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Abstract. Vegetation fires influence global vegetation dis-
tribution, ecosystem functioning, and global carbon cycling.
Specifically in South America, changes in fire occurrence to-
gether with land-use change accelerate ecosystem fragmen-
tation and increase the vulnerability of tropical forests and
savannas to climate change. Dynamic global vegetation mod-
els (DGVMs) are valuable tools to estimate the effects of fire
on ecosystem functioning and carbon cycling under future
climate changes. However, most fire-enabled DGVMs have
problems in capturing the magnitude, spatial patterns, and
temporal dynamics of burned area as observed by satellites.
As fire is controlled by the interplay of weather conditions,
vegetation properties, and human activities, fire modules in
DGVMs can be improved in various aspects. In this study we
focus on improving the controls of climate and hence fuel
moisture content on fire danger in the LPJmL4-SPITFIRE
DGVM in South America, especially for the Brazilian fire-
prone biomes of Caatinga and Cerrado. We therefore test two
alternative model formulations (standard Nesterov Index and
a newly implemented water vapor pressure deficit) for cli-
mate effects on fire danger within a formal model–data in-
tegration setup where we estimate model parameters against
satellite datasets of burned area (GFED4) and aboveground
biomass of trees. Our results show that the optimized model
improves the representation of spatial patterns and the sea-

sonal to interannual dynamics of burned area especially in
the Cerrado and Caatinga regions. In addition, the model im-
proves the simulation of aboveground biomass and the spatial
distribution of plant functional types (PFTs). We obtained the
best results by using the water vapor pressure deficit (VPD)
for the calculation of fire danger. The VPD includes, in com-
parison to the Nesterov Index, a representation of the air hu-
midity and the vegetation density. This work shows the suc-
cessful application of a systematic model–data integration
setup, as well as the integration of a new fire danger for-
mulation, in order to optimize a process-based fire-enabled
DGVM. It further highlights the potential of this approach to
achieve a new level of accuracy in comprehensive global fire
modeling and prediction.

1 Introduction

Fire in the Earth system is an important disturbance lead-
ing to many changes in vegetation and has a substantial im-
pact on biodiversity, human health, and ecosystems (Lang-
mann et al., 2009). Fire is responsible for ca. 2 Pg of carbon
emission, which constitutes 20 % of global carbon emission
(Giglio et al., 2013; van der Werf et al., 2010). Fire-induced
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Figure 1. Overview of the mean annual burned area in Brazil from
2005 to 2015 (van der Werf et al., 2017; Giglio et al., 2013) and the
biomes Amazonia, Cerrado, and Caatinga (IBGE, 2019; Harvard,
2019)

aerosol emissions and land-surface changes modify evapo-
transpiration and surface albedo and therefore have a cru-
cial impact on global climate (van der Werf et al., 2008; Yue
and Unger, 2018). Despite a tendency for globally declining
burned area (Andela et al., 2017; Forkel et al., 2019b), more
frequent and intense drought periods lead to increasing fire-
prone weather and surface conditions worldwide, and there-
fore fire danger (Jolly et al., 2015). Growing fire danger and
land-use change are increasing the ecosystem’s vulnerability,
which could in turn shift entire regions into a less vegetated
state (Silverio et al., 2013). To account for these effects, it is
extremely important to include well performing fire modules
in dynamic global vegetation models (DGVMs).

Especially in South America, tropical forests, woodlands,
and other ecosystems are vulnerable to increasing fire danger
and land-use change (Cochrane and Laurance, 2008). This
study focuses on the fire behavior in central-northern South
America and especially on the Brazilian biomes of Caatinga
and Cerrado, which are the most fire-prone regions in South
America (Fig. 1). Together with the Amazon rainforest they
form an area of very high biodiversity and have a large im-
pact on the global carbon cycle and the regional water cycle
(Lahsen et al., 2016).

Compared to the Amazon, the Cerrado and Caatinga re-
gions are less densely vegetated and drier biomes with very
different vegetation and precipitation dynamics. The Cer-
rado is a savanna-like biome with a mixture of shrubs, high
grasses, and dry forest parts. With a precipitation of ca.
1500 mm yr−1 the Cerrado does experience a rainy season.
The Caatinga, on the other hand, has a semiarid climate
with irregular rainfall between 500 and 750 mm yr−1, mostly
within only a few months of the year. The vegetation is het-
erogeneous and characterized by deciduous dry forest and
shrubs (Alvares et al., 2013; Prado, 2003). The different veg-

etation types of the Caatinga and the Cerrado lead to differ-
ent fire spread, fire intensity, fire resistance, and fire mortality
properties. While within the Cerrado fire is a frequent event
and the plants are mostly adapted to it (70 % of burned area in
Brazil is within the Cerrado; Moreira de Araújo et al., 2012),
the Caatinga has lower fire intensity and fire spread due to a
lower biomass available for fuel. Such variability in the vege-
tation and dead-matter fuel composition, within and between
biomes, poses a challenge to global fire models to correctly
simulate observed fire patterns for a variety of biomes. Both
the Caatinga and the Cerrado depend on a strict equilibrium
of fire–vegetation–climate feedbacks (Lasslop et al., 2016),
which is threatened to be disturbed by human impact through
climate change and land-use change (Beuchle et al., 2015).
While the Amazon is the focus of various national and in-
ternational conservation efforts and at least by law well pro-
tected, the Cerrado is currently overexploited by agribusiness
and its importance for regional climate, biodiversity, and the
water cycle is often neglected (Lahsen et al., 2016). In par-
ticular the disturbance of increasing fire regimes by climate
change and land-use change might accelerate biome degra-
dation. These effects on the Cerrado might also impact the
Amazon rainforest by shifting the position of the savanna–
forest biome boundary towards forest, putting the function-
ing of the Amazon rainforest at risk (Chambers and Artaxo,
2017). Parts of the Cerrado itself are also vulnerable to in-
creasing fire regimes, and they might shift to a less vege-
tated state, similar to the Caatinga (Hoffmann et al., 2000).
To model these feedback processes and to study the range
of biome-stability under certain drought-induced perturba-
tions, a realistic fire representation in climate and vegetation
models is essential. However, modeling fire behavior of the
Brazilian Cerrado and Caatinga presents a huge challenge.

The fire occurrence depends on many interconnected pa-
rameters, such as humidity, precipitation, temperature, igni-
tion sources (lightning and human), and wind speed, but also
on fuel load, fuel moisture, and the adaption of plant traits to
fire (Keeley et al., 2011), which makes the development of
fire models a complex task (Forkel et al., 2019a; Hantson
et al., 2016; Lasslop et al., 2015; Krawchuk and Moritz,
2011; Jolly et al., 2015). Global fire modeling is done either
by empirical models (e.g., Thonicke et al., 2001; Knorr et al.,
2016; Forkel et al., 2017) or by process-based models (e.g.,
Venevsky et al., 2002; Thonicke et al., 2010). Empirical fire
models are simplified statistical representations of fire pro-
cesses and are based on empirical relationships between vari-
ables (e.g., soil moisture and fire occurrence). Process-based
fire models attempt to simulate fire via explicit process-based
relations: fire ignitions are calculated by taking into account
lightning flashes as natural sources and human ignitions. The
chance of an ignition to become a spreading fire is then deter-
mined by the fire danger index (FDI). Sophisticated fire mod-
els calculate the rate of spread by taking into account wind
speed and then translate these results into an area burned, fuel
consumption, and fire carbon emissions (e.g., Thonicke et al.
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(2010); see Hantson et al. (2016) for an overview of global
fire models).

Weather conditions control the moisture content of fuels
and the danger of fire to ignite and spread. Hence the simu-
lation of fire danger plays an important role to simulate the
occurrence of fire within global process-based fire models
(Pechony and Shindell, 2009). Temperature, precipitation,
humidity, and vegetation-related variables are often used to
compute fire weather indices and hence to estimate the risk of
ignitions to become a spreading fire (Chuvieco et al., 2010).
Various fire weather indices are used within operational fire
danger assessment systems (e.g., Canadian Fire Weather In-
dex, FWI (Wagner et al., 1987), the Keetch–Byram Drought
Index (Keetch and Byram, 1968), the Angström Fire Dan-
ger Index (Arpaci et al., 2013), and the Nesterov Index
(Venevsky et al., 2002)). However, regional studies show that
fire weather indices tend to have different predictive per-
formances for fire occurrence (Arpaci et al., 2013). Hence,
the performance of different fire weather indices should be
ideally tested in order to accurately represent fire danger in
DGVMs. However, not all fire weather indices can be eas-
ily adapted for global fire models, because they require input
variables that are not available within a DGVM framework.
Hence a fire danger index for a DGVM should be as com-
plex as necessary but still relatively easy to implement. As a
result, the relatively simple Nesterov Index has been widely
used within global fire models (Venevsky et al., 2002; Thon-
icke et al., 2010).

Here, we aim to improve the simulated occurrence of fire
(i.e., burned area) in the LPJmL4-SPITFIRE model for South
America and in particular for the fire-prone biomes of Cer-
rado and Caatinga. We aim to evaluate the performance of
two alternative fire danger indices within SPITFIRE based
on the already implemented Nesterov Index (Venevsky et al.,
2002) and the newly implemented water vapor pressure
deficit (VPD hereafter; Pechony and Shindell, 2009; Ray
et al., 2005). Furthermore, we apply a formal model–data in-
tegration framework (LPJmLmdi; Forkel et al., 2014) to esti-
mate model parameters that control fire danger, fire behavior,
fire resistance, and mortality against satellite-based datasets
of burned area and aboveground biomass (Fig. 2). Our ap-
proach is likely to improve the representation of spatiotem-
poral variations in fire behavior in different biomes to enable
a much better modeling of the impact of climate change on
fire–vegetation interactions in the current century.

2 Materials and methods

2.1 The coupled vegetation–fire model
LPJmL4-SPITFIRE

2.1.1 LPJmL 4.0

The LPJmL 4.0 model (Lund-Potsdam-Jena managed Land;
Schaphoff et al., 2018a, b) is a well established and validated
process-based DGVM, which globally simulates the surface
energy balance, water fluxes, carbon fluxes and stocks, and
natural and managed vegetation from climate and soil input
data. LPJmL simulates global vegetation distribution as the
fractional coverage of plant functional types (PFTs), which
is called foliage projective cover (FPC), and managed land
as fractional coverage of crop functional types (CFTs). The
establishment and survival of different PFTs is regulated
through bioclimatic limits and effects of heat, productivity,
and fire on plant mortality. Therefore, it enables LPJmL to
investigate feedbacks, for example, between vegetation and
fire. In standard settings, which are also used here, the model
operates on the grid of 0.5◦× 0.5◦ latitude–longitude with a
spinup time of 5000 years, repeating the first 30 years of the
given climate dataset.

Since its original implementation by Sitch et al. (2003),
LPJmL has been improved by a representation of the water
balance (Gerten et al., 2004); a representation of agriculture
(Bondeau et al., 2007); and new modules for fire (Thonicke
et al., 2010), permafrost (Schaphoff et al., 2013), and phenol-
ogy (Forkel et al., 2014).

2.1.2 SPITFIRE

SPITFIRE (SPread and InTensity of FIRE; Thonicke et al.,
2010) is a process-based fire module used in various vegeta-
tion models (e.g., Lasslop et al., 2014; Yue and Unger, 2018),
including LPJmL4. We describe here its main features, which
are published in Thonicke et al. (2010). SPITFIRE calculates
fire disturbance by simulating the ignition, the danger, the
spread, and the effects of fire separately. As ignition sources
SPITFIRE considers human ignition and lightning flashes.
Human ignitions (nh,ig) are calculated as a function of popu-
lation density:

nh,ig = PD · k(PD) · a(ND)/100, (1)

where

k(PD)= 30.0 · exp(ph ·
√
PD). (2)

PD is the human population density (individuals per square
kilometer) and a(ND) (ignitions per individual per day) de-
scribes the inclination of humans to cause fire ignitions
(Eqs. 3 and 4 in Thonicke et al., 2010). ph is a parameter
which is set to −0.5 in Thonicke et al. (2010). This relation-
ship assumes that human ignitions are lowest for very low
population regions and for high population regions through
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Figure 2. Schematic overview of the model–data integration approach to estimate parameters of LPJmL4-SPITFIRE against satellite-based
datasets of burned area and aboveground biomass

a higher level of urbanization and landscape fragmentation.
The ignition is highest for a medium-small population den-
sity. Lightning-induced ignitions are prescribed by lightning
data from the OTD/LIS Gridded Climatology dataset (Chris-
tian et al., 2003), assuming that 20 % of the flashes reach the
ground and 4 % of cloud-to-ground strikes can start a fire. In
the study area of South America human ignitions are by far
the most dominant ignition source, due to no lightning in the
dry season.

Fire danger is by default computed by using the Nesterov
Index, which accounts for the maximum and dew point tem-
peratures as well as scaling factors for different PFTs on a
daily time step. In the following section, we describe the cal-
culation of the fire danger indices in detail (Sect. 2.2). Fire
duration tfire (min) is calculated as a function of the fire dan-
ger index, assuming that fires burn longer under a high fire
danger:

tfire =
241

1+ 240 · exp(pt ·FDI)
, (3)

where pt is set to−11.06 in Thonicke et al. (2010). The max-
imum fire duration per day is 240 min.

The calculation of the forward rate of spread, ROSf,surface
(m min−1), is based on the Rothermel equations (Rothermel,
1972; Pyne et al., 1996; Wilson, 1982):

ROSf,surface =
IR · ξ · (1+8w)

ρb · ε ·Qig
, (4)

where IR is the reaction intensity, ξ the propagation flux ra-
tio, 8w a multiplier that accounts for the effect of wind, ε
the effective heating number, Qig the heat of pre-ignition,

and ρb the fuel bulk density (Eq. 9 in Thonicke et al., 2010).
ρb (kg m−3) is a PFT-dependent parameter and describes
the density of the fuel which is available for burning. It is
weighted over the different fuel classes. Hence, a changing
PFT distribution has an impact on ROSf,surface.

The simulated fire ignitions, fire danger, and fire spread
are then used to calculate the burned area, fire carbon emis-
sions, and plant mortality. Plant mortality depends on the
scorch height (SH) and the probability of mortality due to
crown damage Pm(CK). SH describes the height of the flame
at which canopy scorching occurs. It increases with the 2/3
power of the surface intensity Isurface:

SH= F · I 0.667
surface, (5)

where F is a PFT-dependent parameter. Assuming a cylindri-
cal crown, the proportion, CK, affected by fire is calculated
as

CK=
SH−H +CL

CL
, (6)

where H is the height of the average woody PFT and CL the
crown length. The probability of mortality, Pm(CK), due to
crown damage is then calculated by

Pm(CK)= rCK ·CKp, (7)

where rCK is a PFT-dependent resistance factor between 0
and 1, and p is in the range of 3 to 4. Disturbance by fire mor-
tality has a large impact on the vegetation dynamics, which
are calculated within LPJmL. SPITFIRE further includes a
surface intensity threshold (10−6, fraction burned area per
grid cell), which describes the threshold of the possible area
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burned below which the surface intensity is set to zero and
hence burned area, emissions, and fuel consumption are set
to zero.

SPITFIRE considers anthropogenic effects on fire by tak-
ing into account human ignitions but does not account for
fire suppression. Only wildfires occurring in natural vegeta-
tion are simulated. Fire on managed land like agriculture or
pasture areas is not implemented, which has to be taken into
account if simulated burned area is compared with satellite
observations.

Furthermore, we introduced a small technical change in
the LPJmL4 interaction with SPITFIRE compared to the
original SPITFIRE implementation: in version 4.0 of LPJmL
the fire litter routine calculates the leaf and litter carbon pools
in a daily time step. Since the LPJmL tree allocation works
at a yearly time step, this implementation leads to an incor-
rect LPJmL4 and SPITFIRE interaction. We now split the
fire-litter routine into two parts; the first one allocates burned
matter into the litter at a daily time step without recalculat-
ing the pools, and the second one calculates the leaf and root
carbon pools at a yearly time step.

2.2 Fire danger indices

The fire danger index (FDI) is a key parameter within
process-based fire models such as SPITFIRE. The FDI de-
termines the probability and the intensity of a spreading fire,
which impacts fire behavior.

2.2.1 Nesterov Index-based fire danger index (FDINI)

The fire danger index within SPITFIRE is based on the daily
(d) calculated Nesterov Index NI(d) (Venevsky et al., 2002),
which is widely used in numeric fire simulations. The NI is a
cumulative function of daily maximum temperature Tmax(d)

(◦C) and dew-point temperature Tdew(d) (◦C) and set to zero
at a precipitation ≥ 3 mm or a temperature ≤ 4 ◦C:

NI(d)=
∑

Tmax(d) · (Tmax(d)− Tdew(d)), (8)

Tdew = Tmin(d)− 4. (9)

The resulting fire danger index has been calculated as
in Schaphoff et al. (2018a) (slightly different compared to
Thonicke et al., 2010) by taking into account the NI as mea-
sure for weather conditions and a PFT-dependent scaling fac-
tor αNIi :

FDINI =max
(

0,1−
1
me

exp
(
−

∑
αNIi
n
·NI

))
, (10)

where n is the number of PFTs andme the moisture of extinc-
tion, which is a PFT-dependent parameter and is weighted
over the litter amount. We will use the scaling factors αNIi in
the parameter optimization (Sect. 2.4).

2.2.2 Vapor-pressure-deficit-based fire danger index
(FDIVPD)

We implemented a new fire danger index, based on the water
vapor pressure deficit (VPD). The VPD describes the differ-
ence between the saturation water vapor pressure es and the
actual water vapor pressure in the air. For the parameteriza-
tion of the VPD we used an approach based on Pechony and
Shindell (2009):

VPD∝ 10Z(T )(1−RH/100), (11)

where T is the air temperature, RH the relative humidity, and
Z the Goff–Gratch equation (Goff and Gratch, 1946) to cal-
culate the saturation vapor pressure. The flammability F at
time step t for each grid cell can then be expressed as

F(t)= 10Z(T (t))
(

1−
RH(t)

100

)
VD(t)e−cRR(t), (12)

where VD is the vegetation density, R the total precipitation
(mm d−1), and cR is a constant factor (cR = 2 d mm−1). Here
we used the simulated FPC from LPJmL4 as a proxy for
the VD. The soil is a natural buffer for drought periods and
heavy rainfall events. In the Nesterov Index this was taken
into account by the cumulative nature of this index. Since the
VPD-based fire danger index is not cumulative, this buffer-
ing effect is taken into account by taking the monthly mean
of the precipitation. In doing so we avoid unrealistic high-
flammability fluctuations in time steps with isolated events
of very low or very high precipitation (R).

Based on this implementation in SPITFIRE, the result-
ing FDI was much smaller than the original FDINI. Hence,
we scaled the VPD up with a PFT-dependent scaling factor
αVPDi , weighted over the corresponding FPC:

FDIVPD =

∑
αVPDi ·FPCi∑

FPCi
·F(t). (13)

αVPDi for the FDIVPD was not included in Pechony and
Shindell (2009) but is important in order to allow differ-
ent fire responses for different tree and grass types. We will
use the scaling factors αVPDi in the parameter optimization
(Sect. 2.4).

In comparison to the NI, the FDIVPD requires more cli-
mate variables as input as it uses relative humidity and veg-
etation cover as additional fire-relevant variables. Vegetation
cover has a direct link to fire risk by providing the amount of
available fuel for burning. According to many studies (e.g.,
Ray et al., 2005; Sedano and Randerson, 2014; Seager et al.,
2015) the FDIVPD is a very accurate fire danger index with a
high correlation with fire occurrence, while still being rela-
tively easy to implement in a global fire model.

The general behavior of the two indices as modeled by
LPJmL as a function of relative humidity and temperature is
shown in Fig. 3. The Nesterov Index shows a strong but very
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Figure 3. Dependence of the simulated fire danger index on
monthly mean relative humidity and temperature for (a) the
Nesterov-based index and (b) the VPD-based index. Both indices
were calculated with monthly data for the years 2000–2010.

localized maximum for high temperatures and a low humid-
ity. Hence a spreading fire is only possible in a very small
climate range (here from ca. 25 ◦C and a relative humidity
less than 0.5 medium fire danger also for wetter and colder
regions. The slope towards lower VPD values is also smaller
compared to the Nesterov Index. Especially in regions with
temperatures colder than 20 ◦C and a relative humidity less
than ca. 0.6, a fire is still possible. This might increase the
area in which fires can occur compared to the Nesterov Index,
which could be an important improvement, enabling SPIT-
FIRE to simulate more fire in wetter and colder regions. The
calculated VPD and NI values shown in Fig. 3 are based on
a LPJmL-SPITFIRE run and thus the influence of vegetation
distribution on both fire danger indices.

2.3 Model input data

LPJmL4-SPITFIRE requires input data on daily air temper-
ature, precipitation, longwave and shortwave downward ra-
diation, wind, and specific humidity, which are taken from

the Noah Global Land Data Assimilation System (GLDAS;
Rodell et al., 2004). The data have a spatial resolution of
0.25◦× 0.25◦ and the time step is 3 h. We regridded and ag-
gregated the dataset to the LPJmL resolution of 0.5◦× 0.5◦

and to a daily time step. We used GLDAS 2.0 for the years
1948–1999 and version GLDAS 2.1 for the years 2000–2017.
GLDAS 2.1 uses multiple satellite- and ground-based obser-
vational data as well as advanced land-surface modeling and
data assimilation techniques. GLDAS 2.0 is forced entirely
with the Princeton meteorological forcing data (Civil and
Environmental Engineering/Princeton University, 2006). Be-
cause LPJmL4 requires at least 30 years of climate data for
its spinup (Sect. 2.1.1), the time span covered by GLDAS 2.1
is too short. To run the model, we used both climate datasets,
but we used the years 2003–2013 from GLDAS 2.1 for the
optimization and 2005–2015 for the evaluation period.

Furthermore, LPJmL4-SPITFIRE is forced with gridded
constant soil texture (Nachtergaele et al., 2009) and annual
information on land use from Fader et al. (2010). Atmo-
spheric CO2 concentrations are used from Mauna Loa station
(Le Quéré et al., 2015) and applied globally. The population
density is taken from Goldewijk et al. (2011), and the light-
ning flashes are taken from the OTD/LIS satellite product
(Christian et al., 2003).

2.4 Model optimization

To estimate parameters of LPJmL4-SPITFIRE, we aimed
to calibrate model results against satellite observations of
burned area (GFED4; Giglio et al., 2013; van der Werf et al.,
2017). However, as fire occurrence and spread impact and de-
pend on vegetation productivity, hence fuel load, we wanted
to ensure to not over-fit LPJmL4 against burned area but to
additionally achieve a realistic vegetation distribution. There-
fore, we additionally included a satellite-derived dataset on
aboveground biomass of trees (AGB; Avitabile et al., 2016)
in the optimization. We combined burned area and AGB
with the corresponding model outputs within a joint cost
function and applied a genetic optimization algorithm to es-
timate model parameters (Fig. 2). The implementation of
the genetic optimization algorithm (GENetic Optimization
Using Derivatives (GENOUD); Mebane and Sekhon, 2011)
for LPJmL is described in Forkel et al. (2014). The used
cost function is based on the Kling–Gupta efficiency (KGE),
which is the Euclidean distance in a three-dimensional space
of model performance measures that accounts for the bias,
ratio of variance, and correlation between simulations and
the observations. Gupta et al. (2009) showed that the KGE
that performs in an optimization setup is better than, for ex-
ample, the Nash–Sutcliffe efficiency (and hence the mean
square error). We extended the KGE by defining it for multi-
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ple datasets (i.e., burned area and AGB):

Cost=

√√√√ N∑
d=1

(
śd

ód
− 1

)2

+

(
σs,d

σo,d
− 1

)2

+ (r(sd ,od)− 1)2,

(14)

where ś and ó are mean values (bias component) over space
(i.e., different grid cells) and time (e.g., months) of simula-
tions s and the observations o, respectively. σs and σo are
variances (variance component) and r is the Pearson corre-
lation coefficient over space and time. The optimization was
performed for 40 grid cells in South America to represent
a variety of fire regimes (Fig. 2). We selected the grid cells
manually to cover active fire regions (either in the model or in
the evaluation data), specifically in the Cerrado and Caatinga.
We selected a high density of grid cells in the Caatinga region
to improve the very poor model performance in this region.
To make sure that the model performance in the Caatinga and
Cerrado regions was not achieved at the cost of a poor per-
formance in other areas, we also additionally selected some
cells in areas where initial fire modeling gave good results,
as well as in areas where minimal or no fire occurred (central
Brazilian Amazon). After inspection of the results, minor ad-
justments were made and the selection of the grid cells was
modified to account for neglected regions (which showed
worsening of the model performance). These initial analyses
actually demonstrate that the choice of grid cells is impor-
tant for the model optimization, and this requires the devel-
opment of a more thorough selection method in future model
optimization applications.

Several parameters of LPJmL4-SPITFIRE were included
in the optimization that covers different fire processes (see
Table 2): ignition (human ignition parameter ph, Eq. 2),
fire danger (scaling factors FDI (αNIi and αVPDi ), Eqs. 10
and 13), fire spread (fire duration pt , Eq. 3), fuel bulk den-
sity (ρb, Eq. 4), surface intensity threshold, and fire effects
(scorch height parameter F , Eq. 5; crown mortality param-
eter rCK, Eq. 7). While pt , ph, and the surface intensity
threshold are global parameters (for all PFTs), the others
were optimized for each PFT separately. Since we focus here
on tropical South America, we used tropical broadleaved ev-
ergreen (TrBE), tropical broadleaved raingreen (TrBR), and
tropical herbaceous (TrH) PFTs for the optimization.

In genetic optimization algorithms, each model parameter
is called an individual with a corresponding fitness, which
represents the cost of the model against the observations. At
the beginning of the optimization process, the GENOUD al-
gorithm creates a generation of individuals based on random
sampling of parameter sets within the prescribed parameter
ranges. After the calculation of the cost of all individuals of
the first generation, a next generation is generated by cloning
the best individuals, by mutating the genes or by crossing
different individuals (Mebane and Sekhon, 2011). This re-
sults, after some generations, in a set of individuals with

highest fitness, i.e., parameter sets with minimized cost. To
find an optimum parameter set, we also used the BFGS gra-
dient search algorithm (named after the authors: Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) within
the GENOUD algorithm. An optimized parameter set of the
BFGS algorithm is used as the individuals in the next gen-
eration. We were applying the GENOUD algorithm with 20
generations and a population size of 800 individuals per gen-
eration, which corresponds to 16 000 single model runs. We
decided on this number of iterations because the cost kept
almost constant in the last iterations and the parameter val-
ues did not change to the 6th digit, beyond which changes
are not really relevant for model applications. During the op-
timization, we ran the model parallel for each grid cell (40
grid cells and CPUs, 3.2 GHz) and had a total optimization
time of ca. 24 h.

The comparison of the two presented fire danger indices
is the main objective of this study. Hence the optimization
of the PFT-dependent FDI scaling factors αNIi and αVPDi
is crucial and obligatory for the VPD because of no prior
values. Accordingly, we conducted two different optimiza-
tion experiments using LPJmLmdi: first using a FDI based
on the VPD (VPDoptim hereafter) and secondly using a FDI
based on the NI (NIoptim hereafter). Both resulting parameter
sets were then used for LPJmL4 runs and were compared to
the unoptimized original model version using the NI (NIorig
hereafter) and various evaluation datasets.

2.5 Evaluation data

We used burned area from the Global Fire Emissions
Database (GFED4; Giglio et al., 2013; van der Werf et al.,
2017), in the model optimization and to evaluate model
results. The global dataset is available at a resolution of
0.25◦× 0.25◦ in a monthly time step from 1997 until 2016.
The GFED burned area product is based on the 500 m Col-
lection 5.1 MODIS Direct Broadcast Monthly Burned Area
product (MCD64A1, after 2001). We used data for the years
2003–2013 in the optimization in order to not include poten-
tial inconsistencies between the GLDAS 2.0 and 2.1 climate
datasets or between burned area observations within GFED
that originate from different satellite sensors. The GFED
product comes with a stratification of burned area by land
cover from the MODIS land cover map at a resolution of 500
m (Giglio et al., 2013). As LPJmL does not simulate fire on
managed lands, we excluded burned area on cropland classes
from model–data comparisons. Due to a lack of data, how-
ever, we did not account for the proportion of pastures. To
constrain the simulated vegetation distribution, we used the
AGB dataset from Avitabile et al. (2016). This dataset is ap-
proximately representative for the late 2000s and therefore
we compared it against simulated AGB for the years 2009–
2011. We regridded all datasets to a 0.5◦× 0.5◦ resolution.
In addition, we used maps of PFTs as derived from the ESA
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CCI land cover map V2.0.7 (Li et al., 2018; Forkel et al.,
2014).

2.6 Evaluation metrics

To quantify the performance of the model output, we applied
the Pearson correlation between two time series, the normal-
ized mean square error (NMSE; Kelley et al., 2013) and the
Willmott coefficient of agreement (W ; Willmott, 1982), to
describe differences between the model simulation and the
reference datasets. The NMSE is calculated by

NMSE=
∑N
i=1(yi − xi)

2∑N
i=1(xi − x)

2
, (15)

where yi is the simulated and xi the observed values in the
grid cell i; x is the mean observed value. The NMSE is 0 for
perfect agreement between simulated and modeled results,
1.0 if the model is as good as using the observed mean as a
predictor, and larger than 1.0 if the model performs worse
than that. We chose the NMSE to represent and compare
the model errors as it has a squared error term, which puts
a stronger emphasis on large deviations between simulations
and observations as compared to a linear term, and due to its
normalization it is comparable across different parameters.
Especially for fire simulations, we have a relatively large de-
viation between simulations and observations.

The Willmott coefficient of agreement is given by

W = 1−
∑N
i=1(yi − xi)

2
·Ai∑N

i=1(|yi − x| + |xi − x|)
2 ·Ai

, (16)

which additionally accounts for the area weightAi of the grid
cell i. The Willmott coefficient is a squared index, where a
value of 1 stands for perfect agreement between simulated
and modeled runs and gets smaller for worse agreements
with a minimum of 0. Unlike the coefficient of determina-
tion, the Willmott coefficient is additionally sensitive to bi-
ases between simulations and observations.

3 Results

3.1 Performance of optimized fire danger index
formulations

Overall, the yearly burned area simulated by the stan-
dard SPITFIRE model (using the original Nesterov Index,
NIorig) showed poor simulation results over South America
as compared to the GFED4 evaluation dataset (Fig. 4a, b:
NMSE= 1.80, W = 0.27). The average yearly burned area
(without croplands) for South America was ca. 14× 106 ha,
about 25 % smaller than the observed burned area of 19×
106 ha in the shown period from 2005 to 2015. The spa-
tial pattern of the modeled burned area agreed well with the
GFED4 data in the region of the Cerrado that is close to the

Caatinga border, while the fires in other semiarid regions of
the continent were underestimated. For example, simulated
fire is underestimated in the savanna areas in the northern
part of South America (on the Columbian–Venezuelan bor-
der) even though there is a strong signal visible in the satellite
observations. The biomes of Caatinga and Cerrado, which
are of special interest in this study, showed very different re-
sults: while fire in Caatinga was overestimated, it was under-
estimated in the Cerrado.

The optimized version using NIoptim (Fig. 4d) led to an
overall decrease in fire, with a slight improvement in NMSE
(1.09) as compared to NIorig and a worse Willmott coeffi-
cient of 0.08. Although the overestimation of fire in Caatinga
was reduced, all the fires across South America also have
decreased significantly, which led to a general underestima-
tion of fire by 90 % (2× 106 ha). The optimized version, us-
ing VPDoptim (Fig. 4c), clearly improved the model perfor-
mance, mainly by shifting much of the simulated burned area
from the sparsely vegetated Caatinga towards the Cerrado
region (NMSE= 0.82 and W = 0.56). In addition, by using
VPDoptim, the model results also showed fire occurrence in
northern South America, where fire was not at all or only
minimally simulated when using NIoptim or NIorig. The total
burned area was in this model version ca 20 % smaller than
the evaluation dataset (16× 106 ha).

The burned area time series from 2005 to 2015 pro-
vides a more detailed view on the model performance
for the fire-prone Cerrado and Caatinga regions (Fig. 5).
While model performance was relatively good for the Cer-
rado region with NIorig (NMSE= 0.3, W = 0.89, R2

=

0.78), the simulated burned area was strongly overesti-
mated in the Caatinga region throughout the whole pe-
riod (NMSE= 327.82, W = 0.14, R2

= 0.59). After the op-
timization of the NI, the model performance indeed im-
proved for the Caatinga (NMSE= 1.07, W = 0.73, R2

=

0.31), but at the same time the performance for the Cer-
rado declined (NMSE= 1.07, W = 0.36, R2

= 0.4). On
the other hand, VPDoptim showed an improved fire rep-
resentation compared to the standard settings in the Cer-
rado (NMSE= 0.27, W = 0.9, R2

= 0.8) as well as in
the Caatinga (NMSE= 15.2, W = 0.46, R2

= 0.56). Even
though fire in the Caatinga was still overestimated, the
NMSE decreased by a factor of 6.

Overall, the total amount of burned area in the Cerrado
was for all three model versions smaller than in the evalua-
tion dataset. Fire occurrence in the Caatinga was, on the other
hand, largely overestimated by the NIorig and the VPDoptim
versions. Only in the NIoptim version the burned area of the
Caatinga is on the same order of magnitude as the evalu-
ation dataset, which also led to a large underestimation in
the Cerrado (Table 1 and Fig. 4). Also the Amazonia region
mostly improved by using the VPDoptim version (Table 1,
Fig. A3). The R2 and the Willmott coefficient improved,
while the NMSE increased slightly. With the Nesterov In-
dex, fire was strongly underestimated in the Amazon region,
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Figure 4. Yearly burned area over a mean from 2005 to 2015 as fraction per cell. (a) GFED4 evaluation data of burned area excluding crops
and simulated burned area by SPITFIRE using the (b) NIorig version, (c) VPDoptim version, and (d) NIoptim version.

while the optimized VPD fixes this underestimation. The fire
is only modeled (and also observed; see Fig. 4) at the edges to
the Amazon, where wood density is lower and deforestation
takes place. In the closed, continuous forest area towards the
center of the Amazon almost no fire is observed nor modeled.
The total burned area increased from 0.7×106 to 4.8×106 ha
(for VPDoptim), which is now a bit overestimated to the ob-
served burned area of 3.4×106 ha. Using the NIoptim all error
metrics as well as the total burned area decreased.

3.2 Optimized model parameters

Seven fire-related parameters were optimized in order to
improve the fire representation in the LPJml4-SPITFIRE
model. Here we compare the optimized parameters for the
different model versions in order to evaluate and discuss pa-
rameter variability and changes. Table 2 shows all parameters
used for the optimization, their lower and upper boundaries,
and the resulting optimized value.

Since the FDI directly controls the amount of modeled fire,
the FDI scaling factors for the different PFTs are central for
this analysis. For both optimization experiments the bound-
aries were, hence, set rather generously within 1 order of
magnitude of the original value. In the NIoptim experiment, all

scaling factors generally decreased compared to the standard
values used for NIorig. Here, TrH displayed the smallest scal-
ing factor (9.39×10−6), followed by TrBE (2.48×10−5) and
TrBR (4.76×10−5). Since the VPD is a newly implemented
fire danger index, we have no standard values to compare
the optimized scaling factors with. Here, the TrBE showed
the largest value (22.41), ca. 20 times as large as the TrBR
(1.21) and TrH (1.13) (Table 2).

In the case of the other optimized parameters the bound-
aries were set smaller in order to decrease the possibility
that a large error in the estimation of several parameters
would lead to a better overall cost in the optimization pro-
cedure. The human ignition parameter became smaller for
both optimizations, which led to a smaller amount of hu-
man ignitions (from −0.5 to −0.54 in NIoptim, and −0.53
in VPDoptim). The fuel bulk density increased for all three
tropical PFTs in the NIoptim version, while for VPDoptim the
fuel bulk density of the TrBE and TrH PFTs decreased and
for the TrBR increased. For the NIoptim version, the fire dura-
tion parameter (pt ) increased, leading to a shorter fire dura-
tion (from −11.06 to −9), while the value for the VPDoptim
version stayed relatively similar (−11.37) to the prior value.
The surface intensity threshold became slightly larger for
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Figure 5. Time series of monthly burned area from 2005 to 2015 simulated by SPITFIRE (red lines) compared to GFED4 evaluation data
(blue lines) for (a) the Cerrado region using NIorig, (b) the Caatinga region using the NIorig, (c) the Cerrado region using NIoptim, (d) the
Caatinga region using NIoptim, (e) the Cerrado region using VPDoptim, and (f) the Caatinga region using VPDoptim. Note the logarithmic scale
for the Caatinga, which was applied in order to account for the large differences between the different model versions (for a nonlogarithmic
version see Fig. A6).

the NIoptim version than the original value (from 10−6 to
1.03× 10−6). For VPDoptim the parameter increased by a
factor of 3 (3.63× 10−6). The mortality-related parameters
F and rCK led in the NIoptim version both to a decrease in
the fire-related mortality for TrBE and an increase for TrBR
PFTs. The optimized parameters for VPDoptim led to a de-
crease in the fire-related mortality for both PFTs except for
the TrBR rCK, which led to an increased mortality.

The relative uncertainties were for most optimized param-
eters very small (between 0 % and 10 %), hence these pa-
rameters were strongly constrained (Fig. 6). Only the fire-
mortality-related parameters (F and rCK) had large uncer-
tainties for the TrBR and hence were weakly constrained. For
VPDoptim the uncertainty in rCK (TrBR) was 0.8; for NIoptim
the uncertainty in F was 0.9, and for rCK it was 1 (TrBR).

The decrease in the model error (cost) due to the optimiza-
tion process was mainly due to improvement in the burned
area. While for the NIoptim the cost of the burned area dataset
improved by 81 %, the cost of the biomass dataset improved
just by 6 %. In the case of the VPDoptim the cost of the burned
area dataset improved by 49 %, whereas the biomass dataset
improved by 19 % (Fig. A5).

3.3 Model evaluation for South America

The modeled aboveground biomass (AGB) of trees in South
America was throughout all model versions larger than the
evaluation dataset indicates (Fig. 7). Especially the biomass
in the Amazon region is, with an average of ca. 20 kg C m−2,
about one-third overestimated. The drier savanna regions on
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Table 1. Comparison of the burned area results in terms of NMSE,
the Willmott coefficient of agreement, and the sum (ha yr−1) be-
tween NIorig, VPDoptim, NIoptim, and the GFED evaluation data.

Region NMSE Willmott Sum

Spatial – South America

GFED 1.9× 107

NIorig 1.80 0.27 1.4× 107

VPDoptim 0.82 0.56 1.6× 107

NIoptim 1.09 0.08 0.2× 107

Temporal – Cerrado

GFED 9.2× 106

NIorig 0.30 0.89 5.2× 106

VPDoptim 0.27 0.90 6.4× 106

NIoptim 1.07 0.36 0.6× 106

Temporal – Caatinga

GFED 0.4× 106

NIorig 327.82 0.14 6.0× 106

VPDoptim 15.2 0.46 1.6× 106

NIoptim 1.07 0.73 0.3× 106

Temporal – Amazonia

GFED 3.4× 106

NIorig 0.83 0.56 0.7× 106

VPDoptim 0.93 0.83 4.8× 106

NIoptim 1.22 0.32 0.02× 106

the continent yielded a biomass of ca. 5–10 kg C m−2, which
also constitutes an overestimation in wide parts of the Cer-
rado and the Caatinga biomes (evaluation data show between
1 and 5 kg C m−2; see also Roitman et al., 2018).

The differences among the different model versions
are marginal: the VPDoptim version had the best perfor-
mance compared to the evaluation dataset (NMSE= 0.91,
W = 0.84), the NIorig version had the second best perfor-
mance (NMSE= 0.97, W = 0.84), and the NIoptim the worst
performance (NMSE= 0.99, W = 0.83). The model opti-
mization scheme focuses on fire parameters; hence, the
model performance for AGB can only improve in areas
where the fire occurrence has been modeled poorly and the
vegetation–fire interactions have improved due to the opti-
mization process. For example, in the center of the Amazon
rainforest almost no fire is found in the evaluation data, nor
simulated. Hence no improvement in burned area or AGB
can be achieved. On the other hand, in regions where the
modeling error of burned area is now reduced, this can also
improve simulated AGB and hence vegetation–fire interac-
tions. In the fire-prone Caatinga and Cerrado the VPDoptim
version mostly decreased the biomass by up to 3 kg C m−2,
showing a better performance compared to the evaluation
dataset (e.g., in the Cerrado the NMSE decreased from 15.06

Figure 6. Relative uncertainty in model parameters after optimiza-
tion for (a) NIoptim and (b) VPDoptim. The relative uncertainty is
the ratio of the uncertainty after the optimization (range of all pa-
rameter sets with low cost, below the 0.05 quantile) divided by the
uncertainty before the optimization (range of the parameters for the
optimization). Low and high values of relative uncertainty indicate
strongly and weakly constrained parameters, respectively. SIT de-
notes the surface intensity threshold. PFT-dependent parameters are
grouped with the same color.

to 12.36 in the VPDoptim version compared to NIorig; see Ta-
ble 3).

The modeled foliage projective cover (FPC) showed for
all three model versions a strong underestimation compared
to the evaluation dataset of the TrBE throughout the whole
Amazonian region (ca. 50 % compared to ca. 100 % in the
evaluation dataset). In the fire-prone biomes of Cerrado and
Caatinga, however, the TrBE PFT was sometimes overesti-
mated (TrBE cover between 0 and 40 %, Fig. 8). In the re-
gions with less TrBE the dominant PFT was mostly TrBR
(Cerrado) or TrH (Caatinga) (see Figs. A1 and A2).

NIoptim led to an overall decrease in the model per-
formance also in terms of the TrBE distribution, as both
the NMSE and the Willmott coefficient declined com-
pared to NIorig (NIorig: NMSE= 0.42, W = 0.82; NIoptim:
NMSE= 0.43, W = 0.81).

The VPDoptim version, on the other hand, showed
an slightly improved TrBE distribution (NMSE= 0.41,
W = 0.82), but also in this case we obtained an even larger
improvement when only the fire-prone regions of Cerrado or
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Table 2. All optimized parameters with their standard values, the upper and lower boundary of the parameter ranges, and the resulting
optimized value including parameters for specific PFTs and global parameter, which have the same value for all PFTs. All parameters except
ρb have no unit.

Standard value (as in Lower Upper After
Parameter PFT Thonicke et al., 2010) boundary boundary optimization

NIoptim

Scaling factor FDI αNIi TrBE 3.34× 10−5 7× 10−6 1.33× 10−4 2.4885× 10−5

Scaling factor FDI αNIi TrBR 3.34× 10−5 7× 10−6 1.33× 10−4 4.7649× 10−5

Scaling factor FDI αNIi TrH 6.67× 10−5 7× 10−6 1.33× 10−4 9.3949× 10−6

Fire duration parameter pt all PFTs −11.06 −13 −9 −9.0011
Scorch height parameter F TrBE 0.1487 0.01 0.6 0.1282
Scorch height parameter F TrBR 0.061 0.01 0.6 0.0752
Crown mortality parameter rCK TrBE 1.0 0.5 1 0.5030
Crown mortality parameter rCK TrBR 0.05 0 0.5 0.4038
Fuel bulk density ρb (kg m−3) TrBE 25.0 22.5 27.5 26.6473
Fuel bulk density ρb (kg m−3) TrBR 13.0 11.7 14.3 13.1896
Fuel bulk density ρb (kg m−3) TrH 2.0 1.8 2.2 2.0019
Human ignition parameter ph all PFTs −0.5 −0.6 −0.4 −0.5426
Surface intensity threshold all PFTs 10−6 10−7 10−5 1.0317× 10−6

VPDoptim

Scaling factor FDI αVPDi TrBE – 1 50 22.4181
Scaling factor FDI αVPDi TrBR – 1 50 1.2135
Scaling factor FDI αVPDi TrH – 1 50 1.1299
Fire duration parameter pt all PFTs −11.06 −13 −9 −11.3753
Scorch height parameter F TrBE 0.1487 0.01 0.6 0.1930
Scorch height parameter F TrBR 0.061 0.01 0.6 0.0799
Crown mortality parameter rCK TrBE 1.0 0.5 1 0.9983
Crown mortality parameter rCK TrBR 0.05 0 0.5 0.4801
Fuel bulk density ρb (kg m−3) TrBE 25.0 22.5 27.5 22.5923
Fuel bulk density ρb (kg m−3) TrBR 13.0 11.7 14.3 13.3750
Fuel bulk density ρb (kg m−3) TrH 2.0 1.8 2.2 1.8944
Human ignition parameter ph all PFTs −0.5 −0.6 −0.4 −0.5332
Surface intensity threshold all PFTs 10−6 10−7 10−5 3.6317× 10−6

Caatinga are considered (Table 3). Also for the TrBR and
TrH PFT distributions the optimization led to an improved
performance using the VPDoptim in the Caatinga and Cer-
rado, whereas the PFT distribution in the Amazon remained
similar to the prior PFT distribution. In the NIoptim version,
parameter optimization only slightly reduced TrBR cover
showing a worse performance compared to VPDoptim. How-
ever, herbaceous cover changed only slightly in all optimiza-
tion experiments (Figs. A1 and A2).

4 Discussion

In summary, our results show that the implementation of a
new fire danger index based on the water vapor pressure
deficit, FDIVPD, and its optimization against satellite datasets
improved the simulations of fire in LPJmL4-SPITFIRE, both
in terms of spatial patterns and temporal dynamics of burned
area. In the following, we discuss the model improvements,

limitations, and recommendations for future improvements
of process-based global fire models within the DGVM frame-
work.

4.1 Improvements in model performance

The VPD results showed a better model performance for fire
in the spatial dimension, as well as in the temporal dimension
(Table 1 and 3). Compared to the Nesterov Index, FDIVPD
uses additional climate input such as relative humidity and
precipitation. In the calculation of the Nesterov Index, pre-
cipitation is just used as a threshold. This leads to a better
account of the very different climatic conditions among var-
ious biomes. Furthermore, the FDIVPD includes a direct rep-
resentation of the vegetation density. The significance of this
has been recently shown by findings by Forkel et al. (2019a),
who have emphasized the importance of past plant productiv-
ity and fuel production for burned area. This is particularly
important for differentiating between fires in biomes with
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Figure 7. Annual aboveground biomass (AGB) of trees over a mean from 2005 to 2015 in kg C m−2. (a) Avitabile evaluation data. (b) Sim-
ulated AGB by LPJmL4-SPITFIRE in the NIorig version. (c) Difference between VPDoptim and NIorig. (d) Difference between NIoptim and
NIorig. Red (blue) color indicates a larger (smaller) biomass after the optimization.

similar PFT distributions. For example, the vegetation den-
sity is much larger in the Cerrado, even though the Caatinga
and Cerrado have similar modeled PFT compositions, which
provides more fuel and therefore leads to a higher fire danger.

While the seasonal and interannual variability in the
Caatinga has improved largely using the FDIVPD (NMSE de-
creased by a factor of ca. 20), the improvement in the Cerrado
was relatively small (NMSE decreased by ca. 10 %). This is
due to the fact that the optimization tries to obtain a com-
promise between the different optimized cells. As the model
performance was originally much better for the Cerrado, the
largest improvement could be achieved for the Caatinga. We
have also chosen a large number of cells in the Caatinga,
because the model performance was here particularly bad.
This leads to a large improvement in the time series of the
Caatinga region, while the improvement for the Cerrado was
less significant. With the Nesterov Index, fire was strongly
underestimated in the Amazonia region, while the optimized
VPD increases the modeled burned area. The fire is only
present at the edges of the Amazon (both in model and obser-
vation; see Fig. 4), where tree density is lower and deforesta-
tion takes place. In the closed, continuous forest area towards

the center of the Amazon almost no fire is observed and also
not simulated.

Another result of the optimizing procedure, using FDIVPD,
was the improvement in the PFT distribution and the above-
ground biomass of trees especially in the fire-prone biomes
of Caatinga and Cerrado (Fig. 8). For example, the cen-
tral Amazon, where fire is a scarce event, shows almost no
changes compared to the nonoptimized model version. Here,
it is the improvement in the vegetation model itself, and not
the fire module, which can help to improve the model per-
formance of LPJmL4-SPITFIRE. Hence, it emphasizes that
we need to include further parameters in the optimization,
which impact directly the PFT distribution, biomass, and fire
to obtain a significant improvement in the spatial and tem-
poral distribution of both vegetation and fire. However, this
study focused solely on the parameters within the SPITFIRE
module. Due to the focus on fire-related parameters, the cost
of the burned area dataset decreases much more than the
cost of the biomass dataset (Fig. A5). Hence we only get a
substantial improvement in model performance in semiarid
fire-prone biomes, where vegetation dynamics and fire are
strongly coupled. During the optimization process most of
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Figure 8. Annual FPC cover by tropical broadleaved evergreen PFT over a mean from 2005 to 2015 as fraction per cell. (a) ESA CCI
evaluation data. (b) Simulated FPC by LPJmL4-SPITFIRE using the NIorig version. (c) Simulated FPC by LPJmL4-SPITFIRE using the
VPDoptim version. (d) Simulated FPC by LPJmL4-SPITFIRE using the NIoptim version.

the optimized parameters were well constrained, except for
the mortality-related parameters for the TrBR PFT (Fig. 6).
The TrBR PFT is dominant in the fire-prone regions, where
the mortality-related parameters have a large impact on veg-
etation dynamics. Hence, they impact multiple LPJmL rou-
tines, which are responsible for the PFT distribution and car-
bon cycling. This leads in turn to a less certain parameter
estimation. In order to better constrain these parameters, the
optimization of vegetation model parameters would be nec-
essary to decrease the uncertainties.

The fire danger index scaling factors (αNIi and αVPDi ) con-
vert the quantified fire risk (NI or VPD) into the actual fire
danger (FDI). Both scaling factors thus set the magnitude of
the fire danger for the different PFTs. Hence they impact di-
rectly the fire spread, burned area, and the number of fires and
indirectly fire mortality. These very important parameters
vary significantly for the different PFTs. TrH has the smallest
scaling factor for both FDIs, which leads to a lower fire dan-
ger compared to the other PFTs. This indicates a prior over-
estimation of the fire danger of grass in tropical South Amer-

ica, as grasslands are generally parameterized to have a low
fire resistance and moisture content and can hence burn very
easily. This overestimation, compared to tree PFTs, was de-
creased by the optimization. In the case of the VPD, the TrBR
is scaled by a much smaller factor than the TrBE, which led
to a lower fire danger index. This is due to the fact that the
TrBR is dominant in dry and fire-prone regions, which ex-
perience frequent fires. Here the burned area was often over-
estimated by SPITFIRE (e.g., Caatinga or eastern Cerrado)
and is now decreased. On the other hand, a larger FDI for the
TrBE allows more fire in wetter regions at the edge between
the Cerrado and the Amazon rainforests, where TrBE is more
dominant. The mortality risk of TrBE for VPDoptim remains
close to the prior value of 1, confirming previous assump-
tions about its fire sensitivity; the rCK for TrBR increased to
0.48, close to the upper boundary. This means a mortality risk
of 50 % when the full crown is scorched and a 7 % mortality
risk when 50 % of the crown is scorched, which makes the
TrBR less resistant against crown damage than before. Due
to this change, the overestimation of biomass in the original
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Table 3. Comparison of the results for AGB and the TrBE PFT
cover in terms of NMSE and the Willmott coefficient of agreement
between NIorig, VPDoptim, and NIoptim in South America (SA), in
the Cerrado and in the Caatinga.

Region NMSE Willmott

AGB

SA (NIorig) 0.97 0.83
SA (VPDoptim) 0.91 0.84
SA (NIoptim) 0.99 0.83
Cerrado (NIorig) 15.06 0.25
Cerrado (VPDoptim) 12.36 0.28
Cerrado (NIoptim) 16.06 0.24
Caatinga (NIorig) 11.93 0.32
Caatinga (VPDoptim) 8.57 0.36
Caatinga (NIoptim) 10.44 0.33

FPC – evergreen (TrBE)

SA (NIorig) 0.42 0.82
SA (VPDoptim) 0.41 0.82
SA (NIoptim) 0.43 0.81
Cerrado (NIorig) 1.04 0.60
Cerrado (VPDoptim) 0.70 0.64
Cerrado (NIoptim) 1.40 0.55
Caatinga (NIorig) 1.73 0.40
Caatinga (VPDoptim) 1.54 0.29
Caatinga (NIoptim) 2.05 0.44

model for the Cerrado and Caatinga regions decreased (see
Fig. 7).

4.2 Limitations of the optimization process

Generally, optimizing a model against burned area is chal-
lenging because of (1) the skewed statistical distribution of
burned area and (2) temporal or spatial mismatches in sim-
ulated burning can cause large model–data errors. These is-
sues can be avoided with the choice of an appropriate cost
function. For example, squared-error metrics tend to under-
estimate the variance in burned area in comparison to, for
example, the Kling–Gupta efficiency, as has been shown in
the optimization of an empirical model for burned area (see
Table A3 in Forkel et al., 2017). Here, the optimum parame-
ter set for the Nesterov Index-based model resulted in almost
no fires across South America. Thereby, the optimization al-
gorithm tries to decrease the model error by tending towards
a conservative “no fire strategy” for all biomes. This result
nicely demonstrates the need to evaluate model optimization
results against spatially and temporally independent data and
independent variables (Keenan et al., 2011).

The Nesterov Index is not able to capture fire variability
within the Caatinga and the Cerrado at the same time. This
shows that the difference in the PFT distribution between
these two biomes is not adequately modeled by LPJmL or

just using PFT-dependent scaling factors did not sufficiently
improve the model performance when using the Nesterov In-
dex. On the other hand, using the VPD fire danger index re-
duced the model error for burned area in both biomes, by im-
proving the modeled performance for the Caatinga and main-
taining the good performance of the Cerrado region. Since
improved performance of the fire model mainly had a minor
effect on improving FPC of the tropical PFTs, the presented
optimization scheme has to go along with process-based im-
provements in both the fire and in the vegetation modules of
LPJmL.

Fire largely depends on the vegetation type and their as-
sociated flammability, fire tolerance, and mortality. Hence
an accurately modeled vegetation distribution is crucial for
a good model performance in terms of burned area and fire
effects (Forkel et al., 2019a; Rogers et al., 2015). As shown in
Figs. 8, A1, and A2, the modeled PFT coverage showed an
equal distribution of tropical raingreen and evergreen PFTs
throughout wide parts of central-northern South America.
Evaluation data show, however, an TrBE dominance in the
wet rainforest regions and a TrBR dominance in the Cerrado
and Caatinga. This emphasizes the potential to improve the
fire modeling further, based on an improved PFT distribu-
tion. In the tropical rainforest the TrBR proportion is overes-
timated, which leads to problems in the optimization proce-
dure, since TrBR has very different effects on fire spread and
is more fire tolerant (different fuel characteristics and result-
ing fire intensity). This leads to a lower fire-related mortality,
which fits better to the drier and fire-prone savanna-like re-
gions (e.g., Cerrado). The poorly modeled PFT distribution
also is responsible for the overestimation of the burned area
in the Amazon region. Because of the too large fraction of
TrBE in the Cerrado and Caatinga regions the scaling factor
for this PFT is relatively high. This leads in turn to an over-
estimation in the Amazon region, where the fraction of the
TrBE is larger.

Since the offset is very small, the years 2000–2003 (first
three years of GLDAS 2.1, before the optimization period)
are enough for the model to recover from the offset and the
carbon pools to return to equilibrium. To exclude the possi-
bility that long-term trends within GLDAS 2.0 changed the
modeled vegetation state significantly, we tested our opti-
mization also just based on GLDAS 2.0 data (until 2010)
and on GLDAS 2.1 data (2000–2017) only, using the same
years for model spinup, optimization, and evaluation. Both
versions yielded similar results compared to the optimization
presented in this study (results not shown).

Due to the fact that evaluation data are only available for
the last 10–20 years, we are constrained to optimize the
model in this relatively short time period. In South Amer-
ica these years were subject to an unusually large amount
of severe droughts and other extreme events (Panisset et al.,
2017). As a result, an optimization in this period could lead to
a worse model performance in a period with less pronounced
droughts. This is due to the nonlinear relationship between
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the drought signal in the input dataset and the resulting mod-
eled biosphere behavior. Nonetheless, we were able to im-
prove the interannual variability and hence the model per-
formance to a great extent for the Caatinga and slightly for
the Cerrado and Amazon regions (Figs. 5 and A3). The Cer-
rado already had a very good modeling performance before
the optimization process, which now only slightly improved.
The performance of the interannual and seasonal variability
in burned area for total South America improved substan-
tially (Fig. A3). The optimized SPITFIRE is now better able
to simulate accurately the climate-dependent seasonal and in-
terannual variability as well as the spatial extent of fire on
natural land throughout the fire-prone woodlands of South
America.

Systematic optimizations within a model–data integration
setup of fire models which are embedded in a DGVM are
still very rare. Previously, Rabin et al. (2018) optimized the
fire model FINAL.1 within the land-surface model LM3. Our
study differs from Rabin et al. (2018) in the conceptual de-
sign of the vegetation–fire models and the optimization pro-
cess. While LM3 has been run on a 2◦ longitude by 2.5◦ lati-
tude, this is much coarser than LPJmL with 0.5◦ by 0.5◦. This
difference allows us to account for a locally better climate
input, vegetation, and fire interaction. While FINAL.1 is a
process-based model, many calculations (e.g., the fire spread
routine) are done by multiplying the important factors and
fitting the resulting values to observational data. SPITFIRE
tries to model the important fire variables by simulating the
underlying processes and by taking the influence of climate
and the different fire ignitions into account. An advantage of
FINAL.1 is the inclusion of agricultural fires based on a sta-
tistical approach. Whereas Rabin et al. (2018) used a local
search algorithm (Levenberg–Marquardt algorithm) to opti-
mize their model, we used a global search algorithm (genetic
optimization). Local search algorithms depend on the cho-
sen initial parameter sets and might eventually end up in a
local optimum. A genetic optimization algorithm allows us
to explore the full parameter space and hence gives a higher
chance to find the global optimum. However, local search al-
gorithms require less iterations than global search algorithms
(300 in Rabin et al. (2018) vs. 16 000 in our study). Forkel
et al. (2014) tested the optimization of LPJmL with differ-
ent optimization algorithms and found that it was not feasi-
ble to optimize LPJmL with a local search algorithm. Rabin
et al. (2018) ran the model during the optimization process
only for the period of 1991–2009, whereas we made com-
plete model runs including 5000 years of spinup in order to
get a model equilibrium for each tested parameter combina-
tion.

4.3 Limitations of fire modeling in LPJmL4-SPITFIRE

In fire-prone regions the interactions between fire and veg-
etation dynamics are strong, hence posing a challenge for
global fire models embedded in DGVMs. By just focussing

on fire-related parameters, an optimization approach can only
to a certain extent improve PFT distribution and simulated
biomass. For a good fire representation, e.g., in the Cerrado
and Caatinga, a shrub PFT could further improve the model
performance. Most fires in this region occur where shrub
PFTs are abundant. LPJmL tries to account for this by es-
tablishing rather small raingreen PFTs as a shrub replace-
ment. A much better option would be a separate shrub PFT
with parameters leading to a high flammability but also a
low fire mortality. An optimization of LPJmL4-SPITFIRE,
including shrub PFTs could yield better results than shown
in this study.

Fire models embedded in DGVMs should build on a FDI
which is complex enough to account for various fire dynam-
ics, while it’s parameterization should be simple enough to
be accurately applied on a global scale. While the VPD is
more complex and takes into account more climatic input as
the Nesterov Index, it is still relatively easy to implement in
a global fire model.

There are various other fire danger indices used for mod-
eling purposes, as well as real fire danger assessment and
fire forecast purposes. For example, fire-prone countries have
developed their own fire danger indices (e.g., Canada, Aus-
tralia), which are suited to the unique local fire regimes and
vegetation dynamics. In a global modeling approach, how-
ever, we need to find one fire danger index, which suits best
for all regions of the world and has a relatively easy imple-
mentation to decrease computational cost and the number of
input datasets (which might be unavailable or uncertain).

Currently, SPITFIRE does not account for fire in managed
land like cropland or managed grassland. We accounted for
this by excluding cropland fires from the evaluated burned
area dataset. We do, however, not account for the propor-
tion of grassland, which is used for cattle ranching, for ex-
ample. Since in SPITFIRE fire is not enabled on pastures,
our results show a slightly smaller burned area throughout
South America than could be expected with managed land
included, and hence also compared to the GFED4 evaluation
dataset. This effect is, however, small, because pasture lands
cover a substantial fraction only in very few grid cells (e.g.,
southern Cerrado; Parente et al., 2017). Fire on managed land
is generally difficult to predict in a DGVM, because the rea-
son and timing of using fire depend less on climatic factors
but more on social and political decisions which can vary
between countries, regions, and localities. We expect further
improvement in model performance especially in regions of
large land-use areas with fires on pastures included (e.g., Ra-
bin et al., 2018; Pfeiffer et al., 2013).

5 Conclusions

We significantly improved the fire representation within
LPJmL4-SPITFIRE, applied for South America, by imple-
menting a new fire danger index and applying a model–
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data integration setup to optimize fire-related parameters. We
improved the seasonal and interannual variability, as well
as the spatial pattern of burned area in South America. In
addition, modeling of related vegetation variables, e.g., the
biomass and the PFT distribution in the fire-prone Cerrado
and Caatinga biomes have also been improved.

Optimizing fire parameters has its limits due to error prop-
agation of the PFT distribution and hence their fire traits in-
fluencing simulated fire spread and behavior. Furthermore,
it remains a challenge to find a fire danger index that is
physically interpretable and can be applied globally. In this
study, the parameter optimization by using FDINI led to a
large underestimation of fire and a generally worse model
performance when focusing on the Cerrado and Caatinga
biomes. However, implementing the more complex FDIVPD,
and optimizing it thereafter, led to an improved model perfor-
mance compared to the original SPITFIRE implementation
for South America. Our results demonstrate that an improve-
ment in model processes, as well as a systematic model–
data optimization, is required in order to obtain a more ac-
curate fire representation within complex DGVMs, where
observations or experimental evidence to constraint fire pa-
rameter are scarce. This work highlights the potential for fu-
ture model–data integration approaches to obtain a better fire
model performance in a global setting, based on improved
vegetation dynamics within LPJmL4.

Code availability. The model code of LPJmL4 is publicly avail-
able through the PIK (Potsdam Institute for Climate Im-
pact Research) GitLab server at https://gitlab.pik-potsdam.de/
lpjml/LPJmL (last access: 7 November 2019), and an ex-
act version of the code described here is archived under
https://doi.org/10.5281/zenodo.3497213 (Drüke et al., 2019). The
R package for LPJmL is publicly available at https://gitlab.
pik-potsdam.de/lpjml/LPJmLmdi (last access: 7 November 2019)
and the exact version of the package used here is archived under
https://doi.org/10.5281/zenodo.3497201 (Forkel and Drüke, 2019).
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Appendix A

Figure A1. Annual FPC cover by tropical broadleaved raingreen
PFT over a mean from 2005 to 2015 as fraction per cell. (a) ESA
CCI evaluation data. (b) Simulated FPC by LPJmL4-SPITFIRE us-
ing the NIorig version. (c) Simulated FPC by LPJmL4-SPITFIRE
using the VPDoptim version. (d) Simulated FPC by LPJmL4-
SPITFIRE using the NIoptim version.

Figure A2. Annual FPC cover by tropical herbaceous PFT over a
mean from 2005 to 2015 as fraction per cell. (a) ESA CCI eval-
uation data. (b) Simulated FPC by LPJmL4-SPITFIRE using the
NIorig version. (c) Simulated FPC by LPJmL4-SPITFIRE using the
VPDoptim version. (d) Simulated FPC by LPJmL4-SPITFIRE using
the NIoptim version
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Figure A3. Time series of monthly burned area from 2005 to 2015 simulated by SPITFIRE (red lines) compared to GFED4 evaluation data
(blue lines) for (a) the Amazonia region using NIorig, (b) total South America using the NIorig, (c) the Amazonia region using NIoptim,
(d) total South America using NIoptim, (e) the Amazonia region using VPDoptim, and (f) total South America using VPDoptim.
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Figure A4. Cost reduction of the burned area and the biomass during the optimization process by showing the various components of the
cost that are related to model–data bias, variance ratio, and correlation. The cost for burned area for NIoptim decreased by ca. 81 %, whereas
the cost of the biomass only decreases by ca. 6 % (a, b). For VPDoptim the cost decreased by ca. 48 % for burned area and ca. 19 % for the
biomass (c, d). Hence the impact of the optimization process on burned area is much larger due to the focus on fire parameters.
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Figure A5. Annual aboveground biomass (AGB) of trees over a mean from 2005 to 2015 in kg C m−2. (a) Avitabile evaluation data.
(b) Simulated AGB by LPJmL4-SPITFIRE in the NIorig version. (c) Simulated AGB by LPJmL4-SPITFIRE in the VPDoptim version.
(d) Simulated AGB by LPJmL4-SPITFIRE in the NIoptim version.
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Figure A6. Time series of monthly burned area from 2005 to 2015 simulated by SPITFIRE (red lines) compared to GFED4 evaluation data
(blue lines) for (a) the Cerrado region using NIorig, (b) the Caatinga region using the NIorig, (c) the Cerrado region using NIoptim, (d) the
Caatinga region using NIoptim, (e) the Cerrado region using VPDoptim, and (f) the Caatinga region using VPDoptim.
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