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Supplementary Materials 
 

Acronym Description 
∆pCO2 ocean pCO2 – atmospheric pCO2 
atm atmospheric 
AVHRR Advanced Very High Resolution Radiometer 

BATS Bermuda Atlantic Time-series Study 
BIO23 Modified Fay and McKinley (2014) ocean CO2 biomes 

CARIOCA CARbon Interface OCean Atmosphere 
Chl-a Chlorophyll-a 
CSIR Council for Scientific and Industrial Research 

DIC Dissolved Inorganic Carbon 
EKE Eddy kinetic energy 
ERT Extremely Randomised Trees 
fCO2 Fugacity of carbon dioxide 
FCO2 Sea-air CO2 flux 
FFN Feed-Forward Neural-Network 
GBM Gradient Boosting Machine 
GLODAP GLobal Ocean Data Analysis Project 
HOTS Hawaii Ocean Time Series 
IAV Interannual Variability 
IQRIA Interquartile Range calculated over interannual variability 

K21E K-means configuration: 21 clusters - column E from Figure 5 

LDEO Lamont Doherty Earth Observatory 
MLD Mixed-layer depth 
OISST Optimum Interpolation Sea Surface Temperature 

OSSE Observing system simulation experiment 
pCO2 Partial pressure of carbon dioxide 
PgC yr-1 1015 grams of carbon per year 
Riav Relative interannual variability 
RMSE Root-mean-square error 
SOCAT Surface Ocean CO2 ATlas 
SOCCOM Southern Ocean Carbon and Climate Observations and Modeling 

SOCOM Surface Ocean CO2 Mapping 
SSS Sea surface salinity 
SST Sea surface temperature 
SVR Support Vector Regression 
TA Total Alkalinity 
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S1 Description of clustering and regression features 

Here we present the products and data processing steps associated with the various features (clustering and 

regression) used throughout our analysis. Specifically, we use:  

● Sea surface temperature (SST), the Optimally Interpolated SST (dOISSTv2) daily, quarter degree 

product, which combines AVHRR (Advanced Very High-Resolution Radiometer) satellite 

observations and in-situ data (Banzon et al. 2016). The SST anomaly is used as a derived feature in our 

analyses. The annual mean for each year is subtracted from the SST product, leaving the variability 

around the mean for that year. We include this metric as it is a measure of intraseasonal variability of 

SST.  

● Sea ice fraction (ICE), the estimates provided from the dOISSTv2 daily product (Banzon et al. 2016).  

● Sea surface salinity (SSS), the EN4 monthly product which performs an objective analysis of ship-

based observations (Good et al. 2013). 

● atmospheric pCO2 (pCO2atm), a product derived from atmospheric mole fraction of CO2 (xCO2) 

measurements gathered in ObsPack v3 (Masarie et al. 2014). To generate a gridded pCO2atm monthly 

product from atmospheric xCO2 sea surface and flask measurements, the atmospheric xCO2 

measurements were: (1) averaged along equal latitude (assuming that xCO2 is well-mixed across 

longitudes), (2) linearly interpolated to fill latitudinal gaps, and (3) extrapolated longitudinally to create 

a global latitudinally-varying time-series of xCO2. Finally, pCO2atm was calculated using the monthly 

gridded atmospheric xCO2 and the monthly sea level pressure from the ERA-Interim 2 reanalysis 

product (Dee et al., 2011), using Equation 1 from Dickson et al. (2007).  

● mixed layer depth (MLD), the Argo Mixed Layers monthly product generated from Argo density 

profiles (Holte et al., 2017). Precisely, we use the log10 transformation onto the Holte et al. (2017) 

MLD product and create a monthly climatology, thus imposing the assumption that there is no 

interannual variability.  

● chlorophyll-a (Chl-a), the Globcolour monthly product (Maritorena et al. 2010). Two features were 

created for this variable: Chl-a and Chl-a′ (Table 1). First, the Chl-a feature was created by applying 

the log10 transformation. The Globcolour satellite product is only available from 1998. The climatology 

of Chl-a (1998-2016) was used to fill the period before 1998 and remaining cloud gaps. Low 

concentration random noise was inserted in high-latitude winter regions (areas and season for which 

there is not Chl-a climatology). A Chl-a feature-variable was generated as an anomaly product (Chl-a′ - 

also log10), which was calculated by subtracting the climatology (calculated using chlorophyll-a data 

from 1998-2016) from the satellite product.  

● wind vectors (u and v) and speed (U10, the 6-hourly ERA-interim version 2 product (Dee et al., 2011). 

Wind speed was calculated for each 6-hourly time step using the equation in Table 1 and was then 

averaged into monthly means.  

● eddy kinetic energy (EKE), u and v surface current components (integrated for depth < 15 m) of the 

monthly Globcurrent product (Rio et al., 2014). Specifically, EKE was calculated using the equation in 

Table 1, where 𝑢′ is calculated as 𝑢 − 𝑢 and similarly with v.  

● surface ocean pCO2 climatology, the Lamont-Doherty Earth Observatory (LDEO) product referenced 

to the year 2000 (Takahashi et al., 2009).  
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In summary, all the above feature datasets were generated at the global scale, at a monthly frequency from 1982 

to 2016 (except for climatological products) and onto a 1° ⨉ 1° resolution grid (specifically following the 

SOCAT v5 grid for consistency purposes). The gridded step was achieved using the Pandas and xarray 

packages in Python (McKinney, 2010; Hoyer and Hamman, 2017). Note that the regridding of the 4° ⨉ 5°  

pCO2clim also involved a moving average convolution wind of 5° ⨉ 5°) to smooth the data.  

S2 Descriptions of regression methods 

S2.1 Shuffled train-test experiment  

An experiment was performed to assess the difference in the root-mean-square error when the train-test 

split was shuffled, vs using random years as the splitting criteria. The exact same training procedure was 

applied to the model as done in Section 2 of the main article. The train-test shuffled split (0.8: 0.2) uses a 

random subset of the data without preserving order in any way. Importantly this means that cruise tracks 

are split. The RMSE was calculated using the test split for each year and then averaged. The RMSE scores 

for Extremely Randomised Trees were 12.35 µatm and 18.62 µatm for the shuffled and year-grouped splits 

respectively. This effect would be larger in methods that are prone to overfitting. However, as a precaution, 

we recommend that this train-test split procedure is applied.  

 
Figure S1: demonstrates that all machine learning methods used in this study suffer from overtraining; however, the 
FFN method is least prone to the effect, but has the lowest RMSE. The ERT is most prone, with GBM and SVR also 
suffering from the effect.  

S2.2 K-means clustering 

The basic principle of K-means clustering is as follows: 1) place N random centroids, where N is the number of 

clusters; 2) find the nearest centroid (usually with Euclidean distance) and assign samples to the respective 

clusters; 3) compute new centroids by calculating the mean position of all the samples belonging to a cluster; 4) 

repeat steps 2 and 3 until there is no change in the membership of samples to clusters (Hastie et al. 2009). Mini-

batch K-means applies the same principle, but data are split into batches to reduce the computational cost for 

large datasets with minimal loss of performance (Sculley 2010).  
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Figure S2: The membership of clusters (as a climatology) for the K21E configuration (Figure 5), where each panel 
represents a cluster with the number shown in the figure. The blue indicates that data is dominant in November to 
April period and red shows when data is dominant for the May to October period. 
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S2.3 Supervised regression methods 

S2.3.1 Extremely Randomised Trees 

Extremely Randomised Trees (ERT) is a derivative of Random Forest Regression (Breiman, 2001; Geurts et al. 

2006). ERT fits multiple decision trees to a dataset, where a decision tree uses recursive partitioning of the 

target data based on splitting criteria in feature-variables. The use of multiple trees reduces the high variability 

that decision trees typically suffer from while theoretically maintaining low bias. However, Random Forest 

Regression is often prone to overfitting to the training data (Gregor et al. 2017). ERT reduces this by using the 

best of a selection of random cut-points when a decision tree is being trained. We use the Scikit-Learn 

implementation of ERT in Python (Pedregosa et al. 2012). The primary optimisation functions are the number of 

trees, the minimum number of observations at the terminal branches, and the number of random features in the 

subset of features from which each decision tree is trained.  

S2.3.2 Gradient Boosting Machines  

Gradient boosting machines (GBM) use multiple weak learners (typically decision trees) that are sequentially 

fitted to minimise the residuals of the previous fit (Friedman, 2001). This is known as additive learning, where 

the algorithm fixes what is learnt. While GBM’s have been proven to be good at dealing with imbalanced 

datasets, it is more likely to overfit to the training data as the model has the potential for high complexity 

(Dietterich, 1995; Frery et al. 2017). Tuning the hyper-parameters to prevent overfitting is thus critical. As such, 

the following hyper-parameters were tuned in our study: number of trees (determined by improvement 

threshold), depth of trees (by adjusting the maximum depth of trees and minimum number of points per node) 

and learning rate. We use the XGBoost Python package which has a parallel implementation of GBM (Chen 

2016).  

S2.3.3 Feed-Forward Neural-Network 

Feed-Forward Neural-Networks (FFN) is the most commonly used non-linear approach in Rödenbeck et al. 

(2015). We use the Multi-layer perceptron function in Scikit-Learn – a.k.a. FFN. The principle is that a network 

with random weights is generated (similar to the coefficients in linear regression). Samples are passed forward 

through the network to estimate target values. The discrepancy between the estimates and the targets is back-

propagated through the weights until the targets are met with sufficient accuracy. The primary tuning parameter 

in the FFN is the architecture of the network (number of hidden layers and weights per layer). We follow the 

same procedure in determining the number of weights as Landschützer et al. (2013) where the size of the 

network can be up to %
&'

 where n is the number of samples in the training subset (Amari et al. 1997). We also 

tune the learning rate (⍺) – an ⍺ that is too small could result that the model gets stuck in a local minimum.  

S2.3.4 Support Vector Regression 

Support Vector Regression (SVR) applied with a Gaussian kernel is analogous to an FFN (Drucker et al. 1997; 

Romero and Toppo, 2007). The difference is that the SVR estimates the complexity of the problem from the 

data using robust statistics giving the number of support vectors – the subset points that determine the 

hyperplane on which estimates lie. The theory of SVR is described in Gregor et al. (2017). While the 
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performance of SVR is often good, it does not scale well to large datasets. However, the two-step, cluster–

regression approach reduces the size of the problem drastically, making it possible to use SVR at monthly by 

one-degree resolution. We use SVR implementation in the Scikit-Learn package (Pedregosa et al. 2012). We 

standardise the features before implementing SVR with )*)
+

, where 𝑥 is the average of x and 𝜎 the standard 

deviation of x. There are two hyperparameters that we tune: C – controls the total allowable error (relative to the 

size of the margins), and 𝛾 – radius of the Gaussian.  

S2.4 Impact of pCO2 temperature correction 

Goddijn-Murphy et al. (2015) showed that a large bias could be introduced in air-sea CO2 flux estimates due to 

the difference between SOCAT reported temperatures (measured at ~ 5 m) and bulk temperature reported by the 

AVHRR only OISST product (corrected to ~1.0 m depth using floats; Banzon et al. 2016). Figure S3a shows 

that SOCAT SST has a positive temperature bias (0.13°C) relative to the OISST product. This bias is the same 

bias that was reported by Banzon et al. (2016) in the comparison of ship with buoy data, where the latter is used 

to correct the direct AVHRR measurements. The authors attribute this bias to the warming of water in the ships’ 

intakes in the engine room (Banzon et al. 2016). Despite the explanation for this positive bias, there is still large 

uncertainty when one considers the remaining temperature mismatch (shown in Goddijn-Murphy et al. 2015), 

the temperature correction to the remote sensing product could thus still be an important step in preparing the 

data for regression. This is reflected in the regionally consistent positive biases in pCO2 in the Northern Atlantic 

and Pacific (Figure S3b).  

 
Figure S3: (a) SOCAT SST bias (SSTSOCAT – SSTOISST) showing that SOCAT temperatures are on average 0.13°C 
warmer than SSTOISST. (b) pCO2 bias based on the temperature difference between SOCAT and OISST, where warmer 
regions report higher pCO2 values.  

We assess the impact of the corrections on the regression results by running three regression configurations with 

different input temperature and target pCO2: 1) a control run where we keep the SOCAT temperature and make 

no adjustment to pCO2; 2) we use OISST without correcting pCO2 for temperatures (the configuration used in 

the main manuscript); 3) OISST is used and we correct pCO2 for the temperature discrepancy shown in Figure 

S3a. Note that the experimental setup was simplified compared to the regressions run in the main manuscript. 

Here, only one model was used, namely the GBM. We used the 21 cluster configuration used in the remainder 

of the study.  
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The results for the uncorrected pCO2 (Table S1) are near what one would expect for the experimental setup, the 

SOCAT SST errors are marginally smaller than the second experiment where OISST was used. The third 

experiment (OISST with corrected pCO2) had larger error estimates compared to first and second runs.  

 
Table S1: Results from a regression experiment using different configurations of SST variables and pCO2 corrections 
for SST discrepancy between SOCAT reported temperature and OISST. The letters in the first column (a,b,c) 
correspond with the maps in Figure S4. 

 Bias  (µatm) MAE (µatm) RMSE (µatm) r2 

(a) SOCAT SST / no pCO2 correction -0.23 12.15 18.83 0.74 

(b) OISST / no pCO2 correction 0.00 12.43 19.17 0.73 

(c) OISST / pCO2 corrected to OISST -0.50 13.55 20.94 0.7 

 

To investigate these errors further we plotted the distribution of the biases as shown in Figure S4. The 

distribution for the biases is very similar for all experiments. This illustrates that the models’ capability to 

reproduce the observations is a far greater contributor to the error than the error attributed to the temperature 

discrepancy.  

 
Figure S4: The biases from three regression experiments testing the effect of correcting pCO2 to the temperature 
discrepancy between SOCAT temperatures and the OISST product. The figure numbers correspond to the first column 
in Table S1. Note that the spatial biases are robust to the temperature corrections.  

S3 Results and Discussion 

S3.1 Regression score heatmaps for individual methods 

The averaged heatmaps of bias, RMSE and RIAV in Figure 5 do not show the nuanced differences between 

each of the regression methods. Here we show the individual biases and RMSE of each approach. All but one of 
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the regression methods have a negative bias, where the ERT method is positively biased. We attribute the 

positive bias of the ERT to its resilience to outliers, where the low pCO2 samples at the beginning of the time 

series are likely identified as outliers (Gregor et al. 2017). The GBM approach is the most consistent with little 

variation in the distribution of the biases. The individual distributions of RMSE show that configuration E is 

consistently low. There are configurations that are lower than the selected configuration. However, for the sake 

of simplicity and consistency, we select the configuration that has the lowest average RMSE.  

 
Figure S5: Heatmaps showing the bias for each of the regression methods from left to right: SVR (support vector 
regression), ERT (extremely randomised trees), GBM (gradient boosting machine), and FFN (Feed-forward neural 
network). The black square shows the same configurations that are highlighted in Figure 5. 

Figure S6: Heatmaps showing the root mean squared error for each of the regression methods from left to right: SVR 
(support vector regression), ERT (extremely randomised trees), GBM (gradient boosting machine), and FFN (Feed-
forward neural network).  The black square shows the same configurations that are highlighted in Figure 5. 
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S3.2 Explanation of the increase in RMSE around the year 2002 

 
Figure S7: The number of SOCAT v5 monthly gridded data per year plotted against the standard deviation for that 
year, with the years shown by colour. An increase in standard deviation against the number of samples is observed 
around the year 2000 coinciding with the increase in RMSE for all methods during the same period.  

S3.3 Ensemble-member evaluation 

In this section, we assess the evaluation of the ensemble members (Figure S8) and we also compare three 

different combinations of ensemble members (Table S2). There is a stronger bias in the members belonging to 

the BIO23 clustering configuration (Figure S8e-h), but including these methods results in a lower bias and 

RMSE score (Table S1).  

 
Table S2: Bias and root-mean-squared error (RMSE) for three different ensemble member configurations. These 
configurations were tried in light of the fact that the BIO23 configurations have large biases. However, the inclusion of 
BIO23 regressions (with the exception of ERT) improves the overall bias and RMSE. 

Ensemble Bias (µatm) RMSE (µatm) 

K21E: SVR + FFN + GBM -0.38 18.02 

K21E: SVR + FFN + GBM + ERT -0.30 17.97 

ML6 (as in Section 3.2) 0.21 17.31 
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Figure S8: The biases from the robust test-estimates for the four regression methods in the K21E cluster (a-d) and 
similarly the four regression methods in the BIO23 cluster (e-h). See the main text for details about the clusters. The 
abbreviations for the regression methods are Support Vector Regression (SVR), Gradient Boosting Machine (GBM), 
Feed-Forward Neural-Network (FFN), and Extremely Randomised Trees (ERT). Convolution has been applied to 
make it easier to see the regional nature of the biases and RMSE. This is a partner figure to Figure 7a that shows the 
bias for every ensemble member.  
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S3.4 Explanation for high RMSE in Taylor diagrams vs. annually-averaged RMSE 

 
Figure S9: The annually calculated RMSE scores for LDEO (a) and GLODAP v2 (b) averaged for all gap-filling 
methods (blue line), with the grey filled area showing the standard deviation between methods (Takahashi et al., 2017; 
Bakker et al., 2016). The solid black line shows the average of the annually calculated RMSE as shown in Table 5, while 
the dashed black line shows the RMSE without the annual weighting.  

 

S3.5 Relative area and contributions of oceanic regions to FCO2 

 
Figure S10: (a) A stacked area plot showing the magnitude of sea-air CO2 fluxes for each region with a 12-month rolling 
mean and (b) shows the relative contribution of these regions to the total flux. (c) A pie chart showing the relative area 
of each ocean region in Figure 2. NH and SH are Northern and Southern Hemispheres respectively; EQU is the 
equatorial region; HL is high latitude regions; and ST is the subtropics.  

S3.6 Relative importance of feature-variables for Gradient Boosting Machines 

Gradient boosting machines (GBM) are able to estimate the relative importance of a feature-variable by the 

iterative nature and stacking of decision trees – available in the XGBoost package (Chen and Guestrin, 2016). 

This approach is useful when applying the gradient boosting machines to regions that do not change with time, 

such as the CO2 biomes used in our study (Figure S11). 
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Figure S11: The feature-importances for a gradient boosting machine (GBM) run with the two-step cluster-regression, 
where the modified Fay and McKinley (2014) biomes (Figure 2) were used as clusters (x-axis). Atmospheric pCO2 was 
omitted from the figure as the variable dominates the importance and thus skews the colour-map. The sum of each 
column is one. The figure on the right shows the sum of the rows, indicating the total importance of feature-variables. 
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