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Abstract. Enhanced temperature-index distributed mod-
els for snowpack simulation, incorporating air temperature
and a term for clear sky potential solar radiation, are in-
creasingly used to simulate the spatial variability of the
snow water equivalent. This paper presents a new snow-
pack model (termed TOPMELT) which integrates an en-
hanced temperature-index model into the ICHYMOD semi-
distributed basin-scale hydrological model by exploiting a
statistical representation of the distribution of clear sky po-
tential solar radiation. This is obtained by discretizing the
full spatial distribution of clear sky potential solar radiation
into a number of radiation classes. The computation required
to generate a spatially distributed water equivalent reduces to
a single calculation for each radiation class. This turns into a
potentially significant advantage when parameter sensitivity
and uncertainty estimation procedures are carried out. The
radiation index may be also averaged in time over given time
periods. Thus, the model resembles a classical temperature-
index model when only one radiation class for each elevation
band and a temporal aggregation of 1 year is used, whereas
it approximates a fully distributed model by increasing the
number of the radiation classes and decreasing the tempo-
ral aggregation. TOPMELT is integrated within the semi-
distributed ICHYMOD model and is applied at an hourly
time step over the Aurino Basin (also known as the Ahr
River) at San Giorgio (San Giorgio Aurino), a 614 km2 catch-
ment in the Upper Adige River basin (eastern Alps, Italy) to
examine the sensitivity of the snowpack and runoff model
results to the spatial and temporal aggregation of the radi-
ation fluxes. It is shown that the spatial simulation of the
snow water equivalent is strongly affected by the aggregation
scales. However, limited degradation of the snow simulations

is achieved when using 10 radiation classes and 4 weeks as
spatial and temporal aggregation scales respectively. Results
highlight that the effects of space–time aggregation of the
solar radiation patterns on the runoff response are scale de-
pendent. They are minimal at the scale of the whole Aurino
Basin, while considerable impact is seen at a basin scale of
5 km2.

1 Introduction

Seasonal snow cover is important as storage and source of
meltwater for human use, irrigation and hydropower produc-
tion in many regions of the world. On the other hand, snow
cover and meltwater can be a cause of disastrous natural haz-
ards, such as floods and avalanches. Additionally, snow cover
is a key factor in the weather and climate system, both re-
gionally and globally (Armstrong et al. , 2008). Owing to
society’s strong need for updated information on snow con-
ditions, snow accumulation and melt, models have been de-
veloped with a wide range of features. Approaches for snow-
pack computation range from empirical models (e.g. simple
temperature-index models) to more-sophisticated physically
based energy-balance models (Zappa et al., 2003; Vionnet et
al., 2012; Essery et al., 2013; Magnusson et al., 2015; Avanzi
et al. , 2016). Temperature-index models require only tem-
perature as input and are based on the assumption of a linear
relationship between this variable and melt rates, whereas
energy-balance models are based on the computation of all
relevant energy fluxes at the snowpack surface, and thus re-
quire extrapolation of numerous meteorological and surface
input variables at the local scale (Jóhannesson et al., 1995;
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Cazorzi and Dalla Fontana, 1996; Hock, 1999; Hock and
Holmgren, 2005; Anslow et al. , 2008; Formetta et al., 2014).
Advances over the simple dependence of melt on air temper-
ature by addition of radiation terms have been suggested in
the last decades (Hock, 1999; Pellicciotti et al., 2005; Cartu-
ran et al., 2012), and are termed enhanced temperature-index
(ETI) models here. In contrast to simple temperature-index
models, where melt varies in space only as a function of el-
evation (given by temperature lapse rates), ETI models in-
clude a term for clear sky potential solar radiation. This term
accounts for topographic effects (e.g. aspect, slope and shad-
ing) on the spatial distribution of melt, without the need for
additional meteorological variables (e.g. global radiation and
cloud data). ETI models have been found to provide a better
representation of the spatial and temporal variability of melt
controlled by solar radiation, when compared with simple
temperature-index models, as reported by a number of au-
thors (Cazorzi and Dalla Fontana, 1996; Hock, 1999; Pellic-
ciotti et al., 2005; Carenzo et al., 2009, among others). Some
of these approaches also better cope with the physical char-
acter of the melt process and provide a promising approach
to modelling the snowpack at the catchment scale with fewer
input data than energy-balance models, but allow for better
model parameter transferability than standard temperature-
index models (Carenzo et al., 2009).

In spite of their improved accuracy compared to sim-
pler approaches, ETI models have been so far not integrated
within lumped or semi-distributed, basin-scale hydrological
modelling schemes, which are still frequently used to model
sparsely gauged mountainous catchments. Integration of ETI
snowpack models into lumped or semi-distributed hydrolog-
ical models may have the potential to increase spatial trans-
ferability of calibrated snowpack model parameters for hy-
drological applications over ungauged mountainous basins,
as shown by Comola et al. (2015). Another important impli-
cation of the stronger physical basis of the ETI model with
respect to simpler “degree day” models is that it might be
more appropriate for the study of the climate-change impact
on melt regimes, as shown by Pellicciotti et al. (2005). Fi-
nally, increasing the accuracy of the modelled snow water
equivalent may improve the outcomes of data assimilation
procedures of remotely sensed snow cover information. In
a few cases, semi-distributed models incorporating a spatial
discretization in classes of elevation and aspect have been
applied to represent the effect of exposition on snowmelt and
adjust snowpack parameters accordingly (Klok et al., 2001;
Konz and Seibert, 2010; Abudu et al., 2016). In other cases,
a mean value of radiation has been used over the basin area
in the same elevation band, modifying accordingly the melt
parameters (Li and Williams, 2008). However, these types
of tessellations have no allowance for representing the ac-
tual variations of radiation distribution over space and time,
which is an important feature in ETI models (Pellicciotti et
al., 2005).

This work describes a novel snowpack model (termed
TOPMELT herewith), which integrates the ETI snowpack
method originally developed in a spatially distributed way by
Cazorzi and Dalla Fontana (1996) within a semi-distributed
basin-scale hydrological model. In the model developed by
Cazorzi and Dalla Fontana (1996), local snowmelt is com-
puted by using a combined melt factor which is multiplied
by a radiation index and positive air temperature. With TOP-
MELT, pixels with a similar radiation index and air tempera-
ture are identified by subdividing basin elevation bands into a
number of radiation index classes. Then, the snowpack mod-
elling is carried out for each class of radiation index and for
each elevation band. This ensures achieving significant com-
putational efficiency, which characterizes the temperature-
index models, allowing at the same time for a stronger phys-
ical basis for ETI models. This is a potentially significant ad-
vantage when several model simulation runs should be car-
ried out, such as in Monte Carlo-based parameter sensitivity
and uncertainty estimation procedures.

The model accounts for the temporal variability of the
radiation index by using local mean values of the index
computed over given temporal aggregation intervals, ranging
from 1 to several weeks. This means that a time-averaged so-
lar radiation distribution is used over a given temporal inter-
val, before substituting it with a new averaged distribution.
With decreasing the updating interval, the accuracy of the
model is expected to increase at the expense of the computa-
tional efficiency.

As the spatial distribution of clear sky solar radiation
changes with time, a radiation class computed over two dif-
ferent periods may sample two different portions of the ele-
vation band. This means that a pixel belonging to a certain
class at a given time will belong to a different class at an-
other time. TOPMELT incorporates a time-integration rou-
tine, which accounts for the temporal variability of the radia-
tion index distribution, ensuring a consistent temporal simu-
lation of the snowpack. Thus, TOPMELT permits full imple-
mentation of the ETI snowpack method, taking into account
the seasonal evolution of the spatial distribution of solar radi-
ation. Moreover, it provides a spatially continuous mapping
of simulated snow water equivalent, in spite of the compu-
tationally efficient semi-distributed representation of basin-
scale snowpack modelling. Depending on the number of ra-
diation classes which are used in the model, the snowpack
model makes use of solar radiation values which are spatially
averaged over different areas. Effectively, the model resem-
bles a classical temperature-index model when only one radi-
ation class for each elevation band is used, whereas it approx-
imates a fully distributed model with increasing the number
of the radiation classes (and correspondingly decreasing the
area corresponding to each class).

This paper describes in detail the structure of TOPMELT
and of the time-integration routine. The integration of TOP-
MELT within the ICHYMOD hydrological model is also il-
lustrated. Finally, results are reported from the application
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of TOPMELT over the 614 km2 Aurino Basin at San Gior-
gio in the Upper Adige River system (eastern Italian Alps).
The case study is exploited to (i) examine the sensitivity of
the snowpack and runoff model results to the temporal and
spatial aggregation of the radiation fluxes, and (ii) to iden-
tify suitable spatial and temporal aggregation intervals for
model simulation. The sensitivity analysis is performed on
modelled snowpack in terms of snow water equivalent and
on the ensuing simulated runoff, comparing the output from
simulations performed at different aggregation intervals with
a reference represented by the finest aggregation levels.

2 TOPMELT structure

In TOPMELT, the basin area is subdivided into elevation
bands to account for air temperature variability with eleva-
tion. Then, each elevation band is subdivided into a number
of radiation classes. This is carried out by dividing each ele-
vation band into a number nc of equally distributed radiation
classes, where the ith class contains the band sub-area cor-
responding to the ith percentile of the incident radiation en-
ergy. Therefore, the model spatial domain is represented by
nb elevation bands and by nc radiation classes for each eleva-
tion band. TOPMELT deals with separate snow and glacier
melt: to account for the presence of a glacier area associated
to an energy class, each one of the nb×nc model cells is char-
acterized by the corresponding fraction of glacier area. The
spatial subdivisions controls the balance between computa-
tional efficiency and model accuracy in the snowpack model.

The following sections describe the main input and mod-
ules of the model, where an hourly temporal interval is used
for model computations.

2.1 Clear sky potential radiation computation and
derivation of radiation distributions

For the application of TOPMELT presented in this work,
clear sky shortwave solar radiation (W m−2) is computed
at each element of the digital terrain model (DTM) by tak-
ing into account shadow and complex topography, calcu-
lating the apparent sun motion (Swift , 1976; Lee, 1978;
Oke, 1992) and the intersection of radiation with topography
(Dubayah et al., 1990; Ranzi and Rosso, 1991). Diffuse ra-
diation is computed by accounting for self-shading (by slope
and aspect) and occlusions produced by the visible horizon.
Since the model uses radiation values averaged over a given
time interval, maps of potential radiation averaged over time
are also computed. The spatial distribution of time-averaged
clear sky solar radiation are calculated over each elevation
band, and nc equally distributed radiation classes are iden-
tified. For each radiation class, the mean daily cumulated
clear sky radiation value is computed (termed radiation in-
dex, RI, herewith; MJ m−2) and used in the snowmelt com-
putation. Radiation is pre-processed and provided as model

input. Therefore, the relative module is not included in TOP-
MELT code, but made available as a stand-alone tool (see the
code availability section at the end of the paper).

2.2 Computation of precipitation amount and phase

Snow accumulation is computed starting from estimates of
precipitation and air temperature, based on air temperature
and precipitation data from the available weather stations.
Similarly to radiation, the model permits the use of sev-
eral techniques, ranging from Thiessen’s polygons to multi-
quadratic interpolation (Borga and Vizzaccaro, 1997) for the
estimation of basin mean areal precipitation values, which
are provided to the model as input data. For the analyses re-
ported in this work, the Thiessen method was used to calcu-
late the mean precipitation over the basin. Air temperature
data are used to estimate an unique hourly vertical lapse rate
for the whole basin.

To account for gauge catch deficiencies that occur during
periods of snow, precipitation data are corrected with a snow
correction factor (SCF). This is a multiplier of the precipita-
tion data which is applied when station temperature is lower
than a threshold temperature Tc. Finally, the basin precipita-
tion value pbasin is obtained by applying a non-dimensional
precipitation correction factor (PCF) to account for poor spa-
tial representativeness of rain-gauge stations.

TOPMELT computes the precipitation value at the ith el-
evation band pi (mm h−1) by using a vertical precipitation
gradient, accounting for increased precipitation over eleva-
tion. Based on results from Tuo et al. (2016), this is obtained
by means of a precipitation gradient G (km−1), as follows:

pi = pbasin ·

(
1+G ·

hi −href

1000

)
, (1)

where hi and href (m a.s.l.) are the mean altitude of the ith
elevation band and of the basin respectively. Equation (1) is
applied in a way to modify only the distribution of precipita-
tion across the elevation bands without altering the value of
pbasin.

PCF and G parameters are generally obtained by compar-
ing model-based snow cover simulations with satellite-based
snow-cover estimates. Since the average areal precipitation
pbasin is a TOPMELT input, only G is a TOPMELT param-
eter. Optionally, TOPMELT permits different precipitation
values for each elevation band.

Temperature Ti (◦C) is provided as input for each eleva-
tion band and time step. In this work, a mean value of air
temperature Ti over the ith elevation band is obtained by us-
ing the aforementioned vertical temperature lapse rate. Esti-
mation of the precipitation phase (solid or liquid) is therefore
performed over each elevation band, according to the thresh-
old temperature Tc.
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2.3 Computation of snow and ice melt

For the generic model cell represented by the ith eleva-
tion band and the j th radiation class, snowmelt rate fi,j (t)
(mm h−1) at time t is computed taking into account air tem-
perature, clear sky radiation and albedo. During daytime
hours, the snowmelt is given by the following:

fi,j (t)= CMF ·RIi,j (t) · d · (1−ALBi(t))

·max[0, (Ti(t)− Tb)] , (2)

where Ti(t) is the elevation band temperature; RIi,j (t)
(MJ m−2) is the cell radiation index; d (–) is the fraction of
daylight hours in a day (i.e. the number of daylight hours
divided by 24); CMF (mm ◦C−1 MJ−1 m2 h−1) is the com-
bined melt factor, accounting for both thermal and radiative
effects; albi (t) (–) is the albedo of snow; and Tb = 0 ◦C is
a threshold base temperature. Snow albedo is computed for
each elevation band based on Brock et al. (2000):

albi(t)= ALBS−β2 ·

[
log10

∑
k

Ti(tk)

]
(3)

where ALBS (–) is the fresh snow albedo, β2 (–) is a dimen-
sionless parameter, and

∑
kTi(tk) (◦C) is the sum of the pos-

itive hourly temperatures exceeding the threshold base tem-
perature Tb since the last snowfall until the current time t .

During nighttime hours, snowmelt is simulated accounting
only for air temperature, as follows:

fi,j (t)= NMF ·max[0, (Ti(t)− Tb)] , (4)

where NMF (mm h−1 ◦C−1) is the night melt factor.
For rain-on-snow conditions (Anderson , 1976), melting is

computed depending on air temperature and on the energy
provided by rain:

fi,j (t)=

[
RMF+

pi,j (t)

COST

]
·max[0, (Ti(t)− Tb)] (5)

where RMF (mm h−1 ◦C−1) is the rain melt factor and COST
(◦C−1) is a parameter accounting for the influence of rain on
snowmelt (Carturan et al., 2012). For each model cell, the
snow water equivalent (wei,j ; mm) is updated by account-
ing for snow accumulation, rain-on-snow, melt and freezing
water. Water due to snowmelt or rainfall is first retained in
the snowpack as interstitial water termed liquid water liqwi,j
(mm). When liquid water exceeds a water-holding capacity
of the snowpack (termed LWT), this propagates through the
snowpack at a rate DYTIME (m h−1), to form net water flow
at the snowpack base.

When air temperature is less than the threshold base tem-
perature, part of the liquid water refreezes and liqwi,j is re-
duced and added to the snowpack through a freezing rate,
termed ice (mm h−1). This is computed as follows:

icei(t)= REFRZ ·min[0, (Tb− Ti(t))] , (6)

where Tb is the threshold base temperature (Eq. 2) and RE-
FRZ (mm ◦C−1 h−1) is the freezing factor. When wei,j is less
than a threshold (termed WETH), ice melt starts. This is com-
puted similarly to snow (Eq. 2), but where the snow albedo is
replaced by a constant glacial albedo, ALBG (–), as follows:

fi,j (t)= CMF ·RIi,j · d · (1−ALBG)

·max[0, (Ti(t)− Tb)] (7)

At night and during rainfall events, glacier melt is computed
by means of Eqs. (4) and (5) respectively.

All model parameters and their values are listed in Table 1,
along with variable names and units. TOPMELT is majorly
sensitive to the melt factor CMF, the most significant calibra-
tion parameter of the snowmelt model. It is constant both in
time and space, as the variability of the melt rate is accounted
for by the radiation index and by air temperature. Other im-
portant parameters are the fresh snow albedo, ALBS; the rain
melt factor, RMF, which is a constant calculated from a sim-
plified energy budget (Anderson , 1976); the precipitation
gradient G, which drives the re-distribution of precipitation
with the elevation; the base temperature Tb, which defines the
fusion temperature of snow and ice.

2.4 Updating the radiation index distribution: the
time-integration routine

As reported in the previous sections, the spatial distribution
of clear sky solar radiation changes with time, based both on
astronomic variation of the radiation flux and its interaction
with a complex topography. This implies that the statistical
distribution of the radiation index over each elevation band
will be also modified and should be updated. In general a
radiation class, computed at two different time steps, covers
two different areas of the elevation band. Thus, a pixel be-
longing to a certain class at a given time will belong to a
different class at another time. Figure 1 shows two different
maps of RI, (representing 1 January and 1 April, from an el-
evation band ranging from 2000 to 2200 m a.s.l., taken from
the basin selected for the case study of this work. The radia-
tion index is distributed using 10 equally distributed classes.
While the radiation index varies from 1.2 to 20.5 MJ m−2 in
January, it ranges from 7.9 to 34.7 MJ m−2 in April. How-
ever, differences are not restricted to the magnitude of the
index. Despite each class having the same area within the el-
evation band, their spatial distribution changes from one map
to the other. Examination of the figures shows that a number
of pixel belonging to class V in January are included in class
IX in April.

Since the two snowpack state variables, we(t) and liqw(t),
are computed at the model cell level, pixel transition from
a given cell to another must be accounted for, whenever
the radiation index distribution is updated with time (termed
switch date here). To account for pixel transition through
classes, TOPMELT implements an adjusting procedure for
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Table 1. Model parameters and variables: short name, description and measuring units. Parameters are written with capital letters, variables
in lowercase.

Parameter Description Value Unit

ALBG Glacier albedo 0.3 –
ALBS Fresh snow albedo 0.9 –
β2 Dimensionless parameter for alb computation 0.0919 –
CMF Combined melt factor 0.013 mm ◦C−1 MJ−1 m2 h−1

DYTIME Speed of water propagation through snowpack 3 m h−1

G Precipitation gradient 0 km−1

LWT Water holding capacity, fraction of w.e. 0.1 –
NMF Night melt factor 0.16 mm ◦C−1 h−1

REFRZ Freezing factor 0.03 mm ◦C−1 h−1

RI Radiation index, mean daily energy per unit surface 1–42 MJ m−2

RMF Rain melt factor 0.3 mm ◦C−1 h−1

Tb Base temperature 0.0 ◦C
Tc Snow/rain threshold temperature 1.5 ◦C
WETH Water equivalent minimum threshold before ice melt 5 mm

Variable Description Unit

alb Snow albedo (accounting for ageing) –
h Elevation m a.s.l.
f Fusion rate mm h−1

ice Frozen water mm
liqw Interstitial meltwater mm
p Precipitation rate mm h−1

T Temperature ◦C
we Water equivalent (w.e.) mm

Figure 1. Comparison between radiation index distribution over the 2000–2200 m elevation band of the Aurino Basin for (a) 1 January and
(b) 1 April (10 subdivision classes). The figures show the north-eastern portion of the basin and report the average radiation indexM (J m−2),
with the corresponding radiation class identified by a roman number.
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model state variables. The procedure is here described ap-
plied to the arbitrary cell state variable xi,j , corresponding to
the ith elevation band and the j th radiation class of the basin.
When updating from one radiation index map to another, pix-
els from a certain class can, in principle, move to all other
classes, and pixels from other classes can conversely move
to that class. The xi,j variable, which corresponds to certain
model cell, should be updated accordingly. Therefore, a 2-D
array accounting for the pixels’ transition and the associated
variables among classes is defined, namely the transition ma-
trix Mi of the ith elevation band.

The transition matrix is nc× nc sized and is computed for
each elevation band and is unique for each switch date of the
radiation index maps. The elementMi,j,k of the matrix repre-
sents the number of pixels moving at a switch date from the
j th source class to the kth destination class, within a given
elevation band i.Mi,j,j is the diagonal element of Mi , repre-
senting the pixels that did not move from the source radiation
class. Provided that the total number of pixels belonging to a
class must remain constant, a property of the transition ma-
trix is that the sum of the elements along the ith row is equal
to the sum of the elements of the j th column (i.e. the number
of pixels leaving a class is replaced by an equivalent number
of pixels migrating from other classes):

nc∑
h=1

Mi,j,h =

nc∑
h=1

Mi,h,j =Ni,j , (8)

where Ni,j is the number of pixels in the j th radiation class
within the ith elevation band. When TOPMELT switches
from one radiation index map to another, the cell state vari-
able xi,j in the new model cell will be the sum of the pixel
contribution from other classes and of the pixels remaining in
the source class, where the number of incoming or remaining
pixels is weighted with respect to the total number of pixels
of the source class. Therefore, xi,j is corrected through a ma-
trix Ci of correction coefficients, relative to the ith elevation
band, which can be derived from Mi through the following
relation:

Ci,j,k =
Mi,j,k

Ni,j
. (9)

Following Eqs. (8) and (9) that the sum of each line or col-
umn of the correction factors matrix Ci must be equal to 1,

nc∑
j=1

Ci,j,k =

nc∑
j=1

Mi,j,k

Ni,j
= 1. (10)

The coefficient Ci,j,k represents the correction factor for the
state variable xi,j that must be redistributed among the other
classes through the updating process, within the ith elevation
band. With the updating, if xi,j is the source class variable
band and xi,j is transformed (i.e. destination), the class vari-
able correction is computed through the following:

x̂i = Ci · xi, (11)

or through the equivalent forms:
x̂i,1
x̂i,2
...

x̂i,nc

=

Ci,1,1 Ci,1,2 · · · Ci,1,nc

Ci,2,1 Ci,2,2 · · · Ci,2,nc
...

...
. . .

...

Ci,nc,1 Ci,nc,2 · · · Ci,nc,nc

 ·

xi,1
xi,2
...

xi,nc

 ,
(12)

and

x̂i,j =

nc∑
k=1

Ci,j,kxi,k. (13)

Eq. (13) represents the weighted sum of xi,k pixels that
moved from the nc source classes to the destination kth class.
Since the correction factors matrix Ci can be computed once
for all simulations, the model computational efficiency is pre-
served.

To exemplify the computational flow and its constraints,
the example of the water equivalent (w.e.) state variable is
reported here. At a given radiation index switch, wei,j , will
be transferred within the ith elevation band across different
classes transforming into ŵei,j , for j = 1,nc. The total vol-
ume of snow at a given elevation band i of the destination
distribution is as follows:

V̂ we
i =

nc∑
j=1

(
ŵei,jNi,jAp

)
, (14)

where Ap is the pixel size. Combining Eqs. (13) and (14),
and provided that the number of pixels is the same for each
class of the ith elevation band (Ni,j =Ni for j = 1,nc),

V̂ we
i =NiAp

nc∑
j=1

[
nc∑
k=1

(
Ci,j,kwei,k

)]

=NiAp

nc∑
k=1

(
wei,k

nc∑
j=1

Ci,j,k

)
. (15)

Eq. (10) plus Eq. (15) yield that the transformed w.e. volume
is equal to original volume:

V̂ we
i =NiAp

nc∑
k=1

wei,k = V we
i . (16)

Therefore, Eq. (10) is a constraint that holds conservation of
w.e. through the updating process.

2.5 Representation of the water equivalent distribution
and snow cover

The model allows one to provide the representation of spa-
tially continuous water equivalent maps (as well as any other
model cell variable) at a given time. This is carried out by
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Figure 2. The Aurino River basin ending at San Giorgio with the position of the hydro-meteorological monitoring stations.

exploiting a routine which links each model cell to the corre-
sponding topographic elements, accounting for variation of
the radiation index maps. Then, the water equivalent maps
may be converted to snow cover maps by using suitable
threshold values. In this work, we used a minimum threshold
of 10 mm (Parajka and Blöschl, 2008) for the intercompari-
son with the MODIS snow cover products.

3 TOPMELT integration into ICHYMOD

TOPMELT is integrated within a semi-distributed hydrolog-
ical model (ICHYMOD; Norbiato et al., 2008), which trans-
forms excess precipitation plus melt contribution into runoff
at the outlet of the basin. The total flow routed from TOP-
MELT to ICHYMOD is the areal weighted sum of each sin-
gle cell flow, which is made by rainwater and excess meltwa-
ter. The model consists of a soil moisture routine and a flow
routing routine.

The soil moisture routine uses a probability distribution
to describe the spatial variation of water storage capac-
ity across a basin, accordingly to the probability-distributed
model (PDM) of Moore (2007). Drainage from the soil enters
slow response pathways. The base discharge is routed from
groundwater to the catchment outlet through a cubic law stor-
age model. Direct runoff from the proportion of the basin
where storage capacity has been exceeded is routed by means
of a geomorphology-based distributed unit hydrograph (Da
Ros and Borga , 1997), conceptualized by a cascade of two
linear reservoirs in series. Runoff from ice melt is trans-
ferred to the outlet through two different routes, depending
on glacial till imperviousness. Part of the ice meltwater is in-
put to the soil moisture storage, while the remaining fraction
flows directly to the outlet as a cascade of two linear reser-

voirs in series. The base discharge is routed from ground-
water to the catchment outlet through a cubic law storage
model. Storage-based representations of the fast and slow re-
sponse pathways yield a spatially lumped representation fast
and slow response at the basin outlet which, when summed,
gives the total basin flow.

Losses due to evapotranspiration are calculated as a func-
tion of potential evapotranspiration and the status of the soil
moisture store in the PDM. Potential evapotranspiration is
estimated by using the Hargreaves method (Hargreaves and
Samani, 1982).

4 TOPMELT: Impact of spatial and temporal
aggregation scale

4.1 Study site, available data and model set-up

TOPMELT is applied to the Aurino River basin ending at
San Giorgio, located in the Adige River system in the eastern
Alps, Italy (Fig. 2).

The basin has an area of 614 km2, 2.7 % of which is cov-
ered by glaciers for a total of 16.4 km2. Forest covers 33.5 %
of the basin, pasture and grassland 44.5 %, bare soil and
rocks 21.6 % and urban areas the remaining 0.4 %. Eleva-
tion ranges from 817 to 3485 m a.s.l. Mean annual basin av-
eraged precipitation is around 950 mm, with values ranging
from 850 mm at lower elevations to 1300 mm at the high-
est elevations. Precipitation and temperature data at hourly
time intervals are provided by 15 gauging stations (see Fig. 2
for locations), whereas observed discharge are available at
the stream-gauge station in San Giorgio Aurino. The natural
runoff regime is partially altered by the reservoir operations
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over the 25 km2 Neves Basin. Basin topography is described
by means of a DTM with a 30 m grid resolution.

Satellite observations of snow cover at 250 m resolution
have been available for the study basin since January 2011
and are provided by an algorithm based on MODIS observa-
tions developed by Notarnicola et al. (2013a, b). With this al-
gorithm, MODIS maps provide the presence of snow, clouds,
bare soil or water bodies for each pixel or pixels with no fea-
ture detected. 50 MODIS maps are available during the pe-
riod from 1 January to 30 June 2011 with a percentage of
cloud cover of less than 10 %.

The basin was subdivided into 14 elevation bands of 200 m
each, ranging from 800 to 3600 m a.s.l. Elevations bands
were then subdivided into a number nc of radiation classes.
To assess the impact of different spatial aggregation levels of
the radiation index on model results, five types of class sub-
divisions of the basin were considered. The elevation bands
were divided into nc = 1, 5, 10, 15 and 20 classes, yielding
five different spatial aggregation labelled with C1, C5, C10,
C15 and C20 respectively. Similarly, to analyse the influence
of using aggregation periods of the radiation index, five dif-
ferent updating times were used for the computation of the
radiation index distribution, with durations of 1, 2, 4, 8 and
12 weeks and labelled W1, W2, W4, W8 and W12 respec-
tively. Variable temporal and spatial discretization allows for
different configurations of the space–time aggregation of the
radiation index. For example, label W4-C10 refers to a model
set-up with a temporal aggregation interval of 4 weeks com-
bined with use of 10 radiation classes per elevation band. It
is interesting to observe that the model set-up W12-C1 re-
sembles a traditional temperature-index model with a radia-
tion correction for the elevation band (as in Li and Williams,
2008), whereas the model set-up W1-C20 approximates a
fully spatially distributed implementation of the enhanced
temperature-index model. One should bear in mind that when
just one radiation class is used, there is no need to update the
distribution of the snow water equivalent.

4.2 The time-integration routine: assessment of pixel
transition

An important feature of the model is the use of the time-
integration routine to ensure consistency in the snowpack
simulation. This routine accounts for pixel transition from
one radiation index class to another at the switching time. In
this section we analyse the pixel transition by using an index
which represents the percentage of migrating pixels over the
total number of pixels belonging to a given elevation band,
as follows:

MIi =
N̂i

Ni
, (17)

where MIi is the migration index of the transition, N̂i is the
number of pixels changing class during a switch, and Ni is
the number of pixels of the ith elevation band.

Figure 3. (a) Band migration index for the five temporal aggrega-
tions, reported for four elevation bands (lowest elevation band of
817 to 1000 m; 1600 to 1800 m; 2400 to 2600 m; and the high-
est elevation band of 3400 to 3485 m). (b) Fraction of migrated
pixels computed for the five temporal aggregations over all eleva-
tion bands. Circles refers to pixels that migrated ±1 energy class,
squares to total migrated pixels.

The percentage of migrating pixels was computed at four
elevation bands: the lowest (from the lowest elevation of the
basin) of 817–1000 m; two intermediate bands from 1600 to
1800 m and from 2400 to 2600 m; the highest from 3400 to
3485 m (which is the highest elevation in the basin). The
analysis was performed for the five temporal aggregations
by using 10 radiation index classes, reporting the mean av-
erage migration index over the various switches. Results are
reported in Fig. 3a, showing that the percentage of migrating
pixels ranges from up to 16 % at W1 temporal aggregation
to up to 69 % at W12 temporal aggregation, with a consid-
erable increase of the transition percentage with the increase
of temporal aggregation. It is interesting to observe that the
transition percentage decreases with increasing elevation of
the band, i.e. with decreasing the spatial dispersion of pix-
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els corresponding to a certain class. It is worth noting that
the migration index increases with the number of radiation
classes (results not shown here for brevity).

Finally, a specific analysis aimed to analyse the magnitude
of the transition class change. To highlight this aspect, the
percentage of pixels which move by only one class (for ex-
ample from the second to the third radiation class) was com-
puted and compared to the transition percentage. The per-
centages were computed and averaged for all the elevation
bands. Figure 3b shows this comparison, by considering 10
radiation classes for the five temporal aggregations. For ag-
gregation W12, 42 % of the pixels migrate through one class,
17 % through more than one class and only 41 % do not mi-
grate at all. For aggregation W1, 12 % of the pixels migrate
through one class, only 1 % through more than one class
and 87 % of the pixels do not move from the source class
at the switch time. These results agree with those reported
in Fig. 3a and underline the impact of using larger temporal
aggregations on the pixel transition between various classes.

4.3 Model calibration and validation

The results reported in Sect. 4.2 are obviously indepen-
dent on the specification of the snowpack model parameters.
However, their impact on model results (for instance, on the
snow water equivalent spatial distribution) depends on the
specification of model parameters.

TOPMELT and ICHYMOD parameters were identified by
means of a two-stage procedure, based on comparison of the
simulated outflow with the discharge measured at San Gior-
gio and on comparison of the simulated snow cover with
MODIS data, for the period where MODIS data were avail-
able. The model set-up W4-C10 was used for the parameter
identification. The following statistics were used for compar-
ing simulated and observed discharges:

Bias=

∑N
t=1

(
Qsim,t −Qobs,t

)∑N
t=1Qobs,t

, (18)

NSE= 1−

∑N
t=1
(
Qsim,t −Qobs,t

)2∑N
t=1
(
Qobs,t − Q̄obs

)2 , (19)

where Qobs,t and Qsim,t are the observed and simulated dis-
charge at time t , respectively, Q̄obs is the average value of
the observed discharges andN is the number of observations.
Optimal values for bias and Nash–Sutcliffe efficiency (NSE)
are 0 and 1, respectively.

To compare the simulated snow cover (SC) area with the
MODIS observation, a snow water equivalent threshold of
10 mm was used to declare a snow-covered pixel (Parajka
and Blöschl, 2008). Then, the 30 m grids contributing to one
MODIS pixel were calculated, and a simulated MODIS-like
pixel was considered as snow covered if the percentage of the
snow-covered 30 m grid size pixels is equal to or higher than

50 %. MODIS maps with cloud coverage of less than 10 %
were used for the analysis. For assessing the correspondence
of simulated versus observed values, the accuracy index –
ACC – skill measure, based on the contingency table, was
used:

ACC=
TP+TN

TP+FN+FP+TN
, (20)

where TP are the number of true positives, i.e. where both
model and observation agree on the presence of snow on the
pixel; TN is the number of true negatives; FN is the number
of false negatives, i.e. pixels which are snow covered accord-
ing to MODIS and where the model simulates no snow; FP
is the number of false positives, i.e. pixels which are free
of snow according to MODIS and where the model simu-
lates snow. ACC ranges between 0 and 1 with its optimum
at 1. Application of a comparison between MODIS data and
TOPMELT-simulated snow cover is exemplified in Fig. 4 for
a sample date: 6 May 2011. Following Parajka and Blöschl
(2008), the accuracy index (Eq. 20) was computed on a pixel
base over the 50 cloud-free MODIS maps available. The re-
sulting spatial distribution of the accuracy index is termed the
overall accuracy (OA) map.

Model parameter identification was carried out by using
data from 1 October 2001 to 30 September 2012 by using
the model configuration W4-C10. The period from 1 Oc-
tober 2007 to 30 September 2012 was used for model pa-
rameter calibration, with optimization of the statistics bias,
NSE and ACC, whereas model validation was carried out
over the period 1 October 2001 to 30 September 2007. Model
parameter optimization started from the parameterization of
the ICHYMOD application by Norbiato et al. (2009). Model
error statistics NSE and bias are equal to 0.71 % and 2 %,
respectively, for the calibration period, and to 0.71 % and
−9 %, respectively, for the validation period.

A graphical comparison of simulated (W4C10) and ob-
served discharges is reported in Fig. 5 for the period May–
July 2011, showing the general consistency of the simulation.

The overall accuracy map is reported in Fig. 6b, while
Fig. 6b shows the land use over the catchment. The figure
shows that simulated snow dynamics agrees (OA> 0.7) with
MODIS snow cover detection in 71 % of the area. Lower OA
corresponds to forest cover, and the north-facing slopes with
forest cover are characterized by very low values of OA. This
shows clearly the well-known combined effect of view ge-
ometry and forest cover on MODIS snow cover accuracy.
Forests make MODIS remote sensing of snow challenging
because the presence of trees complicates the monitoring of
snow as trees obscure snow on the ground surface (Notar-
nicola et al., 2013b). View geometry may be a further major
error source in MODIS snow-mapping algorithms in forested
areas. This is because the gaps in forest canopies, which are
essentially the detectable snow fraction in winter, are lower
at off-nadir views (Notarnicola et al., 2013b).
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Figure 4. Comparison between simulated and MODIS-derived snow cover map. The comparison is obtained by using the model set-up
W4-C10 for 6 May 2011. TP and TN are true positives and true negatives: both TOPMELT and MODIS indicate the presence or absence of
snow at the pixel respectively. Similarly FP and FN are false positives and false negatives.

4.4 Impact of temporal and spatial aggregation on
model results

The impact of using different spatial and temporal aggrega-
tions on TOPMELT results was carried out by considering
both the spatial distribution of the water equivalent and the
simulated flow. In this analysis, the finest spatial and tem-
poral discretizations, C20 and W1 respectively, were taken
as a reference for the comparisons. For the water equivalent
spatial distribution, the assessment was carried out for the
period between 1 October 2010 and 30 June 2011, generat-
ing a distribution of w.e. at a weekly time step, for a total of
50 simulated snow maps. The intermediate subdivision into
radiation classes (C10) was used for the comparison of tem-
poral aggregations W12 to W2 with W1; Additionally, the in-
termediate temporal aggregation of 4 weeks (W4) was used
for the comparison of spatial aggregations C1 to C15 with
C20 (i.e. the reference configuration for Fig. 7a is W1-C10,
for Fig. 7b is W4C20).

The NSE statistic (Eq. 19) was used to quantify the agree-
ment between the analysis and reference w.e. distribution
over space, by excluding from the comparison all the occur-
rences of zero water equivalence on both maps. One value of
the NSE statistic was obtained for each of the 50 maps.

The results are reported in Fig. 7, where the distributions
of the NSE statistics are summarized by using box plots. Fig-
ure 7a summarizes the results concerning the impact of the
temporal aggregation, whereas Fig. 7b shows the analysis
concerning the spatial aggregation. Using the longest tem-
poral aggregation (W12) has a noticeable impact on the re-
sults, with NSE ranging from 0.88 to 0.99. Even in this case,
a considerable improvement is obtained by using a reduced
temporal aggregation, such as W4. Interestingly, the results
resemble the findings obtained by comparing the model set-
up in terms of pixel migration. Using just one radiation class
(C1) degrades markedly the accuracy of the w.e. distribution,
with NSE ranging from 0.78 to 0.98. Results improve con-
siderably by using five classes (C5).
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Figure 5. Comparison between simulated (W4-C10) and observed discharge at San Giorgio for the May–July 2011 period. The bottom plot
displays the average w.e. over the basin.

Figure 6. (a) Land use distribution for the catchment and (b) pixel-based overall accuracy (OA) of the comparison between simulated and
MODIS-derived snow cover maps, computed from 1 January to 30 June 2011 for a total of 50 MODIS snow cover maps.

The impact analysis on flow simulations was carried out
by comparing observed and simulated flows over the vali-
dation period from 1 October 2001 to 30 September 2007.
Results are reported in Table 2 by using the NSE for the vari-
ous spatial and temporal aggregations. The results are at odds
with those reported for the w.e. distribution, showing that the
sensitivity of the modelled runoff is negligible. The reported
NSE values are very close to each other, ranging from 0.70 to
0.73. The comparison of each runoff simulation to the sim-

ulations obtained by using the W4 or C10 reference models,
as previously done for the snow water equivalent maps, re-
sults in NSE values always in excess of 0.99. The comparison
statistics varied only in a limited way when the comparison
was focused on the 1 March to 30 June period, i.e. the melt-
ing season.

These results are not unexpected. The size of the basin,
which largely exceeds the correlation scale of the radiation
index, together with the branching nature of the river net-
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Table 2. Nash–Sutcliffe efficiency (NSE) of the TOPMELT-ICHYMOD model at different spatial aggregation and temporal resolution, from
October 2001 to October 2007.

W4C1 W4C5 W4C10 W4C15 W4C20 W1C10 W2C10 W4C10 W8C10 W12C10

0.73 0.73 0.71 0.73 0.73 0.71 0.71 0.71 0.70 0.71

Figure 7. Box plots of NSE computed from the pixel-by-pixel com-
parison of the (a) temporal and (b) spatial aggregation series of w.e.
maps, from October 2010 to 30 June 2011 at a weekly time step.
On each box, the central mark indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, re-
spectively. The whiskers extend to the maximum and the minimum
efficiency. The reference is TOPMELT with W1-C10 configuration
for (a) and W4-C20 for (b).

work, provides indeed a powerful way of averaging out the
heterogeneity of snowmelt processes, as shown by Comola
et al. (2015), among others.

To better highlight the control exerted by the catch-
ment size on runoff simulations, we subdivided the study
basin into a number of sub-basins characterized by different
drainage areas. We isolated 5 basins with mean drainage of
20 km2, 10 basins with mean drainage area of 10 km2 and 20
basins with mean drainage area of 5 km2. The basins were
identified to ensure the sampling of the whole range of so-
lar radiation characteristics of the main basin. The model
was implemented for these basins by modifying only those
model parameters which depend explicitly on the area and
the topography of the basin, including, of course, the distri-
bution of the radiation index. The other model parameters
were transposed from those identified for the basin ending at
San Giorgio Aurino. In these comparisons, we analysed only
the effect of varying the number of radiation classes. We con-
sidered only three subdivisions for the radiation classes: 1,
10 and 20 classes, and we used the runoff obtained by using
the finest spatial resolution (20 classes) as a reference against
which the other two were contrasted. We used a period of 4
weeks (W4) as the temporal aggregation. As a matter of fact,
the simulations from the model set-up W4C1 and W4C10
were compared with the corresponding simulations from the

Table 3. Mean value of the Nash-Sutcliffe efficiency (NSE) of the
comparison between W4C1 and W4C10 TOPMELT-ICHYMOD-
simulated flows and the reference flow simulations, obtained by us-
ing the W4C20 set-up, over basins of three different drainage areas:
5, 10 and 20 km2. Comparisons were carried out over the 1 March
to 30 June period.

Model set-up Sub-basin area

5 km2 10 km2 20 km2

W4C1 0.77 0.91 0.99
W4C10 0.97 0.99 0.99

model set-up W4C20. The NSE statistics were computed
only over the 1 March to 30 June period, i.e. the melting
season. The results, reported in Table 3 as an average value
of the NSE statistic over the different basins, show clearly
the control exerted by the catchment size on the effect of us-
ing a different number of radiation classes for runoff simu-
lations. The differences between W4C1 and W4C20 runoff
simulations are considerable (NSE= 0.77) for 5 km2 area
and rapidly decrease with an increase of the drainage area.
At 10 km2 and 20 km2 NSE amounts to 0.91 and 0.99, re-
spectively. On the other hand, no degradation is reported for
runoff simulated by using 10 radiation classes instead of 20,
at least for drainage areas equal to or exceeding 5 km2.

5 Conclusions

This paper presents TOPMELT, a parsimonious snowpack
simulation model which integrates an enhanced temperature-
index model into a semi-distributed basin-scale hydrological
model. This is obtained by discretizing the full spatial dis-
tribution of clear sky potential solar radiation into a num-
ber of radiation classes in each elevation band. Snowpack
simulation is carried out for each radiation class, rather than
for each DTM pixel. This allows one to develop synthesis in
modelling approaches to snow simulation and provides the
potential for analysing the impact of the spatial and tem-
poral aggregation of radiation fluxes on model results. Fur-
thermore, this approach reduces the computational burden,
which is a key potential advantage when parameter sensitiv-
ity and uncertainty estimation procedures are carried out.

The impact of temporal and spatial aggregation of the ra-
diation fluxes on model results is assessed by applying TOP-
MELT on the 614 km2 Aurino River basin at San Giorgio, in
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the eastern Italian Alps. The analysis is carried out by exam-
ining five temporal aggregation levels (ranging from 1 to 12
weeks) and five spatial aggregation levels (obtained by subdi-
viding each elevation band into a number of radiation classes
ranging from 1 to 20), with their impact on the prediction of
snow water equivalent distribution and runoff response.

The assessment of the snow water equivalent simulations
clearly shows the degradation of model results when using
large temporal and spatial aggregation scales, with model ef-
ficiency decreasing up to 20 %. On the other hand, the sen-
sitivity analysis shows that averaging out the radiation index
over 4 weeks and using 10 radiation classes as subdivisions
has a minimal impact on model results.

Analysis of the runoff response simulations shows that the
effects of the spatial patterns of snow water equivalent are
strongly smoothed at the scale of Aurino Basin at San Gior-
gio, with minimal deviations over the different considered
model set-up. Examination of TOPMELT-driven runoff re-
sults obtained over internal sub-basins ranging in area from
5 to 20 km2 highlights that the effects of space–time aggre-
gation of the solar radiation patterns on the runoff response
are scale dependent, and that scale dependency is controlled
by the spatial aggregation of the radiation index. Simula-
tions obtained by using just 1 radiation class degrade in accu-
racy when the model is applied over basins of around 5 km2,
whereas runoff simulations obtained with using 10 radiation
classes show very limited degradation over all basin areas
considered. These results are important for driving the im-
plementation of operational applications of TOPMELT. They
may prove to be relevant for the data assimilation of remotely
sensed snow cover information, which may be made more
effective with increasing accuracy of modelled snow cover.
They may prove to be relevant also in using the spatial trans-
ferability of enhanced temperature-index model parameters
at ungauged basins.

One important implication of our results concerns the
transferability of the simpler temperature-index model,
which is simulated in our cases when TOPMELT is imple-
mented by using just one radiation class. The results suggest
that this spatial aggregation of the radiation patterns does
not impair the spatial transferability of temperature-index
models for runoff simulations of basins larger than a certain
threshold, equal to 5 km2 in our case study.

Code availability. TOPMELT has been developed in Python, ver-
sion 3.6, and additionally tested with Python 2.7 (Python Soft-
ware Foundation, https://www.python.org/, last access: 3 Decem-
ber 2019). Python installation requires the following additional
modules: datetime, inspect, math, os, sys, pyodbc. The code re-
quires the installation of a SQL database (DB) to store input
data and to collects output. TOPMELT was developed and tested
with MySQL Community Server (GPL), version 5.7.21. TOPMELT
source code and a quick user guide are available at the repository
https://doi.org/10.5281/zenodo.1342731 (Zaramella et al., 2018).
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