import dates_utility as utility
from filters_base

from models_base import ModelsBase

class MyFilter (FiltersBase):
_filter_name = "MyFilter"
_def_local_filter_configs =

_local_def_output_configs =

import FiltersBase

dict (model=None,

dict(scr_output=True,

filter_name=_filter_name)
file_output=False ,
filter_statistics_dir="Filter_Statistics’,
model_states_dir="Model_States_Repository ’,

observations_dir="Observations_Rpository ")

def __init__(self, filter_configs=None, output_configs=None):
""" Constructor; MyFilter class implementation """
err_msg = "A model object reference MUST be passed in ’filter_configs’ as value to the key ’'model’..."
assert isinstance (filter_configs ['model’], ModelsBase), err_msg
aggregate configurations , and attach filter_configs , output_configs to the filter object.

filter_configs =

output_configs =

FiltersBase.__init__ (filter_configs=filter_configs ,

self.model =

def filtering_cycle(self):

Carry out a single

utility .aggregate_configurations (filter_configs ,

utility .aggregate_configurations (output_configs ,

filtering

MyFilter. _def_local_filter_configs)
MyFilter. _local_def_output_configs)

output_configs=output_configs)

self.filter_configs [model’]

cycle

FiltersBase . filtering_cycle ()

Add further functionality

def forecast(self):

if you wish...

""" Forecast step of the filter
#

def analysis(self, =xargs, =xkwargs):
""" Analysis step of the filter

#

