
Geosci. Model Dev., 12, 4729–4749, 2019
https://doi.org/10.5194/gmd-12-4729-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

OpenArray v1.0: a simple operator library for the decoupling
of ocean modeling and parallel computing
Xiaomeng Huang1,2,3, Xing Huang1,3, Dong Wang1,3, Qi Wu1, Yi Li3, Shixun Zhang3, Yuwen Chen1,
Mingqing Wang1,3, Yuan Gao1, Qiang Tang1, Yue Chen1, Zheng Fang1, Zhenya Song2,4, and Guangwen Yang1,3

1Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science,
Tsinghua University, Beijing 100084, China
2Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science
and Technology, Qingdao, 266237, China
3National Supercomputing Center in Wuxi, Wuxi, 214011, China
4First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China

Correspondence: Xiaomeng Huang (hxm@tsinghua.edu.cn)

Received: 1 February 2019 – Discussion started: 25 February 2019
Revised: 19 August 2019 – Accepted: 26 September 2019 – Published: 11 November 2019

Abstract. Rapidly evolving computational techniques are
making a large gap between scientific aspiration and code
implementation in climate modeling. In this work, we de-
sign a simple computing library to bridge the gap and de-
couple the work of ocean modeling from parallel computing.
This library provides 12 basic operators that feature user-
friendly interfaces, effective programming, and implicit par-
allelism. Several state-of-the-art computing techniques, in-
cluding computing graph and just-in-time compiling, are em-
ployed to parallelize the seemingly serial code and speed
up the ocean models. These operator interfaces are designed
using native Fortran programming language to smooth the
learning curve. We further implement a highly readable and
efficient ocean model that contains only 1860 lines of code
but achieves a 91 % parallel efficiency in strong scaling and
99 % parallel efficiency in weak scaling with 4096 Intel CPU
cores. This ocean model also exhibits excellent scalability on
the heterogeneous Sunway TaihuLight supercomputer. This
work presents a promising alternative tool for the develop-
ment of ocean models.

1 Introduction

Many earth system models have been developed in the past
several decades to improve the predictive understanding of
the earth system (Bonan and Doney, 2018; Collins et al.,

2018; Taylor et al., 2012). These models are becoming in-
creasingly complicated, and the amount of code has ex-
panded from a few thousand lines to tens of thousands or
even millions of lines. In terms of software engineering, an
increase in code causes the models to be more difficult to
develop and maintain.

The complexity of these models mainly originates from
three aspects. First, more model components and physical
processes have been embedded into the earth system mod-
els, leading to a 10-fold increase in the amount of code (e.g.,
Alexander and Easterbrook, 2015). Second, some heteroge-
neous and advanced computing platforms (e.g., Lawrence et
al., 2018) have been widely used by the climate modeling
community, resulting in a 5-fold increase in the amount of
code (e.g., Xu et al., 2015). Last, most of the model pro-
grams need to be rewritten due to the continual development
of novel numerical methods and meshes. The promotion of
novel numerical methods and technologies produced in the
fields of computational mathematics and computer science
have been limited in climate science because of the extremely
heavy burden caused by program rewriting and migration.

Over the next few decades, tremendous computing capac-
ities will be accompanied by more heterogeneous architec-
tures which are equipped with two or more kinds of cores or
processing elements (Shan, 2006), thus making a much more
sophisticated computing environment for climate modelers
than ever before (National Research Council, 2012). Clearly,

Published by Copernicus Publications on behalf of the European Geosciences Union.

4730 X. Huang et al.: OpenArray v1.0

transiting the current earth system models to the next gen-
eration of computing environments will be highly challeng-
ing and disruptive. Overall, complex codes in earth system
models combined with rapidly evolving computational tech-
niques create a very large gap between scientific aspiration
and code implementation in the climate modeling commu-
nity.

To reduce the complexity of earth system models and
bridge this gap, a universal and productive computing library
is a promising solution. Through establishing an implicit par-
allel and platform-independent computing library, the com-
plex models can be simplified and will no longer need ex-
plicit parallelism and transiting, thus effectively decoupling
the development of ocean models from complicated parallel
computing techniques and diverse heterogeneous computing
platforms.

Many efforts have been made to address the complex-
ity of parallel programming for numerical simulations, such
as operator overloading, source-to-source translator, and
domain-specific language (DSL). Operator overloading sup-
ports the customized data type and provides simple opera-
tors and function interfaces to implement the model algo-
rithm. This technique is widely used because the implemen-
tation is straightforward and easy to understand (Corliss and
Griewank, 1994; Walther et al., 2003). However, it is prone to
work inefficiently because overloading execution induces nu-
merous unnecessary intermediate variables, consuming valu-
able memory bandwidth resources. Using a source-to-source
translator offers another solution. As indicated by the name,
this method converts one language, which is usually strictly
constrained by self-defined rules, to another (Bae et al., 2013;
Lidman et al., 2012). It requires tremendous work to de-
velop and maintain a robust source-to-source compiler. Fur-
thermore, DSLs can provide high-level abstraction interfaces
that use mathematical notations similar to those used by do-
main scientists so that they can write much more concise and
more straightforward code. Some outstanding DSLs, such
as ATMOL (van Engelen, 2001), ICON DSL (Torres et al.,
2013), STELLA (Gysi et al., 2015), and ATLAS (Deconinck
et al., 2017), are used by the numerical model community.
Although they seem to be source-to-source techniques, DSLs
are newly defined languages and produce executable pro-
grams instead of target languages. Therefore, the new syntax
makes it difficult for the modelers to master the DSLs. In ad-
dition, most DSLs are not yet supported by robust compilers
due to their relatively short history. Most of the source-to-
source translators and DSLs still do not support the rapidly
evolving heterogeneous computing platforms, such as the
Chinese Sunway TaihuLight supercomputer which is based
on the homegrown Sunway heterogeneous many-core pro-
cessors and located at the National Supercomputing Center
in Wuxi.

Other methods such as COARRAY Fortran and CPP tem-
plates provide alternative ways. Using COARRAY Fortran, a
modeler has to control the reading and writing operation of

each image (Mellor-Crummey et al., 2009). In a sense, one
has to manipulate the images in parallel instead of writing se-
rial code. In term of CPP templates, it is usually suitable for
small amounts of code and difficult for debugging (Porkoláb
et al., 2007).

Inspired by the philosophy of operator overloading,
source-to-source translating and DSLs, we integrated the ad-
vantages of these three methods into a simple computing li-
brary which is called OpenArray. The main contributions of
OpenArray are as follows:

– Easy to use. The modelers can write simple operator ex-
pressions in Fortran to solve partial differential equa-
tions (PDEs). The entire program appears to be serial
and the modelers do not need to know any parallel com-
puting techniques. We summarized 12 basic generalized
operators to support whole calculations in a particular
class of ocean models which use the finite difference
method and staggered grid.

– High efficiency. We adopt some advanced techniques,
including intermediate computation graphing, asyn-
chronous communication, kernel fusion, loop optimiza-
tion, and vectorization, to decrease the consumption
of memory bandwidth and improve efficiency. Perfor-
mance of the programs implemented by OpenArray is
similar to the original but manually optimized parallel
program.

– Portability. Currently OpenArray supports both CPU
and Sunway platforms. More platforms including GPU
will be supported in the future. The complexity of cross-
platform migration is moved from the models to Ope-
nArray. The applications based on OpenArray can then
be migrated seamlessly to the supported platforms.

Furthermore, we developed a numerical ocean model based
on the Princeton Ocean Model (POM; Blumberg and Mel-
lor, 1987) to test the capability and efficiency of OpenArray.
The new model is called the Generalized Operator Model of
the Ocean (GOMO). Because the parallel computing details
are completely hidden, GOMO consists of only 1860 lines of
Fortran code and is more easily understood and maintained
than the original POM. Moreover, GOMO exhibits excel-
lent scalability and portability on both central processing unit
(CPU) and Sunway platforms.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some concepts and presents the detailed
mathematical descriptions of formulating the PDEs into op-
erator expressions. Section 3 describes the detailed design
and optimization techniques of OpenArray. The implemen-
tation of GOMO is described in Sect. 4. Section 5 evaluates
the performances of OpenArray and GOMO. Finally, discus-
sion and conclusion are given in Sects. 6 and 7, respectively.

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

X. Huang et al.: OpenArray v1.0 4731

2 Concepts of the array, operator, and abstract
staggered grid

In this section, we introduce three important concepts in Ope-
nArray: array, operator, and abstract staggered grid to illus-
trate the design of OpenArray.

2.1 Array

To achieve this simplicity, we designed a derived data type,
Array, which inspired our project name, OpenArray. The new
Array data type comprises a series of information, including
a 3-dimensional (3-D) array to store data, a pointer to the
computational grid, a Message Passing Interface (MPI) com-
municator, the size of the halo region, and other information
about the data distribution. All the information is used to ma-
nipulate the Array as an object to simplify the parallel com-
puting. In traditional ocean models, calculations for each grid
point and the i, j , and k loops in the horizontal and vertical
directions are unavoidable. The advantage of taking the Ar-
ray as an object is the significant reduction in the number of
loop operations in the models, making the code more intu-
itive and readable. When using the OpenArray library in a
program, one can use type(Array) to declare new variables.

2.2 Operator

To illustrate the concept of an operator, we first take a 2-
dimensional (2-D) continuous equation solving sea surface
elevation as an example:

∂η

∂t
+
∂DU

∂x
+
∂DV

∂y
= 0, (1)

where η is the surface elevation, U and V are the zonal and
meridional velocities, and D is the depth of the fluid col-
umn. We choose the finite difference method and staggered
Arakawa C grid scheme, which are adopted by most regional
ocean models. In Arakawa C grid,D is calculated at the cen-
ters, U component is calculated at the left and right side of
the variable D, and V component is calculated at the lower
and upper side of the variableD (Fig. 1). Variables (D,U,V)
located at different positions own different sets of gird incre-
ments. Taking the term ∂DU

∂x
as an example, we firstly apply

linear interpolation to obtain the D′s value at U point repre-
sented by tmpD. Through a backward difference to the prod-
uct of tmpD and U , the discrete expression of ∂DU

∂x
can be

obtained.

tmpD(i+ 1,j)=0.5 · (D(i+ 1,j)+D(i,j))

·U(i+ 1,j), (2)

and

∂DU

∂x
=

tmpD(i+ 1,j)− tmpD(i,j)
dx(i,j)∗

=
1

2 · dx(i,j)∗
· ((D(i+ 1,j)+D(i,j)) ·U(i+ 1,j)

−(D(i,j)+D(i− 1,j)) ·U(i,j)) ,
(3)

where dx(i,j)∗ = 0.5 · (dx(i,j)+ dx(i− 1,j)).
In this way, the above continuous equation can be dis-

cretized into the following form.

ηt+1 (i,j)− ηt−1 (i,j)

2 · dt

+
1

2 · dx(i,j)∗
· ((D (i+ 1,j)+D(i,j)) ·U (i+ 1,j)

−(D (i,j)+D(i− 1,j)) ·U (i,j))

+
1

2 · dy(i,j)∗
((D (i,j + 1)+D(i,j)) ·V (i,j + 1)

−(D (i,j)+D(i,j − 1)) ·V (i,j))= 0, (4)

where dx(i,j)∗ = 0.5 · (dx(i,j)+ dx(i− 1,j)),dy(i,j)∗ =
0.5·(dy(i,j)+dy(i,j−1)), and subscripts ηt+1 and ηt−1 de-
note the surface elevations at the (t+1) time step and (t−1)
time step. To simplify the discrete form, we introduce some
notation for the differentiation (δxf , δyb) and interpolation (()

x

f ,
()
y

b). The δ and overbar symbols define the differential oper-
ator and average operator, respectively. The subscript x or y
denotes that the operation acts in the x or y direction, and the
superscript f or b denotes that the approximation operation is
forward or backward.

Table 1 lists the detailed definitions of the 12 basic opera-
tors. The term var denotes a 3-D model variable. All 12 op-
erators for the finite difference calculations are named using
three letters in the form [A|D][X|Y |Z][F |B]. The first letter
contains two options, A or D, indicating an average or a dif-
ferential operator. The second letter contains three options,
X, Y , or Z, representing the direction of the operation. The
last letter contains two options, F or B, representing forward
or backward operation. The dx, dy, and dz are the distances
between two adjacent grid points along the x, y, and z direc-
tions.

Using the basic operators, Eq. (4) is expressed as

ηt+1− ηt−1

2 · dt
+ δxf

(
D
x

b ·U
)
+ δ

y

f

(
D
y

b ·V
)
= 0. (5)

Thus,

ηt+1 = ηt−1− 2 · dt ·
(
δxf

(
D
x

b ·U
)
+ δ

y

f

(
D
y

b ·V
))
. (6)

Then, Eq. (6) can be easily translated into a line of code using
operators (the bottom left part in Fig. 2). Compared with the

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4732 X. Huang et al.: OpenArray v1.0

Figure 1. Arrangement of variables in the staggered Arakawa C grid.

Table 1. Definitions of the 12 basic operators.

Notations Discrete form Basic operator

varxf [var(i,j,k)+ var(i+ 1,j,k)]/2 AXF

varxb [var(i,j,k)+ var(i− 1,j,k)]/2 AXB

varyf [var(i,j,k)+ var(i,j + 1,k)]/2 AYF

varyb [var(i,j,k)+ var(i,j − 1,k)]/2 AYB

varzf [var(i,j,k)+ var(i,j,k+ 1)]/2 AZF

varzb [var(i,j,k)+ var(i,j,k− 1)]/2 AZB

δxf (var) [var(i+ 1,j,k)− var(i,j,k)]/dx(i,j) DXF

δxb (var) [var(i,j,k)− var(i− 1,j,k)]/dx(i− 1,j) DXB

δ
y
f (var) [var(i,j + 1,k)− var(i,j,k)]/dy(i,j) DYF

δ
y
b (var) [var(i,j,k)− var(i,j − 1,k)]/dy(i,j − 1) DYB

δzf (var) [var(i,j,k+ 1)− var(i,j,k)]/dz(k) DZF

δzb(var) [var(i,j,k)− var(i,j,k− 1)]/dz(k− 1) DZB

pseudo-codes (the right part), the corresponding implemen-
tation by operators is more straightforward and more consis-
tent with the equations.

Next, we will use the operators in shallow water equations,
which are more complicated than those in the previous case.
Assuming that the flow is in hydrostatic balance and that the
density and viscosity coefficients are constant, and neglect-
ing the molecular friction, the shallow water equations are

∂η

∂t
+
∂DU

∂x
+
∂DV

∂y
= 0, (7)

∂DU

∂t
+
∂DUU

∂x
+
∂DVU

∂y
− fVD =−gD

∂η

∂x

+µD

(
∂2U

∂x2 +
∂2U

∂y2

)
, (8)

∂DV

∂t
+
∂DUV

∂x
+
∂DVV

∂y
+ fUD =−gD

∂η

∂y

+µD

(
∂2V

∂x2 +
∂2V

∂y2

)
, (9)

where f is the Coriolis parameter, g is the gravitational ac-
celeration, andµ is the coefficient of kinematic viscosity. Us-
ing the Arakawa C grid and leapfrog time difference scheme,
the discrete forms represented by operators are shown in
Eqs. (10)–(12).

ηt+1− ηt−1

2 · dt
+ δxf

(
D
x

b ·U
)
+ δ

y

f

(
D
y

b ·V
)
= 0, (10)

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

X. Huang et al.: OpenArray v1.0 4733

Figure 2. Implementation of Eq. (6) by basic operators. The elf and elb variables are the surface elevations at times (t + 1) and (t − 1),
respectively.

Dt+1Ut+1−Dt−1Ut−1

2 · dt
+ δxb

(
D
x

b ·U
x

f ·U
x

f

)
+ δ

y

f

(
D
y

b ·V
x

b ·U
y

b

)
− f V

y

f ·D
x

b =−g ·D
x

b · δ
x
b (η)

+µ ·D
x

b ·
(
δxb
(
δxf (Ut−1)

)
+ δ

y

f
(
δ
y

b (Ut−1)
))
,

(11)
Dt+1Vt+1−Dt−1Vt−1

2 · dt
+ δxf

(
D
x

b ·U
y

b ·V
x

b

)
+ δ

y

b

(
D
y

b ·V
y

f ·V
y

f

)
+ fU

x

f ·D
y

b =−g ·D
y

b · δ
y

b (η)

+µ ·D
y

b ·
(
δxf
(
δxb (Vt−1)

)
+ δ

y

b
(
δ
y

f (Vt−1)
))
. (12)

As the shallow water equations are solved, spatial average
and differential operations are called repeatedly. Implement-
ing these operations is troublesome and thus it is favorable to
abstract these common operations from PDEs and encapsu-
late them into user-friendly, platform-independent, and im-
plicit parallel operators. As shown in Fig. 3, we require only
three lines of code to solve the shallow water equations. This
more realistic case suggests that even more complex PDEs
can be constructed and solved by following this elegant ap-
proach.

2.3 Abstract staggered grid

Most ocean models are implemented based on the stag-
gered Arakawa grids (Arakawa and Lamb, 1981; Griffies et
al., 2000). The variables in ocean models are allocated at
different grid points. The calculations that use these vari-
ables are performed after several reasonable interpolations
or differences. When we call the differential operations on a
staggered grid, the difference value between adjacent points
should be divided by the grid increment to obtain the fi-
nal result. Setting the correct grid increment for modelers is
troublesome work that is extremely prone to error, especially
when the grid is nonuniform. Therefore, we propose an ab-
stract staggered grid to support flexible switching of operator
calculations among different staggered grids. When the grid
information is provided at the initialization phase of OpenAr-
ray, a set of grid increments, including horizontal increments
(dx(i,j), dy(i,j)), and vertical increment (dz(k)), will be
combined with each corresponding physical variable through
grid binding. Thus, the operators can implicitly set the cor-

rect grid increments for different Array variables, even if the
grid is nonuniform.

As shown in Fig. 4, the cubes in the (a), (b), (c), and (d)
panels are the minimum abstract grid accounting for 1/8 of
the volume of the cube in panel (e). The eight points of each
cube are numbered sequentially from 0 to 7, and each point
has a set of grid increments, i.e., dx, dy, and dz. For example,
all the variables of an abstract Arakawa A grid are located
at point 3. For the Arakawa B grid, the horizontal velocity
Array (U , V) is located at point 0, the temperature (T), the
salinity (S), and the depth (D) are located at point 3, and
the vertical velocity Array (W) is located at point 7. For the
Arakawa C grid, Array U is located at point 2 and Array V is
located at point 1. In contrast, for the Arakawa D grid, Array
U is located at point 1 and Array V is located at point 2.

When we call the average and differential operators men-
tioned in Table 1, e.g., on the abstract Arakawa C grid, the
position of Array D is point 3, and the average AXB opera-
tor acting on Array D will change the position from point 3
to point 1. Since Array U is also allocated at point 1, the op-
eration AXB(D) ·U is allowed. In addition, the subsequent
differential operator on Array AXB(D) ·U will change the
position of Array DXF(AXB(D) ·U) from point 1 to point
3.

The jumping rules of different operators are given in Ta-
ble 2. Due to the design of the abstract staggered grids, the
jumping rules for the Arakawa A, B, C, and D grids are fixed.
A change in the position of an array is determined only by the
direction of a certain operator acting on that array.

The grid type can be changed conveniently. For instance, if
one would like to do so, only the following steps need to be
taken. First the position information of each physical vari-
able needs to be reset (shown in Fig. 4). Then the discrete
form of each equation needs to be redesigned. We take the
Eq. (1) switching from Arakawa C grid to Arakawa B grid
as an example. The positions of the horizontal velocity Array
U and Array V are changed to point 0; Array η and Array
D stay the same. The discrete form is changed from Eq. (4)
into Eq. (13), and the corresponding implementation by op-
erators is changed from Eq. (6) into Eq. (14). By doing so,

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4734 X. Huang et al.: OpenArray v1.0

Figure 3. Implementation of the shallow water equations by basic operators. elf, el, and elb denote sea surface elevations at times (t + 1),
t , and (t − 1), respectively. Uf, U and Ub denote the zonal velocity at times (t + 1), t , and (t − 1), respectively. Vf, V , and Vb denote the
meridional velocity at times (t + 1), t , and (t − 1), respectively. Variable aam denotes the viscosity coefficient.

Figure 4. The schematic diagram of the relative positions of the variables on the abstract staggered grid and the jumping procedures among
the grid points.

the transformation of grid types can be easily implemented.

ηt+1 (i,j)− ηt−1 (i,j)

2 · dt

+
1

4 · dx(i,j)∗
((D(i+ 1,j)+D(i,j)) · (U(i+ 1,j)

+U(i+ 1,j + 1))− (D(i,j)+D(i− 1,j))
· (U(i,j)+U(i,j + 1)))

+
1

4 · dy(i,j)∗
((D(i,j + 1)+D(i,j))

· (V (i,j + 1)+V (i+ 1,j + 1))
− (D(i,j)+D(i,j − 1))
· (V (i,j)+V (i+ 1,j)))= 0, (13)

ηt+1 = ηt−1− 2 · dt ·
(
δxf

(
D
x

b ·U
y

f

)
+ δ

y

f

(
D
y

b ·V
x

f

))
. (14)

The position information and jumping rules are used to
implicitly check whether the discrete form of an equation is
correct. The grid increments are hidden by all the differen-
tial operators, thus it makes the code simple and clean. In
addition, since the rules are suitable for multiple staggered
Arakawa grids, the modelers can flexibly switch the ocean
model between different Arakawa grids. Notably, the users
of OpenArray should input the correct positions of each ar-
ray in the initialization phase. The value of the position is
an input parameter when declaring an Array. An error will
be reported if an operation is performed between misplaced
points.

Although most of the existing ocean models use fi-
nite difference or finite volume methods on structured or
semi-structured meshes (e.g., Blumberg and Mellor, 1987;
Shchepetkin and McWilliams, 2005), there are still some
ocean models using unstructured meshes (e.g., Chen et al.,

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

X. Huang et al.: OpenArray v1.0 4735

Table 2. The jumping rules of an operator acting on an Array.

The initial position The position of The position of The position of
of var [A|D]X[F |B] (var) [A|D]Y [F |B] (var) [A|D]Z[F |B] (var)

0 1 2 4
1 0 3 5
2 3 0 6
3 2 1 7
4 5 6 0
5 4 7 1
6 7 4 2
7 6 5 3

2003; Korn, 2017), and even the spectral element method
(e.g., Levin et al., 2000). In our current work, we design the
basic operators only for finite difference and finite volume
methods with structured grids. More customized operators
for the other numerical methods and meshes will be imple-
mented in our future work.

3 Design of OpenArray

Through the above operator notations in Table 1, ocean mod-
elers can quickly convert the discrete PDEs into the corre-
sponding operator expression forms. The main purpose of
OpenArray is to make complex parallel programming trans-
parent to the modelers. As illustrated in Fig. 5, we use a
computation graph as an intermediate representation, mean-
ing that the operator expression forms written in Fortran
will be translated into a computation graph with a particular
data structure. In addition, OpenArray will use the interme-
diate computation graph to analyze the dependency of the
distributed data and produce the underlying parallel code.
Finally, we use stable and mature compilers, such as the
GNU Compiler Collection (GCC), Intel compiler (ICC), and
Sunway compiler (SWACC), to generate the executable pro-
grams according to different back-end platforms. These four
steps and some related techniques are described in detail in
this section.

3.1 Operator expression

Although the basic generalized operators listed in Table 1 are
only suitable to execute 1st-order difference, other high-order
difference or even more complicated operations can be com-
bined by these basic operators. For example, a 2nd-order dif-
ference operation can be expressed as δxf (δ

x
b (var)). Suppos-

ing the grid distance is uniform, the corresponding discrete
form is [var(i+1,j,k)+var(i−1,j,k)−2·var(i,j,k)]/dx2.
In addition, the central difference operation can be expressed
as (δxf (var)+ δxb (var))/2 since the corresponding discrete
form is [var(i+ 1,j,k)− var(i− 1,j,k)]/2dx.

Using these operators to express the discrete PDE, the
code and formula are very similar. We call this effect “the

Figure 5. The workflow of OpenArray.

self-documenting code is the formula”. Figure 6 shows the
one-to-one correspondence of each item in the code and the
items in the sea surface elevation equation. The code is very
easy to program and understand. Clearly, the basic operators
and the combined operators greatly simplify the development
and maintenance of ocean models. The complicated parallel
and optimization techniques are hidden behind these opera-
tors. Modelers no longer need to care about details and can
escape from the “parallelism swamp”, and can therefore con-
centrate on the scientific issues.

3.2 Intermediate computation graph

Considering the example mentioned in Fig. 6, if one needs to
compute the termDXF(AXB(D)·u)with the traditional op-
erator overloading method, one first computes AXB(D) and
stores the result into a temporary array (named tmp1), and
then executes (tmp1 · u) and stores the result into a new ar-
ray, tmp2. The last step is to compute DXF (tmp2) and store

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4736 X. Huang et al.: OpenArray v1.0

Figure 6. The effect of “the self-documenting code is the formula” illustrated by the sea surface elevation equation.

the result in a new array, tmp3. Numerous temporary arrays
consume a considerable amount of memory, making the effi-
ciency of operator overloading poor.

To solve this problem, we convert an operator expression
form into a directed and acyclic graph, which consists of ba-
sic data and function nodes, to implement a so-called lazy ex-
pression evaluation (Bloss et al., 1988; Reynolds, 1999). Un-
like the traditional operator overloading method, we overload
all arithmetic functions to generate an intermediate compu-
tation graph rather than to obtain the result of each function.
This method is widely used in deep-learning frameworks,
e.g., TensorFlow (Abadi et al., 2016) and Theano (Bastien et
al., 2012), to improve computing efficiency. Figure 7 shows
the procedure of parsing the operator expression form of the
sea level elevation equation into a computation graph. The
input variables in the square boxes include the sea surface
elevation (elb), the zonal velocity (u), the meridional veloc-
ity (v), and the depth (D). Variable dt2 is a constant equal
to 2 · dt . The final output is the sea surface elevation at the
next time step (elf). The operators in the circles have been
overloaded in OpenArray. In summary, all the operators pro-
vided by OpenArray are functions for the Array calculation,
in which the “=” notation is the assignment function, the “–
” notation is the subtraction function, the “*” notation is the
multiplication function, the “+” notation is the addition func-
tion, DXF and DYF are the differential functions, and AXF
and AYF are the average functions.

3.3 Code generation

Given a computation graph, we design a lightweight engine
to generate the corresponding source code (Fig. 8). Each op-
erator node in the computation graph is called a kernel. The
sequence of all kernels in a graph is usually fused into a large
kernel function. Therefore, the underlying engine schedules
and executes the fused kernel once and obtains the final result
directly without any auxiliary or temporary variables. Simul-
taneously, the scheduling overhead of the computation graph
and the startup overhead of the basic kernels can be reduced.

Most of the scientific computational applications are lim-
ited by the memory bandwidth and cannot fully exploit the
computing power of a processor. Fortunately, kernel fusion is
an effective optimization method to improve memory local-
ity. When two kernels need to process some data, their fusion
holds shared data in the memory. Prior to the kernel fusion,
the computation graph is analyzed to find the operator nodes

that can be fused, and the analysis results are stored in sev-
eral subgraphs. Users can access any individual subgraph by
assigning the subgraph to an intermediate variable for diag-
nostic purposes. After being given a series of subgraphs, the
underlying engine dynamically generates the corresponding
kernel function in C++ using just-in-time (JIT) compilation
techniques (Suganuma and Yasue, 2005). The JIT compiler
used in OpenArray can fuse numbers of operators into a large
compiled kernel. The benefit of fusing operators is to allevi-
ate memory bandwidth limitations and improve performance
compared with executing operators one by one. In order to
generate a kernel function based on a subgraph, we first add
the function header and variable definitions according to the
name and type in the Array structure. And then we add the
loop head through the dimension information. Finally, we
perform a depth-first walk on the expression tree to convert
data, operators, and assignment nodes into a complete ex-
pression including load variables, arithmetic operation, and
equal symbol with C++ language.

Notably, the time to compile a single kernel function is
short but practical applications usually need to be run for
thousands of time steps and the overhead of generating and
compiling the kernel functions for the computation graph is
extremely high. Therefore, we generate a fusion kernel func-
tion only once for each subgraph, and put it into a function
pool. Later, when facing the same computation subgraph, we
fetch the corresponding fusion kernel function directly from
the pool.

Since the arrays in OpenArray are distributed among dif-
ferent processing units, and the operator needs to use the
data in the neighboring points, to ensure the correctness it
is necessary to check the data consistency before fusion. The
use of different data-splitting methods for distributed arrays
can greatly affect computing performance. The current data-
splitting method in OpenArray is the widely used block-
based strategy. Solving PDEs on structured grids often di-
vides the simulated domain into blocks that are distributed
to different processing units. However, the differential and
average operators always require their neighboring points to
perform array computations. Clearly, ocean modelers have to
frequently call corresponding functions to carefully control
the communication of the local boundary region.

Therefore, we implemented a general boundary manage-
ment module to implicitly maintain and update the local
boundary information so that the modelers no longer need to
address the message communication. The boundary manage-

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

X. Huang et al.: OpenArray v1.0 4737

Figure 7. Parsing the operator expression form into the computation graph.

Figure 8. The schematic diagram of kernel fusion.

ment module uses asynchronous communication to update
and maintain the data of the boundary region, which is useful
for simultaneous computing and communication. These pro-
cedures of asynchronous communication are implicitly in-
voked when calling the basic kernel or the fused kernel to
ensure that the parallel details are completely transparent to
the modelers. For the global boundary conditions of the lim-
ited physical domains, the values at the physical border are
always set to zero within the operators and operator expres-
sions. In realistic cases, the global boundary conditions are
set by a series of functions (e.g., radiation, wall) provided by
OpenArray.

3.4 Portable program for different back-end platforms

With the help of dynamic code generation and JIT compi-
lation technology, OpenArray can be migrated to different

back-end platforms. Several basic libraries, including Boost
C++ libraries and Armadillo library, are required. The JIT
compilation module is based on low-level virtual machine
(LLVM), thus theoretically the module can only be ported to
platforms supporting LLVM. If LLVM is not supported, as
on the Sunway platform, one can generate the fusion kernels
in advance by running the ocean model on an X86 platform.
If the target platform uses CPUs with acceleration cards, such
as GPU clusters, it is necessary to add control statements in
the CPU code, including data transmission, calculation, syn-
chronous, and asynchronous statements. In addition, the ac-
celerating solution should involve the selection of the best
parameters, e.g., “blockDim” and “gridDim” on GPU plat-
forms. In short, the code generation module of OpenArray
also needs to be refactored to be able to generate codes for
different back-end platforms. The application based on Ope-
nArray can then be migrated seamlessly to the target plat-

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4738 X. Huang et al.: OpenArray v1.0

Figure 9. The MPE–CPE hybrid architecture of the Sunway pro-
cessor. Every Sunway processor includes 4 core groups (CGs) con-
nected by the network-on-chip (NoC). Each CG consists of a man-
agement processing element (MPE), 64 computing processing ele-
ments (CPEs) and a memory controller (MC). The Sunway proces-
sor uses the system interface (SI) to connect with outside devices.

form. Currently, we have designed the corresponding source
code generation module for Intel CPU and Sunway proces-
sors in OpenArray.

According to the TOP500 list released in November 2018,
the Sunway TaihuLight is ranked third in the world, with
a LINPACK benchmark rating of 93 petaflops provided by
Sunway many-core processors (or Sunway CPUs). As shown
in Fig. 9, every Sunway CPU includes 260 processing ele-
ments (or cores) that are divided into four core groups. Each
core group consists of 64 computing processing elements
(CPEs) and a management processing element (MPE) (Qiao
et al., 2017). CPEs handle large-scale computing tasks and
the MPE is responsible for the task scheduling and commu-
nication. The relationship between MPE and CPE is like that
between CPU and many-core accelerator, except that they
are fused into a single Sunway processor sharing a unified
memory space. To make the most of the computing resources
of the Sunway TaihuLight, we generate kernel functions for
the MPE, which is responsible for the thread control, and
CPE, which performs the computations. The kernel func-
tions are fully optimized with several code optimization tech-
niques (Pugh, 1991) such as loop tiling, loop aligning, single-
instruction multiple-date (SIMD) vectorization, and function
inline. In addition, due to the high memory access latency of
CPEs, we accelerate data access by providing instructions for
direct memory access in the kernel to transfer data between
the main memory and local memory (Fu et al., 2017).

Table 3. Comparing GOMO with several variations in the POM.

Model Lines of Method Computing
code platforms

POM2k 3521 Serial CPU
sbPOM 4801 MPI CPU
mpiPOM 9685 MPI CPU
POMgpu 30 443 MPI + CUDA GPU
GOMO 1860 OpenArray CPU, Sunway

4 Implementation of GOMO

In this section, we introduce how to implement a numerical
ocean model using OpenArray. The most important step is to
derive the primitive discrete governing equations in operator
expression form, and then the following work is completed
by OpenArray.

The fundamental equations of GOMO are derived from
POM. GOMO features a bottom-following free-surface stag-
gered Arakawa C grid. To effectively evolve the rapid sur-
face fluctuations, GOMO uses the mode-splitting algorithm
inherited from POM to address the fast-propagating sur-
face gravity waves and slow-propagating internal waves in
barotropic (external) and baroclinic (internal) modes, respec-
tively. The details of the continuous governing equations, the
corresponding operator expression form, and the descriptions
of all the variables used in GOMO are listed in the appen-
dices A–C, respectively.

Figure 10 shows the basic flow diagram of GOMO. At
the beginning, we initialize OpenArray to make all opera-
tors suitable for GOMO. After loading the initial values and
the model parameters, the distance information is input into
the differential operators through grid binding. In the exter-
nal mode, the main consumption is computing the 2-D sea
surface elevation η and column-averaged velocity (UA, VA).
In the internal mode, 3-D array computations predominate
in order to calculate baroclinic motions (U,V,W), tracers
(T ,S,ρ), and the turbulence closure scheme (q2,q2l) (Mel-
lor and Yamada, 1982), where U,V, and W are the velocity
fields in the x, y, and σ directions and T ,S, and ρ are the po-
tential temperature, the salinity, and the density, respectively.
q2/2, and q2l/2 are the turbulence kinetic energy and pro-
duction of turbulence kinetic energy with turbulence length
scale, respectively.

When the user dives into the GOMO code, the main time
stepping loop in GOMO appears to run on a single processor.
However, as described above, implicit parallelism is the most
prominent feature of the program using OpenArray. The op-
erators in OpenArray, not only the difference and average
operators, but also the “+”, “–”, “*”, “/” and “=” operators
in the Fortran code, are all overloaded for the special data
structure “Array”. The seemingly serial Fortran code is im-

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

X. Huang et al.: OpenArray v1.0 4739

Figure 10. Flow diagram of GOMO.

plicitly converted to parallel C++ code by OpenArray, and
the parallelization is hidden from the modelers.

Because the complicated parallel optimization and tuning
processes are decoupled from the ocean modeling, we com-
pletely implemented GOMO based on OpenArray in only
4 weeks, whereas implementation may take several months
or even longer when using the MPI or CUDA library.

In comparison with the existing POM and its multiple
variations, including (to name a few) Stony Brook Paral-
lel Ocean Model (sbPOM), mpiPOM, and POMgpu, GOMO
has less code but is more powerful in terms of compatibility.
As shown in Table 3, the serial version of POM (POM2k)
contains 3521 lines of code. Models sbPOM and mpiPOM
are parallelized using MPI, while POMgpu is based on MPI
and CUDA-C. The codes of sbPOM, mpiPOM, and POMgpu
are extended to 4801, 9680, and 30 443 lines, respectively.
In contrast, the code of GOMO is decreased to 1860 lines.

Table 4. Comparison of the amount of code for different functions.

Functions Lines of code

POM2k sbPOM GOMO

Solve for η 16 72 1
Solve for UA 75 183 11
Solve for VA 75 183 11
Solve for W 36 90 3
Solve for q2 and q2l 318 854 162
Solve for T or S 178 234 71
Solve for U 118 230 50
Solve for V 118 230 50

Moreover, GOMO completes the same function as the other
approaches while using the least amount of code (Table 4),
since the complexity has been transferred to OpenArray,
which includes about 11 800 lines of codes.

In addition, poor portability considerably restricts the use
of advanced hardware in oceanography. With the advantages
of OpenArray, GOMO is adaptable to different hardware ar-
chitectures, such as the Sunway processor. The modelers do
not need to modify any code when changing platforms, elim-
inating the heavy burden of transmitting code. As computing
platforms become increasingly diverse and complex, GOMO
becomes more powerful and attractive than the machine-
dependent models.

5 Results

In this section, we first evaluate the basic performance of
OpenArray using benchmark tests on a single CPU platform.
After checking the correctness of GOMO through an ideal
seamount test case, we use GOMO to further test the scala-
bility and efficiency of OpenArray.

5.1 Benchmark testing

We choose two typical PDEs and their implementations from
Rodinia v3.1, which is a benchmark suite for heterogeneous
computing (Che et al., 2009), as the original version. For
comparison, we re-implement these two PDEs using Ope-
nArray. In addition, we added two other test cases. As shown
in Table 5, the 2-D continuity equation is used to solve sea
surface height, and its continuous form is shown in Eq. (1).
The 2-D heat diffusion equation is a parabolic PDE that de-
scribes the distribution of heat over time in a given region.
Hotspot is a thermal simulation used for estimating proces-
sor temperature on structured grids (Che et al., 2009; Huang
et al., 2006). We tested one 2-D case (Hotspot2D) and one 3-
D case (Hotspot3D) of this program. The average runtime for
100 iterations is taken as the performance metric. All tests are
executed on a single workstation with an Intel Xeon E5-2650

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4740 X. Huang et al.: OpenArray v1.0

CPU. The experimental results show that the performance of
OpenArray versions is comparable to the original versions.

5.2 Validation tests of GOMO

The seamount problem proposed by Beckmann and Haidvo-
gel is a widely used ideal test case for regional ocean mod-
els (Beckmann and Haidvogel, 1993). It is a stratified Tay-
lor column problem which simulates the flow over an iso-
lated seamount with a constant salinity and a reference verti-
cal temperature stratification. An eastward horizontal current
of 0.1 m s−1 is added at model initialization. The southern
and northern boundaries are closed. If the Rossby number is
small, an obvious anticyclonic circulation is trapped by the
mount in the deep water.

Using the seamount test case, we compare GOMO and
sbPOM results. The configurations of both models are ex-
actly the same. Figure 11 shows that GOMO and sbPOM
both capture the anticyclonic circulation at 3500 m depth.
The shaded plot shows the surface elevation, and the array
plot shows the current at 3500 m. Panels 11a, b, and c show
the results of GOMO, sbPOM, and the difference (GOMO-
sbPOM), respectively. The differences in the surface eleva-
tion and deep currents between the two models are negligible
(Fig. 11c).

5.3 The weak and strong scalability of GOMO

The seamount test case is used to compare the performance
of sbPOM and GOMO in a parallel environment. We use
the X86 cluster at the National Supercomputing Center in
Wuxi, China, which provides 5000 Intel Xeon E5-2650 v2
CPUs for our account at most. Figure 12a shows the re-
sult of a strong scaling evaluation, in which the model size
is fixed at 2048× 2048× 50. The dashed line indicates the
ideal speedup. For the largest parallelism with 4096 pro-
cesses, GOMO and sbPOM achieve 91 % and 92 % paral-
lel efficiency, respectively. Figure 12b shows the weak scal-
ability of sbPOM and GOMO. In the weak scaling test, the
model size for each process is fixed at 128×128×50, and the
number of processes is gradually increased from 16 to 4096.
Taking the performance of 16 processes as a baseline, we de-
termine that the parallel efficiencies of GOMO and sbPOM
using 4096 processes are 99.0 % and 99.2 %, respectively.

5.4 Testing on the Sunway platform

We also test the scalability of GOMO on the Sunway plat-
form. Supposing that the baseline is the runtime of GOMO at
10 000 Sunway cores with a grid size of 4096×4096×50, the
parallel efficiency of GOMO can still reach 85 % at 150 000
cores, as shown in Fig. 13. However, we notice that the scal-
ability declines sharply when the number of cores exceeds
150 000. There are two reasons leading to this decline. First,
the block size assigned to each core decreases as the num-
ber of cores increases, causing more communication during

Figure 11. Comparison of the surface elevation (shaded) and cur-
rents at 3500 m depth (vector) between GOMO and sbPOM on the
4th model day. (a) GOMO, (b) sbPOM, and (c) GOMO-sbPOM.

boundary region updating. Second, some processes cannot be
accelerated even though more computing resources are avail-
able; for example, the time spent on creating the computa-
tion graph, generating the fusion kernels, and compiling the
JIT cannot be reduced. Even though the fusion-kernel codes
are generated and compiled only once at the beginning of
a job, it consumes about 2 min. In a sense, OpenArray per-
forms better when processing large-scale data, and GOMO is
more suitable for high-resolution scenarios. In the future, we
will further optimize the communication and graph-creating
modules to improve the efficiency for large-scale cores.

6 Discussion

As we mentioned in Sect. 1, the advantages of OpenArray are
its ease of use, high efficiency, and portability. Using Ope-
nArray, modelers without any parallel computing skill or ex-
perience can write simple operator expressions in Fortran to
implement complex ocean models. The ocean models can be
run on any CPU or Sunway platforms which have deployed
the OpenArray library. We call this effect “write once, run
everywhere”. Other similar libraries (e.g., ATMOL, ICON

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

X. Huang et al.: OpenArray v1.0 4741

Table 5. Four benchmark tests.

Benchmark Dimensions Grid OpenArray Original
size version (s) version (s)

Continuity equation 2-D 8192× 8192 7.22 7.10
Heat diffusion equation 2-D 8192× 8192 6.20 6.34
Hotspot2D 2-D 8192× 8192 11.37 11.21
Hotspot3D 3-D 512× 512× 8 0.96 1.01

Figure 12. Performance comparison between sbPOM and GOMO on the X86 cluster. Panels (a) shows the strong scaling result; vertical axis
denotes the speedup relative to 16 processes in a single node. Panel (b) shows the weak scaling result.

Figure 13. Parallel efficiency of GOMO on the Sunway platform.

DSL, STELLA, and COARRAY) require users to manually
control the boundary communication and task scheduling to
some extent. In contrast, OpenArray implements completely
implicit parallelism with user-friendly interfaces and pro-
gramming languages.

However, there are still several problems to be solved in
the development of OpenArray. The first issue is computa-

tional efficiency. Once a variable is in one of the processor
registers or in the highest speed cache, it should be used as
much as possible before being replaced. In fact, we should
never move variables more than once each time step. The
memory consumption brought by overloading techniques is
usually high due to the unnecessary variable moving and un-
avoidable cache missing. The current efficiency and scalabil-
ity of GOMO are close to sbPOM since we have adopted
a series of optimization methods, such as memory pool,
graph computing, JIT compilation, and vectorization, to al-
leviate the requirement of memory bandwidth. However, we
have to admit that we cannot fully solve the memory band-
width limit problem at present. We think that time skew-
ing is a cache-oblivious algorithm for stencil computations
(Frigo and Strumpen, 2005) since it can exploit temporal
locality optimally throughout the entire memory hierarchy.
In addition, the polyhedral model may be another potential
approach, which uses an abstract mathematical representa-
tion based on integer polyhedral to analyze and optimize the
memory access pattern of a program.

The second issue is that the current OpenArray version
cannot support customized operators. When modelers try
out another higher-order advection or any other numerical
scheme, the 12 basic operators provided by OpenArray are
not abundant. We considered using a template mechanism to
support the customized operators. The rules of operations are

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4742 X. Huang et al.: OpenArray v1.0

defined in a template file, where the calculation form of each
customized operator is described by a regular expression. If
users want to add a customized operator, they only need to
append a regular expression into the template file.

OpenArray and GOMO will continue to be developed, and
the following three key improvements are planned for the fol-
lowing years.

First, we are developing the GPU version of OpenArray.
During the development, the principle is to keep hot data in
GPU memory or directly swapping between GPUs and avoid
returning data to the main CPU memory. NVLink provides
high bandwidth and outstanding scalability for GPU-to-CPU
or GPU-to-GPU communication and addresses the intercon-
nect issue for multi-GPU and multi-GPU/CPU systems.

Second, the data input/output is becoming a bottleneck of
earth system models as the resolution increases rapidly. At
present we encapsulate the PnetCDF library to provide sim-
ple I/O interfaces, such as load operation and store opera-
tion. A climate fast input/output (CFIO) library (Huang et
al., 2014) will be implemented into OpenArray in the next
few years. The performance of CFIO is approximately 220 %
faster than PnetCDF because of the overlapping of I/O and
computing. CFIO will be merged into the future version of
OpenArray and the performance is expected to be further im-
proved.

Finally, as for most of the ocean models, GOMO also faces
the load imbalance issue. We are adding the more effective
load balance schemes, including space-filling curve (Dennis,
2007) and curvilinear orthogonal grids, into OpenArray in
order to reduce the computational cost on land points.

OpenArray is a product of the collaboration between
oceanographers and computer scientists. It plays an im-
portant role in simplify the porting work on the Sunway
TaihuLight supercomputer. We believe that OpenArray and
GOMO will continue to be maintained and upgraded. We aim
to promote it to the model community as a development tool
for future numerical models.

7 Conclusions

In this paper, we design a simple computing library (Ope-
nArray) to decouple ocean modeling and parallel computing.
OpenArray provides 12 basic operators that are abstracted
from PDEs and extended to ocean model governing equa-
tions. These operators feature user-friendly interfaces and
an implicit parallelization ability. Furthermore, some state-
of-the-art optimization mechanisms, including computation
graphing, kernel fusion, dynamic source code generation,
and JIT compiling, are applied to boost the performance. The
experimental results prove that the performance of a program
using OpenArray is comparable to that of well-designed pro-
grams using Fortran. Based on OpenArray, we implement
a numerical ocean model (GOMO) with high productivity,
enhanced readability, and excellent scalable performance.

Moreover, GOMO shows high scalability on both CPU sys-
tems and the Sunway platform. Although more realistic tests
are needed, OpenArray may signal the beginning of a new
frontier in future ocean modeling through ingesting basic op-
erators and cutting-edge computing techniques.

Code availability. The source codes of OpenArray v1.0 are avail-
able at https://github.com/hxmhuang/OpenArray (Huang et al.,
2019a), and the user manual of OpenArray can be accessed at https:
//github.com/hxmhuang/OpenArray/tree/master/doc (Huang et al.,
2019b). GOMO is available at https://github.com/hxmhuang/
GOMO (Huang et al., 2019c).

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

https://github.com/hxmhuang/OpenArray
https://github.com/hxmhuang/OpenArray/tree/master/doc
https://github.com/hxmhuang/OpenArray/tree/master/doc
https://github.com/hxmhuang/GOMO
https://github.com/hxmhuang/GOMO

X. Huang et al.: OpenArray v1.0 4743

Appendix A: Continuous governing equations

The equations governing the baroclinic (internal) mode in
GOMO are the 3-dimensional hydrostatic primitive equa-
tions.

∂η

∂t
+
∂UD

∂x
+
∂VD

∂y
+
∂W

∂σ
= 0, (A1)

∂UD

∂t
+
∂U2D

∂x
+
∂UVD

∂y
+
∂UW

∂σ

− fVD+ gD
∂η

∂x
=

∂

∂σ

(
KM

D

∂U

∂σ

)

+
gD2

ρ0

∂

∂x

0∫
σ

ρdσ ′−
gD

ρ0

∂D

∂x

0∫
σ

σ ′
∂ρ

∂σ ′
dσ ′+Fu, (A2)

∂VD

∂t
+
∂UVD

∂x
+
∂V 2D

∂y
+
∂VW

∂σ
+ fUD

+ gD
∂η

∂y
=

∂

∂σ

(
KM

D

∂V

∂σ

)
+
gD2

ρ0

∂

∂y

0∫
σ

ρdσ ′

−
gD

ρ0

∂D

∂y

0∫
σ

σ ′
∂ρ

∂σ ′
dσ ′+Fv, (A3)

∂TD

∂t
+
∂T UD

∂x
+
∂T VD

∂y
+
∂TW

∂σ
=

∂

∂σ

(
KH

∂T

∂σ

)
+FT +

∂R

∂σ
, (A4)

∂SD

∂t
+
∂SUD

∂x
+
∂SVD

∂y
+
∂SW

∂σ
=

∂

∂σ

(
KH

∂S

∂σ

)
+FS, (A5)

ρ = ρ(T Sp), (A6)

∂q2D

∂t
+
∂Uq2D

∂x
+
∂V q2D

∂y
+
∂Wq2

∂σ
=

∂

∂σ

(
Kq

D

∂q2

∂σ

)
+

2KM
D

[(
∂U

∂σ

)2

+

(
∂V

∂σ

)2
]

+
2g
ρ0
KH

∂ρ

∂σ
−

2Dq3

B1l
+Fq2 , (A7)

∂q2lD

∂t
+
∂Uq2lD

∂x
+
∂V q2lD

∂y
+
∂Wq2l

∂σ
=

∂

∂σ

(
Kq

D

∂q2l

∂σ

)
+E1l

{
KM

D

[(
∂U

∂σ

)2

+

(
∂V

∂σ

)2
]

+
gE3

ρ0
KH

∂ρ

∂σ

}
W̃ −

Dq3

B1
+Fq2l, (A9)

where Fu, Fv , Fq2 , and Fq2l are horizontal kinematic viscos-
ity terms of u, v, q2, and q2l, respectively. FT and FS are

horizontal diffusion terms of T and S, respectively. W̃ is the
wall proximity function.

Fu =
∂

∂x
(2AMD

∂U

∂x
)+

∂

∂y

[
AMD(

∂U

∂y
+
∂V

∂x
)

]
, (A10)

Fv =
∂

∂y
(2AMD

∂V

∂y
)+

∂

∂x

[
AMD(

∂U

∂y
+
∂V

∂x
)

]
, (A11)

FT =
∂

∂x
(AHH

∂T

∂x
)+

∂

∂y
(AHH

∂T

∂y
), (A12)

FS =
∂

∂x
(AHH

∂S

∂x
)+

∂

∂y
(AHH

∂S

∂y
), (A13)

Fq2 =
∂

∂x
(AMH

∂q2

∂x
)+

∂

∂y
(AMH

∂q2

∂y
), (A14)

Fq2l =
∂

∂x
(AMH

∂q2l

∂x
)+

∂

∂y
(AMH

∂q2l

∂y
), (A15)

W̃ = 1+
E2l

κ

(
1

η− z
+

1
H − z

)
. (A16)

The equations governing the barotropic (external) mode in
GOMO are obtained by vertically integrating the baroclinic
equations.

∂η

∂t
+
∂UAD

∂x
+
∂VAD

∂y
= 0, (A17)

∂UAD

∂t
+
∂(UA)

2D

∂x
+
∂UAVAD

∂y
− fVAD

+ gD
∂η

∂x
= F̃ua −wu(0)+wu(−1)

−
gD

ρ0

0∫
−1

0∫
σ

[
D
∂ρ

∂x
−
∂D

∂x
σ ′
∂ρ

∂σ

]
dσ ′dσ +Gua , (A18)

∂VAD

∂t
+
∂UAVAD

∂y
+
∂(VA)

2D

∂y
+ fUAD

+ gD
∂η

∂y
= F̃va −wv(0)+wv(−1)

−
gD

ρ0

0∫
−1

0∫
σ

[
D
∂ρ

∂y
−
∂D

∂y
σ ′
∂ρ

∂σ

]
dσ ′dσ +Gva , (A19)

where F̃ua and F̃va are the horizontal kinematic viscosity
terms of UA and VA, respectively. Gua and Gva are the dis-
persion terms of UA and VA, respectively. The subscript “A”
denotes vertical integration.

F̃ua =
∂

∂x

[
2H(AAM)

∂UA

∂x

]
+
∂

∂y

[
H(AAM)

(
∂UA

∂y
+
∂VA

∂x

)]
, (A20)

F̃va =
∂

∂y

[
2H(AAM)

∂VA

∂y

]
+
∂

∂x

[
H(AAM)

(
∂UA

∂y
+
∂VA

∂x

)]
, (A21)

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4744 X. Huang et al.: OpenArray v1.0

Gua =
∂2(UA)

2D

∂x2 +
∂2UAVAD

∂x∂y
− F̃ua

−
∂2(U2)AD

∂x2 −
∂2(UV)AD

∂y2 + (Fu)A, (A22)

Gva =
∂2UAVAD

∂x∂y
+
∂2(VA)

2D

∂y2 − F̃va

−
∂2(UV)AD

∂x2 −
∂2(V 2)AD

∂y2 + (Fv)A, (A23)

UA =

0∫
−1

Udσ, (A24)

VA =

0∫
−1

V dσ, (A25)

(U2)A =

0∫
−1

U2dσ, (A26)

(UV)A =

0∫
−1

UV dσ, (A27)

(V 2)A =

0∫
−1

V 2dσ, (A28)

(Fu)A =

0∫
−1

Fudσ, (A29)

(Fv)A =

0∫
−1

Fvdσ, (A30)

AAM =

0∫
−1

(AM)dσ. (A31)

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

X. Huang et al.: OpenArray v1.0 4745

Appendix B: Discrete governing equations

The discrete governing equations of baroclinic (internal)
mode expressed by operators are shown as below:

ηt+1
− ηt−1

2dt i
+ δxf (D

x

bU)+ δ
y

f (D
y

bV)+ δ
z
f (W)= 0, (B1)

(D
x

bU)
t+1
− (D

x

bU)
t−1

2dt i
+ δxb

[
(D

x

bU)
x

f U
x

f

]
+ δ

y

f

[
(D

y

bV)
x

bU
y

b

]
+ δzf (W

x

bU
z

b)− (f̃ V
y

f D)
x

b

− (f V
y

f D)
x

b + gD
x

bδ
x
b (η)= δ

z
b

[
K
x

Mb

(D
x

b)
t+1

δzf (U
t+1)

]

+
g(D

x

b)
2

ρ0

0∫
σ

[
δxb (ρ

z
b)−

σ δxb (D)

D
x

b
δzb(ρ

x
b)

]
dσ ′+Fu, (B2)

(D
y

bV)
t+1
− (D

y

bV)
t−1

2dt i
+ δxf

[
(D

x

bU)
y

bV
x

b

]
+ δ

y

b

[
(D

y

bV)
y

f V
y

f

]
+ δzf (W

y

bV
z

b)+ (f̃ U
x

f D)
y

b

+ (fU
x

f D)
y

b + gD
y

bδ
y

b (η)= δ
z
b

[
K
y

Mb

(D
y

b)
t+1

δzf (V
t+1)

]

+
g(D

y

b)
2

ρ0

0∫
σ

[
δ
y

b (ρ
z
b)−

σ δ
y

b (D)

D
y

b
δzb(ρ

y

b)

]
dσ ′+Fv, (B3)

(T D)t+1
− (T D)t−1

2dt i
+ δxf (T

x

bUD
x

b)+ δ
y

f (T
y

bVD
y

b)

+ δzf (T
z

bW)= δ
z
b

[
KH

Dt+1 δ
z
f (T

t+1)

]
+FT + δ

z
fR, (B4)

(SD)t+1
− (SD)t−1

2dt i
+ δxf (S

x

bUD
x

b)

+ δ
y

f (S
y

bVD
y

b)+ δ
z
f (S

z

bW)=

δzb

[
KH

Dt+1 δ
z
f (S

t+1)

]
+FS, (B5)

ρ = ρ(T Sp), (B6)

(q2D)t+1
− (q2D)t−1

2dt i
+ δxf (U

z

b(q
2)b

x
Db

x
)

+ δ
y

f (Vb
z
(q2)b

y
Db

y
)+ δzf (Wq

2)
z

b =

δzb

[
(Kq)f

z

Dt+1 δ
z
f (q

2)t+1

]
+

2KM
D

{[
δzb(U

x

f)
]2

+

[
δzb(V

y

f)
]2
}
+

2g
ρ0
KHδ

z
b(ρ)−

2Dq3

B1l
+Fq2 , (B7)

(q2lD)t+1
− (q2lD)t−1

2dt i
+ δxf (U

z

b(q
2l)

x

bD
x

b)

+ δ
y

f (V
z

bq
2l
y

bD
y

b)+ δ
z
f (Wq

2l)
z

b =

δzb

[
(Kq)f

z

Dt+1 δ
z
f (q

2l)t+1

]
+ lE1

KM

D

{[
δzb(U

x

f)
]2

+

[
δzb(V

y

f)
]2
}
W̃ +

lE1E3g

ρ0
KHδ

z
b(ρ)W̃ −

Dq3

B1

+Fq2l, (B8)

where Fu, Fv , Fq2 , and Fq2l are horizontal kinematic viscos-
ity terms of u, v, q2, and q2l, respectively. FT and FS are
horizontal diffusion terms of T and S, respectively.

Fu = δ
x
b

[
2AMDδxf (U

t−1)
]

+ δ
y

f

{
((AM)

x

b)
y

b(D
x

b)
y

b

[
δxb (V

t−1)+ δ
y

b (U
t−1)

]}
, (B9)

Fv = δ
y

b

[
2AMDδ

y

f (V
t−1)

]
+ δxf

{
((AM)

x

b)
y

b(D
x

b)
y

b

[
δxb (V

t−1)+ δ
y

b (U
t−1)

]}
, (B10)

FT = δ
x
f

[
(AH)

x

bH
x

bδ
x
b (T

t−1)
]

+ δ
y

f

[
(AH)

y

bH
y

bδ
y

b (T
t−1)

]
, (B11)

FS = δ
x
f

[
((AH)

x

bH
x

bδ
x
b (S

t−1)
]

+ δ
y

f

[
(AH)

y

bH
y

bδ
y

b (S
t−1)

]
, (B12)

Fq2 = δ
x
f

[
((AM)

x

b)b
z

H
x

bδ
x
b (q

2)t−1
]

+ δ
y

f

[
((AM)

y

b)b
z

H
y

bδ
y

b (q
2)t−1

]
, (B13)

Fq2l = δ
x
f

[
((AM)b

x
)b
z

H
x

bδ
x
b (q

2l)t−1
]

+ δ
y

f

[
((AM)b

y
)b
z

H
y

bδ
y

b (q
2l)t−1

]
. (B14)

The discrete governing equations of barotropic (external)
mode expressed by operators are shown as below:

ηt+1
− ηt−1

2dte
+ δxf (D

x

b UA)+ δ
y

f (D
y

b VA)= 0, (B15)

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4746 X. Huang et al.: OpenArray v1.0

(D
x

bUA)
t+1
− (D

x

bUA)
t−1

2dte
+ δxb

[
(D

x

bUA)
x

f (UA)
x

f

]
+ δ

y

f

[
(D

y

bVA)
x

b(UA)
y

b

]
−[f̃A(VA)

y

f D]
x

b

−[f (VA)
y

f D]
x

b + gD
x

bδ
x
b (η)=

δxb

{
2(AAM)Dδxf

[
(UA)

t−1
]}

+ δ
y

f

{[
(AAM)

x

b

]y
b
(D

x

b)
y

b
[
δxb (VA)+ δ

y

b (UA)
]t−1

}
+φx, (B16)

(D
y

bVA)
t+1
− (D

y

bVA)
t−1

2dte
+ δxf

[
(D

x

bUA)
y

b(VA)
x

b

]
+ δ

y

b

[
(D

y

bVA)
y

f (VA)
y

f

]
+[f̃A(UA)

x

fD]
y

b

+[f (UA)
x

fD]
y

b + gD
y

bδ
y

b (η)=

δ
y

b

{
2(AAM)Dδ

y

f

[
(VA)

t−1
]}
+

δxf

{
[(AAM)

x

b]
y

b(D
x

b)
y

b
[
δxb (VA)+ δ

y

b (UA)
]t−1

}
+φy, (B17)

where

φx =−WU(0)+WU(−1)

−
g(D

x

b)
2

ρ0

0∫
−1


 0∫
σ

δxb (ρ)
z

bdσ ′

dσ


+
gD

x

bδ
x
bD

ρ0

0∫
−1


 0∫
σ

σ zbδ
z
b(ρ

x
b)

dσ

+Gx, (B18)

φy =−WV (0)+WV (−1)

−
g(D

y

b)
2

ρ0

0∫
−1


 0∫
σ

δ
y

b (ρ)
z

bdσ ′

dσ


+
gD

y

bδ
y

bD

ρ0

0∫
−1


 0∫
σ

σ zbδ
z
b(ρ

y

b)

dσ

+Gy . (B19)

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

X. Huang et al.: OpenArray v1.0 4747

Appendix C: Descriptions of symbols

The description of each symbol in the governing equations is
listed below.

Table C1. Descriptions of symbols.

Symbol Description

η Free surface elevation
H Bottom topography
UA, VA Vertical average velocity in x and y directions, respectively
U , V , W Velocity in x, y, and σ directions, respectively
D Fluid column depth
f The Coriolis parameter
g The gravitational acceleration
ρ0 Constant density
ρ In situ density
T Potential temperature
S Salinity
R Surface solar radiation incident
q2/2 Turbulence kinetic energy
l Turbulence length scale
q2l/2 Production of turbulence kinetic energy and turbulence length scale
dt i Time step of baroclinic mode
dte Time step of barotropic mode
dx Grid increment in x direction
dy Grid increment in y direction
AM Horizontal kinematic viscosity
AH Horizontal heat diffusivity
KM Vertical kinematic viscosity
KH Vertical mixing coefficient of heat and salinity
Kq Vertical mixing coefficient of turbulence kinetic energy

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

4748 X. Huang et al.: OpenArray v1.0

Author contributions. XiaH led the project of OpenArray and the
writing of this paper. DW, QW, SZ, and XinH designed OpenArray.
XinH, DW, QW, SZ, MW, YG, and QT implemented and tested
GOMO. All coauthors contributed to the writing of this paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Xiaomeng Huang is supported by a grant from
the National Key R&D Program of China (2016YFB0201100), the
National Natural Science Foundation of China (41776010), and the
Center for High Performance Computing and System Simulation of
the Pilot National Laboratory for Marine Science and Technology
(Qingdao). Xing Huang is supported by a grant from the National
Key R&D Program of China (2018YFB0505000). Shixun Zhang
is supported by a grant from the National Key R&D Program of
China (2017YFC1502200) and Qingdao National Laboratory for
Marine Science and Technology (QNLM2016ORP0108). Zhenya
Song is supported by National Natural Science Foundation of China
(U1806205) and AoShan Talents Cultivation Excellent Scholar Pro-
gram supported by Qingdao National Laboratory for Marine Sci-
ence and Technology (2017ASTCP-ES04).

Financial support. This research has been supported by the Na-
tional Key R&D Program of China (grant nos. 2016YFB0201100,
2018YFB0505000, and 2017YFC1502200), the National Natural
Science Foundation of China (grant nos. 41776010 and U1806205),
and the Qingdao National Laboratory for Marine Science and Tech-
nology (grant nos. QNLM2016ORP0108 and 2017ASTCP-ES04).

Review statement. This paper was edited by Steven Phipps and re-
viewed by David Webb and two anonymous referees.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kud-
lur, M., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P.,
Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: A Sys-
tem for Large-Scale Machine Learning, in 12th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI 16) USENIX Association, Savannah, GA, 265–
283, available at: https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/abadi (last access: 28 Octo-
ber 2019), 2016.

Alexander, K. and Easterbrook, S. M.: The software architec-
ture of climate models: a graphical comparison of CMIP5 and
EMICAR5 configurations, Geosci. Model Dev., 8, 1221–1232,
https://doi.org/10.5194/gmd-8-1221-2015, 2015.

Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and En-
ergy Conserving Scheme for the Shallow Water Equations,

Mon. Weather Rev., 109, 18–36, https://doi.org/10.1175/1520-
0493(1981)109<0018:APEAEC>2.0.CO;2, 1981.

Bae, H., Mustafa, D., Lee, J. W., Aurangzeb, Lin, H., Dave, C.,
Eigenmann, R., and Midkiff, S. P.: The Cetus source-to-source
compiler infrastructure: Overview and evaluation, Int. J. Parallel
Prog., 41, 753–767, 2013.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow,
I. J., Bergeron, A., Bouchard, N., Warde-Farley, D., and Ben-
gio, Y.: Theano: new features and speed improvements, CoRR,
abs/1211.5, available at: http://arxiv.org/abs/1211.5590 (last ac-
cess: 28 October 2019), 2012.

Beckmann, A. and Haidvogel, D. B.: Numerical simu-
lation of flow around a tall isolated seamount, Part
I: problem formulation and model accuracy, J. Phys.
Oceanogr., 23, 1736–1753, https://doi.org/10.1175/1520-
0485(1993)023<1736:NSOFAA>2.0.CO;2, 1993.

Bloss, A., Hudak, P., and Young, J.: Code optimizations
for lazy evaluation, Lisp Symb. Comput., 1, 147–164,
https://doi.org/10.1007/BF01806169, 1988.

Blumberg, A. F. and Mellor, G. L.: A description of a three dimen-
sional coastal ocean circulation model, Coast. Est. Sci., 4, 1–16,
1987.

Bonan, G. B. and Doney, S. C.: Climate, ecosystems, and planetary
futures: The challenge to predict life in Earth system models, Sci-
ence, 80, 6357, https://doi.org/10.1126/science.aam8328, 2018.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S. H.,
and Skadron, K.: Rodinia: A benchmark suite for heterogeneous
computing, in: Proceedings of the 2009 IEEE International Sym-
posium on Workload Characterization, IISWC 2009, 2009.

Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid,
finite-volume, three-dimensional, primitive equations ocean
model: Application to coastal ocean and estuaries, J. At-
mos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-
0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003.

Collins, M., Minobe, S., Barreiro, M., Bordoni, S., Kaspi, Y.,
Kuwano-Yoshida, A., Keenlyside, N., Manzini, E., O’Reilly, C.
H., Sutton, R., Xie, S. P., and Zolina, O.: Challenges and opportu-
nities for improved understanding of regional climate dynamics,
Nat. Clim. Change, 8, 101–108, https://doi.org/10.1038/s41558-
017-0059-8, 2018.

Corliss, G. and Griewank, A.: Operator Overloading as
an Enabling Technology for Automatic Differentiation,
preprint MCS-P358–0493, Argonne National Labora-
tory, available at: https://pdfs.semanticscholar.org/77f8/
2be571558246e564505cc654367bf38977e1.pdf (last access:
28 October 2019), 1993.

Deconinck, W., Bauer, P., Diamantakis, M., Hamrud, M., Kühn-
lein, C., Maciel, P., Mengaldo, G., Quintino, T., Raoult, B., Smo-
larkiewicz, P. K., and Wedi, N. P.: Atlas?: A library for numerical
weather prediction and climate modelling, Comput. Phys. Com-
mun., 220, 188–204, https://doi.org/10.1016/j.cpc.2017.07.006,
2017.

Dennis, J. M.: Inverse space-filling curve partitioning of
a global ocean model, Proc. – 21st Int. Parallel Dis-
trib. Process. Symp. IPDPS 2007, Abstr. CD-ROM, 1–10,
https://doi.org/10.1109/IPDPS.2007.370215, 2007.

Frigo, M. and Strumpen, V.: Cache oblivious stencil computa-
tions, in: Proceeding ICS ’05 Proceedings of the 19th an-

Geosci. Model Dev., 12, 4729–4749, 2019 www.geosci-model-dev.net/12/4729/2019/

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.5194/gmd-8-1221-2015
https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2
http://arxiv.org/abs/1211.5590
https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2
https://doi.org/10.1007/BF01806169
https://doi.org/10.1126/science.aam8328
https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
https://doi.org/10.1038/s41558-017-0059-8
https://doi.org/10.1038/s41558-017-0059-8
https://pdfs.semanticscholar.org/77f8/2be571558246e564505cc654367bf38977e1.pdf
https://pdfs.semanticscholar.org/77f8/2be571558246e564505cc654367bf38977e1.pdf
https://doi.org/10.1016/j.cpc.2017.07.006
https://doi.org/10.1109/IPDPS.2007.370215

X. Huang et al.: OpenArray v1.0 4749

nual international conference on Supercomputing, 361–366,
https://doi.org/10.1145/1088149.1088197, 2005.

Fu, H., He, C., Chen, B., Yin, Z., Zhang, Z., Zhang, W., Zhang,
T., Xue, W., Liu, W., Yin, W., Yang, G., and Chen, X.: 18.9-
Pflops nonlinear earthquake simulation on Sunway TaihuLight:
enabling depiction of 18-Hz and 8-meter scenarios, in: Proceed-
ings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2017.

Griffies, S. M., Böning, C., Bryan, F. O., Chassignet, E. P., Gerdes,
R., Hasumi, H., Hirst, A., Treguier, A.-M., and Webb, D.: Devel-
opments in ocean climate modelling, Ocean Model., 2, 123–192,
https://doi.org/10.1016/S1463-5003(00)00014-7, 2000.

Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., and Schulthess, T. C.:
STELLA: A Domain-specific Tool for Structured Grid Meth-
ods in Weather and Climate Models, Proc. Int. Conf. High
Perform. Comput. Networking, Storage Anal. – SC ’15, 1–12,
https://doi.org/10.1145/2807591.2807627, 2015.

Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan,
K., Skadron, K. and Stan, M. R.: HotSpot: A com-
pact thermal modeling methodology for early-stage
VLSI design, IEEE T. VLSI Syst., 14, 501–513,
https://doi.org/10.1109/TVLSI.2006.876103, 2006.

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang,
B., and Zhang, C.: A fast input/output library for high-
resolution climate models, Geosci. Model Dev., 7, 93–103,
https://doi.org/10.5194/gmd-7-93-2014, 2014.

Huang, X., Wu, Q., Wang, D., Huang, X., and Zhang, S.: OpenAr-
ray, available at: https://github.com/hxmhuang/OpenArray, last
access: 28 October 2019a.

Huang, X., Huang, X., Wang, D., Wu, Q., Zhang, S. and Li,
Y.: A simple user manual for OpenArray version 1.0, avail-
able at: https://github.com/hxmhuang/OpenArray/tree/master/
doc, last access: 28 October 2019b.

Huang, X., Huang, X., Wang, M., Wang, D., Wu, Q., and Zhang, S.:
GOMO, available at: https://github.com/hxmhuang/GOMO, last
access: 28 October 2019c.

Korn, P.: Formulation of an unstructured grid model for
global ocean dynamics, J. Comput. Phys., 339, 525–552,
https://doi.org/10.1016/j.jcp.2017.03.009, 2017.

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J.,
Carter, M., Deconinck, W., Ford, R., Maynard, C., Mullerworth,
S., Osuna, C., Porter, A., Serradell, K., Valcke, S., Wedi, N.,
and Wilson, S.: Crossing the chasm: how to develop weather
and climate models for next generation computers?, Geosci.
Model Dev., 11, 1799–1821, https://doi.org/10.5194/gmd-11-
1799-2018, 2018.

Levin, J. G., Iskandarani, M., and Haidvogel, D. B.: A
nonconforming spectral element ocean model, Int. J. Nu-
mer. Meth. Fl., 34, 495–525, https://doi.org/10.1002/1097-
0363(20001130)34:6<495::AID-FLD68>3.0.CO;2-K, 2000.

Lidman, J., Quinlan, D. J., Liao, C., and McKee, S.
A.: ROSE::FTTransform β-A source-to-source trans-
lation framework for exascale fault-tolerance re-
search, Proc. Int. Conf. Dependable Syst. Networks,
https://doi.org/10.1109/DSNW.2012.6264672, 25–28 June
2012.

Mellor, G. L. and Yamada, T.: Development of a turbulence closure
model for geophysical fluid problems, Rev. Geophys., 20, 851–
875, https://doi.org/10.1029/RG020i004p00851, 1982.

Mellor-Crummey, J., Adhianto, L., Scherer III, W. N., and Jin, G.:
A New Vision for Coarray Fortran, in Proceedings of the Third
Conference on Partitioned Global Address Space Programing
Models, ACM, New York, NY, USA, 5:1–5:9, 2009.

National Research Council: A National Strategy for Advancing Cli-
mate Modeling, National Academies Press, Washington, D.C.,
https://doi.org/10.17226/13430, 2012.

Porkoláb, Z., Mihalicza, J., and Sipos, Á.: Debugging C++
template metaprograms, in: Proceeding GPCE ’06 Pro-
ceedings of the 5th international conference on Gener-
ative programming and component engineering, 255–264,
https://doi.org/10.1145/1173706.1173746, 2007.

Pugh, W.: Uniform Techniques for Loop Optimization, in Proceed-
ings of the 5th International Conference on Supercomputing,
ACM, New York, NY, USA, 341–352, 1991.

Qiao, F., Zhao, W., Yin, X., Huang, X., Liu, X., Shu, Q., Wang, G.,
Song, Z., Li, X., Liu, H., Yang, G., and Yuan, Y.: A Highly Effec-
tive Global Surface Wave Numerical Simulation with Ultra-High
Resolution, in: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC, 2017.

Reynolds, J. C.: Theories of Programming Languages, Cambridge
University Press, New York, NY, USA, 1999.

Shan, A.: Heterogeneous Processing: A Strategy for Augment-
ing Moore’s Law, Linux J., 142, available at: http://dl.acm.
org/citation.cfm?id=1119128.1119135 (last access: 28 Octo-
ber 2019), 2006.

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic
modeling system (ROMS): A split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model.,
9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002,
2005.

Suganuma, T. and Yasue, T.: Design and evaluation of dynamic opti-
mizations for a Java just-in-time compiler, ACM Trans., 27, 732–
785, https://doi.org/10.1145/1075382.1075386, 2005.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of
CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.

Torres, R., Linardakis, L., Kunkel, J., and Ludwig, T.: ICON
DSL: A Domain-Specific Language for climate model-
ing, In: International Conference for High Performance
Computing, Networking, Storage and Analysis, avail-
able at: http://sc13.supercomputing.org/sites/default/files/
WorkshopsArchive/pdfs/wp127s1.pdf (last access: 28 Octo-
ber 2019), 2013.

van Engelen, R. A.: ATMOL: A Domain-Specific Language for
Atmospheric Modeling, J. Comput. Inf. Technol., 9, 289–303,
https://doi.org/10.2498/cit.2001.04.02, 2001.

Walther, A., Griewank, A., and Vogel, O.: ADOL-C: Automatic
Differentiation Using Operator Overloading in C++, PAMM,
https://doi.org/10.1002/pamm.200310011, 2003.

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and
Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model,
Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-
8-2815-2015, 2015.

www.geosci-model-dev.net/12/4729/2019/ Geosci. Model Dev., 12, 4729–4749, 2019

https://doi.org/10.1145/1088149.1088197
https://doi.org/10.1016/S1463-5003(00)00014-7
https://doi.org/10.1145/2807591.2807627
https://doi.org/10.1109/TVLSI.2006.876103
https://doi.org/10.5194/gmd-7-93-2014
https://github.com/hxmhuang/OpenArray
https://github.com/hxmhuang/OpenArray/tree/master/doc
https://github.com/hxmhuang/OpenArray/tree/master/doc
https://github.com/hxmhuang/GOMO
https://doi.org/10.1016/j.jcp.2017.03.009
https://doi.org/10.5194/gmd-11-1799-2018
https://doi.org/10.5194/gmd-11-1799-2018
https://doi.org/10.1002/1097-0363(20001130)34:6<495::AID-FLD68>3.0.CO;2-K
https://doi.org/10.1002/1097-0363(20001130)34:6<495::AID-FLD68>3.0.CO;2-K
https://doi.org/10.1109/DSNW.2012.6264672
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.17226/13430
https://doi.org/10.1145/1173706.1173746
http://dl.acm.org/citation.cfm?id=1119128.1119135
http://dl.acm.org/citation.cfm?id=1119128.1119135
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.1145/1075382.1075386
https://doi.org/10.1175/BAMS-D-11-00094.1
http://sc13.supercomputing.org/sites/default/files/WorkshopsArchive/pdfs/wp127s1.pdf
http://sc13.supercomputing.org/sites/default/files/WorkshopsArchive/pdfs/wp127s1.pdf
https://doi.org/10.2498/cit.2001.04.02
https://doi.org/10.1002/pamm.200310011
https://doi.org/10.5194/gmd-8-2815-2015
https://doi.org/10.5194/gmd-8-2815-2015

	Abstract
	Introduction
	Concepts of the array, operator, and abstract staggered grid
	Array
	Operator
	Abstract staggered grid

	Design of OpenArray
	Operator expression
	Intermediate computation graph
	Code generation
	Portable program for different back-end platforms

	Implementation of GOMO
	Results
	Benchmark testing
	Validation tests of GOMO
	The weak and strong scalability of GOMO
	Testing on the Sunway platform

	Discussion
	Conclusions
	Code availability
	Appendix A: Continuous governing equations
	Appendix B: Discrete governing equations
	Appendix C: Descriptions of symbols
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

