),
called the model control WW3CFSR (or SWANCFSR), and the
data assimilation is named WW3CFSR

WW3(s) (or SWANCFSR
SWAN(s)).

Starting from an independent initial condition produced by
the model control, we can conduct the assimilation with the
ERA-Interim or NCEP-CFSR wind forcing. The error verifi-
cation of the assimilation results against the truth simulation
compared to the error of the model control is an evaluation
of the initial error and/or wind forcing error influences on
the WDA. All perfect model twin experiments are listed in
Table 1.

First, we conduct two sets of model control experiments
WW3CFSR and SWANCFSRfor 80 d (from December 2017
to February 2018). To explore the effect of the initial con-
ditions, we perform the model spin-up for a long time to
adequately reach a steady state. Then using the 45th-day
model states as the initial conditions, we conduct one more
model simulation and data assimilation experiments for each
model system as WW3ERAI and WW3ERAI

WW3(J2) as well as
SWANERAI and SWANERAI

SWAN(J2). The root mean square er-
rors (RMSEs) of these experiments against the truth are
shown in Fig. 3 as the red (for WW3CFSR

+WW3ERAI

and SWANCFSR
+SWANERAI) and pink (for WW3CFSR

+

WW3ERAI
WW3(J2) and SWANCFSR

+SWANERAI
SWAN(J2)) lines.

The SWH RMSE is approximately 0.34 m in the WW3
or SWAN model control with the NCEP-CFSR wind. Once
the wind forcing is changed to the perfect wind (the ERA-
Interim) on the 45th day, the RMSE quickly drops and is
close to zero after approximately 10 d, and the SWAN model
takes longer to accomplish this change than the WW3. If
data assimilation is added, the RMSE reduces much faster
than the model controls (roughly half of the timescale of the
correct wind forcing). From the analyses above, we learned
(1) in wave models, the wind forcing plays an important role
and an incorrect wind forcing could be a significant error
source of WDA, and (2) the WDA can rapidly reduce the
initial error and improve the predictability of a wave model
even when it is forced by an inaccurate wind forcing.

3.2 Impact of the observational system

In this section, using the same model states (at the
45th day) in the corresponding model control as
in Sect. 3.1 as the initial conditions, we conduct
two sets of assimilation experiments: WW3CFSR

WW3(J2),
WW3CFSR

WW3(J2+J3), WW3CFSR
WW3(J2+J3+SA) and SWANCFSR

SWAN(J2),
SWANCFSR

SWAN(J2+J3), SWANCFSR
SWAN(J2+J3+SA). Through exam-

ining the assimilation quality with one satellite (Jason-2),
two satellites (Jason-2+Jason-3) and three satellites (Jason-
2+Jason-3+SARAL), we attempt to understand the impact
of improving the observing system on the WDA, considering
the NCEP-CFSR wind forcing errors against the ECMWF
ERA-Interim based on a perfect assimilation model. The
RMSEs of all the above assimilation experiments are plotted
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1042 J. Li and S. Zhang: Mitigation of model bias influences on wave data assimilation

Figure 3. The time series of RMSEs of the (a) WW3 and (b) SWAN perfect model experiments in the model control run with the NCEP
CFSRv2 wind (black, denoted as WW3CFSR in panel (a) and SWANCFSR in (b), assimilating the “observed” data sampled by the tracks of
Jason-2 (blue, denoted as WW3CFSR

WW3(J2) and SWANCFSR
SWAN(J2)), Jason-2 and 3 (green, denoted as WW3CFSR

WW3(J2+J3) and SWANCFSR
SWAN(J2+J3)),

as well as Jason-2 and 3 and SARAL (cyan, denoted as WW3CFSR
WW3(J2+J3+SA) and SWANCFSR

SWAN(J2+J3+SA)) against the truth simulation
forced by the ERA-Interim wind. The red and pink are forced by the NCEP CFSRv2 wind in the first 45 d, but the next 35 d are forced
using the ERA-Interim wind (same as truth) without (denoted as WW3CFSR

+WW3ERAI and SWANCFSR
+SWANERAI) or with (denoted

as WW3CFSR
+WW3ERAI

WW3(J2) and SWANCFSR
+SWANERAI

SWAN(J2)) the assimilation of Jason-2 data. The number in parentheses for each
color is the corresponding RMSE averaged globally over the verification time period (30 d after the 45 d model spin-up and 5 d assimilation
spin-up). The observed data are produced by projecting the truth SWH onto the satellite orbit.

in Fig. 3 as the blue (assimilating Jason-2 only), green
(assimilating Jason-2+Jason-3) and cyan (assimilating
Jason-2+Jason-3+SARAL) lines.

From Fig. 3, we can see that in both models, the assimi-
lation errors are reduced when more observational informa-
tion is used. The corresponding RMSE reductions in these
three experiments from the model control run are 24 %, 32 %
and 38 % for WW3 and 26 %, 35 % and 38 % for SWAN,
respectively. However, when more satellite observations are
assimilated into the model, the magnitude of improvement
becomes small (further reduced by 8 % in WW3 and 9 % in
SWAN when Jason-3 is added as well as only a 6 % in WW3
and 3 % in SWAN further reduction when SARAL is further
added). These results suggest that given wind forcing errors,
increasing observational information can help to improve the
model behavior, but the improvement is limited.

3.3 Adverse impact of model bias

As described in Sect. 2.2, the WW3 and SWAN models
discretize the wave-action-governing equation with different
physical processes, parameterization schemes and differenc-
ing schemes. These differences result in each wave model
having its own distinguished characteristics. To study the ad-

verse impact of the model bias on the wave assimilation, the
biased twin experiments described in Sect. 2.4.1 are used
in this section, where the truth model and the assimilation
model are different between WW3 and SWAN. For exam-
ple, the WW3ERAI

SWAN(J2) (or SWANERAI
WW3(J2)) experiment uses

WW3 (or SWAN) as the assimilation model to assimilate the
Jason-2 track point observations, but the observed values are
produced by SWAN (or WW3), and all models are forced by
the ERA-Interim wind. All related experiments for the biased
model framework are described in detail in Table 2.

The RMSEs and correlation coefficients produced by the
all biased model assimilation experiments are plotted in
Fig. 4. The black line in each panel represents the result of
the WW3 model control forced by the ERA-Interim wind
(WW3ERAI) against the truth simulation by the SWAN model
with the same wind forcing (SWANERAI) (panels a and b)
(vice versa in panels c and d). Both the WW3ERAI and
SWANERAI experiments are initialized from a cold start by
the wind and integrated for 80 d, and the results of the last
40 d are shown in Fig. 4. It is clear that the WW3 and SWAN
model simulations are quite different even though both sim-
ulations use identical forcings and start from identical ini-
tial conditions. The RMSEs of the two model simulations
are both 0.58 m, which is much larger than the errors pro-
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Table 2. List of biased model twin experiments.

Exp. name Model Wind source Assimilation or not Role

WW3ERAI WW3 ERA-Interim No Truth for SWAN assimilation

SWANERAI SWAN ERA-Interim No Model control for SWAN assimila-
tion reference

SWANERAI
WW3(J2) SWAN ERA-Interim Yes (using Jason-2 track) Impact of observational system

SWANERAI
WW3(J2+J3) SWAN ERA-Interim Yes (using tracks of Jason-2 and

Jason-3)
SWANERAI

WW3(J2+J3+SA) SWAN ERA-Interim Yes (using tracks of Jason-2,
Jason-3 and SARAL)

SWANASSW
WW3(J2+J3+SA) SWAN Assimilation-corrected

wind based on ERAI
Yes (using tracks of Jason-2,
Jason-3 and SARAL)

Impact of assimilation-corrected
wind

SWANERAI SWAN ERA-Interim No Truth for WW3 assimilation

WW3ERAI WW3 ERA-Interim No Model control for WW3 assimila-
tion reference

WW3ERAI
SWAN(J2) WW3 ERA-Interim Yes (using Jason-2 track) Impact of observational system

WW3ERAI
SWAN(J2+J3) WW3 ERA-Interim Yes (using tracks of Jason-2 and

Jason-3)
WW3ERAI

SWAN(J2+J3+SA) WW3 ERA-Interim Yes (using tracks of Jason-2,
Jason-3 and SARAL)

WW3ASSW
SWAN(J2+J3+SA) WW3 Assimilation-corrected

wind based on ERAI
Yes (using tracks of Jason-2,
Jason-3 and SARAL)

Impact of assimilation-corrected
wind

duced by a perfect model but with different wind (∼ 0.34m,
see black lines in Fig. 3).

Compared with the model controls WW3ERAI and
SWANERAI, the assimilation experiments WW3ERAI

SWAN(J2) and
SWANERAI

WW3(J2) (pink lines in Fig. 4) can significantly re-
duce the SWH simulation error (by 24 % and 22 %, respec-
tively) and enhance the correlations (by 3 % and 4 %, re-
spectively) with the truth (SWANERAI and WW3ERAI, re-
spectively). When the observations of Jason-3 and SARAL
are added to the assimilation (i.e., WW3ERAI

SWAN(J2+J3) and
WW3ERAI

SWAN(J2+J3+SA) as well as SWANERAI
WW3(J2+J3) and

SWANERAI
WW3(J2+J3+SA)) (see the red and blue lines, respec-

tively), the model SWH error (or correlation) is further re-
duced (or enhanced), but the amplitude of reduction (or en-
hancement) gradually diminishes (10 % and 5 % for further
error reduction and 1 % and 0.8 % for further correlation en-
hancement in the WW3 assimilation; 10 % and 7 % for fur-
ther error reduction and 1.7 % and 0.7 % for further correla-
tion enhancement in SWAN assimilation from the additions
of Jason-3 and SARAL, respectively).

The results of two other sets of assimilation experiments
called WW3ASSW

SWAN(J2+J3+SA) and SWANASSW
WW3(J2+J3+SA) are

also plotted by dotted green lines in Fig. 4. The superscript
“ASSW” stands for the assimilation-corrected wind, mean-
ing that the wind forcing of the assimilation model is also

“corrected” by the “observed” SWH data, as described in
Step 4 of Sect. 2.3. We found that in both assimilation sys-
tems, using the observed SWH data to “correct” the wind
can compensate for the model errors to some degree and fur-
ther reduce the assimilation errors, but the improvement is
very limited. The weak improvement could be attributed to
the simple wind correction method with total wave height. In
the future, a more powerful correction method with wind sea
wave height may have better performance.

These assimilation results clearly show that even though
the wind forcing is perfect, once a biased assimilation model
is used, the wave simulation has large errors. Although WDA
can greatly reduce the simulation error by assimilating the
observational information into the model, due to the exis-
tence of the model bias, the error remains at some significant
level and cannot be eliminated entirely even by increasing
the observational constraints through an improvement in the
observational system and constraint of the wind forcing.

3.4 Comparison of the influence of wind forcing with
model bias

Comparing the time series of SWH RMSE caused by two im-
portant error sources, model bias (0.58 m shown with black
lines in panels a and c in Fig. 4) plays a stronger role than
wind forcing (0.34 m shown with black lines in Fig. 3). When
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Figure 4. The time series of RMSEs (a, c) and spatial correlation coefficients (b, d) of the WW3 (a, b) and SWAN (c, d) biased
model experiments in the model control run forced by the ERA-Interim wind (black, denoted as WW3ERAI and SWANERAI), assimila-
tions with “observed” data from one (pink, denoted as WW3ERAI

SWAN(J2) and SWANERAI
WW3(J2)), two (red, denoted as WW3ERAI

SWAN(J2+J3) and

SWANERAI
WW3(J2+J3)) and three (blue, denoted as WW3ERAI

SWAN(J2+J3+SA) and SWANERAI
WW3(J2+J3+SA)) satellites, as well as the assimilation

with corrected wind (dotted green, denoted as WW3ASSW
SWAN(J2+J3+SA) and SWANASSW

WW3(J2+J3+SA)) against the truth (same as in Fig. 3 but
for SWAN and WW3 with the ERA-Interim wind). The numbers in the parentheses correspond to the globally averaged RMSE (in a and c)
and spatial correlation coefficient (in b and d) over the last 30 d during the assimilation period. The observed data are produced by projecting
the truth SWH onto the satellite orbit.

three satellite observations (Jason-2, Jason-3 and SARAL)
are assimilated into twin experiments, the RMSE of SWH re-
duces by 38 % in perfect model twin experiments (cyan lines
in Fig. 3) and 40 % in biased model twin experiments (blue
lines of panels a and c in Fig. 4). It is obvious that the error
caused by model bias is bigger than by wind forcing and their
improvements are almost similar after data assimilation.

A spatial pattern of SWH RMSE is also displayed in
Fig. 5. (Due to the similar performance inside twin exper-
iments, here we only show the results using WW3 model

as simulation/assimilation model.) In the model control run,
it makes sense that the error caused by wind forcing (panel
a (WW3CFSR); truth is WW3ERAI) has distributed in the ar-
eas where the wind is strong, such as the area of the Antarctic
Circumpolar Current (ACC) and the north Pacific and At-
lantic Ocean, while the error caused by model bias (panel c
(WW3ERAI); truth is SWANERAI) is distributed almost glob-
ally. After assimilating with three satellite observations, the
error spatial distribution of both has improved a lot (panel b
(WW3CFSR

WW3(J2+J3+SA)) and panel d (WW3ERAI
SWAN(J2+J3+SA))).
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Figure 5. Distributions of SWH RMSEs caused by wind forcing (a, b) from perfect twin experiment and model bias (c, d) from biased twin
experiment in the model control run (a, c) and assimilations with “observed” data with three satellites (b, d) averaged globally over the last
30 d during the assimilation period.

Referring to wind distribution, we can divide the global areas
roughly into three parts: the northern westerly zone (65◦ N–
30◦ N), the trade-wind zone (30◦ N–30◦ S) and the circumpo-
lar westerly zone (30◦ S–65◦ S). Therefore the error is caused
by wind forcing (or model bias); the decreasing percentages
of SWH RMSE in these three areas are 30 % (or 27 %), 45 %
(or 50 %) and 46 % (or 48 %), respectively. We can find that
the improvement of both error sources has a similar perfor-
mance in three these areas: weak in the northern westerly
zone and almost the same strength in the trade-wind zone and
circumpolar westerly zone. The reason why there is a lower
improvement in the north Pacific and Atlantic Ocean should
be explored in the future. To sum up, the error caused by
model bias is larger than wind forcing in the global area gen-
erally, especially in the equatorial ocean. However, in the
north of Atlantic Ocean, wind forcing has a stronger im-
pact. After data assimilation, both have improved greatly and
have a similar spatial pattern (i.e., the bigger error is still dis-
tributed at high latitudes). However, their error gap still ex-
ists.

It is worth mentioning that there is a similar performance
about the effect of the observation system on improving both
error sources, whether in time series or spatial distribution.
The more observation information is absorbed into assimila-
tion systems, the better the error improvement in both twin
experiments. However, due to the existence of model bias,
this improvement has a limitation and stays at a certain level.
If more powerful observation is absorbed (such as wave di-
rection, wave period and two-dimensional wave spectra), the
limitation maybe stay at a lower level. Next, with the re-
sults of real-data assimilation where both the model and wind

forcing have errors, we will analyze and discuss how to mit-
igate the model bias influences on the WDA.

4 Mitigation of model bias influences on wave
assimilation

4.1 Bias characteristics of WW3 and SWAN data
assimilations

From the above analyses of twin experiment results, we
learned that the model bias has a strong adverse impact on
WDA. To explore the method of mitigating the model bias
influence on the WDA, we conduct the real-data assimila-
tion experiments (same time range as the twin experiments)
described in Sect. 2.4.2 using the WW3 and SWAN assim-
ilation systems to assimilate the track data of Jason-2 and
Jason-2+Jason-3+SARAL. To ensure the performance of
the biased model WDA, a longer assimilation (more than 2
months) is conducted (a total of 70 d). The spatial distribu-
tions of the SWH errors (obtained from the difference against
the merged gridded AVISO observations over the last 30 d
out of 80 d) are shown in Fig. 6. Panels a, b and c (d, e,
f) are for the WW3 (SWAN) simulation and assimilations:
WW3ERAI, WW3ERAI

J2 and WW3ERAI
J2+J3+SA (or SWANERAI,

SWANERAI
J2 and SWANERAI

J2+J3+SA).
Comparing panel a with panel d in Fig. 6 reveals that

a large difference exists in the simulations of the two models.
First, the SWAN simulation errors are generally larger than
the WW3 simulation errors. Second, the global error distri-
butions are quite different: while the WW3 simulation errors
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Figure 6. Distributions of SWH mean errors (against the merged grid altimeter data) of the WW3 (a–c) and SWAN (d–f) model simula-
tions (a, d) and assimilations with Jason-2 (b, e), as well as all Jason-2, Jason-3 and SARAL (c, f) data forced by the ERA-Interim wind.
The statistics are averaged over the last 30 d of a 70 d total assimilation period (unit: m).

appear negative (or positive) over most of the 30◦ S north (or
south) area, the SWAN simulation errors appear positive in
most of the tropical oceans and negative in the middle lat-
itudes. Both simulations show large errors in the southern
ocean coastal area, but over the Antarctic Circumpolar Cur-
rent area, the WW3 error is positive and the SWAN error is
negative. It is interesting that under the same wind condi-
tions, two wave models have converse performances. In a fu-
ture study, it is urgently necessary to find a detailed approach
to two wave models in this area.

The above systematic differences between the two model
simulations have significant influences on the results of the
WDA. In general, the distribution of assimilation errors
shares the same patterns as the model simulation errors but
with a much smaller magnitude. The net result is that both
the WW3 negative (or positive) error magnitude over the
30◦ S north (or south) area and the SWAN error magnitude
as (+)(−)(+)(−) from south to north are dramatically re-
duced by the Jason-2 data assimilation (comparing Fig. 6b
and e with Fig. 6a and d), and on this basis, incorporat-
ing more observations from Jason-3 and SARAL into the
assimilation process, both model error magnitudes are fur-

ther reduced to some degree (comparing Fig. 6c and f with
Fig. 6b and e). From the corresponding RMSE distributions
(not shown here), we learned that the large RMSEs mainly
appear in places where the model bias (time mean error) is
large. This finding means that the model bias has a largely
adverse impact on the WDA.

Figure 7 displays the time series of the RMSEs and spa-
tial correlation coefficients with the global statistics in space.
The RMSE (or correlation coefficient) of the SWAN model
simulation is larger (or smaller) than the WW3 model simu-
lation (0.66 m RMSE and 0.806 correlation for SWAN versus
0.61 m RMSE and 0.876 correlation for WW3). In the WW3
and SWAN assimilations with the Jason-2 data, the RMSEs
are reduced by 8 % and 11 %, respectively, and the time mean
correlations are enhanced by roughly 1 % and 5 %, respec-
tively. If the data of all three satellites – Jason-2, Jason-3 and
SARAL – are assimilated, the RMSEs are reduced by 11 %
and 17 % in the WW3 and SWAN assimilations, respectively,
and the correlations are enhanced by approximately 2 % and
8 %, respectively. In these real-data assimilation cases, for
each model assimilation, both the model and wind forcing
have errors. Under this circumstance, the assimilation where
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Figure 7. Time series of RMSEs (a, c) and spatial correlation coefficients (b, d) of WW3 (a, b) and SWAN (c, d) produced by the
model control run (black, denoted as WW3ERAI and SWANERAI) and the assimilation using the data from one (green, denoted as
WW3ERAI

J2 and SWANERAI
J2 ) and three satellites (blue, denoted as WW3ERAI

J2+J3+SA and SWANERAI
J2+J3+SA) with corrected wind (red, denoted

as WW3ASSW
J2+J3+SA and SWANASSW

J2+J3+SA).

the SWH observations are used to adjust the model spectrum;
the model wind forcing is also corrected and can further re-
duce the assimilation errors (red lines in Fig. 7). The red lines
in Fig. 7 represent the best result of the assimilation given the
WW3 and SWAN model biases, which makes full use of the
observations from all three satellites to adjust both the model
spectrum and wind forcing. Next, we will discuss how to use
the results of two assimilation systems to mitigate the wave
analysis error.

4.2 Mitigation of WDA errors

The mitigation of model bias is a complex issue in which im-
proving the model is a final but long-lasting solution. From
Fig. 6, we learned that the WW3 and SWAN assimilation er-
rors have some common (or opposite) characteristics in some

locations. For example, while the SWH over the southern
ocean coastal area always appears to be overestimated be-
cause of the lack of adequate observations to improve in both
assimilation systems, the WW3 and SWAN assimilations ap-
pear to be the opposite in the Antarctic Circumpolar Current
area and the tropical oceans. The WW3 (or SWAN) assimila-
tion errors in the Antarctic Circumpolar Current area appear
positive (or negative), while the WW3 (or SWAN) assimi-
lation errors in the tropical oceans appear negative (or posi-
tive). A question arises: as the first step of mitigating model
bias influences on the WDA, can we use a pair of assimila-
tion systems to explore a statistical approach to reduce the
wave assimilation errors?

Given the opposite behaviors of two assimilation systems
existing in certain places, the simplest bias correction could
be conducted by a simple average. This assumes that each
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Figure 8. Time series of (a) RMSEs and (b) spatial correlation coefficients produced by two bias correction schemes (cyan and pink) through
a combination of WW3 and SWAN assimilations with the data from three satellites (Jason-2, Jason-3 and SARAL) and wind correction
starting from the ERA-Interim wind. The results of the individual assimilation systems are plotted as dotted and dashed red lines (taken from
Fig. 7) for reference.

wave model assimilation system has its own characteristics
of systemic error due to deficit physics, and these systemic
errors (or model biases) from different wave models follow
a Gaussian distribution with a trivial expectation. The cor-
responding results are shown in Fig. 8. Compared with the
performance of each individual assimilation system (dashed
red lines for WW3 and dotted red lines for SWAN), the re-
sults of this bias correction (cyan lines) show that the RMSE
is reduced (Fig. 8a) but the spatial correlation is not greatly
improved (Fig. 8b). It is reasonable that based on the oppo-
site errors deviating from the real world in two assimilation
systems, this correction method employing the mathematical
average can reduce the RMSE to some extent, but it may not
have a significant contribution to improving the correlation
coefficient if either the sampling size of model bias is too
small (only two in this case) or the bias has an asymmetric
distribution.

Considering the potential asymmetry of the Gaussian dis-
tribution of different model biases and small sampling size in
practice, as the first step, we calculate the spatial distribution
of model bias in every assimilation system (the time mean of
the difference between observations and assimilation results)
(Fig. 6) and extract it at each time step in the output and then
calculate the expectation (average) of all assimilation sys-
tems as the results after bias correction. The corresponding
results are shown with pink lines in Fig. 8. Both the RMSE
and correlation are improved greatly. We also show the spa-
tial distribution of SWH RMSEs after bias correction with

the second method. From Fig. 9, we can easily find that after
bias correction, all the experiments have similar error per-
formances, the smaller at low latitudes and the larger at high
latitudes. As the satellite observation increases (one in panels
b and f and three in panels c and g), the error decreases grad-
ually compared to the model control run (panels a, e). Based
on the best assimilation results currently (panels c, g), the im-
provement with a corrected wind is more efficient in WW3
(panel d), especially at high latitudes which is the higher er-
ror area, but it is hardly to found in SWAN (panel h). If we
focus on the change without (panel c) and with (panel d) the
corrected wind in the WW3 model, the RMSE improvement
of wind sea and swell is 27 % and 1 % averaged globally.
If we divide the global area into the three parts mentioned
in Sect. 3.4, the wind sea (or swell) improvement of the re-
gional RMSE mean is 4 % (or 3 %), 3 % (or 1 %) and 6 %
(or 1 %) in the northern westerly zone (65–30◦ N), the trade-
wind zone (30◦ N–30◦ S) and the circumpolar westerly zone
(30–65◦ S). It is obvious that the improvement of wind sea is
better than swell and wind correction has a stronger impact
on wind sea wave assimilation at high latitudes with strong
wind. Clearly, this bias correction with physical considera-
tion is more effective to improve the quality of WDA, but
it uses observational information one more time, while the
first method of bias correction processes assimilation results
directly without further uses of observational information.

To verify the feasibility and applicability of the bias
correction method above, three well-known wave models
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Figure 9. Distributions of corrected SWH RMSEs of the WW3 (a–d) and SWAN (e–h) model simulations (a, e); assimilations with Jason-2
(b, f) and with Jason-2, Jason-3 and SARAL (c, g) forced by the ERA-Interim wind as well as by a corrected wind (d, h). All the results is
corrected by the second bias correction method (named Bias correction2 in Fig. 8) (unit: m).

(WW3, SWAN and WAM) with the same data assimilation
method are used to conduct longer assimilation and bias
correction experiments. The calculation period lasts for 14
months (from November 2016 to December 2017) with suf-
ficient spin-up process to reach a steady assimilation state
(the first month for model spin-up and the second month for
assimilation spin-up). The results of the last 12 months (for
2017) are analyzed and presented in Figs. 10 and 11 for the
spatial distributions and time series of RMSEs and spatial
correlation coefficients, respectively. From Fig. 10, we can
see that both the RMSE and the correlation coefficient (pan-
els d and h, respectively) have been improved by the bias
correction that combines the advantages of every WDA sys-
tem (panels a and e for WW3, panels b and f for SWAN,
panels c and g for WAM). In Fig. 11, the bias correction
of model control runs (the second bias correction method

is conducted based on the result of model control run from
three wave models) shows improvement but is worse than
the data assimilation before bias correction (compare green
with pink). Compared with the model control (blue), the as-
similation results with bias correction (red) can reduce the
error by 25 % and significantly enhance the correlation co-
efficient (from 0.88 to 0.923). This result confirms that this
bias correction based on multiple assimilation systems can
effectively enhance the WDA quality.

5 Summary and discussion

Ocean waves cause the sea surface roughness to impact the
boundary conditions of the atmosphere and the wind stress
of the ocean surface. Wave processes, such as wave break-
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Figure 10. Distributions of SWH RMSEs (a–d) and spatial correlation coefficients (e–h) (against the merged grid altimeter data) of the
WW3 (a, e), SWAN (b, f) and WAM (c, g) assimilations and the bias correction with the second method (d, h). The statistics are averaged
over the entire 1-year assimilation period.

ing and wave-induced bottom stress, have significant effects
on ocean mixing. Thus, ocean waves are important physical
processes for understanding ocean mixing and air–sea inter-
actions in coupled Earth systems. More accurately predicting
ocean waves is of great societal significance. However, mul-
tiple error sources exist in wave simulations and predictions,
including modeling errors, wind forcing errors and initial-
condition errors.

To sort out the source of the errors of wave data assimi-
lation (WDA), a pair of independent WDA systems is first
developed using two wave models: Wave Watch III (WW3)
and Simulating WAves Nearshore (SWAN). The perfect and
biased model twin experiment frameworks are designed to
clearly identify each error source and examine its influences
on WDA. The results show that model bias is a significant er-

ror source that has a largely adverse impact. Then, two WDA
systems are used to design bias correction approaches to mit-
igate the influences of model bias and improve the assimila-
tion quality. Finally, long-term WDA experiments added by
the third WDA system with the WAM model (WAve Mod-
eling) (WW3, SWAN and WAM) are conducted to validate
the bias correction method. Three findings are established.
(1) When the model is perfect, the initial-condition error de-
cays within 10 d, but the WDA can shorten the timescale by
half. (2) When the model is biased, despite a perfect wind
forcing, the wave simulation has large errors and the WDA
can only reduce the error to a limited extent. (3) With the
results from two assimilation systems, a statistical approach
of bias correction significantly improves the quality of final
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Figure 11. The time series of (a) RMSEs and (b) spatial correlation coefficients produced by the model control run (blue), data assimilation
(pink) and their corresponding bias corrections (green and red) combining three wave model assimilation results (WAM, WW3 and SWAN)
globally averaged over 1 year.

wave analysis by combining the merits from individual as-
similation systems.

Model bias is an obstacle to improving WDA and wave
predictions. Using multiple assimilation systems to study the
influences of model bias on WDA is an effective approach.
As the first step, however, we have used a simple assimila-
tion scheme and simple bias correction method. In follow-up
studies, we shall consider powerful observation information
(such as two-dimensional wave spectra), advanced assimi-
lation schemes (such as ensemble Kalman Filter) and more
comprehensive correction methods to help improve model-
ing. For example, the “online” bias correction (the “offline”
bias correction is used in this paper) during the assimilation
process (e.g., Dee, 2005) will be considered to improve the
assimilation results and correct the instantons initial condi-
tion within individual assimilation systems; after that, a ro-
bust observation (such as a buoy) is needed to validate the
quality of bias correction. In addition, improving the model
is an important, inevitable and long-lasting task. In this study,

under the same wind conditions, we find that three models
show common bias characteristics in the Antarctic Circum-
polar Current (ACC) area. If there is a similar performance
forcing by other wind, this may suggest that present wave
modeling may have deficits in energy spectrum expression
for high-wind-speed areas. In the future, we will further ex-
amine the sensitivities of physical processes on high wind
speed to mitigate such a common modeling bias. All in all,
a robust bias correction method with a lower model bias and
higher representation of wave physical characteristics may
further improve wave analysis quality. Once a long time se-
ries of high-quality wave analyses is available, it is expected
that we can improve our understanding of ocean mixing. The
physical process of wave-induced mixing is linked with the
structure of the ocean mixing layer (Qiao et al., 2010). This
process can be expressed as a function of wave number, fre-
quency and wave spectrum and so on, provided by wave anal-
ysis. With the framework of multiple WDA systems devel-
oped in this study, improved wave predictions can be effec-
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tively pursued. How can we further enhance the predictabil-
ity of ocean waves? The first important step is to understand
the physical process of ocean waves better based on a more
accurate evolution of wave state from this framework. An-
swering these questions could be very important and inter-
esting research topics for future studies.
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