import

from
from
from

from

dates_utility as utility

models_base import ModelsBase

state_vector_numpy import StateVectorNumpy as StateVector

state_matrix_numpy import StateMatrixNumpy as StateMatrix

state_matrix_sp_scipy import StateMatrixSpSciPy as SparseStateMatrix

class MyModel(ModelsBase) :

_model_name = "MyModel"

_default_model_configs = dict(model_name=_model_name)

def

def

def

__init__(self, model_configs=None, output_configs=None):

Constructor; MyModel class implementation .

Aggregate passed configurations with default configurations

model_configs = utility .aggregate_configurations (model_configs, DummyModel. _default_model_configs)
self . model_configs = utility .aggregate_configurations(model_configs, ModelsBase._default_model_configs)
self . _output_configs = utility .aggregate_configurations (output_configs , ModelsBase._default_output_configs)

state_vector(self):

W wan

initialize an empty state vector

return StateVector(np.zeros(self.state_size()))

state_matrix (self , create_sparse=False):
""" initialize an dense/sparse empty state matrix
state_size = self.state_size ()
if create_sparse:

return SparseStateMatrix (sparse.lil_matrix ((state_size , state_size)))
else:

return StateMatrix (np.zeros ((state_size , state_size)))

