
0 20 40 60 80 100
Time (assimilation cycles)

0.6
0.7
0.8
0.9
1.0

2.0

5.0

7.0
R

M
S

E
 (

lo
g

)

No assimilation

Forecast

DEnKF

(a) RMS errors of forecasts and analyses

0 5 10 15 20
Rank (truth among ensemble members)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Re
la

ti
ve

 fr
eq

ue
nc

y

(b) Rank histogram

Figure 10. Data assimilation results. In panel (a) “no assimilation” refers to the RMSE of the initial forecast (the average of the initial forecast

ensemble) propagated forward in time over the 100 cycles without assimilating observations into it. The rank histogram of where the truth

ranks among analysis ensemble members is shown in panel (b). The ranks are evaluated for every 13th variable in the state vector (past the

correlation bound) after 100 assimilation cycles.

Upon termination of a run in DATeS, executable files can be cleaned up by calling the function clean_executable_files()

from the utility module:Upon termination of a run in DATeS, executable files can be cleaned up by calling the function clean_executable_files()

from the utility module:

c l e a n u p e x e c u t a b l e s and t e m p o r a r y modules

i m p o r t d a t e s _ u t i l i t y a s u t i l i t y5
u t i l i t y . c l e a n _ e x e c u t a b l e _ f i l e s ()

Snippet 6. cleanup DATeS executable files.

7

Figure 11. Cleanup DATeS executable files.

5

5 Extending DATeS

DATeS aims at being a collaborative environment, and is designed such that adding DA components to the package is as

easy and flexible as possible. This section describes how new implementations of components such as numerical models and

assimilation methodologies can be added to DATeS.

The most direct approach is to write the new implementation completely in Python. This, however, may sacrifice efficiency,10

or may not be feasible when existing code in other languages needs to be reused. One of the main characteristics of DATeS

is the possibility of incorporating code written in low level languages. There are several strategies that can be followed to

interface existing C or Fortran code with DATeS. Amongst the most popular tools are SWIG, and F2Py for interfacing Python

code with existing implementations written in C and Fortran, respectively.

Whether the new contribution is written in Python, in C, or in Fortran,an appropriate Python class that inherits the corre-

sponding base class, or a class derived from it, has to be created. The goal is to design new classes those are conformable with

the existing structure of DATeS and can interact appropriately with new as well as existing components.

18

