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Abstract. A flexible and highly extensible data assimila-
tion testing suite, named DATeS, is described in this paper.
DATeS aims to offer a unified testing environment that allows
researchers to compare different data assimilation method-
ologies and understand their performance in various settings.
The core of DATeS is implemented in Python and takes ad-
vantage of its object-oriented capabilities. The main compo-
nents of the package (the numerical models, the data assim-
ilation algorithms, the linear algebra solvers, and the time
discretization routines) are independent of each other, which
offers great flexibility to configure data assimilation applica-
tions. DATeS can interface easily with large third-party nu-
merical models written in Fortran or in C, and with a plethora
of external solvers.

1 Introduction

Data assimilation (DA) refers to the fusion of information
from different sources, including priors, predictions of a nu-
merical model, and snapshots of reality, in order to produce
accurate description of the state of a physical system of inter-
est (Daley, 1993; Kalnay, 2003). DA research is of increas-
ing interest for a wide range of fields including geoscience,
numerical weather forecasts, atmospheric composition pre-
dictions, oil reservoir simulations, and hydrology. Two ap-
proaches have gained wide popularity for solving the DA
problems, namely ensemble and variational approaches. The
ensemble approach is rooted in statistical estimation theory
and uses an ensemble of states to represent the underlying
probability distributions. The variational approach, rooted in
control theory, involves solving an optimization problem to

obtain a single “analysis” as an estimate of the true state
of the system of concern. The variational approach does not
provide an inherent description of the uncertainty associated
with the obtained analysis; however, it is less sensitive to
physical imbalances prevalent in the ensemble approach. Hy-
brid methodologies designed to harness the best of the two
worlds are an ongoing research topic.

Numerical experiments are an essential ingredient in the
development of new DA algorithms. Implementation of nu-
merical experiments for DA involves linear algebra routines,
a numerical model along with time integration routines, and
an assimilation algorithm. Currently available testing envi-
ronments for DA applications are either very simplistic or
very general; many are tied to specific models and are usually
completely written in a specific language. A researcher who
wants to test a new algorithm with different numerical mod-
els written in different languages might have to re-implement
his/her algorithm using the specific settings of each model. A
unified testing environment for DA is important to enable re-
searchers to explore different aspects of various filtering and
smoothing algorithms with minimal coding effort.

The DA Research Section (DAReS) at the National Cen-
ter for Atmospheric Research (NCAR) provides Data As-
similation Research Testbed (DART) (Anderson et al., 2009)
as a community facility for ensemble filtering. The DART
platform is currently the gold standard for ensemble-based
Kalman filtering algorithm implementations. It is widely
used in both research and operational settings, and inter-
faces to most important geophysical numerical models are
available. DART employs a modular programming approach
and adheres strictly to solid software engineering principles.
DART has a long history and is continuously well main-
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tained; new ensemble-based Kalman filtering algorithms that
appear in the literature are routinely added to its library.
Moreover, it gives access to practical and well-established
parallel algorithms. DART is, by design, very general in or-
der to support operational settings with many types of geo-
physical models. Using DART requires a non-trivial learning
overhead. The fact that DART is mainly written in Fortran
makes it a very efficient testing platform; however, this limits
to some extent the ability to easily employ third-party imple-
mentations of various components.

Matlab programs are often used to test new algorithmic
ideas due to its ease of implementation. A popular set of
Matlab tools for ensemble-based DA algorithms is provided
by the Nansen Environmental and Remote Sensing Center
(NERSC), with the code available from Evensen and Sakov
(2009). A Matlab toolbox for uncertainty quantification (UQ)
is UQLab (Marelli and Sudret, 2014). Also, for the newcom-
ers to the DA field, a concise set of Matlab codes is provided
through the pedagogical applied mathematics reference (Law
et al., 2015). Matlab is generally a very useful environment
for small- to medium-scale numerical experiments.

Python is a modern high-level programming language that
gives the power of reusing existing pieces of code via in-
heritance, and thus its code is highly extensible. Moreover,
it is a powerful scripting tool for scientific applications that
can be used to glue legacy codes. This can be achieved by
writing wrappers that can act as interfaces. Building wrap-
pers around existing C and Fortran code is a common prac-
tice in scientific research. Several automatic wrapper gener-
ation tools, such as SWIG (Beazley, 1996) and F2PY (Pe-
terson, 2009), are available to create proper interfaces be-
tween Python and lower-level languages. While translating
Matlab code to Python is a relatively easy task, one can call
Matlab functions from Python using the Matlab Engine API.
Moreover, unlike Matlab, Python is freely available on vir-
tually all Linux, macOS, and Windows platforms, and there-
fore Python software is easily accessible and has excellent
portability. When using Python, instead of Fortran or C, one
generally trades some computational performance for pro-
gramming productivity. The performance penalty in the sci-
entific calculations is minimized by delegating computation-
ally intensive tasks to compiled languages such as Fortran.
This approach is followed by the scientific computing Python
modules NumPy and SciPy, which enable writing computa-
tionally efficient scientific Python code. Moreover, Python
is one of the easiest programming languages to learn, even
without background knowledge about programming.

This paper presents a highly extensible Python-based DA
testing suite. The package is named DATeS and is intended to
be an open-source, extendable package positioned between
the simple typical research-grade implementations and the
professional implementation of DART but with the capabil-
ity to utilize large physical models. Researchers can use it as
an experimental testing pad where they can focus on coding
only their new ideas without worrying much about the other

pieces of the DA process. Moreover, DATeS can be effec-
tively used for educational purposes where students can use it
as an interactive learning tool for DA applications. The code
developed by a researcher in the DATeS framework should
fit with all other pieces in the package with minimal to no
effort, as long as the programmer follows the “flexible” rules
of DATeS. As an initial illustration of its capabilities, DATeS
has been used to implement and carry out the numerical ex-
periments in Attia et al. (2018), Moosavi et al. (2018), and
Attia and Constantinescu (2018).

The paper is structured as follows. Section 2 reviews the
DA problem and the most widely used approaches to solve
it. Section 3 describes the architecture of the DATeS pack-
age. Section 4 takes a user-centric and example-based ap-
proach for explaining how to work with DATeS, and Sect. 5
demonstrates the main guidelines of contributing to DATeS.
Conclusions and future development directions are discussed
in Sect. 6.

2 Data assimilation

This section gives a brief overview of the basic discrete-
time formulations of both statistical and variational DA ap-
proaches. The formulation here is far from conclusive and is
intended only as a quick review. For detailed discussions on
the various DA mathematical formulations and algorithms,
see, e.g., Asch et al. (2016), Evensen (2009), and Law et al.
(2015).

The main goal of a DA algorithm is to give an accurate rep-
resentation of the “unknown” true state, xtrue(tk), of a physi-
cal system, at a specific time instant tk . Assuming xk ∈ RNstate

is a discretized approximation of xtrue(tk), the time evolution
of the physical system over the time interval [tk, tk+1] is ap-
proximated by the discretized forward model:

xk+1 =Mk, k+1(xk), k = 0,1, . . .,N − 1. (1)

The model-based simulations, represented by the model
states, are inaccurate and must be corrected given noisy mea-
surements Y of the physical system. Since the model state
and observations are both contaminated with errors, a prob-
abilistic formulation is generally followed. The prior distri-
bution Pb(xk) encapsulates the knowledge about the model
state at time instant tk before additional information is in-
corporated. The likelihood function P(Y|xk) quantifies the
deviation of the prediction of model observations from the
collected measurements. The corrected knowledge about the
system is described by the posterior distribution formulated
by applying Bayes’ theorem:

Pa(xk|Y)=
Pb(xk)P(Y|xk)

P(Y)
∝ Pb(xk)P(Y|xk), (2)

where Y refers to the data (observations) to be assimilated.
In the sequential filtering context, Y is a single observation,
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while in the smoothing context, it generally stands for several
observations {y1, . . .,ym} to be assimilated simultaneously.

In the so-called “Gaussian framework”, the prior is as-
sumed to be Gaussian N (xb

k, Bk), where xb
k is a prior state,

e.g., a model-based forecast, and Bk ∈ RNstate×Nstate is the
prior covariance matrix. Moreover, the observation errors are
assumed to be GaussianN (0, Rk), with Rk ∈ RNobs×Nobs be-
ing the observation error covariance matrix at time instant tk ,
and observation errors are assumed to be uncorrelated from
background errors. In practical applications, the dimension
of the observation space is much less than the state-space di-
mension, that is Nobs�Nstate.

Consider assimilating information available about the sys-
tem state at time instant tk , the posterior distribution follows
from Eq. (2) as

Pa(xk|yk)∝ Pb(xk)P(yk|xk)∝ exp(−J (xk)) ,

J (xk)=
1
2
‖xk − xb

k‖
2
B−1
k

+
1
2
‖yk −Hk(xk)‖2R−1

k

, (3)

where the scaling factor P(yk) is dropped. Here, Hk is an
observation operator that maps a model state xk into the ob-
servation space.

Applying Eqs. (2) or (3), in large-scale settings, even
under the simplified Gaussian assumption, is not compu-
tationally feasible. In practice, a Monte Carlo approach is
usually followed. Specifically, ensemble-based sequential
filtering methods such as ensemble Kalman filter (EnKF)
(Tippett et al., 2003; Whitaker and Hamill, 2002; Burg-
ers et al., 1998; Houtekamer and Mitchell, 1998; Zupanski
et al., 2008; Sakov et al., 2012; Evensen, 2003; Hamill and
Whitaker, 2001; Evensen, 1994; Houtekamer and Mitchell,
2001; Smith, 2007) and maximum likelihood ensemble fil-
ter (MLEF) (Zupanski, 2005) use ensembles of states to rep-
resent the prior, and the posterior distribution. A prior en-
semble Xk = {x(e)}e=1,2,...,Nens , approximating the prior dis-
tributions, is obtained by propagating analysis states from a
previous assimilation cycle at time tk−1 by applying Eq. (1).
Most of the ensemble-based DA methodologies work by
transforming the prior ensemble into an ensemble of states
collected from the posterior distribution, namely the anal-
ysis ensemble. The transformation in the EnKF framework
is applied following the update equations of the well-known
Kalman filter (Kalman and Bucy, 1961; Kalman, 1960). An
estimate of the true state of the system, i.e., the analysis, is
obtained by averaging the analysis ensemble, while the pos-
terior covariance is approximated by the covariance matrix
of the analysis ensemble.

The maximum a posteriori (MAP) estimate of the true
state is the state that maximizes the posterior probability den-
sity function (PDF). Alternatively, the MAP estimate is the
minimizer of the negative logarithm (negative log) of the pos-
terior PDF. The MAP estimate can be obtained by solving the
following optimization problem:

min
xk
J (xk)=

1
2
‖xk − xb

k‖
2
B−1
k

+‖yk −Hk(xk)‖2R−1
k

. (4)

This formulates the three-dimensional variational (3D-Var)
DA problem. Derivative-based optimization algorithms used
to solve Eq. (4) require the derivative of the negative log of
the posterior PDF Eq. (4):

∇xkJ (xk)= B−1
k

(
xk − xb

k

)
+HT

k R−1
k (yk −Hk(xk)) , (5)

where Hk = ∂Hk/∂xk is the sensitivity (e.g., the Jacobian) of
the observation operatorHk evaluated at xk . Unlike ensemble
filtering algorithms, the optimal solution of Eq. (4) provides a
single estimate of the true state and does not provide a direct
estimate of associated uncertainty.

Assimilating several observations Y= {y0,y1, . . .,ym} si-
multaneously requires adding time as a fourth dimension to
the DA problem. Let Pb(x0) be the prior distribution of the
system state at the beginning of a time window [t0, tF ] over
which the observations are distributed. Assuming the obser-
vations’ errors are temporally uncorrelated, the posterior dis-
tribution of the system state at the initial time of the assimi-
lation window t0 follows by applying Eq. (2) as

Pa(x0)∝ Pb(x0)P(y0,y1, . . .,ym|x0)∝ exp(−J (x0)) ,

J (x0)=
1
2
‖x0− xb

0‖
2
B−1

0
+

1
2

m∑
k=0
‖yk −Hk(xk)‖2R−1

k

. (6)

In the statistical approach, ensemble-based smoothers such
as the ensemble Kalman smoother (EnKS) are used to ap-
proximate the posterior Eq. (6) based on an ensemble of
states. Similar to the ensemble filters, the analysis ensemble
generated by a smoothing algorithm can be used to provide
an estimate of the posterior first-order moment. It also can be
used to provide a flow-dependent ensemble covariance ma-
trix to approximate the posterior true second-order moment.

The MAP estimate of the true state at the initial time of the
assimilation window can be obtained by solving the follow-
ing optimization problem:

min
x0
J (x0)=

1
2
‖x0− xb

0‖
2
B−1

0
+

1
2

m∑
k=0
‖yk −Hk(xk)‖2R−1

k

. (7)

This is the standard formulation of the four-dimensional vari-
ational (4D-Var) DA problem. The solution of the 4D-Var
problem is equivalent to the MAP of the smoothing posterior
in the Gaussian framework. The Jacobian of Eq. (7) with re-
spect to the model state at the initial time of the assimilation
window reads

∇x0J (x0)=B−1
0

(
x0− xb

0

)
+

m∑
k=0

MT
0,k HT

k R−1
k (Hk(xk)− yk) , (8)

where MT
0,k is the adjoint of the tangent linear model op-

erator, and HT
k is the adjoint of the observation operator
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sensitivity. Similar to the 3D-Var case (Eq. 4), the solution
of Eq. (7) provides a single best estimate (the analysis) of
the system state without providing consistent description of
the uncertainty associated with this estimate. The variational
problem (Eq. 7) is referred to as strong-constraint formula-
tion, where a perfect-model approach is considered. In the
presence of model errors, an additional term is added, re-
sulting in a weak-constraint formulation. A general practice
is to assume that the model errors follow a Gaussian dis-
tribution N (0, Qk), with Qk ∈ RNstate×Nstate being the model
error covariance matrix at time instant tk . In non-perfect-
model settings, an additional term characterizing state devi-
ations is added to the variational objectives (Eqs. 4, 7). The
model error term depends on the approach taken to solve the
weak-constraint problem, and usually involves the model er-
ror probability distribution.

In idealized settings, where the model is linear, the obser-
vation operator is linear, and the underlying probability dis-
tributions are Gaussian, the posterior is also Gaussian; how-
ever, this is rarely the case in real applications. In nonlinear
or non-Gaussian settings, the ultimate objective of a DA al-
gorithm is to sample all probability modes of the posterior
distribution, rather than just producing a single estimate of
the true state. Algorithms capable of accommodating non-
Gaussianity are too limited and have not been successfully
tested in large-scale settings.

Particle filters (PFs) (Doucet et al., 2001; Gordon et al.,
1993; Kitagawa, 1996; Van Leeuwen, 2009) are an attractive
family of nonlinear and non-Gaussian methods. This family
of filters is known to suffer from filtering degeneracy, espe-
cially in large-scale systems. Despite the fact that PFs do not
force restrictive assumptions on the shape of the underlying
probability distribution functions, they are not generally con-
sidered to be efficient without expensive tuning. While parti-
cle filtering algorithms have not yet been used operationally,
their potential applicability for high-dimensional problems
is illustrated, for example, by Rebeschini and Van Handel
(2015), Poterjoy (2016), Llopis et al. (2018), Beskos et al.
(2017), Potthast et al. (2018), Ades and van Leeuwen (2015),
and Vetra-Carvalho et al. (2018). Another approach for non-
Gaussian DA is to employ a Markov chain Monte Carlo
(MCMC) algorithm to directly sample the probability modes
of the posterior distribution. This, however, requires an ac-
curate representation of the prior distribution, which is gen-
erally intractable in this context. Moreover, following a re-
laxed, e.g., Gaussian, prior assumption in nonlinear settings
might be restrictive when a DA procedure is applied sequen-
tially over more than one assimilation window. This is mainly
due to fact that the prior distribution is a nonlinear trans-
formation of the posterior of a previous assimilation cycle.
Recently, an MCMC family of fully non-Gaussian DA al-
gorithms that works by sampling the posterior were devel-
oped in Attia and Sandu (2015), Attia et al. (2015, 2017a,
b, 2018), and Attia (2016). This family follows a Hamilto-
nian Monte Carlo (HMC) approach for sampling the pos-

terior; however, the HMC sampling scheme can be easily
replaced with other algorithms suitable for sampling com-
plicated, and potentially multimodal, probability distribu-
tions in high-dimensional state spaces. Relaxing the Gaus-
sian prior assumption is addressed in Attia et al. (2018),
where an accurate representation of the prior is constructed
by fitting a Gaussian mixture model (GMM) to the forecast
ensemble.

DATeS provides standard implementations of several fla-
vors of the algorithms mentioned here. One can easily
explore, test, or modify the provided implementations in
DATeS, and add more methodologies. As discussed later, one
can use existing components of DATeS, such as the imple-
mented numerical models, or add new implementations to be
used by other components of DATeS. However, it is worth
mentioning that the initial version of DATeS (v1.0) is not
meant to provide implementations of all state-of-the-art DA
algorithms; see, e.g., Vetra-Carvalho et al. (2018). DATeS,
however, provides an initial seed with example implemen-
tations, those could be discussed and enhanced by the ever-
growing community of DA researchers and experts. In the
next section, we provide a brief technical summary of the
main components of DATeS v1.0.

3 DATeS implementation

DATeS seeks to capture, in an abstract form, the common ele-
ments shared by most DA applications and solution method-
ologies. For example, the majority of the ensemble filtering
methodologies share nearly all the steps of the forecast phase,
and a considerable portion of the analysis step. Moreover,
all the DA applications involve common essential compo-
nents such as linear algebra routines, model discretization
schemes, and analysis algorithms.

Existing DA solvers have been implemented in different
languages. For example, high-performance languages such
as Fortran and C have been (and are still being) extensively
used to develop numerically efficient model implementations
and linear algebra routines. Both Fortran and C allow for ef-
ficient parallelization because these two languages are sup-
ported by common libraries designed for distributed mem-
ory systems such as MPI and shared memory libraries such
as Pthreads and OpenMP. To make use of these available re-
sources and implementations, one has to either rewrite all the
different pieces in the same programming language or have
proper interfaces between the different new and existing im-
plementations.

The philosophy behind the design of DATeS is that “a uni-
fied DA testing suite has to be open-source, easy to learn, and
able to reuse and extend available code with minimal effort”.
Such a suite should allow for easy interfacing with external
third-party code written in various languages, e.g., linear al-
gebra routines written in Fortran, analysis routines written in
Matlab, or “forecast” models written in C. This should help
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the researchers to focus their energy on implementing and
testing their own analysis algorithms. The next section de-
tails several key aspects of the DATeS implementation.

3.1 DATeS architecture

The DATeS architecture abstracts, and provides a set of mod-
ules of, the four generic components of any DA system.
These components are the linear algebra routines, a forecast
computer model that includes the discretization of the phys-
ical processes, error models, and analysis methodologies. In
what follows, we discuss each of these building blocks in
more detail, in the context of DATeS. We start with an ab-
stract discussion of each of these components, followed by
technical descriptions.

3.1.1 Linear algebra routines

The linear algebra routines are responsible for handling the
data structures representing essential entities such as model
state vectors, observation vectors, and covariance matrices.
This includes manipulating an instance of the corresponding
data. For example, a model state vector should provide meth-
ods for accessing/slicing and updating entries of the state
vector, a method for adding two state vector instances, and
methods for applying specific scalar operations on all entries
of the state vector such as evaluating the square root or the
logarithm.

3.1.2 Forecast model

The forecast computer model simulates a physical phenom-
ena of interest such as the atmosphere, ocean dynamics, and
volcanoes. This typically involves approximating the phys-
ical phenomena using a gridded computer model. The im-
plementation should provide methods for creating and ma-
nipulating state vectors and state-size matrices. The com-
puter model should also provide methods for creating and
manipulating observation vectors and observation-size matri-
ces. The observation operator responsible for mapping state-
size vectors into observation-size vectors should be part of
the model implementation as well. Moreover, simulating the
evolution of the computer model in time is carried out us-
ing numerical time integration schemes. The time integra-
tion scheme can be model-specific and is usually written in a
high-performance language for efficiency.

3.1.3 Error models

It is common in DA applications to assume a perfect fore-
cast model, a case where the model is deterministic rather
than stochastic. However, the background and observation
errors need to be treated explicitly, as they are essential in
the formulation of nearly all DA methodologies. We refer to
the DATeS entity responsible for managing and creating ran-
dom vectors, sampled from a specific probability distribution

function, as the “error model”. For example, a Gaussian er-
ror model would be completely set up by providing the first-
and second-order moments of the probability distribution it
represents.

3.1.4 Analysis algorithms

Analysis algorithms manipulate model states and observa-
tions by applying widely used mathematical operations to
perform inference operations. The popular DA algorithms
can be classified into filtering and smoothing categories. An
assimilation algorithm, a filter or a smoother, is implemented
to carry out a single DA cycle. For example, in the filter-
ing framework, an assimilation cycle refers to assimilating
data at a single observation time by applying a forecast and
an analysis step. On the other hand, in the smoothing con-
text, several observations available at discrete time instances
within an assimilation window are processed simultaneously
in order to update the model state at a given time over that
window; a smoother is designed to carry out the assimilation
procedure over a single assimilation window. For example,
EnKF and 3D-Var fall in the former category, while EnKS
and 4D-Var fall in the latter.

3.1.5 Assimilation experiments

In typical numerical experiments, a DA solver is applied
for several consecutive cycles to assess its long-term per-
formance. We refer to the procedure of applying the solver
to several assimilation cycles as the “assimilation process”.
The assimilation process involves carrying out the forecast
and analysis cycles repeatedly, creating synthetic observa-
tions or retrieving real observations, updating the reference
solution when available, and saving experimental results be-
tween consecutive assimilation cycles.

3.1.6 DATeS layout

The design of DATeS takes into account the distinction be-
tween these components and separates them in design fol-
lowing an object-oriented programming (OOP) approach. A
general description of DATeS architecture is given in Fig. 1.

The enumeration in Fig. 1 (numbers from 1 to 4 in cir-
cles) indicates the order in which essential DATeS objects
should be created. Specifically, one starts with an instance of
a model. Once a model object is created, an assimilation ob-
ject is instantiated, and the model object is passed to it. An as-
similation process object is then instantiated, with a reference
to the assimilation object passed to it. The assimilation pro-
cess object iterates the consecutive assimilation cycles and
saves and/or outputs the results which can be optionally ana-
lyzed later using visualization modules.

All DATeS components are independent so as to maximize
the flexibility in experimental design. However, each newly
added component must comply with DATeS rules in order to
guarantee interoperability with the other pieces in the pack-
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Figure 1. Diagram of the DATeS architecture.

age. DATeS provides base classes with definitions of the nec-
essary methods. A new class added to DATeS, for example,
to implement a specific new model, has to inherit the appro-
priate model base class and provide implementations of the
inherited methods from that base class.

In order to maximize both flexibility and generalizabil-
ity, we opted to handle configurations, inputs, and output of
DATeS object using “configuration dictionaries”. Parameters
passed to instantiate an object are passed to the class con-
structor in the form of key-value pairs in the dictionaries.
See Sect. 4 for examples on how to properly configure and
instantiate DATeS objects.

3.2 Linear algebra classes

The main linear algebra data structures essential for almost
all DA aspects are (a) model state-size and observation-size
vectors (also named state and observation vectors, respec-
tively), and (b) state-size and observation-size matrices (also
named state and observation matrices, respectively). A state
matrix is a square matrix of order equal to the model state-
space dimension. Similarly, an observation matrix is a square
matrix of order equal to the model observation space dimen-
sion. DATeS makes a distinction between state and obser-
vation linear algebra data structures. It is important to re-
call here that, in large-scale applications, full state covari-
ance matrices cannot be explicitly constructed in memory.
Full state matrices should only be considered for relatively
small problems and for experimental purposes. In large-scale
settings, where building state matrices is infeasible, low-
rank approximations or sparse representation of the covari-

ance matrices could be incorporated. DATeS provides simple
classes to construct sparse state and observation matrices for
guidance.

Third-party linear algebra routines can have widely differ-
ent interfaces and underlying data structures. For reusability,
DATeS provides unified interfaces for accessing and manip-
ulating these data structures using Python classes. The linear
algebra classes are implemented in Python. The functionali-
ties of the associated methods can be written either in Python
or in lower-level languages using proper wrappers. A class
for a linear algebra data structure enables updating, slicing,
and manipulating an instance of the corresponding data struc-
tures. For example, a model state vector class provides meth-
ods that enable accessing/slicing and updating entries of the
state vector, a method for adding two state vector instances,
and methods for applying specific scalar operations on all
entries of the state vector such as evaluating the square root
or the logarithm. Once an instance of a linear algebra data
structure is created, all its associated methods are accessible
via the standard Python dot operator. The linear algebra base
classes provided in DATeS are summarized in Table 1.

Python special methods are provided in a linear al-
gebra class to enable iterating a linear algebra data
structure entries. Examples of these special meth-
ods include__getitem__(), __setitem__(),
__getslice__(), __setslice__(), etc. These
operators make it feasible to standardize working with linear
algebra data structures implemented in different languages
or saved in memory in different forms.

DATeS provides linear algebra data structures represented
as NumPy ndarrays, and a set of NumPy-based classes to
manipulate them. Moreover, SciPy-based implementation of
sparse matrices is provided and can be used efficiently in
conjunction with both sparse and non-sparse data structures.
These classes, shown in Fig. 2, provide templates for de-
signing more sophisticated extensions of the linear algebra
classes.

3.3 Forecast model classes

Each numerical model needs an associated class provid-
ing methods to access its functionality. The unified forecast
model class design in DATeS provides the essential tasks
that can be carried out by the model implementation. Each
model class in DATeS has to inherit the model base class:
models_base.ModelBase or a class derived from it. A
numerical model class is required to provide access to the
underlying linear algebra data structures and time integra-
tion routines. For example, each model class has to provide
the method state_vector() that creates an instance of a
state vector class, and the method integrate_state()
that takes a state vector instance and time integration settings,
and returns a trajectory (list of states) evaluated at specified
future times. The base class provided in DATeS contains def-
initions of all the methods that need to be supported by a

Geosci. Model Dev., 12, 629–649, 2019 www.geosci-model-dev.net/12/629/2019/



A. Attia and A. Sandu: DATeS: a highly extensible data assimilation testing suite 635

Table 1. DA filtering routines provided by the initial version of DATeS (v1.0).

Linear algebra base class DATeS implementation

State vector objects with access to all related vector
operations

state_vector_base.StateVectorBase

Observation vector objects with related vector operations observation_vector_base.ObservationVectorBase
State matrix objects with methods implementing
necessary matrix operations

state_matrix_base.StateMatrixBase

Observation matrix objects providing methods for
related matrix operations

observation_matrix_base.ObservationMatrixBase

Figure 2. Python implementation of state vector, observation vector, state matrix, and observation matrix data structures. Both dense and
sparse state and observation matrices are provided.

numerical model class. The package DATeS v1.0 includes
implementations of several popular test models summarized
in Table 2.

While some linear algebra and the time integration rou-
tines are model-specific, DATeS also implements general-
purpose linear algebra classes and time integration routines
that can be reused by newly created models. For example,
the general integration class FatODE_ERK_FWD is based
on FATODE (Zhang and Sandu, 2014) explicit Runge–Kutta
(ERK) forward propagation schemes.

3.4 Error model classes

In many DA applications, the errors are additive and are
modeled by random variables normally distributed with zero
mean and a given or an unknown covariance matrix. DATeS
implements NumPy-based functionality for background, ob-
servation, and model errors as guidelines for more sophisti-
cated problem-dependent error models. The NumPy-based
error models in DATeS are implemented in the module
error_models_numpy. These classes are derived from
the base class ErrorsModelBase and provide methodolo-
gies to sample the underlying probability distribution, evalu-
ate the value of the density function, and generate statistics
of the error variables based on model trajectories and the set-
tings of the error model. Note that, while DATeS provides
implementations for Gaussian error models, the Gaussian as-
sumption itself is not restrictive. Following the same struc-
ture, or by inheritance, one can easily create non-Gaussian
error models with minimal efforts. Moreover, the Gaussian

error models provided by DATeS support both correlated and
uncorrelated errors, and it constructs the covariance matri-
ces accordingly. The covariance matrices are stored in ap-
propriate sparse formats, unless a dense matrix is explicitly
requested. Since these covariance matrices are either state or
observation matrices, they provide access to all proper linear
algebra routines. This means that the code written with ac-
cess to an observation error model and its components should
work for both correlated and uncorrelated observations.

3.5 Assimilation classes

Assimilation classes are responsible for carrying out a sin-
gle assimilation cycle (i.e., over one assimilation window)
and optionally printing or writing the results to files. For
example, an EnKF object should be designed to carry out
one cycle consisting of the “forecast” and the “analysis”
steps. The basic assimilation objects in DATeS are a filter-
ing object, a smoothing object, and a hybrid object. DATeS
provides the common functionalities for filtering objects in
the base class filters_base.FiltersBase; all de-
rived filtering classes should have it as a super class. Simi-
larly, smoothing objects are to be derived from the base class
smoothers_base.SmoothersBase. A hybrid object
can inherit methods from both filtering and smoothing base
classes.

A model object is passed to the assimilation object con-
structor via configuration dictionaries to give the assimilation
object access to the model-based data structures and func-
tionalities. The settings of the assimilation object, such as
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Table 2. DA filtering routines provided by the initial version of DATeS (v1.0).

Forecast model DATeS implementation

Three-variable Lorenz model (Lorenz, 1963) lorenz_models.Lorenz3
Lorenz-96 model (Lorenz, 1996) lorenz_models.Lorenz96
Cartesian shallow-water equations model (Gustafsson,
1971; Navon and De-Villiers, 1986)

cartesian_swe_mode.CartesianSWE

Quasi-geostrophic (QG) model with double-gyre wind
forcing and biharmonic friction (Sakov and Oke, 2008),
written in Fortran, with a F2Py wrapper

qg_1p5_model.QG1p5

Table 3. DA filtering routines provided by the initial version of DATeS v1.0.

Filtering algorithm DATeS implementation

Standard Kalman filter equations (Kalman and Bucy, 1961; Kalman, 1960) KF.KalmanFilter
Perturbed-observation (stochastic) EnKF (Burgers et al., 1998; EnKF.EnKF
Houtekamer and Mitchell, 1998)
Deterministic EnKF (Sakov and Oke, 2008) EnKF.DEnKF
Ensemble transform Kalman filter (ETKF) (Bishop et al., 2001) EnKF.ETKF
Local least-squares EnKF (Anderson, 2003) EnKF.LLSEnKF
Hybrid Monte Carlo (HMC) sampling filter (Attia and Sandu, 2015) hmc_filter.HMCFilter
Family of cluster sampling filters (Attia et al., 2018) multi_chain_mcmc_filter.MultiChainMCMC
A vanilla implementation of the particle filter (Gordon et al., 1993) PF.PF

the observation time, the assimilation time, the observation
vector, and the forecast state or ensemble, are also passed to
the constructor upon instantiation and can be updated during
runtime.

Table 3 summarizes the filters implemented in the initial
version of the package, which is DATeS v1.0. Each of these
filtering classes can be instantiated and run with any of the
DATeS model objects. Moreover, DATeS provides simpli-
fied implementations of both 3D-Var and 4D-Var assimila-
tion schemes. The objective function, e.g., the negative log
posterior, and the associated gradient are implemented in-
side the smoother class and require the tangent linear model
to be implemented in the passed forecast model class. The
adjoint is evaluated using FATODE following a checkpoint-
ing approach, and the optimization step is carried out using
SciPy optimization functions. The settings of the optimizer
can be fine-tuned via the configuration dictionaries. The 3D-
and 4D-Var implementations provided by DATeS are exper-
imental and are provided as a proof of concept. The varia-
tional aspects of DATeS are being continuously developed
and will be made available in future releases of the package.

Covariance inflation and localization are ubiquitously used
in all ensemble-based assimilation systems. These two meth-
ods are used to counteract the effect of using ensembles of
finite size. Specifically, covariance inflation counteracts the
loss of variance incurred in the analysis step and works by
inflating the ensemble members around their mean. This is
carried out by magnifying the spread of ensemble members
around their mean by a predefined inflation factor. The infla-

tion factor could be a scalar, i.e., space–time independent, or
even varied over space and/or time. Localization, on the other
hand, mitigates the accumulation of long-range spurious cor-
relations. Distance-based covariance localization is widely
used in geoscientific sciences, and applications, where cor-
relations are damped out with increasing distance between
grid points. The performance of the assimilation algorithm is
critically dependent on tuning the parameters of these tech-
niques. DATeS provide basic utility functions (see Sect. 3.7)
for carrying out inflation and localization which can be used
in different forms based on the specific implementation of
the assimilation algorithms. The work in Attia and Constan-
tinescu (2018) reviews inflation and localization and presents
a framework for adaptive tuning of the parameters of these
techniques, with all implementations and numerical experi-
ments carried out entirely in DATeS.

3.6 Assimilation process classes

A common practice in sequential DA experimental settings is
to repeat an assimilation cycle over a given time span, with
similar or different settings at each assimilation window. For
example, one may repeat a DA cycle on several time intervals
with different output settings, e.g., to save and print results
only every fixed number of iterations. Alternatively, the DA
process can be repeated over the same time interval with dif-
ferent assimilation settings to test and compare results. We
refer to this procedure as an “assimilation process”. Exam-
ples of numerical comparisons, carried out using DATeS, can
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Figure 3. The assimilation process in DATeS.

be found in Attia et al. (2018) and Attia and Constantinescu
(2018), and in Sect. 4.6.
assimilation_process_base.Assimilation

Process is the base class from which all assimilation pro-
cess objects are derived. When instantiating an assimilation
process object, the assimilation object, the observations, and
the assimilation time instances are passed to the constructor
through configuration dictionaries. As a result, the assimila-
tion process object has access to the model and its associated
data structures and functionalities through the assimilation
object.

The assimilation process object either retrieves real obser-
vations or creates synthetic observations at the specified time
instances of the experiment. Figure 3 summarizes DATeS as-
similation process functionality.

3.7 Utility modules

Utility modules provide additional functionality, such as the
_utility_configs module which provides functions
for reading, writing, validating, and aggregating configura-
tion dictionaries. In DA, an ensemble is a collection of state
or observation vectors. Ensembles are represented in DATeS
as lists of either state or observation vector objects. The util-
ity modules include functions responsible for iterating over
ensembles to evaluate ensemble-related quantities of inter-
est, such as ensemble mean, ensemble variance/covariance,
and covariance trace. Covariance inflation and localization
are critically important for nearly all ensemble-based assim-
ilation algorithms. DATeS abstracts tools and functions com-
mon to assimilation methods, such as inflation and local-
ization, where they can be easily imported and reused by
newly developed assimilation routines. The utility module
in DATeS provides methods to carry out these procedures in
various modes, including state-space and observation space
localization. Moreover, DATeS supports space-dependent co-

variance localization; i.e., it allows varying the localization
radii and inflation factors over both space and time.

Ensemble-based assimilation algorithms often require ma-
trix representation of ensembles of model states. In DATeS,
ensembles are represented as lists of states, rather than full
matrices of size Nstate×Nens. However, it provides utility
functions capable of efficiently calculating ensemble statis-
tics, including ensemble variances, and covariance trace.
Moreover, DATeS provides matrix-free implementations of
the operations that require ensembles of states, such as a
matrix–vector product, where the matrix is involved in a rep-
resentation of an ensemble of states.

The module dates_utility provides access to all util-
ity functions in DATeS. In fact, this module wraps the func-
tionality provided by several other specialized utility rou-
tines, including the sample given in Table 4. The utility mod-
ule provides other general functions such as handling file
downloading, and functions for file I/O. For a list of all func-
tions in the utility module, see the user manual (Attia et al.,
2016).

4 Using DATeS

The sequence of steps needed to run a DA experiment in
DATeS is summarized in Fig. 4. This section is devoted to
explaining these steps in the context of a working example
that uses the QG-1.5 model (Sakov and Oke, 2008) and car-
ries out DA using a standard EnKF formulation.

4.1 Step1: initialize DATeS

Initializing a DATeS run involves defining the root directory
of DATeS as an environment variable and adding the paths of
DATeS source modules to the system path. This can be done
by executing the code snippet in Fig. 5 in the DATeS root
directory.
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Table 4. A sample of the modules wrapped by the main utility module dates_utility.

Module name Functionality provided

_utility_configs Handles configuration dictionaries, including aggregating, reading, and
writing configuration dictionaries

_utility_stat Evaluates statistical quantities such as moments of an ensemble (e.g.,
list of model state or observation objects)

_utility_machine_learning Carries out machine learning algorithms such as fitting a Gaussian mix-
ture model to an ensemble

_utility_data_assimilation Carries out general DA tasks such as ensemble inflation, covariance
localization, and evaluating performance metrics including root mean
square errors (RMSEs) and rank histogram uniformity measures.

Figure 4. The sequence of essential steps required in order to run a DA experiment in DATeS.

Figure 5. Initializing the DATeS run.

4.2 Step2: create a model object

QG-1.5 is a nonlinear 1.5-layer reduced-gravity QG model
with double-gyre wind forcing and biharmonic friction
(Sakov and Oke, 2008).

4.2.1 Quasi-geostrophic model

This model is a numerical approximation of the equations

qt = ψx − εJ (ψ,q)−A1
3ψ + 2π sin(2πy),

q =1ψ −Fψ,

J (ψ,q)≡ ψxqx −ψyqy, (9)

where 1 := ∂2/∂x2
+ ∂2/∂y2 and ψ is the surface eleva-

tion. The values of the model coefficients in Eq. (9) are ob-
tained from Sakov and Oke (2008) and are described as fol-
lows: F = 1600, ε = 10−5, and A= 2× 10−12. The domain
of the model is a 1× 1 (space units) square, with 0≤ x ≤ 1,
0≤ y ≤ 1, and is discretized by a grid of size 129× 129
(including boundaries). The boundary conditions used are
ψ =1ψ =12ψ = 0. The dimension of the model state vec-
tor is Nstate = 16641. This is a synthetic model where the
scales are not relevant, and we use generic space, time, and
solution amplitude units. The time integration scheme used
is the fourth-order Runge–Kutta scheme with a time step
of 1.25 (time units). The model forward propagation core
is implemented in Fortran. The QG-1.5 model is run over
1000 model time steps, with observations made available ev-
ery 10 time steps.

4.2.2 Observations and observation operators

We use a standard linear operator to observe 300 compo-
nents of ψ with observation error variance set to 4.0 (units
squared). The observed components are uniformly dis-
tributed over the state vector length, with an offset that is
randomized at each filtering cycle. Synthetic observations are
obtained by adding white noise to measurements of the sea
surface height level (SSH) extracted from a reference model
run with lower viscosity. To create a QG model object with
these specifications, one executes the code snippet in Fig. 6.

4.3 Step3: create an assimilation object

One now proceeds to create an assimilation object. We con-
sider a deterministic implementation of EnKF (DEnKF) with
ensemble size equal to 20, and parameters tuned optimally
as suggested in Sakov and Oke (2008). Covariance local-
ization is applied via a Hadamard product (Houtekamer and
Mitchell, 2001). The localization function is Gaspari–Cohn
(Gaspari and Cohn, 1999) with a localization radius of 12
grid cells. The localization is carried out in the observation
space by decorrelating both HB and HBHT , where B is the
ensemble covariance matrix, and H is the linearized observa-
tion operator. In the present setup, the observation operator
H is linear, and thus H=H.

Ensemble inflation is applied to the analysis ensemble of
anomalies at the end of each assimilation cycle of DEnKF
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Figure 6. Creating the QG model object.

Figure 7. Creating a DEnKF filtering object.

with an inflation factor of 1.06. The code snippet in Fig. 7
creates a DEnKF filtering object with these settings.

Most of the methods associated with the DEnKF object
will raise exceptions if immediately invoked at this point.
This is because several keys in the filter configuration dictio-
nary, such as the observation, the forecast time, the analysis
time, and the assimilation time, are not yet appropriately as-
signed. DATeS allows creating assimilation objects without
these options to maximize flexibility. A convenient approach
is to create an assimilation process object that, among other
tasks, can properly update the filter configurations between
consecutive assimilation cycles.

4.4 Step4: create an assimilation process

We now test DEnKF with the QG model by repeating the as-
similation cycle over a time span from 0 to 1250 with offsets
of 12.5 time units between each two consecutive observa-
tion/assimilation times. An initial ensemble is created by the
numerical model object. An experimental time span is set for
observations and assimilation. Here, the assimilation time in-
stances da_checkpoints are the same as the observation
time instances obs_checkpoints, but they can in general
be different, leading to either synchronous or asynchronous
assimilation settings. This is implemented in the code snippet
in Fig. 8.

Here, experiment is responsible for creating syn-
thetic observations at all time instances defined by
obs_checkpoints (except the initial time). To create
synthetic observations, the truth at the initial time (0 in this
case) is obtained from the model and is passed to the filter-

ing process object experiment, which in turn propagates
it forward in time to assimilation time points.

Finally, the assimilation experiment is executed by run-
ning the code snippet in Fig. 9.

4.5 Experiment results

The filtering results are printed to screen and are saved
to files at the end of each assimilation cycle as instructed
by the output_configs dictionary of the object
experiment. The output directory structure is controlled
via the options in the output configuration dictionary
output_configs of the FilteringProcess object,
i.e., experiment. All results are saved in appropriate
subdirectories under a main folder named Results in
the root directory of DATeS. We will refer to this directory
henceforth as DATeS results directory. The default behavior
of a FilteringProcess object is to create a folder
named Filtering_Results in the DATeS results
directory and to instruct the filter object to save/output the
results every file_output_iter whenever the flag
file_output is turned on. Specifically, the DEnKF object
creates three directories named Filter_Statistics,
Model_States_Repository, and
Observations_Repository, respectively. The
root mean square (rms) forecast and analysis errors are
evaluated at each assimilation cycle and are written to a file
under the Filter_Statistics directory. The output
configurations of the filter object of the DEnKF class, i.e.,
denkf_filter, instruct the filter to save all ensemble
members (both forecast and analysis) to files by setting
the value of the option file_output_moment_only
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Figure 8. Creating a filter process object to carry out DEnKF filtering using the QG model.

Figure 9. Running the filtering experiment.

to False. The true solution (reference state), the anal-
ysis ensemble, and the forecast ensembles are all saved
under the directory Model_States_Repository,
while the observations are saved under the directory
Observations_Repository. We note that, while here
we illustrate the default behavior, the output directories are
fully configurable.

Figure 10 shows the reference initial state of the QG
model, an example of the observational grid used, and an ini-
tial forecast state. The initial forecast state in Fig. 10 is the
average of an initial ensemble collected from a long run of
the QG model.

The true field, the forecast errors, and the DEnKF analyses
errors at different time instances are shown in Fig. 11.

Typical solution quality metrics in the ensemble-based
DA literature include RMSE plots and rank (Talagrand) his-
tograms (Anderson, 1996; Candille and Talagrand, 2005).

Upon termination of a DATeS run, executable
files can be cleaned up by calling the function
clean_executable_files() available in the
utility module (see the code snippet in Fig. 12).

4.6 DATeS for benchmarking

4.6.1 Performance metrics

In the linear settings, the performance of an ensemble-based
DA filter could be judged based on two factors. Firstly, con-
vergence is explained by its ability to track the truth and sec-
ondly by the quality of the flow-dependent covariance matrix
generated given the analysis ensemble.

The convergence of the filter is monitored by inspecting
the RMSE, which represents an ensemble-based standard de-
viation of the difference between reality, or truth, and the
model-based prediction. In synthetic experiments, where the

Figure 10. The QG-1.5 model. The truth (reference state) at the
initial time (t = 0) of the assimilation experiment is shown in
panel (a). The red dots indicate the locations of observations for one
of the test cases employed. The initial forecast state, taken as the av-
erage of the initial ensemble at time t = 0, is shown in panel (b).

Figure 11. Data assimilation results. The reference fieldψ , the fore-
cast errors, and the analysis errors at t = 300, t = 600, t = 900, and
t = 1200 (time units) are shown. Here, the forecast error is defined
as the reference field minus the average of the forecast ensemble,
and the analysis error is the reference field minus the average of the
analysis ensemble.
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Figure 12. Cleanup of DATeS executable files.

Figure 13. Data assimilation results. In panel (a), “no assimilation” refers to the RMSE of the initial forecast (the average of the initial
forecast ensemble) propagated forward in time over the 100 cycles without assimilating observations into it. The rank histogram of where
the truth ranks among analysis ensemble members is shown in panel (b). The ranks are evaluated for every 13th variable in the state vector
(past the correlation bound) after 100 assimilation cycles.

model representation of the truth is known, the RMSE reads

RMSE=

√√√√ 1
Nstate

Nstate∑
i=1

(xi − x
True
i )2, (10)

where x= (x1,x2, . . .,xNstate)
T
∈ RNstate is the prediction at

a given time instant, e.g., the forecast ensemble mean, and
xTrue
∈ RNstate is the verification, e.g., the true model state

at the same time instant. For real applications, the states are
generally replaced with observations. The rank (Talagrand)
histogram (Anderson, 1996; Candille and Talagrand, 2005)
could be used to assess the spread of the ensemble and its
coverage to the truth. Generally speaking, the rank histogram
plots the rank of the truth (or observations) compared to the
ensemble members (or equivalent observations), ordered in-
creasingly in magnitude. A nearly uniform rank histogram is
desirable and suggests that the truth is indistinguishable from
the ensemble members. A mound rank histogram indicates
an overdispersed ensemble, a while U-shaped histogram in-
dicates underdispersion. However, mound rank histograms
are rarely seen in practice, especially for large-scale prob-
lems. See, e.g., Hamill (2001) for a mathematical description
and a detailed discussion on the usefulness and interpretation
of rank histograms.

Figure 13a shows an RMSE plot of the results of the ex-
periment presented in Sect. 4.5. The histogram of the rank
statistics of the truth, compared to the analysis ensemble, is
shown in Fig. 13b.

For benchmarking, one needs to generate scalar represen-
tations of the RMSE and the uniformity of a rank histogram
of a numerical experiment. The average RMSE can be used

to compare the accuracy of a group of filters. To generate a
scalar representation of the uniformity of a rank histogram,
we fit a beta distribution to the rank histogram, scaled to
the interval [0,1], and evaluate the Kullback–Leibler (KL)
divergence (Kullback and Leibler, 1951) between the fit-
ted distribution and a uniform distribution. The KL di-
vergence between two beta distributions Beta(α,β), and
Beta(α′,β ′) isDKL

(
Beta(α,β) |Beta(α′ β ′)

)
= ln0(α+β)−

ln(α β)−ln0(α′+β ′)+ln(α′ β ′)+(α−α′)
(
ψ(α)−ψ(α′)

)
+

(β −β ′)
(
ψ(β)−ψ(β ′)

)
, where ψ(·)= 0′(·)/0(·) is the

digamma function, i.e., the logarithmic derivative of the
gamma function. Here, we set Beta(α′,β ′) to a uniform dis-
tribution by setting α′ = β ′ = 1. We consider a small, e.g.,
closer to 0, KL distance to be an indication of a nearly uni-
form rank histogram and consequently an indication of a
well-dispersed ensemble. An alternative measure of rank his-
togram uniformity is to average the absolute distances of
bins’ heights from a uniformly distributed rank histogram
(Bessac et al., 2018). DATeS provides several utility func-
tions to calculate such metrics for a numerical experiment.

Figure 14 shows several rank histograms, along with uni-
form distribution, and fitted beta distributions. The KL-
divergence measure is indicated under each panel. Results
in Fig. 14 suggest that the fitted beta distribution parameters
give, in most cases, a good scalar description of the shape of
the histogram. Moreover, one can infer the shape of the rank
histogram from the parameters of the fitted beta distribution.
For example, if α > 1 and β > 1, the histogram has a mound
shape, and is U-shaped if α < 1 and β < 1. The histogram is
closer to uniformity as the parameters α, β both approach 1.
Table 5 shows both KL distance between fitted beta distribu-
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Figure 14. Rank histograms with fitted beta distributions. The KL-divergence measure is indicated under each panel.

Table 5. Measures of uniformity of the rank histograms shown in Fig. 14.

Panel 1 2 3 4 5 6

DKL(β|U) 0.198 0.231 0.022 0.018 0.065 0.272
Average distance to U 0.085 0.038 0.005 0.011 0.008 0.010

tion with respect to a uniform one, and the average distances
between histogram bins and a uniform one.

4.6.2 Benchmarking

The architecture of DATeS makes it easy to generate bench-
marks for a new experiment. For example, one can write
short scripts to iterate over a combination of settings of a fil-
ter to find the best possible results. As an example, consider
the standard 40-variable Lorenz-96 model (Lorenz, 1996) de-
scribed by the equations

dxi
dt
= xi−1 (xi+1− xi−2)− xi +F ; i = 1,2, . . .,40, (11)

where x= (x1,x2, . . .,x40)
T
∈ R40 is the state vector, with

periodic boundaries, i.e., x0 ≡ x40, and the forcing param-
eter is set to F = 8. These settings make the system chaotic
(Lorenz and Emanuel, 1998) and are widely used in synthetic
settings for geoscientific applications. Adjusting the inflation
factor and the localization radius for EnKF filter is crucial.
Consider the case where one is testing an adaptive inflation
scheme and would like to decide on the ensemble size and
the benchmark inflation factor to be used. As an example
of benchmarking, we run the following experiment over a
time interval [0,30] (units), where Eq. (11) is integrated for-
ward in time using a fourth-order Runge–Kutta scheme with
model step size 0.005 (units). Assume that synthetic observa-
tions are generated every 20 model steps, where every other
entry of the model state is observed. We test the DEnKF al-

gorithm, with the fifth-order piecewise-rational function of
Gaspari and Cohn (Gaspari and Cohn, 1999) for covariance
localization. The localization radius is held constant and is
set to l = 4, while the inflation factor is varied for each ex-
periment. The experiments are repeated for ensemble sizes
Nens = 5,10, . . .,40. We report the results over the last two-
thirds of the experiments’ time span, i.e., over the interval
[10,30], to avoid spinup artifacts. This interval, consisting of
the last 200 assimilation cycles out of 300, will be referred
to as the “testing time span”. Any experiment that results in
an average RMSE of more than 0.65 over the testing time
span is discarded, and the filter used is seen to diverge. The
numerical results are summarized in Figs. 15 and 16.

Figure 15 shows the average RMSE results and the KL
distances between a beta distribution fitted to the analysis
rank histogram of each experiment, and a uniform distri-
bution. These plots give a preliminary idea of the plausible
regimes of both ensemble size and inflation factor that should
be used to achieve the best performance of the filter used
under the current experimental settings. For example, for an
ensemble size Nens = 20, the inflation factor should be set
approximately to 1.01–1.07 to give both a small RMSE and
an analysis rank histogram close to uniform.

Concluding the best inflation factor for a given ensem-
ble size, based on Fig. 15, however, could be tricky. Fig-
ure 16 shows the inflation factors resulting in minimum aver-
age RMSE and minimum KL distance to uniformity. Specif-
ically, for each ensemble size, a red triangle refers to the ex-
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Figure 15. Data assimilation results with DEnKF applied to Lorenz-96 system. RMSE results on a log scale are shown in panel (a). The KL
distances between the analysis rank histogram and a uniform rank histogram are shown in panel (b). The localization radius is fixed to 4.

Figure 16. Data assimilation results with DEnKF applied to
Lorenz-96 system. The minimum average RMSE over the inter-
val [10,30] is indicated by red triangles. The minimum average KL
distance between the analysis rank histogram and a uniformly dis-
tributed rank histogram [10,30] is indicated by blue tripods. We
show the results for every choice of the ensemble size. The local-
ization radius is fixed to 4.

periment that resulted in minimum average RMSE over the
testing time span, out of all benchmarking experiments car-
ried out with this ensemble size. Similarly, the experiment
that yielded minimum KL divergence to a uniform rank his-
togram is indicated by a blue tripod.

To answer the question about the ensemble size, we pick
the ensemble size Nens = 25, given the current experimental
setup. The reason is that Nens = 25 is the smallest ensemble
size that yields small RMSE and is a well-dispersed ensem-
ble as explained by Fig. 16. As for the benchmark inflation
factor, the results in Fig. 16 show that for an ensemble size
Nens = 25, the best choice of an inflation factor is approxi-
mately 1.03–1.05 for Gaspari–Cohn localization with a fixed
radius of 4.

Despite being a relatively easy process, unfortunately, gen-
erating a set of benchmarks for all possible combinations
of numerical experiments is a time-consuming process and
is better carried out by the DA community. Some example
scripts for generating and plotting benchmarking results are
included in the package for guidance.

Note that, when the Gaussian assumption is severely vio-
lated, standard benchmarking tools, such as RMSE and rank

histograms, should be replaced with, or at least supported by,
tools capable of assessing ensemble coverage of the poste-
rior distribution. In such cases, MCMC methods, including
those implemented in DATeS (Attia and Sandu, 2015; Attia
et al., 2018; Attia, 2016), could be used as a benchmarking
tool (Law and Stuart, 2012).

5 Extending DATeS

DATeS aims at being a collaborative environment and is de-
signed such that adding DA components to the package is
as easy and flexible as possible. This section describes how
new implementations of components such as numerical mod-
els and assimilation methodologies can be added to DATeS.

The most direct approach is to write the new implementa-
tion completely in Python. This, however, may sacrifice ef-
ficiency or may not be feasible when existing code in other
languages needs to be reused. One of the main characteristics
of DATeS is the possibility of incorporating code written in
low-level languages. There are several strategies that can be
followed to interface existing C or Fortran code with DATeS.
Amongst the most popular tools are SWIG and F2Py for in-
terfacing Python code with existing implementations written
in C and Fortran, respectively.

Whether the new contribution is written in Python, in C, or
in Fortran, an appropriate Python class that inherits the corre-
sponding base class, or a class derived from it, has to be cre-
ated. The goal is to design new classes that are conformable
with the existing structure of DATeS and can interact appro-
priately with new as well as existing components.

5.1 Adding a numerical model class

A new model class has to be created as a subclass of
ModelsBase or a class derived from it. The base class
ModelsBase, similar to all base classes in DATeS, con-
tains headers of all the functions that need to be provided
by a model class to guarantee that it interacts properly with
other components in DATeS.
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Figure 17. Illustration of a numerical model class named MyModel and relations to the linear algebra and error models classes. A dashed
arrow refers to an “import” relation, and a solid arrow represents an “inherit” relation.

The first step is to grant the model object access to lin-
ear algebra data structures and to error models. Appropriate
classes should be imported in a numerical model class:

– Linear algebra includes state vector, state matrix, obser-
vation vector, and observation matrix.

– Error models include background, model, and observa-
tion error models.

This gives the model object access to model-based data
structures and error entities necessary for DA applications.
Figure 17 illustrates a class of a numerical model named
MyModel, along with all the essential classes imported by
it.

The next step is to create Python-based implementations
for the model functionalities. As shown in Fig. 17, the corre-
sponding methods have descriptive names in order to ease
the use of DATeS functionality. For example, the method
state_vector() creates (or initializes) a state vector
data structure. Details of each of the methods in Fig. 17 are
given in the DATeS user manual (Attia et al., 2016).

As an example, suppose we want to create a model class
name MyModel using NumPy and SciPy (for sparse ma-
trices) linear algebra data structures. The code snippet in
Fig. 18 shows the implementation of such a class.

Note that in order to guarantee extensibility of the pack-
age we have to fix the naming of the methods associated

Geosci. Model Dev., 12, 629–649, 2019 www.geosci-model-dev.net/12/629/2019/



A. Attia and A. Sandu: DATeS: a highly extensible data assimilation testing suite 645

Figure 18. The leading lines of an implementation of a class for the model MyModel derived from the models’ base class ModelsBase.
Linear algebra objects are derived from NumPy-based (or SciPy-based) objects.

with linear algebra classes, and even if only binary files are
provided, the Python-based linear algebra methods must be
implemented. If the model functionality is fully written in
Python, the implementation of the methods associated with
a model class is straightforward, as illustrated in Attia et al.
(2016). On the other hand, if a low-level implementation of
a numerical model is given, these methods wrap the corre-
sponding low-level implementation.

5.2 Adding an assimilation class

The process of adding a new class for an assimilation
methodology is similar to creating a class for a numerical
model; however, it is expected to require less effort. For ex-
ample, a class implementation of a filtering algorithm uses
components and tools provided by the passed model and by
the encapsulated linear algebra data structures and methods.
Moreover, filtering algorithms belonging to the same fam-
ily, such as different flavors of the well-known EnKF, are
expected to share a considerable amount of infrastructure.
Python inheritance enables the reuse of methods and vari-
ables from parent classes.

To create a new class for DA filtering, one derives it from
the base class FiltersBase, imports appropriate routines,
and defines the necessary functionalities. Note that each as-
similation object has access to a model object and conse-

quently to the proper linear algebra data structures and as-
sociated functionalities through that model.

Unlike the base class for numerical models
(ModelsBase), the filtering base class FiltersBase
includes actual implementations of several widely used
solvers. For example, an implementation of the method
FiltersBase.filtering_cycle() is provided to
carry out a single filtering cycle by applying a forecast phase
followed by an analysis phase (or vice versa, depending on
stated configurations).

Figure 19 illustrates a filtering class named MyFilter
that works by carrying out analysis and forecast steps in the
ensemble-based statistical framework.

The code snippet in Fig. 20 shows the leading lines of an
implementation of the MyFilter class.

6 Discussion and concluding remarks

This work describes DATeS, a flexible and highly extensi-
ble package for solving data assimilation problems. DATeS
seeks to provide a unified testing suite for data assimilation
applications that allows researchers to easily compare differ-
ent methodologies in different settings with minimal coding
effort. The core of DATeS is written in Python. The main
functionalities, such as model propagation, filtering, and
smoothing code, can however be written in high-performance
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Figure 19. Illustration of a DA filtering class MyFilter and its relation to the filtering base class. A solid arrow represents an “inherit”
relation.

Figure 20. The leading lines of an implementation of a DA filter; the MyFilter class is derived from the filters’ base class FiltersBase.

languages such as C or Fortran to attain high levels of com-
putational efficiency.

While we introduced several assimilation schemes in this
paper, the current version, DATeS v1.0, emphasizes the sta-
tistical assimilation methods. DATeS provide the essential
infrastructure required to combine elements of a variational
assimilation algorithm with other parts of the package. The
variational aspects of DATeS, however, require additional
work that includes efficient evaluation of the adjoint model,

checkpointing, and handling weak constraints. A new version
of the package, under development, will carefully address
these issues and will provide implementations of several vari-
ational schemes. The variational implementations will be de-
rived from the 3D- and 4D-Var classes implemented in the
current version (DATeS v1.0).

The current version of the package presented in this work,
DATeS v1.0, can be situated between professional data as-
similation packages such as DART and simplistic research-
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grade implementations. DATeS is well suited for educational
purposes as a learning tool for students and newcomers to the
data assimilation research field. It can also help data assim-
ilation researchers develop specific components of the data
assimilation process and easily use them with the existing
elements of the package. For example, one can develop a
new filter and interface an existing physical model, and error
models, without the need to understand how these compo-
nents are implemented. This requires unifying the interfaces
between the different components of the data assimilation
process, which is an essential feature of DATeS. These fea-
tures allow for optimal collaboration between teams working
on different aspects of a data assimilation system.

To contribute to DATeS, by adding new implementations,
one must comply with the naming conventions given in the
base classes. This requires building proper Python interfaces
for the implementations intended to be incorporated with the
package. Interfacing operational models, such the Weather
Research and Forecasting (WRF) model (Skamarock et al.,
2005), in the current version, DATeS v1.0, is expected to re-
quire substantial work. Moreover, DATeS does not yet sup-
port parallelization, which limits its applicability in opera-
tional settings.

The authors plan to continue developing DATeS with
the long-term goal of making it a complete data assimila-
tion testing suite that includes support for variational meth-
ods, as well as interfaces with complex models such as
quasi-geostrophic global circulation models. Parallelization
of DATeS, and interfacing large-scale models such as the
WRF model, will also be considered in the future.

Code and data availability. The code of DATeS v1.0 is available
at https://doi.org/10.5281/zenodo.1323207 (Attia, 2018). The on-
line documentation and alternative download links are available at
http://people.cs.vt.edu/~attia/DATeS/index.html (last access:2 Jan-
uary 2019).

Author contributions. AA developed the package and performed
the numerical simulations. The two authors wrote the paper, and
AS supervised the whole project.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors would like to thank Ma-
hesh Narayanamurthi, Paul Tranquilli, Ross Glandon, and
Arash Sarshar from the Computational Science Laboratory (CSL)
at Virginia Tech, and Vishwas Rao from the Argonne National Lab-
oratory, for their contributions to an initial version of DATeS. This
work has been supported in part by awards NSF CCF-1613905,
NSF ACI–1709727, and AFOSR DDDAS 15RT1037, and by the
CSL at Virginia Tech.

Edited by: Ignacio Pisso
Reviewed by: Kody Law and three anonymous referees

References

Ades, M. and van Leeuwen, P. J.: The equivalent-weights particle
filter in a high-dimensional system, Q. J. Roy. Meteor. Soc., 141,
484–503, 2015.

Anderson, J. L.: A method for producing and evaluating probabilis-
tic forecasts from ensemble model integrations, J. Climate, 9,
1518–1530, 1996.

Anderson, J. L.: A local least squares framework for ensemble fil-
tering, Mon. Weather Rev., 131, 634–642, 2003.

Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R.,
and Avellano, A.: The data assimilation research testbed: A com-
munity facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009.

Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods,
algorithms, and applications, The Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, USA, vol. 11, ISBN
9781611974539, 2016.

Attia, A.: Advanced Sampling Methods for Solving Large-Scale
Inverse Problems, PhD thesis, Virginia Tech, available at: http:
//hdl.handle.net/10919/73683 (last access: 2 February 2019),
2016.

Attia, A.: a-attia/DATeS: Initial version of DATeS (Version v1.0),
Zenodo, https://doi.org/10.5281/zenodo.1323207, 2018.

Attia, A. and Constantinescu, E.: An Optimal Experimental Design
Framework for Adaptive Inflation and Covariance Localization
for Ensemble Filters, arXiv preprint arXiv:1806.10655, under re-
view, 2018.

Attia, A. and Sandu, A.: A Hybrid Monte Carlo sampling filter for
non-Gaussian data assimilation, AIMS Geosciences, 1, 41–78,
https://doi.org/10.3934/geosci.2015.1.41, 2015.

Attia, A., Rao, V., and Sandu, A.: A sampling approach for four di-
mensional data assimilation, in: Dynamic Data-Driven Environ-
mental Systems Science, Springer, Cham, Switzerland, 215–226,
2015.

Attia, A., Glandon, R., Tranquilli, P., Narayanamurthi, M., Sarshar,
A., and Sandu, A.: DATeS: A Highly-Extensible Data Assim-
ilation Testing Suite, available at: http://people.cs.vt.edu/~attia/
DATeS (last access: 2 January 2019), 2016.

Attia, A., Rao, V., and Sandu, A.: A Hybrid Monte Carlo sampling
smoother for four dimensional data assimilation, Int. J. Numer.
Meth. Fl., 83, 90–112, https://doi.org/10.1002/fld.4259, 2017a.

Attia, A., Stefanescu, R., and Sandu, A.: The Reduced-Order Hy-
brid Monte Carlo Sampling Smoother, Int. J. Numer. Meth. Fl.,
83, 28–51, https://doi.org/10.1002/fld.4255, 2017b.

Attia, A., Moosavi, A., and Sandu, A.: Cluster Sampling Fil-
ters for Non-Gaussian Data Assimilation, Atmosphere, 9, 213,
https://doi.org/10.3390/atmos9060213, 2018.

Beazley, D. M.: SWIG: An Easy to Use Tool for Integrating Script-
ing Languages with C and C++, in: Proc. 4th USENIX Tcl/Tk
Workshop, 10–13 July 1996 Monterey, California, USA, 129–
139, 1996.

Beskos, A., Crisan, D., Jasra, A., Kamatani, K., and Zhou, Y.: A
stable particle filter for a class of high-dimensional state-space
models, Adv. Appl. Probab., 49, 24–48, 2017.

www.geosci-model-dev.net/12/629/2019/ Geosci. Model Dev., 12, 629–649, 2019

https://doi.org/10.5281/zenodo.1323207
http://people.cs.vt.edu/~attia/DATeS/index.html
http://hdl.handle.net/10919/73683
http://hdl.handle.net/10919/73683
https://doi.org/10.5281/zenodo.1323207
https://doi.org/10.3934/geosci.2015.1.41
http://people.cs.vt.edu/~attia/DATeS
http://people.cs.vt.edu/~attia/DATeS
https://doi.org/10.1002/fld.4259
https://doi.org/10.1002/fld.4255
https://doi.org/10.3390/atmos9060213


648 A. Attia and A. Sandu: DATeS: a highly extensible data assimilation testing suite

Bessac, J., Constantinescu, E., and Anitescu, M.: Stochastic sim-
ulation of predictive space–time scenarios of wind speed using
observations and physical model outputs, Ann. Appl. Stat., 12,
432–458, https://doi.org/10.1214/17-AOAS1099, 2018.

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive sam-
pling with the ensemble transform Kalman filter. Part I: Theoret-
ical aspects, Mon. Weather Rev., 129, 420–436, 2001.

Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analysis scheme
in the Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–
1724, 1998.

Candille, G. and Talagrand, O.: Evaluation of probabilistic predic-
tion systems for a scalar variable, Q. J. Roy. Meteor. Soc., 131,
2131–2150, 2005.

Daley, R.: Atmospheric data analysis, no. 2, Cambridge University
Press, Cambridge, UK, 1993.

Doucet, A., De Freitas, N., and Gordon, N.: An introduction to se-
quential Monte Carlo methods, in: Sequential Monte Carlo meth-
ods in practice, Springer, New York, NY, USA, 3–14, 2001.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forcast error
statistics , J. Geophys. Res., 99, 10143–10162, 1994.

Evensen, G.: The Ensemble Kalman Filter: theoretical formula-
tion and practical implementation, Ocean Dynam., 53, 343–367,
2003.

Evensen, G.: Data assimilation: the ensemble Kalman filter,
Springer Science & Business Media, Springer, Dordrecht, Hei-
delberg, London, New York, 2009.

Evensen, G. and Sakov, P.: Data assimilation, The Ensemble
Kalman Filter; EnKF-Matlab Code, available at: http://enkf.
nersc.no/Code (last access: 2 January 2019), 2009.

Gaspari, G. and Cohn, S. E.: Construction of correlation functions
in two and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–
757, 1999.

Gordon, N. J., Salmond, D. J., and Smith, A. F.: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, in: IEE Pro-
ceedings F-Radar and Signal Processing, 140, 107–113, 1993.

Gustafsson, B.: An alternating direction implicit method for solving
the shallow water equations, J. Comput. Phys., 7, 239–254, 1971.

Hamill, T. M.: Interpretation of rank histograms for verifying en-
semble forecasts, Mon. Weather Rev., 129, 550–560, 2001.

Hamill, T. M. and Whitaker, J. S.: Distance-dependent filtering of
background error covariance estimates in an ensemble Kalman
filter, Mon. Weather Rev., 129, 2776–2790, 2001.

Houtekamer, P. L. and Mitchell, H. L.: Data assimilation using an
ensemble Kalman filter technique, Mon. Weather Rev., 126, 796–
811, 1998.

Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble
Kalman filter for atmospheric data assimilation, Mon. Weather
Rev., 129, 123–137, 2001.

Kalman, R. E.: A New Approach to Linear Filtering and Prediction
Problems, J. Basic Eng.-T. ASME, 82, 35–45, 1960.

Kalman, R. E. and Bucy, R. S.: New results in linear filtering and
prediction theory, J. Basic Eng.-T. ASME, 83, 95–108, 1961.

Kalnay, E.: Atmospheric modeling, data assimilation and pre-
dictability, Cambridge University Press, Cambridge, UK, 2003.

Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models, J. Comput. Graph. Stat., 5, 1–25,
1996.

Kullback, S. and Leibler, R. A.: On information and sufficiency,
Ann. Math. Stat., 22, 79–86, 1951.

Law, K. and Stuart, A. M.: Evaluating data assimilation algorithms,
Mon. Weather Rev., 140, 3757–3782, 2012.

Law, K., Stuart, A., and Zygalakis, K.: Data assimilation: a mathe-
matical introduction, vol. 62, Springer International Publishing,
Switzerland, 2015.

Llopis, F. P., Kantas, N., Beskos, A., and Jasra, A.: Particle Filtering
for Stochastic Navier–Stokes Signal Observed with Linear Addi-
tive Noise, SIAM J. Sci. Comput., 40, A1544–A1565, 2018.

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20,
130–141, 1963.

Lorenz, E. N.: Predictability: A problem partly solved, in: Proc.
Seminar on Predictability, 4–8 September 1995, Shinfield Park,
Reading, UK, vol. 1, 1996.

Lorenz, E. N. and Emanuel, K. A.: Optimal sites for supplementary
weather observations: Simulation with a small model, J. Atmos.
Sci., 55, 399–414, 1998.

Marelli, S. and Sudret, B.: UQLab: a framework for uncertainty
quantification in MATLAB, in: Vulnerability, Uncertainty, and
Risk: Quantification, Mitigation, and Management, American
Society of Civil Engineers, Reston, VA, USA, Second Interna-
tional Conference on Vulnerability and Risk Analysis and Man-
agement (ICVRAM), 13–16 July 2014, Liverpool, UK, 2554–
2563, 2014.

Moosavi, A., Attia, A., and Sandu, A.: A Machine Learning
Approach to Adaptive Covariance Localization, arXiv preprint
arXiv:1801.00548, under review, 2018.

Navon, I. M. and De-Villiers, R.: GUSTAF: A Quasi-Newton non-
linear ADI FORTRAN IV program for solving the shallow-water
equations with augmented lagrangians, Comput. Geosci., 12,
151–173, 1986.

Peterson, P.: F2PY: a tool for connecting Fortran and Python pro-
grams, Int. J. Comp. Sci. Eng., 4, 296–305, 2009.

Poterjoy, J.: A localized particle filter for high-dimensional nonlin-
ear systems, Mon. Weather Rev., 144, 59–76, 2016.

Potthast, R., Walter, A. S., and Rhodin, A.: A Localised Adaptive
Particle Filter within an Operational NWP Framework, Mon.
Weather Rev., 147, 345–361, https://doi.org/10.1175/MWR-D-
18-0028.1, 2018.

Rebeschini, P. and Van Handel, R.: Can local particle filters beat the
curse of dimensionality?, Ann. Appl. Probab., 25, 2809–2866,
2015.

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensem-
ble Kalman filter: an alternative to ensemble square root filters,
Tellus A, 60, 361–371, 2008.

Sakov, P., Oliver, D. S., and Bertino, L.: An iterative EnKF for
strongly nonlinear systems, Mon. Weather Rev., 140, 1988–
2004, 2012.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Wang, W., and Powers, J. G.: A description of the ad-
vanced research WRF version 2, National Center for Atmo-
spheric Research Boulder, Colorado, USA, Mesoscale and Mi-
croscale Meteorology Div, 2005.

Smith, K. W.: Cluster ensemble Kalman filter, Tellus A, 59, 749–
757, 2007.

Tippett, M. K., Anderson, J. L., and Bishop, C. H.: Ensemble square
root filters, Mon. Weather Rev., 131, 1485–1490, 2003.

Geosci. Model Dev., 12, 629–649, 2019 www.geosci-model-dev.net/12/629/2019/

https://doi.org/10.1214/17-AOAS1099
http://enkf.nersc.no/Code
http://enkf.nersc.no/Code
https://doi.org/10.1175/MWR-D-18-0028.1
https://doi.org/10.1175/MWR-D-18-0028.1


A. Attia and A. Sandu: DATeS: a highly extensible data assimilation testing suite 649

Van Leeuwen, P. J.: Particle filtering in geophysical systems, Mon.
Weather Rev., 137, 4089–4114, 2009.

Vetra-Carvalho, S., Van Leeuwen, P. J., Nerger, L., Barth, A.,
Altaf, M. U., Brasseur, P., Kirchgessner, P., and Beckers, J.-M.:
State-of-the-art stochastic data assimilation methods for high-
dimensional non-Gaussian problems, Tellus A, 70, 1445364,
https://doi.org/10.1080/16000870.2018.1445364, 2018.

Whitaker, J. S. and Hamill, T. M.: Ensemble data assimilation with-
out perturbed observations, Mon. Weather Rev., 130, 1913–1924,
2002.

Zhang, H. and Sandu, A.: FATODE: A Library for Forward, Ad-
joint, and Tangent Linear Integration of ODEs, SIAM J. Sci.
Comput., 36, C504–C523, https://doi.org/10.1137/130912335,
2014.

Zupanski, M.: Maximum likelihood ensemble filter: Theoretical as-
pects, Mon. Weather Rev., 133, 1710–1726, 2005.

Zupanski, M., Navon, I. M., and Zupanski, D.: The Maximum Like-
lihood Ensemble Filter as a non-differentiable minimization al-
gorithm, Q. J. Roy. Meteor. Soc., 134, 1039–1050, 2008.

www.geosci-model-dev.net/12/629/2019/ Geosci. Model Dev., 12, 629–649, 2019

https://doi.org/10.1080/16000870.2018.1445364
https://doi.org/10.1137/130912335

	Abstract
	Introduction
	Data assimilation
	DATeS implementation
	DATeS architecture
	Linear algebra routines
	Forecast model
	Error models
	Analysis algorithms
	Assimilation experiments
	DATeS layout

	Linear algebra classes
	Forecast model classes
	Error model classes
	Assimilation classes
	Assimilation process classes
	Utility modules

	Using DATeS
	Step1: initialize DATeS
	Step2: create a model object
	Quasi-geostrophic model
	Observations and observation operators

	Step3: create an assimilation object
	Step4: create an assimilation process
	Experiment results
	DATeS for benchmarking
	Performance metrics
	Benchmarking


	Extending DATeS
	Adding a numerical model class
	Adding an assimilation class

	Discussion and concluding remarks
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

