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Abstract. Pyroclastic avalanches are a type of granular flow
generated at active volcanoes by different mechanisms, in-
cluding the collapse of steep pyroclastic deposits (e.g., sco-
ria and ash cones), fountaining during moderately explosive
eruptions, and crumbling and gravitational collapse of lava
domes. They represent end-members of gravity-driven pyro-
clastic flows characterized by relatively small volumes (less
than about 1 Mm3) and relatively thin (1–10 m) layers at high
particle concentration (10–50 vol %), manifesting strong to-
pographic control. The simulation of their dynamics and
mapping of their hazards pose several different problems to
researchers and practitioners, mostly due to the complex and
still poorly understood rheology of the polydisperse granu-
lar mixture and to the interaction with the complex natural
three-dimensional topography, which often causes rapid rhe-
ological changes. In this paper, we present IMEX_SfloW2D,
a depth-averaged flow model describing the granular mixture
as a single-phase granular fluid. The model is formulated in
absolute Cartesian coordinates (whereby the fluid flow equa-
tions are integrated along the direction of gravity) and can
be solved over a topography described by a digital elevation
model. The numerical discretization and solution algorithms
are formulated to allow for a robust description of wet–dry
conditions (thus allowing us to accurately track the front
propagation) and an implicit solution to the nonlinear fric-
tion terms. Owing to these features, the model is able to re-
produce steady solutions, such as the triggering and stopping
phases of the flow, without the need for empirical conditions.
Benchmark cases are discussed to verify the numerical code
implementation and to demonstrate the main features of the
new model. A preliminary application to the simulation of

the 11 February pyroclastic avalanche at the Etna volcano
(Italy) is finally presented. In the present formulation, a sim-
ple semi-empirical friction model (Voellmy–Salm rheology)
is implemented. However, the modular structure of the code
facilitates the implementation of more specific and calibrated
rheological models for pyroclastic avalanches.

1 Introduction

Pyroclastic avalanches are rapid flows of pyroclastic mate-
rial (volcanic ash, lapilli, pumices and scoriae) that propa-
gate down volcanic slopes under the effect of gravity. They
share many phenomenological features with other natural
granular avalanches (such as landslides and rock and snow
avalanches) and they pose similar modeling, monitoring and
risk mitigation challenges (Pudasaini and Hutter, 2007).

Despite the fact that the term pyroclastic avalanche is
not widely used among volcanologists, who often adopt
the term pyroclastic density current (PDC), there are rea-
sons to prefer the former in some specific cases. The
term avalanche derives from the old french avaler, which
meant “move down the valley”. Implicit in it is the idea
that a pyroclastic avalanche must move along and be con-
fined within the volcanic slopes and be dominantly driven
by the longitudinal (i.e., parallel to the ground) compo-
nent of gravity. Pyroclastic avalanches stop when either
the slope is reduced or their momentum is dissipated by
friction. This is opposite to a pyroclastic density current,
a term deriving from the general concept of density cur-
rent (Von Karman, 1940; Benjamin, 1968; Simpson, 1999),
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which is a flow moving under the dominant action of the hy-
drostatic pressure associated with its density contrast with
respect to the atmosphere. Thick density currents are able
to propagate inertially even on flat topographies, and the ef-
fect of friction is usually negligible. Low-aspect-ratio ign-
imbrites (Fisher et al., 1993; Dade and Huppert, 1996; Dade,
2003) or flows produced by the collapse of Plinian columns
(e.g., Shea et al., 2011) can generally be (and have been)
modeled as inertial PDCs for most of their run-out. PDCs
indeed generally stop because of the progressive increase
in buoyancy due to the combined effect of air entrainment
and particle sedimentation (Bursik and Woods, 1996; Es-
posti Ongaro et al., 2016), which may give rise to the forma-
tion of co-ignimbrite eruption columns (Woods and Wohletz,
1991; Engwell et al., 2016), or because they cannot over-
come topographic obstacles (Woods et al., 1998). The two
phenomenologies often overlap. The basal, concentrated part
of a PDC can be strongly topographically controlled and be-
have more like an avalanche (classically termed a pyroclastic
flow). Although modeling of the latter has been done with
an approach similar to that presented in this paper (e.g., Pit-
man et al., 2003, and derived works), it is becoming apparent
that finding the appropriate rheological model is problem-
atic (Kelfoun, 2011) and that the basal concentrated and the
upper dilute turbulent layers should be coupled dynamically
(Doyle et al., 2010; Kelfoun, 2017a; Shimizu et al., 2017).
Pyroclastic flows can indeed show unexpected flow transfor-
mations, marking a transition from a dominantly frictional
to an inertial behavior, in which mobility is drastically en-
hanced (Fisher, 1995; Komorowski et al., 2013).

We will refer to pyroclastic avalanches in this work for
pyroclastic flows that (1) remain confined within the vol-
cano slopes, (2) show evidence of a dense basal granular
flow and (3) are controlled by topography (i.e., they mostly
move in the direction of the maximum slope). Such condi-
tions generally reduce the applicability of this category to
relatively small flows (less than about 1 million m3) gener-
ated by mildly explosive activity (e.g., Strombolian) or by the
gravitational collapse of basaltic scoria cones or of relatively
small viscous and degassed lava domes. This is also the vol-
ume threshold identified by Ogburn and Calder (2017) above
which modeling of pyroclastic currents becomes more prob-
lematic, showing transitional features between the two phe-
nomenologies. The numerical model presented in this paper
can be extended to be applicable to more general PDCs or py-
roclastic flows sensu lato, but some aspects of the model for-
mulation should be refined in that case. In particular, for what
concerns the rheological model, the depositional–erosional
features, the entrainment of atmospheric air and the thermo-
dynamic properties. This will be the objective of future stud-
ies.

1.1 Modeling and numerical simulation of shallow
pyroclastic avalanches

As in classical fluid dynamics, even more so for granular flu-
ids, the choice is between continuum and discrete field repre-
sentation (Guo and Curtis, 2015). In this work, we prefer the
continuum approach, which is more suited to large geophysi-
cal systems (that would otherwise require a prohibitive num-
ber of discrete particles). As in similar models already con-
sidered in volcanological research and applications (Pitman
et al., 2003; Kelfoun and Druitt, 2005; Shimizu et al., 2017),
we also adopt a physical formulation based on depth aver-
aging, which is appropriate for shallow granular avalanches
and is computationally less expensive. Finally, the model
is formulated for a single granular fluid. Future develop-
ments and implementations will consider multiphase flows
as a more accurate representation of pyroclastic avalanches
(Dufek, 2015).

Despite these simplifying hypotheses, several difficulties
arise in granular avalanche depth-averaged models. On the
one hand, terrain-following coordinates are often used to ex-
press depth-averaged transport equations. However, on 3-
D rough surfaces, they need to be corrected with curvature
terms, which introduce problems with irregular topographies,
cliffs, obstacles and high curvatures (Denlinger and Iverson,
2004; Fischer et al., 2012). Moreover, on steep slopes, where
acceleration along ẑ is non-negligible, the hydrostatic ap-
proximation is flawed (Denlinger and Iverson, 2004; Castro-
Orgaz et al., 2015; Yuan et al., 2017).

On the other hand, from a physical point of view, the
description of the depth-averaged rheology of the granular
fluid was revealed to be problematic for strongly stratified
and nonhomogeneous flows (Bartelt et al., 2016; Kelfoun,
2017a; Shimizu et al., 2017). Even in the more recent litera-
ture, a unifying model for the rheology of fast granular flows
is still lacking (Bartelt et al., 1999; Iverson and Denlinger,
2001; Mangeney et al., 2007; Forterre and Pouliquen, 2008;
Kelfoun, 2011; Iverson and George, 2014; Lucas et al., 2014;
Delannay et al., 2017).

In addition to the latter, some additional difficulties arise
from the numerical solution to the conservation equations:
despite the fact that numerical methods based on conser-
vative, approximate Riemann solvers are robust and well
tested (Denlinger and Iverson, 2001; Mangeney-Castelnau
et al., 2003; Patra et al., 2005; Christen et al., 2010; Toro,
2013), non-hydrostatic terms arising from the vertical mo-
mentum equation (Denlinger and Iverson, 2004) can be com-
putationally expensive and/or need particular treatment. In
many cases, further difficulties arise in the treatment of
source terms (especially for thin flow in which friction dom-
inates), often requiring empirical yielding–stopping criteria
that might (and usually do) deteriorate the numerical solu-
tion (Charbonnier and Gertisser, 2009; Ogburn and Calder,
2017). Last, but not least, there are just a few open-source
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codes, and those available are not easy to modify due to the
lack of documentation.

In this paper, we present and show verification tests of
the new IMEX_SfloW2D (which stands for Implicit–Explicit
Shallow Water flow) numerical model for shallow granular
avalanches that we designed to address most of the above
difficulties. In particular, the model is formulated in a geo-
graphical (absolute) coordinate system so that it is possible to
include non-hydrostatic terms arising from steep topographic
slopes, rapid topographic changes (e.g., local curvature) or
from more accurate approximation of the vertical momen-
tum equations. In this version of the model, however, non-
hydrostatic terms are neglected. The model can deal with dif-
ferent initial and boundary conditions, but its first aim is to
treat gravitational flows over topographies described as digi-
tal elevation models (DEMs) in the ESRI ASCII format. The
same format is used for the output of the model so that it can
be handled very easily with GIS software.

Several different geophysical flow depth-averaged mod-
els already exist, which are able to simulate pyroclastic
avalanches on DEMs. Among them, two of the most well-
established models in the volcanological community are
VolcFlow and Titan2D. VolcFlow is a MATLAB finite-
difference Eulerian code based on an explicit upwind or
double-upwind discretization. Recently, A two-layer depth-
averaged version for both the dilute and the concentrated
parts of pyroclastic currents has been implemented (Kelfoun,
2017b). Titan2D is a parallel finite-volume Eulerian code
based on a high-order slope-limiting Godunov scheme, and it
allows for the use of adaptive mesh refinement, reducing the
computational cost while maintaining the simulation’s accu-
racy (Patra et al., 2005).

Numerically, the first and most relevant advancement in
IMEX_SfloW2D is represented by the implicit treatment of
the source terms in the transport equations, which avoids
most problems related to the stopping of the flow, espe-
cially when dealing with strongly nonlinear rheologies. Any
rheological model can in principle be implemented, includ-
ing formulations not dependent on velocity, as purely fric-
tional or plastic rheologies without the need for introduc-
ing an artificial numerical viscosity. The model is indeed
discretized in time with an explicit–implicit Runge–Kutta
method whereby the hyperbolic part and the source term as-
sociated with topography slope are solved explicitly, while
other terms (friction) are treated implicitly. The finite-volume
solver for the hyperbolic part of the system is based on the
Kurganov and Petrova (2007) semi-discrete central-upwind
scheme and it is not tied to the knowledge of the eigenstruc-
ture of the system of equations. The implicit part is solved
with a Newton–Raphson method whereby the elements of
the Jacobian on the nonlinear system are evaluated numer-
ically with a complex-step derivative technique. This auto-
matic procedure allows for the use of different formulations
of the friction term without the need for major modifications

of the code. In particular, the Voellmy–Salm empirical model
is implemented in the present version.

The FORTRAN90 code can be freely downloaded and it
is designed in a way that users can simply use it without any
intervention or they can easily modify it by adding new trans-
port and/or constitutive equations.

2 Physical and mathematical model

In this section we present the governing equations based on
the shallow water approximation. We omit their derivation
that comes from the manipulation of the mass conservation
law and Newton’s second equation of motion.

2.1 Depth-averaged equations

The model we use for the flow evolution is described by the
Saint-Venant equations (Pudasaini and Hutter, 2007; Toro,
2013) coupled with source terms modeling frictional forces.
Saint-Venant equations are partial differential equations suit-
able when the flow horizontal length scale is much greater
than the vertical one, allowing us to disregard vertical flow
motion. Here we write the equations in global Cartesian coor-
dinates, and thus the topography can be expressed as B(x,y)
(we assume it does not change with time t) and the two ve-
locities are defined as the components along the x and y axes
orthogonal to the z axis parallel to the gravitational acceler-
ation g = (0,0,g). We denote the z-averaged horizontal ve-
locities with u(x,y, t) and v(x,y, t) and the flow depth with
h(x,y, t). In addition, in this work we assume a hydrostatic
pressure distribution, resulting in the following relationship
between pressure p, bulk density of the flow ρ (assumed to
be constant) and flow depth h:

p = ρgh. (1)

With these assumptions, and without considering frictional
forces, the 2-D inviscid depth-averaged equations in differen-
tial form can be written in the following way:

∂h

∂t
+
∂ (hu)

∂x
+
∂ (hv)

∂y
= 0, (2)

∂ (hu)

∂t
+
∂
(
hu2)
∂x

+
∂ (huv)

∂y
+ gh

∂ (h+B)

∂x
= 0, (3)

∂ (hv)

∂t
+
∂ (huv)

∂x
+
∂
(
hv2)
∂y

+ gh
∂ (h+B)

∂y
= 0. (4)

The first equation represents the conservation of mass (or
volume because of the constant density), while the other two
equations describe the conservation of momentum in the x
and y directions. The last terms in Eqs. (3)–(4) account for
the gravity-induced force, which results from the hydrostatic
pressure and depends on the slope of the free surface, and
thus also on the topography elevation B(x,y). At present, no

www.geosci-model-dev.net/12/581/2019/ Geosci. Model Dev., 12, 581–595, 2019



584 M. de’ Michieli Vitturi et al.: IMEX 1.0 avalanche model

Table 1. List of model variables with notation and units.

Symbol Variable Units

h flow thickness L
B topography elevation L
w free surface elevation L
u,v horizontal velocity components LT−1

g gravitational acceleration LT−2

µ Coulomb friction coefficient
ξ Coulomb turbulent coefficient LT−2

terms accounting for centrifugal acceleration effects caused
by terrain curvature are present in model.

As stated above, the variables of the model are (h,u,v),
but to deal more easily with the topography we introduce the
additional variable w = h+B, describing the height of the
free surface of the flow. We observe that, if we substitute h
with w in the temporal derivative of Eq. (2), this still rep-
resents mass conservation because we assume that B is not
changing with time.

If we introduce the vector of conservative variables Q=

(w,hu,hv)T (where the superscript notation Q(i) is used to
denote the ith component), the governing equations can be
written in the compact form:

Qt +F (Q)x +g(Q)y = S1(Q), (5)

where the letter-type subscript denotes the partial derivative
with respect to the correspondent variable, and the terms ap-
pearing in the equation are defined in the following way:

F (Q)= (hu,hu2
+

1
2
gh2,huv)T ,

g(Q)= (hv,huv,hv2
+

1
2
gh2)T , (6)

S1(Q)= (0,ghBx,ghBy)T .

We observe that the homogeneous part of Eq. (5) represents
the shallow water equations over a flat topography, for which
the eigenstructure and hyperbolicity are well studied (Toro,
2013). Furthermore, the homogeneous part is written in a
conservative form, allowing us to easily adopt finite-volume
discretization schemes for its numerical solution.

2.2 Voellmy–Salm rheology

To properly model shallow pyroclastic avalanches, we have
to modify the classic Saint-Venant equations by introducing
an additional source term S2 accounting for friction forces
(Pudasaini and Hutter, 2007; Toro, 2013). To this purpose,
we implemented in IMEX_SfloW2D, as a prototype non-
linear model, the Voellmy–Salm rheology, which simulates
mixture motion as a homogeneous mass flow. This model is
commonly used for avalanches and debris flows, but it is also
relevant for volcanic gravitational flows.

The terms we consider appear only in the momentum
equations (S(1)2 = 0) and are given by

S
(2)
2 (Q)=

u
√
u2+ v2

[
µhg ·n+

g

ξ
(u2
+ v2)

]
,

(7)

S
(3)
2 (Q)=

v
√
u2+ v2

[
µhg ·n+

g

ξ
(u2
+ v2)

]
.

The total basal friction in the Voellmy–Salm model (repre-
sented by the common term in square brackets in the two
right-hand sides of Eq. 7) is split into two components: (1) a
velocity-independent dry Coulomb friction proportional to
the coefficient µ, the flow thickness and the component of
the gravitational acceleration normal to the topography; and
(2) a velocity-dependent turbulent friction inversely propor-
tional to the coefficient ξ and commonly considered to rep-
resent the effect of granular collisions. For the sake of sim-
plicity, µ is named the friction coefficient and ξ the turbulent
coefficient. If the topography is a function of the global coor-
dinates z= B(x,y), then the component of the gravitational
acceleration normal to the topography is given by

g ·n=
g√

1+B2
x +B

2
y

. (8)

With the notation introduced above, the final form of the
equations modeling pyroclastic avalanches is

Qt +F (Q)x +g(Q)y = S1(Q)+S2(Q), (9)

where the hyperbolic terms and the source terms are defined
by Eqs. (6)–(7). In this formulation we have kept the two
source terms separated because, as shown in the next section,
they require different numerical treatments.

3 Numerical model

IMEX_SfloW2D is based on a finite-volume central-upwind
scheme in space and on an implicit–explicit Runge–Kutta
scheme for the discretization in time. The main purpose of
the code is to run simulations on colocated grids derived from
DEMs, and for this reason the standard input files defining
the topography are raster files in the ESRI ASCII format,
defining a uniform grid of equally sized square pixels whose
values (in our case representing the terrain elevation above
sea level) are arranged in rows and columns. The procedure
to define the elevation values at the face centers and cell cen-
ters of the computational grid is represented in Fig. 1. First,
the pixel values of the ESRI file (represented with colored
squares in Fig. 1) are allocated to the coordinates of the cen-
ter of the pixels (filled circles in Fig. 1), and then these values
are linearly interpolated at the four corners of the computa-
tional grid (no-fill circles in Fig. 1). Finally, the elevation val-
ues Bj,k at the centers of each cell (filled squares in Fig. 1)
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Figure 1. Computational grids. The colored pixels represent the el-
evation values of the original DEM. The lines define the edges of
the IMEX-SfloW2D computational cells. The elevation values at
the centers (filled squares), faces (no-fill squares) and corners (no-
fill circles) of the computational cells are obtained by interpolating
the pixel values associated with their centers (filled circles).

are defined as the average value of the four cell corners, while
the values at the centers of each face, denoted with B

j,k+ 1
2

and B
j+ 1

2 ,k
and represented by the no-fill squares in Fig. 1,

are defined as the average value of the two face corners. With
this definition, Bj,k will also be the average of the values at
the centers of the four faces of the cell (i,j) and this fact
plays an important role for a correct numerical discretization
of the last two terms in Eqs. (3)–(4), resulting in a scheme ca-
pable of preserving steady states of the form h+B = const.
This interpolation procedure does not degrade the original
DEM, provided that the computational grid size has the same
resolution. In fact, if they have the same resolution and the
computational grid corners coincide with the center of the
DEM’s pixels, no interpolation is done.

3.1 Central-upwind scheme

The finite-volume method adopted for IMEX_SfloW2D is
based on the semi-discrete central-upwind scheme intro-
duced in Kurganov and Petrova (2007), in which the term
central refers to the fact that the numerical fluxes at each cell
interface are based on an average of the fluxes at the two
sides of the interface; the term upwind is employed because,
in the flux averaging, the weights depend on the local speeds
of propagation at the interface.

Following Kurganov and Petrova (2007), the semi-
discretization in space leads to the following ordinary dif-
ferential equation system in each cell:

d

dt
Qj,k(t)=−

H x

j+ 1
2 ,k
(t)−H x

j− 1
2 ,k
(t)

1x

−

H
y

j,k+ 1
2
(t)−H

y

j,k− 1
2
(t)

1y
+Sj,k(t), (10)

where Qj,k denotes the average of the conservative variables
Q(x,y) over the control volume (j,k), and H x and H y are
the numerical fluxes calculated from the value of the vari-
ables reconstructed at the cell interfaces.

The choice of the variables to reconstruct at the interface
is fundamental for the stability of the numerical scheme.
The homogeneous system associated with Eq. (9) admits
smooth steady-state solutions, as well as non-smooth steady-
state solutions. A good numerical method for the solution to
the homogeneous system should accurately capture both the
steady-state solutions and their small perturbations (quasi-
steady flows). From a practical point of view, one of the most
important steady-state solutions is a stationary one:

w = h+B = const, u= v = 0. (11)

This suggests using, as the vector of variables for the linear
reconstruction at the interfaces, the vector U = (w,u,v)T ,
denoted as the vector of physical variables of the sys-
tem, for which the boundary conditions are also prescribed.
IMEX_SfloW2D also allows the user to choose a set of vari-
ables for the linear reconstruction of the vector of conser-
vative variables Q= (w,hu,hv)T . In this case, a correction
procedure is required to limit the values of the velocity com-
ponents at the interfaces when the flow thickness goes to
zero, as done in Kurganov and Petrova (2007).

For the reconstruction procedure based on the physical
variables, we introduce the notation 0 : R3

→ R3 for the
mapping from conservative variables Q to physical variables
U and 0−1 for the inverse mapping from physical to con-
servative variables. From the average values of the physical
variables we can operate a linear reconstruction inside each
cell in order to obtain the values at the interfaces sides. In
particular, given the local partial derivatives at the cell cen-
ter (Ux)j,k and (Uy)j,k , the one-side values at the east, west,
north and south interfaces of the cell (j,k) are given by

UE
j,k = U j,k +

1x

2
(Ux)j,k, UW

j,k = U j,k −
1x

2
(Ux)j,k,

UN
j,k = U j,k +

1x

2
(Uy)j,k, US

j,k = U j,k −
1x

2
(Uy)j,k.

These partial derivatives are calculated using an opportune
geometric limiter. In IMEX_SfloW2D it is possible to choose
between MinMod, Superbee and Van Leer limiters. We ob-
serve that at each cell interface and for each variable, there
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are two reconstructed values, one from each cell at the two
sides of the interface.

During the reconstruction step, particular care should be
taken to avoid unrealistic values of the physical variables,
such as negative flow thickness or velocities that are too
large. For this reason, in the case that one of the reconstructed
interface values of w is smaller than the topography B at the
same location (thus resulting in a negative thickness h), the
relative derivative is further limited to have a zero thickness
at such an interface. We remark that the correction is applied
to the derivative, and thus the reconstructed value of w at
the opposite interface will also be affected. For example, if
wSj,k < Bj,k− 1

2
, then we take the following derivative in the

y direction:

(
wy
)
j,k
=

w̄j,k −Bj,k− 1
2

1y/2
, (12)

which gives the two reconstructions at the S andN interfaces
of the (i,j) control volume:

wSj,k = Bj,k− 1
2
, wNj,k = 2w̄j,k −Bj,k− 1

2
. (13)

As stated above, an additional problem in the reconstruction
step is that h can be very small, or even zero, leading to large
values of the velocities. Thus, when the physical variables u
and v at the interfaces are computed from the conservative
variables, a desingularization is applied to avoid division by
very small numbers and the corrected values are given by the
following formulas:

u=

√
2h(hu)√

h4+max(h4,ε)
, v =

√
2h(hv)√

h4+max(h4,ε)
, (14)

where ε is a prescribed tolerance.
Finally, once the physical variables are reconstructed at the

interfaces, the numerical fluxes in the x direction are given by

H x

j+ 1
2 ,k
=

a+
j+ 1

2 ,k
F (0−1(UE

j,k),Bj+ 1
2 ,k
)− a−

j+ 1
2 ,k

F (0−1(UW
j+1,k),Bj+ 1

2 ,k
)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+

a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

(
0−1(UW

j+1,k)−0−1(UE
j,k)

)
, (15)

where the right- and left-sided local speeds a+
j+ 1

2 ,k
and

a−
j+ 1

2 ,k
are estimated by

a+
j+ 1

2 ,k
=max

(
uEj,k +

√
ghEj,k,u

W
j+1,k +

√
ghWj+1,k,0

)
,

a−
j+ 1

2 ,k
=min

(
uEj,k −

√
ghEj,k,u

W
j+1,k −

√
ghWj+1,k,0

)
.

In a similar way, the numerical fluxes in the y direction are
given by

H
y

j,k+ 1
2
=

b+
j,k+ 1

2
G(0−1(UN

j,k),Bj,k+ 1
2
)− b−

j,k+ 1
2
G(0−1(US

j,k+1),Bj,k+ 1
2
)

b+
j,k+ 1

2
− b−

j,k+ 1
2

+

b+
j,k+ 1

2
b−
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

(
0−1(US

j,k+1)−0−1(UN
j,k)

)
, (16)

where local speeds in the y direction b+
j,k+ 1

2
and b−

j,k+ 1
2

are

given by

b+
j,k+ 1

2
=max

(
vNj,k +

√
ghNj,k,v

S
j,k+1+

√
ghSj,k+1,0

)
,

b−
j,k+ 1

2
=min

(
vNj,k −

√
ghNj,k,v

S
j,k+1−

√
ghSj,k+1,0

)
.

Following Kurganov and Petrova (2007), the source term
S1 is calculated trough a quadrature formula:

S
(2)
1 =−g(wj,k −Bj,k)

B
j+ 1

2 ,k
−B

j− 1
2 ,k

1x
, (17)

S
(3)
1 =−g(wj,k −Bj,k)

B
j,k+ 1

2
−B

j,k− 1
2

1y
. (18)

This discretization, coupled with the fact that the elevation
Bj,k at the center of the control volumes is defined as the
average value of the elevation at the center of the faces, guar-
antees that the resulting second-order numerical scheme is
well balanced (i.e., preserves steady-state solutions) and the
solutions are nonnegative (Kurganov and Petrova, 2007).

3.2 Runge–Kutta method

The semi-discrete system of Eq. (10) is solved using an
implicit–explicit (IMEX), diagonally implicit Runge–Kutta
scheme (DIRK) because such a scheme is well suited for
solving stiff systems of partial differential equations, and the
governing equations are expected to be stiff given the strong
nonlinearities present in the friction terms. In addition, an
implicit treatment of these terms allows for a better coupling
of the equations and a proper recovery of the stoppage con-
dition without the need to impose additional criteria or arbi-
trary thresholds.

The family of IMEX methods (Ascher et al., 1997) have
been developed to solve stiff systems of partial differential
equations written in the form

Qt +P (Q)=R(Q), (19)

where in P are lumped all the non-stiff terms (in our case the
semi-discretized conservative fluxes F and g and the term
S1), while R denotes the stiff terms of the system (here repre-
sented by the friction term S2). The system of Eq. (19) must
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be solved for each control volume (j,k), but here, to keep the
notation simpler, we omit the subscripts.

An IMEX Runge–Kutta with ν steps consists of applying
an implicit discretization to the stiff terms and an explicit one
to the non-stiff terms, obtaining

Q(l)
=Qn

−1t

l−1∑
m=1

ãlmP (Q(m))+1t

ν∑
m=1

almR(Q(m)),

l = 1, . . .,ν (20)

Qn+1
=Qn

−1t

ν∑
m=1

b̃mP (Q(m))+1t

ν∑
m=1

bmR(Q(m)). (21)

The choice of the number of the Runge–Kutta steps ν, of the
ν× ν matrices Ã= (̃alm) and A= (alm), and of the vectors
b̃ = (̃b1, . . ., b̃ν) and b = (b1, . . .,bν) differentiates the vari-
ous IMEX Runge–Kutta schemes. We remark that the ex-
plicit discretization of the non-stiff terms requires ãlm = 0
for l ≥m, while the implicit treatment of the stiff terms re-
quires alm 6= 0 for some l ≥m.

Following Pareschi and Russo (2005), the IMEX scheme
used in this work satisfies an additional condition, i.e., alm =
0 for l > m. This family of IMEX schemes are called direct
implicit Runge–Kutta (DIRK) schemes and their use leads to
the following implicit problem to solve at each step in the
Runge–Kutta procedure:

N(Q(l))≡Q(l)
−1t · allR(Q

(l))−Qn

+1t

l−1∑
m=1

[̃
almg(Q(m))+ almR(Q(m))

]
= 0. (22)

To enforce the stopping condition that can result from the ap-
plication of the total basal friction, the velocity-independent
friction term and the velocity-dependent term are computed
in two steps. First, the dry Coulomb friction is computed and
its value is limited to account for the fact that this force at
maximum can stop the flow. Then, the system of nonlinear
Eq. (22) in the unknowns Q(l) is solved using a Newton–
Raphson method with an optimum step size control. The
method requires the computation of the Jacobian matrix J
of the left-hand side of Eq. (22) with the highest possible
accuracy, since R(Q(j)), accounting for the dependence of
the friction force on flow variables, can be strongly nonlin-
ear. Following Martins et al. (2003) and La Spina and de’
Michieli Vitturi (2012), this can be obtained with the use of
complex variables to estimate derivatives. With the complex-
step derivative approximation we can approximate the Jaco-
bian J needed for the Newton–Raphson method with an error
of the same order as the machine working precision. We sim-
ply extend the function N to the complex plane, introducing
the new function Ñ : C3

→ C3, and compute the real-valued
columns of the Jacobian at Q as

J · ej =
=(Ñ(Q+ iεej ))

ε
, (23)

where (ej )j=1,...,3 represents the standard basis vectors of
R3, =(·) denotes the imaginary part of complex numbers and
ε is a real number of the order of the machine working pre-
cision. Once the Jacobian is computed, the descent direction
of the Newton–Raphson is updated and the descent step is
obtained by applying a globally convergent method as de-
scribed in Press et al. (1996).

4 Numerical tests and code verification

In this section we present numerical tests aimed at demon-
strating the mathematical accuracy of the numerical model
results (the verification step, following Oberkampf and Tru-
cano, 2002). Numerical tests are aimed at proving the follow-
ing:

1. the capability to manage the propagation of discontinu-
ities;

2. the potential to deal with complex and steep topogra-
phies and dry–wet interfaces; and

3. the ability of the granular avalanche to stop, thereby
achieving the expected steady state.

All the numerical tests presented here are available on the
Wiki page of the code (https://github.com/demichie/IMEX_
SfloW2D/wiki, last access: 30 January 2019), together with
animations of the output and scripts to reproduce the results.

4.1 One-dimensional test with discontinuous initial
solution and topography

The first example is a 1-D test for a Riemann problem with a
discontinuous topography, as presented in Andrianov (2004)
and (Kurganov and Petrova, 2007). No frictional forces are
considered in this test, aimed only at showing the capability
of the numerical scheme used for the spatial discretization to
properly model the propagation of strong discontinuities in
both flow thickness and velocity.

The domain is the interval [0;1] and bottom topography B
is the following step function:

B(x)=

{
2, x ≤ 0.5,
0.1, x > 0.5.

The gravitational constant is g = 2 and the initial data are

(w(x,o),u(x,0))=
{
(2.222,−1), x ≤ 0.5,
(0.8246,−1.6359), x > 0.5.

The initial solution (Fig. 2, top panels) presents a discon-
tinuity at x = 0.5 and the exact solution at t > 0 consists of
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Figure 2. 1-D Riemann problem with no friction. Numerical solution at three different times: 0 s (a, b), 0.1 s (c, d), 0.2 s (e, f). Flow thickness
and bottom topography (blue line) are plotted in the left panels, while the velocity is plotted in the right panels. The different colors represent
numerical solutions obtained with different numbers of cells: 100 (dashed red line) and 400 (solid green line).

a left-going rarefaction wave and a right-going shock wave.
We present here the numerical solution obtained with a three-
step IMEX Runge–Kutta scheme, whereby the reconstruc-
tion from the cell centers to the faces is applied to the phys-
ical variables. The solutions obtained by discretizing the do-
main with 100 cells (Fig. 2, dashed red lines) and 400 cells
(Fig. 2, solid green lines) are compared. The numerical re-
sults at two different times t > 0 (Fig. 2, middle and bottom
panels) show the capacity of the numerical scheme to prop-
erly model the propagation of both the rarefaction and shock
waves, and the good description of the shock with a small
number of cells highlights the low numerical diffusivity of
the central-upwind finite-volume numerical scheme imple-
mented for the spatial discretization of the governing equa-
tions.

4.2 One-dimensional problem with dry–wet interface
and friction

This example is a 1-D test for a system with friction, as pre-
sented in Kurganov and Petrova (2007). As in the previous
test, an initial discontinuity is present, but this time repre-
senting the interface from a “wet” (presence of flow) and a
“dry” (no flow or zero thickness) region, with the terminol-
ogy borrowed from the common use of Saint-Venant equa-
tions in hydrology. Thus, there is an additional numerical
difficulty involving the capability of the numerical solver to
propagate these discontinuities without creating regions with
negative flow thickness. For this problem the bottom topogra-
phy presents both smooth regions and a step, and it is defined
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Figure 3. Numerical solution of a 1-D Riemann problem with friction at four different times. The solid blue line represents the topography,
while the solid green line represents the free surface of the wet region.

as follows:

B(x)=

1, x ≤ 0,
cos2(πx), 0≤ x < 0.4,
cos2(πx)+ 0.25(cos(10π(x− 0.5))+ 1), 0.4≤ x < 0.5,
0.5cos4(πx)+ 0.25(cos(10π(x− 0.5))+ 1), 0.5≤ x < 0.6,
0.5cos4(πx), 0.6≤ x < 1,
0.25sin(2π(x− 1)), 1≤ x < 1.5,
0, x ≥ 1.5.

The initial conditions are defined by

w(x,0)=
{

1.4, x ≤ 0,
B(x), x > 0, u(x,0)= 0.

For this simulation, the gravitational constant has a value
g = 1 and a simpler friction term is employed (−κ(h)u, with
κ(h)= 0.001(1+ 10h)−1). Also, for this test the numerical
solution is obtained with a three-step IMEX Runge–Kutta
scheme, whereby the reconstruction from the cell centers to
the faces has been applied to the physical variables and the
domain [−0.25;1.75] has been discretized with 400 cells.
The boundary conditions are prescribed to model a closed
domain and also to check that the total mass contained in
the domain is kept constant by the numerical discretiza-
tion schemes. The numerical solution at four different times

(t = 0, t = 0.2, t = 2 and t = 40 s) is presented in Fig. 3,
showing the capability of the model to deal with the prop-
agation of dry–wet interfaces and to reach a steady solution
for which the horizontal gradient of w = h+B is null.

4.3 One-dimensional pyroclastic avalanche with
Voellmy–Salm friction

This example is a 1-D test for the Voellmy–Salm rheology,
with a pile of material initially at rest released on a con-
stant slope topography. This test is aimed at checking if the
model is able to preserve an initial steady condition, when
the tangent of the pile free surface slope is smaller than the
Coulomb friction coefficient, µ, and to properly simulate
the stopping of the flow, i.e., when inertial and gravitational
forces are smaller than total basal friction.

For this test, the domain is the interval [0;500] and the
center of the pile coincides with the center of the domain. The
gravitational constant is g = 9.81 ms−2 and the parameters of
the Voellmy–Salm rheology are µ= 0.3 and ξ = 300 ms−2.

We present the results for a numerical simulation with a
topography with a constant slope of 13◦ and an initial pile of
material with a relative slope (i.e., with respect to the topog-
raphy) of 20◦. Thus, for this test, the initial condition is not
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Figure 4. Numerical solution of a 1-D problem with Voellmy–Salm friction at three different times. In (a) the topography (blue line) and the
profile of the material (green line) are plotted. In (b) the corresponding velocities are shown.

steady and the pile of material starts to move along the slope
until it reaches the stoppage condition.

The numerical solution at three different times (t = 0,
t = 5 and t = 40 s) is presented in Fig. 4. For this simulation,
the reconstruction technique with limiters has been applied to
the physical variables and an IMEX four-step Runge–Kutta
has been adopted, while the domain has been discretized with
400 cells. The plot of the numerical solution at the interme-
diate time clearly shows that the front of the flow has a larger
propagation velocity than the rest of the flow. On the other
hand, comparing the left and right middle panels, we ob-
serve that part of the tail is not moving at all. After a few
tens of seconds from the release, the flow reaches a steady
condition, as shown by the plot of the velocity at 40 s (bot-
tom right panel in Fig. 4). This test highlights the capability

of the model to reach a steady condition not only when the
gradient ofw = h+B is null, as shown in the previous exam-
ple, but also with a flow with a positive slope below a critical
condition.

4.4 Two-dimensional pyroclastic avalanche with
Voellmy–Salm friction

This test extends the simulation with a Voellmy–Salm rhe-
ological model presented in the previous section from one
to two dimensions, with an example of an avalanche of fi-
nite granular mass sliding down an inclined plane merging
continuously into a horizontal one. The initial conditions and
the topography of this tutorial are the same as in Example
4.1 from Wang et al. (2004). The computational domain is
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Figure 5. Numerical simulation of two-dimensional pyroclastic avalanche with Voellmy–Salm friction. The contour plots on the bottom
plane of each panel represent constant values of the thickness of the flow, whose free surface is represented in blue. The outermost contour
on the bottom plane corresponds to a thickness of 0.06 m, and thus the thinner portion of the flow is not represented by the contour plot. A
visual comparison between the two bottom plots highlights the fact that a steady condition has been reached.

the rectangle [0;30]×[−7;7], in which a hemispherical shell
holding the material together with a maximum thickness of
1.85 m is suddenly released so that the bulk material starts
to slide on an inclined flat plane at 35◦ (for 0≤ x ≤ 17.5)
into a horizontal run-out plane (for x ≥ 21.5) connected by a
smooth transition. Here we do not use the same rheological
model as in the original paper of the example, but a Voellmy–
Salm rheology is applied with µ= 0.3 and ξ = 300 ms−2.

The numerical solution at four different times (t = 0, t =
7.5, t = 20 and t = 25 s) is presented in Fig. 5, in which both
the three-dimensional flow shape over the topography and
thickness contours are presented. For this simulation, the re-
construction technique with limiters has been applied to the
physical variables and an IMEX two-step Runge–Kutta has
been adopted, while the domain has been discretized with
150× 100 cells.

As shown by the plots presented in Fig. 5, the model is
able to simulate the propagation of the flow with no numer-

ical oscillations or instabilities, without the need for artifi-
cial numerical diffusion. As the front reaches the maximum
run-out and horizontal spreading (top left panel), the tail of
the flow is still accelerating and the avalanche body starts to
contract. Comparing the two panels at the bottom, it is evi-
dent that after about 20 s the flow has stopped propagating,
with the deposit located at the transition region between the
inclined and horizontal zones. This simulation took 238 s on
an Intel Core i5-3210M CPU at 2.50 GHz.

5 Simulation of a pyroclastic avalanche at Etna volcano

On 11 February 2014, a hot pyroclastic avalanche was gener-
ated at the New Southeast Crater (NSEC) of Etna, triggered
by the instability and collapse of its eastern flank where sev-
eral vents had been actively effusing lava flows towards Valle
del Bove since 22 January. The avalanche propagation was
recorded by the INGV (Istituto Nazionale di Geofisica e Vul-
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Figure 6. Map of the avalanche deposit from the February 2014 pyroclastic avalanche and the lava flow.

Figure 7. Results of IMEX_SfloW2D numerical simulations of a pyroclastic avalanche overlapped on the hill-shaded relief of the Etna
summit and the boundaries of the 11 February 2014 event. Numerical parameters as follows: (a) µ= 0.1, ξ = 500; (b) µ= 0.2, ξ = 500;
(c) µ= 0.2, ξ = 100; (d) µ= 0.3, ξ = 500; (e) µ= 0.4, ξ = 500; (f) µ= 0.4, ξ = 5000. Avalanche volume is equal to 0.5× 106 m3.

canologia) monitoring system and, in particular, it was filmed
by the thermal IR camera from Monte Cagliato, located on
the east slope of the Valle del Bove at about 7 km from the
NSEC, and the Catania CUAD visible camera (ECV) about
26 km south of the summit. A 500 m wide avalanche front
propagated about 2.3 km along the steep slopes of the Valle
del Bove before stopping at the break in slope at the val-
ley bottom. At the same time, a voluminous buoyant ash

cloud was generated by elutriation of the finest ash from the
avalanche and rapidly dispersed in the north-northeast direc-
tion by an intense wind. The event is accurately reported by
Andronico et al. (2018). The flank collapse left a detachment
niche that allowed us to estimate the avalanche volume to
range between 0.5 and 1.0×106 m3. Due to difficult weather
and environmental conditions, the presence of active lava
flows in the region and the persistence of the Strombolian
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activity, it was unfortunately not possible to obtain a detailed
map of the deposit thickness. Comparison of numerical re-
sults will therefore be limited to the flow boundary and run-
out.

IMEX_SfloW2D numerical simulations have been per-
formed over the 2014 digital elevation model of Mount Etna
(De Beni et al., 2015). We have developed a MATLAB tool
to modify the original topography by excavating a detaching
volume with an ellipsoidal shape oriented towards the local
maximum slope and with a prescribed total volume. The ini-
tial avalanche volume is defined by the difference between
the original and the modified topography. It is also worth re-
marking that the DEM did not account for the presence of
the thick lava flow that had been emplaced in the days be-
fore the avalanche event (Fig. 6), which likely controlled the
avalanche path by confining it along its southern edge (An-
dronico et al., 2018).

The avalanche rheological parameters have been varied in
ranges consistent with previous studies of geophysical gran-
ular avalanches (e.g., Bartelt et al., 1999). For quasi-static
granular flows, µ is physically related to the basal friction of
the granular material. However, its value for rapid avalanches
cannot be easily defined a priori. We thus simply consider µ
and ξ as empirical model parameters whose values need to be
calibrated. In particular, 0.2< µ< 0.5 and 300< ξ < 5000.
Results of computations are reported graphically in Fig. 7.

The misfit between the simulated and observed flow path
is due to the presence of the lava flow depicted in Fig. 6 that
was not included in the DEM. Overall, the fit is reasonable in
terms of maximum run-out and area covered by the modeled
deposit for runs (d) (µ= 0.3,ξ = 500) and (f) (µ= 0.4,ξ =
5000). It is interesting to note that the value µ= 0.3− 0.4
corresponds to fairly low friction coefficients of dry granular
materials (corresponding to repose angles of 16–20◦). This
observation is commonly acknowledged as frictional weak-
ening for rapid granular flows (e.g., Lucas et al., 2014).

A thorough discussion about the optimal choice of the
rheological model and parameters for pyroclastic avalanches
would require an extensive comparison with similar phenom-
ena that occurred at Etna (few of which have been docu-
mented so far) and at other analogous volcanoes, for which
more accurate measurements will be needed in the future to
achieve a better calibration of the model. This, is however,
clearly beyond the scope of the present work.

6 Conclusions

We have presented the physical formulation, numeri-
cal solution strategy and verification tests of the new
IMEX_SfloW2D numerical model for shallow granular
avalanches. The numerical code is available open-source and
freely downloadable from a GIT repository, where the users
can also find the documentation and example tests described
in this paper. The main features of the new model make it

suited for research and application to geophysical granular
avalanches, in particular the following.

– The flexible discretization and numerical solution algo-
rithm (not tied to knowledge of the eigenstructure of the
system of equations) allows for the easy implementation
of new transport equations.

– The formulation in Cartesian geographical coordinates
is suited for running on digital surface models (read in
standard ESRI ASCII grid format) and for the integra-
tion of non-hydrostatic terms, even on steep slopes.

– The conservative and positivity-preserving numerical
scheme allows for a robust and accurate tracking of 1-
D and 2-D discontinuities, including wet–dry interfaces
and flow fronts.

– The implicit coupling of nonlinear rheology terms al-
lows for the simulation of steady-state equilibrium so-
lutions and, in particular, favors flow stopping without
the need for any ad hoc empirical criteria.

– The numerical procedure to evaluate the Jacobian of the
nonlinear system (based on a complex-step derivative
technique) allows for an easy implementation and test-
ing of new rheological models for complex geophysical
granular avalanches.

Code availability. The numerical code, benchmark tests and doc-
umentation are available at https://github.com/demichie/IMEX_
SfloW2D (last access: 30 January 2019). Preprocessing scripts (to
change the grid resolution and the numerical schemes) and post-
processing scripts (to plot the solution variables and to create anima-
tions) are also available. Furthermore, each example has a page de-
scription on the model Wiki (https://github.com/demichie/IMEX_
SfloW2D/wiki, last access: 30 January 2019), where detailed infor-
mation on how to run the simulations is given. The digital object
identifier (DOI) for the version of the code documented in this pa-
per is https://doi.org/10.5281/zenodo.2553101 (de’ Michieli Vitturi
and Lari, 2019).
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