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Abstract. Large-scale fire emission estimates may be in-
fluenced by the spatial resolution of the model and input
datasets used. Especially in areas with relatively heteroge-
neous land cover, a coarse model resolution might lead to
substantial errors in estimates. We developed a model using
MODerate resolution Imaging Spectroradiometer (MODIS)
satellite observations of burned area and vegetation charac-
teristics to study the impact of spatial resolution on modelled
fire emission estimates. We estimated fire emissions for sub-
Saharan Africa at 500 m spatial resolution (native MODIS
burned area) for the 2002–2017 period, using a simplified
version of the Global Fire Emissions Database (GFED) mod-
elling framework, and compared this to model runs at a
range of coarser resolutions (0.050, 0.125, 0.250◦). We es-
timated fire emissions of 0.68 Pg C yr−1 at 500 m resolution
and 0.82 Pg C yr−1 at 0.25◦ resolution; a difference of 24 %.
At 0.25◦ resolution, our model results were relatively simi-
lar to GFED4, which also runs at 0.25◦ resolution, whereas
our 500 m estimates were substantially lower. We found that
lower emissions at finer resolutions are mainly the result of
reduced representation errors when comparing modelled es-
timates of fuel load and consumption to field measurements,
as part of the model calibration. Additional errors stem from
the model simulation at coarse resolution and lead to an ad-
ditional 0.02 Pg C yr−1 difference in estimates. These errors
exist due to the aggregation of quantitative and qualitative
model input data; the average- or majority- aggregated values
are propagated in the coarse-resolution simulation and affect
the model parameterization and the final result. We identi-
fied at least three error mechanisms responsible for the differ-
ences in estimates between 500 m and 0.25◦ resolution sim-
ulations, besides those stemming from representation errors

in the calibration process, namely (1) biome misclassification
leading to errors in parameterization, (2) errors due to the av-
eraging of input data and the associated reduction in variabil-
ity, and (3) a temporal mechanism related to the aggregation
of burned area in particular. Even though these mechanisms
largely neutralized each other and only modestly affect esti-
mates at a continental scale, they lead to substantial error at
regional scales with deviations of up to a factor 4 and may
affect large-scale estimates differently for other continents.
These findings could prove valuable in improving coarse-
resolution models and suggest the need for increased spatial
resolution in global fire emission models.

1 Introduction

Fires exert a key influence on the global climate by the re-
lease of trace gases and aerosols into the atmosphere (An-
dreae and Merlet, 2001; Ciais et al., 2013; Ward et al., 2012).
Furthermore, fires partly shape, and in the long-term some-
times determine, the vegetation state of landscapes, thus af-
fecting the storage capacity of carbon (Rabin et al., 2017).
About 70 % of global burned area occurs in Africa (Giglio
et al., 2018), mostly due to surface fires with relatively low
fuel consumption, leading to roughly half of the global fire
carbon emissions (van der Werf et al., 2010). The majority of
fires in Africa occur in the savannas (Archibald et al., 2009),
an ecosystem that is depending on fires and where trees
have evolved to tolerate fire (Beerling and Osborne, 2006).
African savannas are currently undergoing major shifts in fire
activity due to demographic changes and agricultural expan-
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sion, leading to a decrease in fire occurrence (Andela and van
der Werf, 2014).

Efforts to estimate global fire emissions have been made
since the 1980s (Seiler and Crutzen, 1980). Early estimates
were based on biome-specific parameterizations of fire re-
turn intervals and biomass consumption rates, extrapolated
using vegetation maps. More recently, satellite products have
become an important tool for improved estimates of fire
emissions, mapping fire events globally and giving insight
in fire impacts and dynamics. Two main satellite-based ap-
proaches to model fire emissions exist, based either on ob-
served burned area in combination with a biogeochemical
or fuel load model, or based on fire radiative power (FRP),
which is directly related to fire emissions after integration
over time to obtain fire radiative energy (FRE) (Kaiser et al.,
2012; Roberts et al., 2018; Wooster, 2002). Burned area is
determined after a fire has occurred, signified by a change
in surface reflectance associated with the burn scar (Giglio et
al., 2018), whereas FRP is based on the fire size and intensity,
determined by the detection of the thermal hot spot during a
satellite overpass.

In fire emission models, aboveground biomass and result-
ing fuel load are key variables for estimating emissions. Bio-
geochemical models dynamically simulate biomass build-
up and degradation and come with different levels of pro-
cess complexity (Hély et al., 2003, 2007; Hoelzemann et al.,
2004; Schultz et al., 2008; van der Werf et al., 2017). In re-
gional models, parameterizations derived from field data can
be used to accurately represent local relations between, e.g.,
precipitation and plant productivity and between soil mois-
ture and combustion completeness, and resulting fuel load
can be calibrated at a local scale (Alleaume et al., 2005; Hély
et al., 2007; Korontzi et al., 2004; Russell-Smith et al., 2009).
Some of these models are based on predetermined fuel load
maps (Ito and Penner, 2004). However, in global-scale mod-
els, simple parameterizations are often inaccurate due to the
large variety in, e.g., vegetation dynamics and fire character-
istics across continents and biomes (Lehmann et al., 2014;
Rogers et al., 2015). As a result, these models often depend
heavily on satellite-derived climate and weather data and
land and vegetation characteristics. However, global satel-
lite data on fire-specific processes are scarce (Pettinari and
Chuvieco, 2016). Therefore, field measurements are crucial
in constraining modelled fuel load and consumption (Hély et
al., 2003; van Leeuwen et al., 2014). Modelled fuel load can
be combined with combustion completeness factors to esti-
mate fuel consumption and then with satellite-based burned
area maps to estimate dry matter emissions. Finally, emission
factors are used to convert dry matter or carbon emissions
into emissions of trace gases and aerosols, which are key in-
puts for atmospheric and Earth system models (Akagi et al.,
2011; Meyer et al., 2012; Wooster et al., 2011; Yokelson et
al., 2013).

The detection of burn scars is limited by the spatial res-
olution of the satellite detector, as burned patches smaller

than the satellite footprint are often not detected. When these
relatively small fires are active during the satellite over-
pass, the thermal anomaly and its FRP may be detectable.
Recent burned area products combine both of these detec-
tion methods to complement burned area based on burn scar
detection with relatively small fires from active fire detec-
tion. In a first study looking into this on a global scale,
Randerson et al. (2012) found an increase in global burned
area of approximately 35 % due to the addition of small-
fire burned area. These small fires are often human-induced
(prescribed, agricultural, deforestation) and mainly occur
in croplands, woody savannas and tropical forests. Conse-
quently, by the inclusion of these small fires, global fire emis-
sion estimates based on burned area from the Global Fire
Emissions Database (GFED) increased from 1.5 Pg C yr−1

in GFED4 to 2.2 Pg C yr−1 in GFED4s (“s” for small fires)
on average over 1997–2016 (van der Werf et al., 2017).
For sub-Saharan Africa alone, emissions increased from
0.8 Pg C yr−1 in GFED4 to 1.1 Pg C yr−1 in GFED4s.

Besides the error in burned area due to limitations of
the satellite detector and undetected small fires (amongst
other things), the accuracy of fire emission estimates may
also be affected by the coarse spatial resolution of most fire
emission models. Emission models based on burned area,
such as GFED4, often perform at a spatial resolution signif-
icantly coarser than the native resolution of the burned area
dataset. This is necessary because input data used to calculate
emissions, especially meteorological data, are usually much
coarser than satellite data. Because of this and the neces-
sary trade-off between model complexity and computational
resources, the burned area data are spatially aggregated to
coarser resolution prior to the model simulation (e.g. 0.25◦

spatial resolution used in GFED4). However, there might be
large heterogeneity of fuels and combustion characteristics
within aggregated burned area (Alleaume et al., 2005; Hély
et al., 2003). Whether aggregation, and the associated loss in
heterogeneity, leads to significant errors in large-scale aver-
aged model estimates such as GFED is not known. There-
fore, it is necessary to understand the implications of spatial
aggregation for the accuracy of modelled fire emissions.

Previous studies have examined how relatively coarse spa-
tial resolution could lead to biases in the results of remote
sensing studies. For example, Eva and Lambin (1998) anal-
ysed biases in 30 m Landsat TM burned area for Central
Africa after spatial aggregation to a resolution of 1 km. Sim-
ilarly, García Lázaro et al. (2013) studied the burned area
classification error in Iberia for several satellite products that
span a range of resolutions (250 m, 1100 m, 0.05◦) as com-
pared to the 30 m Landsat product. Comparable studies were
done at a continental scale by Silva et al. (2005) for Africa
and Miettinen and Liew (2009) for southeast Asia. All of the
previously mentioned studies found that at coarser resolu-
tion, small and fragmented burned area tends to be under-
estimated compared to the finest-resolution data available,
whereas large fires and spatial homogeneity leads to bet-
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ter estimates (with a tendency to overestimate). Nelson et
al. (2009) specifically studied the impact of spatial aggre-
gation by comparing majority- and average-based aggrega-
tion of an inventory-based forest classification (forest or non-
forest). For majority-based aggregation, they reached con-
clusions analogous to the previously mentioned burned area
studies, namely that at coarser resolution the forest propor-
tion is underestimated for sparsely forested area, whereas it
is overestimated for heavily forested area. For average-based
aggregation however, the mean forest proportion remained
constant, as a binary area is averaged to fractional area in the
aggregate pixels. Furthermore, image variability decreased
for coarser resolutions because the average-aggregated pixel
values converge towards the mean value of the entire image
(Bian, 1997).

Errors introduced by spatially aggregating fine-resolution
input datasets to coarser resolution are propagated in the
models driven by these datasets (Crosetto et al., 2001). When
aggregated datasets are used in a non-linear model, an addi-
tional error arises due to the non-linear propagation of aver-
aged values, known as Jensen’s inequality (Jensen, 1906). In
general, for every non-linear function there exists an inequal-
ity between taking the average of the function result after-
wards versus averaging the function input variables before-
hand. We could, for example, consider a fire emission model
as a single non-linear function. When running this model at
aggregated resolution, an inequality (i.e. error) exists com-
pared to the native-resolution model. The magnitude of the
inequality is dependent on the variance of, and covariance
between, the input variables and the amount of local cur-
vature (second derivative) of the function, which is a mea-
sure of its non-linearity (Denny, 2017). Jensen’s inequality is
mostly discussed in literature in relation to ecology (Cale et
al., 1983; Duursma and Robinson, 2003; Pierce and Running,
1995; Ruel and Ayres, 1999), but also in relation to biology
(Denny, 2017) and geology (Heuvelink and Pebesma, 1999),
in the context of spatial, temporal and class averaging (e.g.
plant functional types, PFTs). However, the implications of
this inequality for fire emission estimates is not known. The
resulting error in emission estimates could be of particular
importance, since fire processes are generally highly hetero-
geneous (Randerson et al., 2012; Roy and Landmann, 2005).

In this context, the aim of this study is to better understand
the impact of spatial resolution on the resulting biomass and
fire emission estimates. Whether the aforementioned errors
from modelling at aggregated resolutions result in signifi-
cant errors in large-scale averaged fire emission estimates
such as GFED and fire-adapted dynamic global vegetation
models (DGVMs; e.g. those used in FireMIP, Fire Modeling
Intercomparison Project, Rabin et al., 2017) has until now
not been investigated (van der Werf et al., 2017). To this
end, we developed a fire emission model driven by burned
area and capable of running at 500 m spatial resolution to
produce a first emission estimate at this resolution for sub-
Saharan Africa. We then compared these emission estimates

to three additional simulations using the same model for a
range of aggregated resolutions (0.25, 0.125, 0.05◦) in order
to study the impact of spatial resolution on model results.
Besides a comparison of large-scale emission estimates, a
substantial part of our work was to understand local-scale
biases due to aggregation and to identify the underlying error
mechanisms. As part of this analysis, we also considered the
role of modelled biomass, a key precursor for resulting emis-
sions. Finally, we compared our 500 m and 0.25◦ resolution
model results to the emission estimates from GFED4(s) and
tried to contextualize the changes in emission estimates due
to modelling at aggregated resolutions in respect to changes
due to model validation improvements and the incorporation
of small fires. The insights gained in this study could possi-
bly form an important step forward in the direction of global
fire emission modelling at native satellite resolution and/or
in implementing countermeasures for reducing errors when
modelling at aggregated resolutions.

2 Methods

We developed a model to estimate fire emissions for sub-
Saharan Africa for the 2002–2017 period with a monthly
time step. We start with describing the model, which was
derived from the GFED modelling framework and adapted
to run at a range of spatial resolutions (Sect. 2.1). This
is followed by a description of the various input datasets
(Sect. 2.2). We then describe the model optimization using
satellite-based reference data and field measurements of fuel
load (FL) and fuel consumption (FC) (Sect. 2.3). Finally, we
describe the simulations performed (Sect. 2.4) and the meth-
ods used to compare different model resolutions (Sect. 2.5).

2.1 Model description

For this study a simplified version of the GFED model was
used. GFED is rooted in the Carnegie–Ames–Stanford ap-
proach (CASA) biosphere model, which was developed to
simulate the terrestrial carbon cycle, using satellite data to
constrain carbon uptake and other fluxes (Field et al., 1995;
Potter et al., 1993). Van der Werf et al. (2003) extended this
model to include fire processes and provided spatially re-
solved estimates of fire emissions for the (sub)tropics. Over
time, further modifications were made to GFED, includ-
ing improved burned area identification (Giglio et al., 2006,
2013) and a distinction between different sources of fire
emissions on a global scale (van der Werf et al., 2006, 2010).
The most recent version, GFED4s, also aims to account for
relatively small fires that remain undetected by most burned
area algorithms (Randerson et al., 2012; van der Werf et al.,
2017). These small fires add about 15 % burned area to our
study area in Africa. Recent research suggests this increase
in burned area may be conservative (Roteta et al., 2019). For
this study we have simplified the GFED model so it can be
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run at 500 m resolution on a continental scale; as compared
to the 0.25◦ resolution of GFED4s running on a global scale.
Only the main GFED functionality relevant for aboveground
dynamics in biomass, litter, and fire emissions was main-
tained. More refined mechanisms represented in GFED, such
as belowground dynamics, herbivory, grazing, and fuelwood
collection, were not implemented. Furthermore, no specific
deforestation mechanisms were modelled. These simplifica-
tions not only made required computational resources man-
ageable, but also made it easier to disentangle mechanisms
that cause differences between the model runs at different
resolutions, which was our key objective.

The model has a pool-based structure wherein net pri-
mary productivity (NPP) is partitioned over various biomass
pools that are affected by losses due to turnover and fire
processes. Aboveground biomass (AGB) and belowground
biomass (BGB) are considered as the live part of the total
available carbon above and below the ground, and the total
aboveground live and dead carbon is referred to as above-
ground biomass and litter (AGBL), all expressed in mass
of carbon per unit area (g C m−2). NPP was calculated as
the product of incoming solar radiation (SSR), the fraction
of photosynthetically active radiation (fPAR) and a biome-
specific light-use efficiency (LUE; εbiome):

NPP(x, t)= SSR(x, t) · fPAR(x, t) · εbiome, (1)

where x is the grid location coordinate and t is the time in
months. NPP was distributed over tree and non-tree vegeta-
tion classes by multiplication with fractions of tree and non-
tree vegetation cover and further distributed in equal parts
over the corresponding biomass pools. Trees were repre-
sented as leaf, stem, and root pools, all receiving one-third of
tree-allocated NPP. Non-tree vegetation was represented as
grass and root pools, both receiving half of non-tree-allocated
NPP. In this simplified categorization other non-tree vege-
tation types, such as shrubs, are part of the grass pool. For
trees the root pool was subdivided into separate fine- and
coarse-root pools, with 20 % of the stem NPP allocated to the
coarse roots, whereas for non-tree vegetation all root biomass
consisted of fine roots. We used biome-specific LUE values
based on those reported by Field et al. (1995). Since LUE
was not reported for the savanna biome, we used the open-
shrubland value of 0.208 g C MJ−1 for open savannas and an
empirically determined value of 0.280 g C MJ−1 for woody
savannas (see also Table 1). The LUE value for woody sa-
vannas was chosen to be between values reported for forest
and grassland biomes.

When the model reaches its equilibrium state after the
spin-up phase, the carbon input from NPP is balanced by
the carbon output via fires and respiration because of de-
composition. Depending on pool-specific turnover rates and
fire processes, biomass decays into three litter pools: fine
litter, coarse woody debris (cwd), and soil organic matter.
The pool-specific turnover rates, loosely based on those used
in GFED4 (van der Werf et al., 2017), were optimized to

biome-specific values in a series of model validation steps
(see Sect. 2.3, Model optimization). The vegetation exposed
to fire is either combusted and emitted as carbon directly,
killed and converted to litter, or unaffected by the fire. The
amount of biomass and litter exposed to fire was calculated
by multiplication of the available flammable carbon and the
burned fraction for each pixel:

C(x, t)=
∑

No. of pools

[
AGBLpool (x, t)

·Mtree(FTC) ·CCpool (εSM(x, t))
]
·BA(x, t) · fc,

(2)

where C is the amount of carbon combusted and released to
the atmosphere, Mtree is a fire-induced tree mortality scalar,
CC is the combustion completeness, BA is the burned area,
i.e. the fraction of pixel burned, and fc is the fraction of car-
bon in fuel, for which we used 50 %. The part of fire-exposed
carbon that is combusted was determined by pool-specific
combustion completeness values that were scaled linearly be-
tween a predefined minimum and maximum value (see Ta-
ble 1 in van der Werf et al., 2010) dependent on an empir-
ically defined soil moisture scalar. This scalar was defined
as

εSM(x, t)=

SM(x,t)
0.37 − 0.4

0.6
with 0.1 < εSM < 1.0, (3)

where SM is the volumetric soil water content in units of vol-
ume fraction. The scalar was obtained by first standardizing
the SM values to a range between 0 and 1 and then dividing
by 0.6 and capping at 1 to remove anomalously high val-
ues related to wetlands. Additionally, the scalar values were
capped to not be lower than 0.1, simulating a minimum soil
moisture level below which moisture-dependent processes
are not further affected. Dry conditions result in CC values
closer to the maximum and vice versa for wet conditions.
A mortality scalar for woody vegetation simulated whether
trees exposed to fire are killed, and consequently directly
combusted, or left as litter (van der Werf et al., 2003). This
scalar was expressed as the squared fraction of tree cover to
total vegetation to resemble the range from low fire-induced
mortality in open landscapes (where trees are adapted to fire)
to high mortality in dense tropical forests where trees are not
adapted. When a tree is killed, all of the unburned above-
ground and belowground biomass is transferred to the litter
pools. More specifically, leaves and grass become fine litter,
dead stems are added to the cwd pool, and dead roots are
added to the soil pool.

The decomposition of litter is dependent on temperature
and moisture conditions. The rate of decomposition was
based on pool-specific turnover rates (Table 1) and scaled by
an abiotic scalar. The abiotic scalar (εA) was defined as

εA =
εT · εSM

0.9
with 0.1 < εA < 1.0, (4)
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Table 1. Biome-level model parameter values for light-use efficiency (LUE; ε, unitless) and turnover rates (t , years) for the stem, leaf, grass,
litter, and coarse woody debris (cwd) pools. Two additional columns give the average effective turnover rates (t eff., years) for the litter
and cwd pools after scaling by the abiotic scalar. Turnover rates that were different for the 0.25◦ resolution model calibration are given in
parentheses.

Biome ε tstem tleaf tgrass tlitt tlitt eff. tcwd tcwd eff.

Evergreen needleleaf 0.284 60 2 0.5 0.5 – 4 –
Evergreen broadleaf 0.354 60 1 0.5 0.5 0.8 4 6.1
Deciduous needleleaf 0.280 60 2 0.5 0.5 – 4 –
Deciduous broadleaf 0.255 35 (60) 0.5 0.5 0.5 1.7 4 –
Mixed forest 0.283 35 1 0.5 0.5 0.8 4 6.3
Closed shrubland 0.299 30 0.5 0.3 0.2 1.2 4 –
Open shrubland 0.208 30 0.5 0.3 0.1 0.3 1 2.6
Woody savanna 0.280 35 (40) 0.5 0.3 (0.5) 0.15 (0.2) 0.5 1 (2) 3.5
Open savanna 0.208 5 (10) 0.5 0.3 (0.5) 0.2 0.4 1 2.0
Grassland 0.229 18 0.5 0.2 0.1 0.2 1 2.4
Cropland 0.242 15 0.5 0.2 0.1 0.2 1 2.1

where εT is the temperature scalar:

εT =Q
T−30

10
10 with εT > 1.0= 1.0, (5)

where T is the temperature in ◦C and Q10 is the temper-
ature coefficient, for which we used a value of 1.5 and a
capped maximum of 1.0 at 30 ◦C, similar to van der Werf
et al. (2013). A Q10 value of 1.5 implies a 50 % increase for
every 10 ◦C rise in temperature. Just like the moisture scalar,
the abiotic scalar was standardized to a range from 0 to 1 and
capped at a minimum of 0.1. Part of the turnover-exposed
carbon is respired directly, based on a respiration fraction of
0.5. The remaining part degrades consecutively through the
cwd (only originating from trees), fine litter, and soil pools
and finally enters the slow decomposition stage. Every degra-
dation step is again subject to direct respiration. The below-
ground organic matter algorithm was simplified compared to
GFED because the belowground dynamics are not relevant
for fire dynamics in our study area; fires generally do not oc-
cur in wetlands and peatlands in Africa. The LUE values and
turnover rates used for the biomass and litter pools for each
biome are summarized in Table 1. This table also gives the
average effective turnover rates for the litter and cwd pools
after application of the abiotic scalar.

2.2 Input datasets

The model used MODIS (MODerate resolution Imaging
Spectroradiometer) Collection 6 satellite observation prod-
ucts with a 500 m spatial resolution as input where available
and previous MODIS collections or coarser non-MODIS
datasets otherwise (see Table 2). The meteorological input
parameters were based on 0.25◦ resolution ERA-Interim re-
analysis data (Dee et al., 2011) from the European Cen-
tre for Medium Range Weather Forecasts (ECMWF). The
datasets used cover the time period from 2002 to 2017, un-
less noted otherwise. The MODIS MCD15A2H product of

fraction photosynthetically active radiation (fPAR; Myneni
et al., 2015) was used in combination with reanalysis SSR
(Dee et al., 2011) to calculate NPP (see Eq. 1). The distribu-
tion of biomass over tree and non-tree vegetation classes was
based on the MODIS MOD44B vegetation continuous fields
(VCF; Dimiceli et al., 2015) product for the fractions of tree
cover (FTC) and non-tree vegetation cover (NTV). Fire ex-
tent was based on BA from the MODIS MCD64A1 dataset
(Giglio et al., 2018). The decomposition of litter was based
on temperature and soil moisture scalars derived from ERA-
Interim reanalysis air temperature (2 m temperature) and soil
moisture (volumetric soil water layer 1) data. We delineated
biomes in terms of land cover types based on the MODIS
MCD12Q1 land cover type product, collection 5.1 (Friedl et
al., 2010). The last available year of data for this product,
2013, was also used for subsequent years. For this study, the
Land Cover Type 2 classification scheme produced by the
University of Maryland (UMD) was used.

The 500 m resolution MODIS input datasets were spatially
aggregated to 0.050◦, 0.125◦, and 0.250◦ resolution using
average-based aggregation. As an exception, the qualitative
land cover type data were aggregated using majority-based
aggregation by assigning the most frequently occurring land
cover class to the aggregate grid cell. The 0.25◦ resolution re-
analysis data were resampled to 500 m resolution by nearest-
neighbour interpolation, i.e. by using the reanalysis 0.25◦

grid cell value nearest to each MODIS pixel. All MODIS
data with sub-monthly temporal resolution were averaged to
monthly resolution, using the number of days in the month
as weights.

2.3 Model optimization

We tuned our model to match satellite-based data on above-
ground woody biomass (AGBw) (Avitabile et al., 2016)
and field measurements of fuel load and consumption (van
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Table 2. Overview of model input datasets.

Variable Product Spatial res. Temporal res. Reference

fPAR MCD15A2H 500 m 8-daily Myneni et al. (2015)
FTC, NTV MOD44B 250 m Annual Dimiceli et al. (2015)
BA MCD64A1 500 m Monthly Giglio et al. (2018)
Land cover MCD12Q1 500 m Annual Friedl et al. (2010)
Shortwave radiation ERA-Interim 0.25◦ Monthly Dee et al. (2011)
Air temperature ERA-Interim 0.25◦ Monthly Dee et al. (2011)
Soil moisture ERA-Interim 0.25◦ Monthly Dee et al. (2011)

Leeuwen et al., 2014). Since NPP is the driver for biomass
growth, we first ensured that biome-level NPP corresponded
to GFED4 (van der Werf et al., 2017). Then, the AGBw was
optimized to agree with observation-based gridded estimates
by Avitabile et al. (2016) by tuning the turnover rates per
biome. As a first-order approximation we tuned AGBw with
the stem turnover rate, since the stems of trees hold at least
95 % of the total AGB for all forest biomes (Poorter et al.,
2012). Herbaceous (i.e. non-tree) biomass is typically below
250 g C m−2 and therefore within the uncertainty range of
the dataset by Avitabile et al. (2016). After optimization of
the stem biomass, the turnover rates of the leaf, grass, and
root pools were adjusted to attain root : stem : leaf biomass
ratios (i.e. root : shoot ratios) in line with the biome-specific
ratios as reported by Poorter et al. (2012). The previously
described subdivision of root biomass into separate coarse-
and fine-root pools was used to improve root : shoot ratios.
The chosen turnover rates also influence the amount of litter
produced. Even though the amount of tree biomass is not al-
ways relevant for fires, since most African fires are ground
fires and deforestation mechanisms are not specifically part
of the model, it does determine the amount of cwd and part
of the fine litter produced.

In the final validation step, modelled FL and FC were com-
pared to the compilation of field measured values by van
Leeuwen et al. (2014). For the African continent the database
contained 16 measurement records that reported FL and FC,
of which 9 are grouped into different fuel classes (e.g. grass,
leaves, litter, cwd). Additional field studies compiled by Sc-
holes et al. (2011) on FL in African savannas were included
in the comparison, giving 73 measurements on total FL. For
all field records used, measured FL consists of grass, litter,
cwd, and occasionally leaves. As a consequence, the total FL
estimates reported in our comparison to the measurements
involved a variable number of model pools, dependent on
what fuel classes were measured in the corresponding field
study. Our definition of FL does not include the stem fuel
class (and thus is not the same as AGBL) as this class was not
reported in any field record used, which all consider ground
fires in grass-dominated biomes where trees are generally not
affected. The field measurements were collocated with model
results based on the field plot coordinates. The modelled FL

was optimized for each biome separately by tuning turnover
rates of the grass and litter pools to match measured aver-
age FL and spread in measurements. The root : shoot ratios
were not significantly affected by this parameter tuning. Due
to the lack of sufficient field data on FC (16 records, at only
6 unique locations), we validated FC only using the average
of all records over all biomes.

All field measurements in the database were taken in
savanna-type biomes, and all except one (in Burkina Faso)
were taken in southeast Africa (south of 12◦ S and east of
23◦ E), resulting in the sample set being less representative
of other biomes and regions in Africa. Furthermore, the ma-
jority of records did not report separate measurements of spe-
cific fuel classes and thus only provided an overall fuel load
value for the combined fuel classes. As a result, the model
validation was restricted to a comparison of total reported
FL and FC. The validation of individual fuel classes was also
complicated by the large spatial variability in biomass alloca-
tion to fuel classes for field plots with similar properties and
because field conditions that determine the allocation ratios
were unknown for most records (such as last fire occurrence,
slash-and-burn or not, early or late season fires).

For most field records, the field plot coordinates were
given with a precision of 2 decimal degrees. This yields an
uncertainty of about 1 km, which is larger than the model
pixel size of 500 m. Therefore, more accurate coordinates
with 4 decimal degrees precision were hand-picked based on
the field site descriptions using Google Earth. Where possi-
ble, homogeneously vegetated areas were picked to remove
the influence of other land cover types at a sub-500 m scale.
For some field records the coordinates of a settlement or city
nearby the field plot were reported instead of the actual plot,
in which case again a neighbouring pixel was chosen or the
actual field plot was retraced in the vicinity of the reported
coordinates. Many of the reported measurements were con-
ducted before our study period, in which case the first model
year, 2002, was used. For studies where only the year of mea-
surement was known, the month in the middle of the regional
fire season of the pixel was used. Finally, if there were recent
burned area and related drops in biomass in a pixel, indica-
tive of the influence of recent fires, a neighbouring unburned
pixel was chosen.
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2.4 Simulations

We ran our model at 500 m native MCD64A1 resolution for
the 2002–2017 period, with a monthly temporal resolution.

A 200-year spin-up was done based on the 2002–2006 cli-
matology in order to stabilize the model pools and match to-
tal carbon in- and outflow. Additional simulations were per-
formed for the three aggregated resolutions (0.050, 0.125,
0.250◦) to study the effect of spatial resolution on mod-
elled biomass, litter, and emissions. We restricted our anal-
ysis to the African continent, in particular to the North-
ern Hemisphere Africa (NHAF) and Southern Hemisphere
Africa (SHAF) regions as defined in GFED (van der Werf et
al., 2006). These two regions contain the African continent
south of 23◦ N latitude and will be referred to as sub-Saharan
Africa.

2.5 Resolution comparison

We calculated the differences that occur in modelled AGBL
and fire emissions due to running the model at different spa-
tial resolutions. We considered two categories of differences:
those that occur as part of the model calibration and those
that occur as part of the model simulation. The model calibra-
tion is dependent on resolution because it includes parameter
tuning to match model pixels with field measurements, which
is subject to a representation error. This error exists due to the
scale mismatch in comparing field measurements to model
grid cell averages (Janjić et al., 2018). At coarser resolution,
the error is larger and as a consequence the model calibra-
tion is more biased. This leads to different model results at
different resolutions, due to resolution-dependent model set-
tings. We will refer to the differences between aggregated
and 500 m resolution model results due to different model
calibration as calibration differences. Besides calibration-
related differences, differences in the model simulation re-
sult from the spatial aggregation of input datasets and the
subsequent coarse computation of the model algorithm. We
will refer to the related differences in model results between
aggregated and 500 m resolution as simulation differences.
We define simulation difference as the difference that occurs
when running identical models with the exact same calibra-
tion but at different spatial resolutions.

2.5.1 Calibration differences

We studied calibration differences by comparing the model
calibrated at 500 m resolution to an additional calibration at
0.25◦ resolution (Table 1, in parentheses). The 0.25◦ reso-
lution calibrated model was compared directly to GFED4,
as it is based on a similar coarse-resolution calibration, to
determine whether our model simplifications were justified.
This also allowed GFED4 to serve as an indirect reference to
validate modelled emissions where FC field measurements
were lacking. For the comparison to GFED4, the database

without small fires was used (GFED4 instead of GFED4s)
in order to compare the models using the same amount of
burned area. The discrepancy between the burned area from
GFED4 (without small fires but based on MCD64A1 Collec-
tion 5.1) and MCD64A1 Collection 6 was accounted for by
raising GFED4 emissions according to the fraction of addi-
tional burned area in MCD64A1 Collection 6 compared to
Collection 5.1.

2.5.2 Simulation differences

Besides studying calibration differences, we additionally
quantified simulation differences as a result of running the
model at different spatial resolutions. For this analysis we
used the parameters based on the calibration at 500 m res-
olution to have the best model–data comparison. Using the
same calibration, absolute and relative differences in sim-
ulation were calculated as the coarse-resolution results mi-
nus those of the 500 m native-resolution results. Beforehand,
the 500 m results were aggregated to the coarse resolution
to be compared with, using average-based aggregation. A
positive simulation difference indicates higher estimates at
coarser resolution, and a negative difference indicates lower
estimates at coarser resolution. The analyses were limited to
the 2002–2017 annual average spatial fields to focus on spa-
tial resolution effects.

In order to understand the error mechanisms that lead to
simulation differences and to quantify their contributions,
we performed additional simulations with altered model al-
gorithms and compared these to the base model simulation.
For example, the contribution of fire in the overall simula-
tion difference, and its contribution to error at coarser resolu-
tion, could be quantified by comparing an altered simulation
without fire processes (i.e. BA= 0) to the base simulation
with fires. This contribution was calculated as the relative
simulation difference with fires minus the difference without
fires. Similarly, we compared simulations with and without
fire-induced tree mortality to study the contribution of that
process in the overall simulation difference.

Notably, this method could only be used to quantify rela-
tive differences and not absolute differences because the al-
tered simulations resulted in different model results, making
absolute differences incomparable. In order to enable unbi-
ased subtraction of relative differences, we calculated the log
relative difference as

log relative difference= ln(X/Xref), (6)

where, in our case, X is the coarse simulation result and Xref
is the 500 m simulation result. Törnqvist et al. (1985) pro-
posed this method as a replacement for the ordinary relative
difference calculated as (X−Xref)/Xref because of its ad-
ditive, symmetric, and normed properties. For positive val-
ues, the ordinary relative difference ranges from −1 to infin-
ity, which is asymmetric and results in a positive bias when
performing addition or subtraction. Using the log difference,
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we could quantify the isolated contribution of a process, by
subtracting the log relative simulation difference of the al-
tered simulation from that of the base simulation, without
introducing bias. The log relative difference (i.e. logx) ap-
proximates the ordinary relative difference (i.e. y = x−1) for
small values but deviates strongly for large values due to the
non-linear scale, which has to be considered when interpret-
ing the results. For example, an ordinary relative difference
of 0.5 is equivalent to a log relative difference of 0.41, and
analogously 1.0 translates to a 0.69 log relative difference.

Using the same method, we also isolated the error that
originates from the use of biome-specific LUEs and turnover
rates. In the base model simulation, the most commonly oc-
curring land cover class was used for the entire aggregate grid
cell, and the turnover rates and LUE of the majority biome
were then applied to that grid cell. This leads to misclassi-
fication of the minority land cover classes (Foody, 2002),
which we will refer to as biome misclassification. Further-
more, the biome-specific parameters of the majority biome
were used without considering the minority biomes in the
grid cell, leading to what we refer to as the biome-specific pa-
rameter error. We could account for this error by running the
model for each biome separately so that the biome-specific
parameters were correctly used for each individual biome.
Then, the overall result was computed by summing the indi-
vidual biome results, weighted by their respective fractional
cover in the grid cell. Again, the altered run was compared to
the base model simulation in order to quantify the contribu-
tion of the error mechanism.

In a second “per-biome” approach, we additionally treated
all average-based aggregated input data on a per-biome basis.
Because our model algorithm is non-linear, Jensen’s inequal-
ity exists between averaging the model result afterwards, as
for the 500 m model resolution, and averaging the input data
(i.e. FTC, NTV, fPAR, and BA) beforehand, as for the aggre-
gated resolution simulations. We will refer to the error due to
average-based aggregation of input datasets as the input ag-
gregation error. In order to account for this error, we aggre-
gated all MODIS 500 m resolution input datasets to coarser
resolution according to the individual biome fractions in each
grid cell. In other words, we created average-based aggre-
gated input datasets for each biome area separately, instead
of one aggregate for the entire grid cell area. These aggrega-
tion products were then used in the corresponding simulation
of the individual biome, and the individual results were again
summed afterwards. This altered simulation is only mean-
ingful when the LUE and turnover rates are biome-specific
as well and should thus be seen as an addition to the altered
simulation that accounts for the biome-specific parameter er-
ror, as described in the previous paragraph.

Finally, a simulation was performed with the incorpora-
tion of a modified burned fraction (MBF), as described by
van der Werf et al. (2017) and used in GFED4. They intro-
duced the MBF to account for the underestimation of emis-
sions in frequently burning areas at 0.25◦ model resolutions.

Figure 1. Area-averaged woody aboveground biomass (AGBw) for
sub-Saharan Africa as a whole and for individual biomes with sig-
nificant tree cover area. Both modelled values (500 m) and those
derived from the reference AGBw dataset by Avitabile et al. (2016)
are shown. Boxplots show the mean (dots), median (horizontal line),
25th and 75th percentiles (boxes), and the 5th and 95th percentiles
(whiskers). The 5th and 25th percentiles for Africa and the open-
savanna biome approach zero due to an abundance of pixels where
AGBw is zero.

The uniform burning of a fraction of an aggregated grid cell
leads to the underestimation of emissions when fires occur in
the subsequent months because in this case fuel in the whole
grid cell is lowered by the fires burning in previous months,
also in areas that did not burn. In reality, the fuel is only low-
ered in the fraction of the grid cell that actually burned, and
subsequent fires burn the sub-grid-cell area that did not burn
yet. The extent of underestimation is mainly dependent on
the fire return interval. Our 500 m resolution model allowed
us to directly test the effectiveness of implementing an MBF
at coarser resolutions. We used a 4-month time period per
burning season, analogous to van der Werf et al. (2017).

3 Results

We ran our model for a range of spatial resolutions, based
on model calibrations for either 500 m or 0.25◦ resolution to
better understand the calibration and simulation differences.
First, we discuss the results of the model calibration and val-
idation for AGBw, FL, and FC at 500 m resolution. Next, we
discuss the resulting AGBL and emission estimates based
on this model. Then we compare this to the results for the
0.25◦ resolution model calibration and relate this to GFED4.
The remainder of this chapter is dedicated to simulation dif-
ferences, i.e. the differences that occur between simulations
with different spatial resolutions. For the study of simulation
differences, we used the model with parameters based on the
500 m resolution calibration. In this section we mainly focus
on the differences between the 0.25◦ and 500 m resolutions
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Figure 2. Comparison of modelled FL and field measurements based on calibration for 500 m resolution, shown as scatter plot and boxplots
per biome for (a, b) 500 m resolution and (c, d) 0.25◦ resolution simulations. Boxplots show the mean (coloured dots), median (horizontal
line), 25th and 75th percentiles (boxes), and the range of values (whiskers). The number of measurements involved is given below each
boxplot.

and finish with the results for the intermediate resolutions of
0.125 and 0.050◦.

3.1 Woody biomass and fuel load

The modelled total AGBw for Africa was 40.2 Pg C, com-
pared to 40.6 Pg C for the Avitabile et al. (2016) reference
dataset. Area-averaged values corresponded well, and the
model was able to capture most of the spread in values
(Fig. 1). This was as expected, since the model was cal-
ibrated to match the reference dataset. On a biome level,
AGBw for tropical forest was 31.2 Pg C, which was 1.4 Pg C
lower than the reference dataset. For woody and open savan-
nas AGBw was 6.9 and 1.1 Pg C, respectively. Open savan-
nas were slightly overestimated by 0.1 Pg C. The tropical for-
est, woody savanna, and open-savanna biomes contained the
vast majority of tree biomass in Africa. Even though area-
averaged AGBw for other forest types was significant, these

biomes together constituted only 0.6 % of African land sur-
face and did not contribute significantly to total AGBw.

The comparison between modelled FL and field measure-
ments based on the 500 m model calibration is shown in
Fig. 2a. A robust agreement was found, with an r value of
0.78 (r2

= 0.60). The model tended to overestimate low FL
and underestimate high FL. Overall, the average, median,
and spread over all field sites agreed well between mod-
elled and measured values (Fig. 2b). On average, FL for
woody savanna and grassland was overestimated by approx-
imately 15 % (46 and 28 g C m−2, respectively), whereas for
shrubland values were underestimated by 11 % (20 g C m−2).
Model estimates for open savannas agreed well with mea-
surements, even though the range of values was underesti-
mated for this biome. The shrubland and grassland statistics
were both based on only four or five field measurements,
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Figure 3. Total fire emissions for sub-Saharan Africa and individual
biomes, as compared to GFED4 (without small fires) and GFED4s
(with small fires). Solid orange and blue bars show the estimates
based on the 500 m resolution model calibration. Transparent bars
show the estimates based on the 0.25◦ resolution model calibration,
highlighting that the calibration difference is larger than the simu-
lation difference.

which explains the large differences in quantiles and re-
stricted the analysis to a comparison of averages and ranges.

Figure 2c and d shows the same comparison to field mea-
surements, but simulated at 0.25◦ resolution. As in Fig. 2a
and b, this comparison was based on the 500 m resolution
calibration and thus only differed in simulation resolution.
Compared to the 500 m resolution simulation, FL modelled
at 0.25◦ resolution had a much lower range and was substan-
tially underestimated in most biomes except grasslands. The
flat regression slope indicates that the spread in measured FL
was not captured at coarse resolution. This was partly be-
cause several FL measurements were within one 0.25◦ grid
cell and thus yielded the same model value. The 0.25◦ simu-
lation showed large estimation errors, especially for high FL
measurements. One woody savanna measurement was incor-
rectly classified as tropical forest, leading to a large overesti-
mation of FL (Fig. 2d, black arrows).

3.2 Fire emissions

The 2002–2017 annually averaged total fire emissions for
sub-Saharan Africa were 0.68 Pg C yr−1 based on the 500 m
model, with an average FC of 249 g C m−2 burned (Fig. 3,
solid blue). The spatial distribution of emissions was dic-
tated by burned area (Fig. 4). The majority of emissions oc-
curred in the subtropical savanna regions. About 90 % of the
fire emissions (0.61 Pg C yr−1) originated from the woody
and open-savanna regions, where the majority (87 %) of the
annually averaged burned area was found. The highest FC
was found in the tropical forest, where the average was
998 g C m−2 burned. However, the burned area was relatively
low in this biome, resulting in low emissions.

These 500 m emission estimates for sub-Saharan Africa
were 24 % lower than GFED4 (without small fires), which

estimated 0.90 Pg C yr−1 and an average FC of 331 g C m−2

burned (Fig. 3). All biomes with substantial emissions con-
tributed to this difference, but woody savannas were the
biggest contributor. The lower emissions in our model were
the direct result of differences in FC compared to GFED4
because the amount of BA of the two estimates was iden-
tical. The spatial distribution of FC was less variable for
most biomes in our model, except for the forest-dominated
biomes. The variability of FC across biomes in the model
was represented in a similar way as GFED4.

3.3 Calibration differences due to spatial resolution

The parameters used for the 0.25◦ resolution model calibra-
tion differed from the 500 m calibration in terms of slower
turnover rates for the stem, grass, and litter pools for some
biomes (Table 1). This resulted in roughly a 2.5 Pg C increase
in AGBw and a 3.0 Pg C increase in AGBL. The majority of
this increase was accounted for by the savanna biomes (both
open and woody). Comparatively, non-woody AGB and litter
increased more than woody AGB. Figure 5 shows the result-
ing modelled FL compared to field measurements – equiva-
lent to Fig. 2, but for the 0.25◦ instead of the 500 m resolu-
tion model calibration. For this coarse calibration, again sim-
ulations for both 500 m (panel a and b) and 0.25◦ resolution
(panel c and d) are shown.

By calibrating the model at 0.25◦ resolution, the FL simu-
lated at 0.25◦ resolution agreed better with measurements for
all biomes (compare Figs. 2c, d and 5c, d). On the other hand,
with this coarse calibration, the 500 m resolution simulation
significantly overestimated FL and performed more poorly
than the 0.25◦ resolution simulation in terms of biome aver-
age and distribution (Fig. 5a and b). An exception was the
shrubland biome, for which all 0.25◦ model pixels respective
to the field sites were strongly influenced by low-biomass ar-
eas in that pixel. This resulted in a consistent underestimation
of FL for both calibration resolutions. For the 0.25◦ calibra-
tion, the 500 m resolution simulation still showed much bet-
ter correlation with measurements (r2

= 0.57), compared to
the coarser simulation (r2

= 0.07). The 0.25◦ calibration led
to a regression slope that was steeper and closer to 1 for both
resolutions, as high FL was amplified relative to low FL.

The increase in biomass and litter when using the 0.25◦

calibration led to higher emissions; 0.82 Pg C for both reso-
lutions (Fig. 3, transparent bars). As expected, this was much
closer to the estimate of 0.90 Pg C from GFED4 (without
small fires) than for the 500 m calibrated model. The largest
change in emissions was in the open and woody savanna
biomes. The resemblance to GFED4 emissions suggests that
our simplified model is able to roughly reproduce GFED4
when calibrated at the same resolution of 0.25◦, while addi-
tionally enabling 500 m resolution modelling.
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Figure 4. Burned area (a) and majority land cover type (b) and modelled fire emissions (c) and FC (d) for the 500 m resolution model,
averaged over 2002–2017 and aggregated to 0.05◦ resolution for display.

3.4 Simulation differences due to spatial resolution

Besides calibration differences, model results varied because
of resolution differences during the simulations. We calcu-
lated simulation differences between 500 m and 0.25◦ res-
olution runs, using the model calibrated for 500 m resolu-
tion (Fig. 6). For the 0.25◦ resolution simulation, AGBw and
AGBL estimates were 4.0 and 4.6 Pg C lower than the 500 m
simulation, respectively, with contributions from all biomes
(Fig. 7a). The main positive differences were found at the
transitions from barren to vegetated landscapes (e.g. at the
fringes of the Sahara and Kalahari) and from land to wa-
ter (Fig. 6). Notably, smaller positive differences were also
found in the southern part of West Africa. The average AGBL
was lower at coarser resolution for all biomes, with a larger
difference for biomes with more biomass (Fig. 7b).

Total fire emissions for the 0.25◦ run were 0.66 Pg C yr−1,
which was 3 % lower than the 500 m resolution simulation
(Fig. 3, solid orange versus blue bars). Even though the
total emission estimates at different resolutions were rela-
tively similar, significant regional differences in emissions

occurred, with deviations of up to a factor of 1.5 and higher
deviations (of up to a factor of 4) at the border of water bod-
ies and deserts (Fig. 6b). The lower emissions at 0.25◦ res-
olution were mostly the result of lower emissions in savan-
nas and other grass-dominated biomes, whereas for tropical
forests (i.e. the Congo Basin) and other forests, emissions
were higher (see also Fig. 7a and b). Note that the relative
differences shown for emissions are the same as for FC be-
cause the burned area is equal for both resolutions.

3.5 Disentangling of mechanisms

The results in Sect. 3.4 indicated that simulation differences
were modest at a continental scale but substantial at regional
scales. The various mechanisms that explain part of these dif-
ferences were identified and quantified by doing additional
simulations with altered model configurations and compar-
ing them to the base model (see Sect. 2.5.2).
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Figure 5. Comparison of modelled FL at and field measurements based on calibration for 0.25◦ resolution, shown as scatter plot and boxplots
per biome for (a, b) 500 m resolution and (c, d) 0.25◦ resolution simulations. The boxplot description is equivalent to Fig. 2. Black triangles
depict whiskers outside the plot range.

3.5.1 Simulation differences for AGBL

Figure 8 shows the contributions of several error mechanisms
to the total simulation difference in AGBL (shown in Fig. 6).
Figure 8a and b depict the contribution of the biome-specific
parameter error and the input aggregation error, respectively.
Figure 8c and d show the remaining simulation difference af-
ter subtraction of these two error mechanisms. More specifi-
cally, Fig. 8c shows the part related to fire processes (by do-
ing a fire-off simulation), and Fig. 8d shows the unexplained
remainder. The effect of the MBF on AGBL was negligi-
ble and therefore not shown (but see Fig. 10). This is be-
cause frequent fires are mainly found in areas dominated by
ground fires that only burn grass and litter, whereas AGBL is
mostly determined by stem biomass and thus mainly affected
by canopy fires, which are less frequent.

Errors due to biome-specific parameters played a very sub-
stantial role in the base model simulation difference in AGBL

(Fig. 8a). For most of the African continent the majority
of difference could be explained by this mechanism. The
biome-specific parameter error accounted for lower AGBL
for grass-dominated biomes and higher AGBL for forest-
dominated biomes at coarser resolution. This shows that this
error mechanism does not explain the strong negative dif-
ference in the tropics in the total difference (Fig. 6a). Dif-
ferences were strongest at the transition borders of biomes,
where the distribution of land cover types is generally more
heterogeneous. Examples are the transition of open savanna
to woody savanna towards the Equator (at 10◦ N and 15◦ S
latitude), the transition of woody savanna to tropical forest
towards the Equator (at 5◦ N and 5◦ S latitude), and the tran-
sition towards the Sahara Desert (Fig. 4b).

Figure 8b shows the simulation differences in AGBL due
to the input aggregation error. Compared to the biome-
specific parameter error, the input aggregation error was rele-
vant in other areas, and the two error mechanisms partly neu-
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Figure 6. Relative simulation difference as the natural logarithm of 0.25◦ over 500 m resolution results for (a) AGBL and (b) fire emissions
(equivalent to FC). The 500 m resolution model results are aggregated to 0.25◦ resolution beforehand. The relative difference in emissions is
equivalent to the difference in FC. Positive values show 0.25◦ values higher than 500 m values and vice versa for negative values.

Figure 7. Absolute simulation difference as 0.25◦ minus 500 m res-
olution results for (a) total AGBL and fire emissions and (b) area-
average AGBL and FC (per area burned). Boxplots show the mean
(coloured dots), median (horizontal line), 25th and 75th percentiles
(boxes), and the 5th and 95th percentiles (whiskers).

tralized each other (opposite signs in Fig. 8a and b). Substan-
tial negative differences were found at the transitions to forest
biomes (e.g. Congo rainforest, eastern South Africa, Mada-
gascar). Positive differences were found at the transition to
deserts and water bodies. Further investigation showed that
these large positive differences occur where the majority-
aggregated biome is water or desert, leading to large rel-
ative differences due to near-zero biomass. The remainder
of simulation difference in AGBL, after subtraction of the
biome-specific parameter error and input aggregation error,
was mixed positive and negative, of which all negative differ-
ence could be attributed to fire processes (Fig. 8c and d). This
negative difference in the tropics explained a large part of the
total simulation difference in that region (Fig. 8c, compare
to Fig. 6a). This leaves an unexplained simulation difference
of solely positive values, analogous to an overestimation of
AGBL in the 0.25◦ resolution simulation.

Because the various error mechanisms influence each
other, the order of isolation of different mechanisms affected
the resulting relative difference. This was especially the case
for the isolation of fire-related error mechanism, for which
the relative difference could vary by up to 25 % difference
dependent on the order of isolation. This was the case be-
cause the input aggregation error accounted for a part of the
negative fire-related difference in the woody savannas and
the tropical forest edge (note overlapping negative pattern in
Fig. 8b and c), and the biome-specific parameter error ac-
counted for a positive part in the open savannas. For the other
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Figure 8. Relative simulation differences in AGBL for various isolated mechanisms, as the natural logarithm of the 0.25◦ model result
over the 500 m model result. Panel (a) shows the isolated difference due to the biome-specific parameter error, (b) the additional difference
due to the input aggregation error, (c) the remaining difference related to fire processes, and (d) the remaining unexplained difference after
subtraction of (a–c). The 500 m resolution model results are aggregated to 0.25◦ resolution.

mechanism, MBF, the order of isolation had a negligible im-
pact.

3.5.2 Simulation differences for fire emissions

The results shown above concerned simulation differences
in AGBL, which directly dictates the fuel load available for
burning and is thus a key precursor for fire emissions. The
simulation differences in emission were generally less pro-
nounced than for AGBL (Fig. 9). The biome-specific param-
eter error was pronounced as a dipole of positive and nega-
tive difference around biome transitions (Fig. 9a), similar to
the pattern seen for AGBL. The difference due to the input
aggregation error was mostly positive (Fig. 9b) and partly
neutralized the biome-specific parameter error.

The isolated error related to the MBF was negative every-
where and accounted for a substantial part of the total sim-
ulation difference in savanna regions (Fig. 9c). This shows

that this measure is indeed able to remove errors at aggre-
gated resolutions related to short fire return intervals, as rea-
soned by van der Werf et al. (2017). The traditional way of
accounting for fire in a model (unmodified burned fraction)
causes an underestimation of emissions at aggregated reso-
lutions in frequently burning landscapes, which translates to
a negative simulation difference as shown in Fig. 9c. The re-
mainder of simulation difference in emissions, after subtrac-
tion of all identified error mechanisms, was predominantly
positive, especially in the region of the Congo tropical rain-
forest (Fig. 9d).

3.5.3 Relative contribution of error mechanisms

For all biomes, we identified the error mechanisms that ex-
plain the majority of total simulation difference in AGBL
and emissions, except for tropical forest emissions (Fig. 10).
From the −0.08 average relative difference in AGBL (blue
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Figure 9. Relative simulation differences in fire emissions (and FC) for various isolated mechanisms, as the natural logarithm of the 0.25◦

model result over the 500 m model result. Panel (a) shows the isolated difference due to the biome-specific parameter error, (b) the additional
difference due to the input aggregation error, (c) the difference accounted for by implementation of the modified burned fraction (MBF), and
(d) the remaining unexplained difference after subtraction of (a–c). The 500 m resolution model results are aggregated to 0.25◦ resolution.

square in Fig. 10) for Africa between the base model sim-
ulated at 0.25◦ versus 500 m resolution, 47 % could be at-
tributed to biome-specific parameter errors and an additional
2 % to input aggregation errors. Furthermore, 16 % was re-
lated to fire, 5 % to the MBF, and the remaining 30 % was
unexplained. This analysis was also performed for emissions,
showing that from the −0.01 average relative difference (or-
ange square in Fig. 10) between the base model running at
0.25◦ versus 500 m resolution, 30 % could be attributed to
biome-specific parameter errors and an additional 15 % to
input aggregation errors. The MBF accounted for 22 %, and
33 % remains unexplained.

On a biome level, most of the simulation differences were
explained by biome-specific parameter errors. For AGBL,
this mechanism explained the large majority of difference
for the grass-dominated biomes. For tree-dominated biomes,
input aggregation errors and fire processes were more im-
portant instead. For most biomes, various error mechanisms

partly neutralized each other, resulting in a reduced overall
difference. The MBF mostly affected emissions, and as ex-
pected the contribution was largest for biomes with consid-
erable burned area and frequent fires. The unexplained re-
maining difference was positive for all biomes, and only the
emission differences for the grassland and cropland biomes
were fully explained.

3.5.4 Simulation difference as a function of resolution

Across the four analysed spatial resolutions (0.250, 0.125,
0.050◦, 500 m (which we assume to be 0.005◦ for this com-
parison)), the absolute differences in AGBL and emissions
followed a gradual trend described by a natural logarithmic
function. Exceptions were the difference in cropland AGBL
and in woody savanna emissions. The absence of a logarith-
mic trend in these cases was caused by a mixture of pixels
with positive and negative differences within the biome. This
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Figure 10. Relative simulation difference in AGBL and fire emissions for sub-Saharan Africa and for individual biomes, as the natural
logarithm of the 0.25◦ model result over the 500 m model result. Stacked bars depict the contribution of various error mechanisms to the
overall resolution difference in AGBL and fire emissions by successive isolation of the biome-specific parameter error, the input aggregation
error, the MBF, and finally the remaining difference related to fire (“Fire rest”). Furthermore, the unexplained remainder after removal of all
identified mechanisms is shown (“Unexplained”).

suggests that for these biomes the trend is explained by a
combination of concave upward and downward logarithms
for different pixels, as a result of variability within the biome.
In the case of emissions, the absence of a logarithmic trend
for the whole of sub-Saharan Africa reflected the pattern of
woody savannas. We estimated the sensitivity of the simula-
tion difference as the derivative of the fit function. The gen-
eral form of the fit function is

a log(x+ b)+ c, (7)

where x is the spatial resolution in degrees and a, b, and c

are constants. Given the logarithm quotient rule,

a log(x1+ b)− a log(x2+ b)= a log
(

x1+ b

x2+ b

)
, (8)

and assuming b� x, each 2-fold increase or decrease in res-
olution results in a constant change in simulation difference.
For example, the sensitivity for open-savanna emissions is
roughly 1.17 · log(2)= 0.81 g C m−2 per 2-fold change in
resolution (increase or decrease) (see Fig. 11b). This im-
plies that, independent of the initial resolution, a 2-fold finer
(coarser) spatial resolution always leads to the same decrease
(increase) in simulation difference. In other words, both at
fine and coarse resolutions the model results are equally sen-
sitive to resolution changes. Importantly, in cases where b is
not much smaller than a, the sensitivity decreases towards
finer resolution (e.g. for tropical forest emissions).

4 Discussion

We estimated fire emissions of 0.68 Pg C yr−1 for sub-
Saharan Africa using an emission model based on native
MODIS satellite spatial resolution of 500 m. These relatively
high-resolution estimates were compared to coarser resolu-
tions, as used for most previous fire emission estimates such
as from GFED and fire modules in DGVMs (Rabin et al.,
2017). We analysed differences due to spatial resolution oc-
curring in both the calibration and simulation stage of our
model.

With our simplified emission model, we were able to re-
produce emissions from GFED4 on a continental and biome
scale (Fig. 3). However, emissions for sub-Saharan Africa
based on our 500 m resolution model were 0.22 Pg C yr−1

lower (−24 %) than GFED4, with the largest difference for
woody savannas. The difference with GFED4s emissions
was larger because our model did not include small-fire
burned area. The emission estimates for our model calibrated
at 0.25◦ resolution were 0.14 Pg C yr−1 higher than for the
500 m version and more in line with GFED4 (−8 %). Com-
parison of the 500 m and 0.25◦ resolution model calibrations
illustrated that turnover rates governing biomass turnover and
decomposition were required to be slower at aggregated res-
olution under the calibration approach used, which led to
higher fuel load and consequently higher emissions. This
suggests that GFED likely overestimates fuel consumption
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Figure 11. Average absolute simulation difference per biome compared to 500 m for (a) AGBL and (b) fire emissions versus spatial resolu-
tion. Data points are fitted with a natural logarithmic function where applicable. Inserted formulas show the corresponding fit functions for
the two outermost lines. The plot axes are linear. For this plot, we assumed that 500 m spatial resolution equals 0.005◦ on the x axis.

due to its relatively coarse model resolution for similar rea-
sons.

The lower fuel consumption estimates and underlying
faster turnover rates for the 500 m calibrated model ver-
sion compared to the 0.25◦ resolution version, can partly be
explained by a smaller representation error when compar-
ing model to field measurements. We showed that at 500 m
spatial resolution the representation error for model pixels
compared to individual field measurements was greatly re-
duced, especially in heterogeneous landscapes with large
spatial variation in biomass. The improved resolution addi-
tionally led to a larger sample of usable measurements be-
cause multiple field plots that would otherwise be located in
one 0.25◦ pixel could be compared individually. However,
also at 500 m resolution, part of the representation error re-
mains, mostly because of the uncertainty in field plot loca-
tion and time. Furthermore, the comparison to field measure-
ments at finer resolution demands increased model complex-
ity, since small-scale heterogeneity is no longer averaged out
and thus has to be represented in the model.

When comparing our 0.25◦ calibrated resolution model
version to GFED4, which runs at the same resolution, we
found that the turnover rates governing biomass turnover
and decomposition in our model were generally faster, de-
spite the emission estimates being relatively smaller. This
can partly be explained by the simplifications made in our
model when compared to GFED4, such as the absence of
herbivory, grazing, fuelwood collection, and explicit defor-
estation mechanisms – all processes that remove additional
biomass. Furthermore, because GFED4 is optimized globally
and not only for Africa, turnover rates can be different for the
same biome across continents. Lehmann et al. (2014) and

Rogers et al. (2015) for example, discussed the differences
in vegetation and fire characteristics among continents. This
is also influenced by the availability of field data per conti-
nent, which is relatively poor for Africa. Finally, the faster
turnover rates for the litter pools in particular can also be ex-
plained by the use of different soil moisture data and subse-
quent parameterization of litter decomposition in our model.
Indeed, the effective turnover rates (i.e. after scaling by the
abiotic scalar) for litter were slower and closer to GFED4
(Table 1). We have optimized our modelled AGBw to agree
with the dataset developed by Avitabile et al. (2016) (see
Sect. 2.3). However, Bouvet et al. (2018) showed large nega-
tive biases in this dataset for savanna biomes, which suggests
savanna stem turnover rates tend to be too fast in both our
model and GFED4. This indicates that additional field data
on biome-specific biomass and turnover rates are required to
better evaluate our model.

Compared to the calibration difference in emissions of
0.14 Pg C yr−1, the simulation difference in emissions of
0.02 Pg C yr−1 was much smaller. Regionally however, sim-
ulation differences in AGBL and emissions were substan-
tial (Fig. 6). At aggregated resolution, AGBL was lower al-
most everywhere, and emissions were higher in the 10◦ N
to 10◦ S belt but lower in the surrounding latitudes. In or-
der to explain these differences, we identified at least three
error mechanisms that can amplify or dampen each other:
(1) biome-specific parameter error, (2) input aggregation er-
ror, and (3) temporal effects due to aggregation of burned
area fractions specifically, as spatial averaging affects sub-
grid fire return interval (MBF) and fuel build-up rates after a
fire (post-fire fuel recovery, explained below).
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4.1 Biome-specific parameter error

Overall, most of the simulation difference stemmed from the
use of biome-specific parameters, especially where they var-
ied considerably between biomes. In our model, the turnover
rates were particularly variable, and they varied among
biomes for all biomass pools. In contrast, in GFED4 only
the stem pool turnover rates are set to biome-specific val-
ues, which we expect to result in relatively small errors.
The biome-specific parameter error was largest in aggregate
grid cells with a large sub-grid heterogeneity in land cover
types and a large gradient in parameter values between neigh-
bouring pixels. Isolation of this error mechanism showed the
largest AGBL differences in biome transition regions, where
the variation in biomes is highest (Fig. 8a). Lower AGBL
at 0.25◦ resolution for grass-dominated regions is explained
by the misclassification of grid cell minority forest patches
as grassland. At coarse resolution, average biomass is un-
derestimated because the whole grid cell is simulated as a
grassland (the majority biome), whereas at finer resolution
the presence of a forest is revealed, with accompanying dif-
ferent turnover rates and LUE. Conversely, higher AGBL at
a 0.25◦ resolution for tree-dominated regions is explained by
the misclassification of grid cell minority grassland as forest.
This is comparable to previous studies that found an under-
estimation of small fragmented burned or forest area and an
overestimation of large homogeneous burned or forest area,
as a result of majority-based aggregation of binary classified
pixels to coarser resolution (Eva and Lambin, 1998; Mietti-
nen and Liew, 2009; Nelson et al., 2009; Silva et al., 2005).

The biome-specific parameter error in AGBL was mostly
related to stem biomass because AGBL mostly consisted of
stem biomass and because the stem pool had the largest range
of turnover rates. The stem turnover rates for the open and
woody savanna biomes differed by a factor of 7, which ex-
plains the notably large biome-specific parameter errors at
transitions between those biomes, such as around the 10◦ N
and 15◦ S latitudes (Fig. 8a). The large negative differences
on the eastern flank of the continent are also likely explained
by a combination of the heterogenic mosaic of agriculture,
savannas, and forest biomes and thus a large variability in
tree cover and related turnover rates in this region. However,
the error can similarly be significant for biomass pools other
than the stem pool, since other turnover rates varied with up
to a factor of 4 (see Table 1). This is especially important in
biomes with little tree cover.

The biome-specific parameter error in AGBL directly af-
fected emissions by determining the amount of fuel and con-
sequently again AGBL via the removal of fuel. However, for
most pixels the relative difference in emissions was smaller
than in AGBL (Fig. 9). Compared to 500 m resolution, run-
ning the model at 0.25◦ resolution generally increased emis-
sions in tropical forests and decreased emissions in savannas.
A small area of grassland burning in an area predominately
covered with forest results in an overestimation of emissions

at aggregated resolutions, since the grid cell average fuel load
is mostly determined by forest biomass. The resulting emis-
sions resemble a misclassified forest fire, instead of the actual
grass fire. By contrast, the burning of a small patch with high
fuel load surrounded by a majority of low fuel load leads
to an underestimation of emissions at coarse resolution. For
these reasons, Fig. 9a shows positive–negative dipole pat-
terns around the biome transitions. Emissions were overesti-
mated on the more forested side of each biome transition and
underestimated on the grassier side of each transition. These
patterns were the direct result of the biome-specific param-
eter error in AGBL (Fig. 8a). There were no biome-specific
parameters for fire, so no additional error was introduced in
the calculation of emissions from AGBL. Notably, the rela-
tive error for emissions was much smaller than for AGBL.
This can be explained by the fact that AGBL was mostly de-
termined by stem biomass, whereas emissions were mostly
determined by grass and litter (and leaf) biomass.

We expect that the AGBL after a fire is only minorly in-
fluenced by the biome-specific parameter error in emissions.
Since most emissions originate from grass fires, there is a mi-
nor impact on stem biomass and thus AGBL. This is also in-
dicated by the absence of an emission-like pattern in Fig. 9a,
suggesting that this error in emissions is small where emis-
sions are significant. By performing a simulation without
fire-induced tree mortality, we established that virtually all
fire-related resolution difference in AGBL (Fig. 8c) is caused
by mortality, instead of by direct emissions. Fire mostly af-
fects AGBL by killing trees, but this does not directly trans-
late to emissions because there is a time lag in the combustion
of dead stems (i.e. cwd) and the CC is relatively low.

4.2 Input aggregation error

The non-linear behaviour of the model algorithm led to an
additional input aggregation error because of Jensen’s in-
equality. This error was largest for input data with high spa-
tial variability and thus most apparent in grid cells with large
heterogeneity in land cover types, where the bias due to aver-
aging is strongest. Previously, we identified fire-induced tree
mortality to be the main reason for the fire-isolated resolu-
tion difference in AGBL (Fig. 8c). This pattern is clearly re-
sembled in Fig. 8b, which suggests that mortality is strongly
affected by the input aggregation error. This can be explained
by the quadratic factor in calculating mortality, which ampli-
fies Jensen’s inequality because of increased non-linearity.

By aggregating the input data for each biome separately,
the input aggregation error was reduced by decreasing the
variability related to the heterogeneity in land cover types.
Using this method, the spatial resolution was effectively in-
creased by a factor roughly equal to the number of biomes.
However, variability inside individual biomes remains and
is not accounted for using this approach and likely accounts
for the remaining unexplained simulation difference (Yuan et
al., 2007). Besides biomes, more or other aggregation classes
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Figure 12. Typical stem biomass growth curve.

can be chosen that ideally reduce the variability within those
classes as much as possible with as few classes as possible.
This could for example be a division based on tree cover in-
tervals. However, the input aggregation error is unavoidable
when modelling at aggregated resolutions, unless an appro-
priate estimator for Jensen’s inequality can be derived to ac-
count for this error. Since the reanalysis climate datasets we
used had a 0.25◦ resolution for both our coarse- and fine-
resolution simulations, no additional input aggregation error
was introduced by these input datasets. However, in the case
of finer-resolution climate data being aggregated, Jensen’s
inequality will exist for these datasets as well. We aim to sub-
stitute all remaining coarse-resolution input data with finer-
resolution data when available, e.g. by using data from ERA5
(Hersbach and Dee, 2016). The error will probably be less
substantial, as climate data are generally smoother and more
homogeneous spatially.

4.3 Burned area aggregation (temporal effects)

The aggregation of BA fractions to coarser resolution in par-
ticular led to additional errors, owing to temporal mecha-
nisms. Firstly, the aggregation of BA altered fire return in-
tervals, resulting in an underestimation of emissions at ag-
gregated resolutions, especially in frequently burning areas.
In GFED4, van der Werf et al. (2017) accounted for this
effect by introducing the MBF. With our 500 m resolution
model, we were able to demonstrate the effectiveness of the
MBF. Indeed, the MBF (Fig. 9c) accounted for the major-
ity of underestimation in emissions at aggregated resolution,
especially in frequently burning areas (mostly savannas).

We introduce a second mechanism related to this, which
occurs due to the temporal non-linearity of the modelled
biomass build-up. This is a case of Jensen’s inequality in the
temporal dimension. The effect is illustrated in Fig. 12 for
a hypothetical case of stem biomass build-up. For this ex-
ample, we assumed 100 % CC and a uniform fuel load. At
500 m resolution, the burned fraction is binary; a pixel is ei-
ther completely burned or unaffected. In the case of a pixel
burning, all stem biomass is removed by this hypothetical

fire. In the next month, the biomass regrows from the start of
the regrowth curve, where the slope is relatively steep, which
leads to fast regrowth. By contrast, in the case of aggregated
burned fractions the same net amount of biomass is removed
from the grid cell, but only a fraction of the total biomass.
This results in slower regrowth from a later point on the re-
growth curve. This leads to an underestimation of fuel load
at coarse resolution, due to slower biomass regrowth on aver-
age after a fire. Even though in normal model scenarios with
partial CC the effect would be less extreme, it could still be
of importance, especially in the case of canopy fires. In gen-
eral, the effect is stronger for slow turnover rates and short
fire return intervals. In the case of a grass fire, most biomass
has already recovered in the first months after the fire. Only
in the case of a short fire return interval could an effect on
emissions be noticeable. However, additional analysis is re-
quired to quantify the contribution of this error mechanism.

4.4 Small fires

We found that emissions were in total lowered by 0.14–
0.02= 0.12 Pg C yr−1 (calibration minus simulation differ-
ence) when increasing model resolution from 0.25◦ to 500 m
resolution. For these results, we have relied solely on
MCD64A1 burned area dataset which did not account for
small-fire burned area. Therefore, this difference may be off-
set by an increase in emissions due to the inclusion of small
fires. In GFED4s, emissions increased by 0.36 Pg C yr−1 in
our study region due to small fires, as compared to GFED4.
An equivalent increase in emissions due to small fires in
our model would offset the effects of spatial resolution 3-
fold. However, our findings suggest that in a 500 m resolution
model the inclusion of small fires may affect emissions dif-
ferently. In GFED4s, small-fire burned area is added to the
MCD64A1 product burned area (Collection 5.1), followed
by the calculation of emissions at a 0.25◦ resolution as in
GFED4. However, small fires mostly occur in croplands and
at the border of tropical forests (i.e. deforestation), where the
land cover is particularly heterogeneous (Randerson et al.,
2012; van der Werf et al., 2017). Consequently, the GFED4s
approach for calculating small fire emissions is prone to the
error mechanisms that occur at coarse resolution as described
in this work. Our results suggest that small fire emission esti-
mates, in particular, should be modelled at a finer resolution
or at least on a per-biome basis.

This is especially relevant considering the ongoing devel-
opment towards finer-resolution burned area products. For
example, Hawbaker et al. (2017) published a 30 m resolution
burned area dataset for North America based on Landsat im-
agery. Furthermore, Roteta et al. (2019) developed a dataset
of 20 m resolution burned area for Africa derived from the
Sentinel-2 MultiSpectral Instrument (MSI) sensor. Their pre-
liminary product assessment indicated that a very substantial
amount of burned area is still missed, even in GFED4s which
includes small fires using a statistical approach. Our work il-
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lustrates how the development of finer-resolution burned area
datasets should be accompanied by the development of finer-
resolution emission models or better parameterizations in or-
der to reduce errors. Even in our 500 m resolution emission
model, sub-500 m heterogeneity in burned area and fuel load
is not accounted for and could introduce additional errors.

We have shown that for relatively fine spatial resolu-
tion, the model was roughly equally sensitive to resolution
changes and coarser resolution (Fig. 11). The natural log re-
lation implied that a 2-fold increase in resolution leads to
a linear reduction in error. However, sub-500 m modelling
of fire emission could reveal new sources of error related
to small-scale heterogeneity. At these scales the log relation
might no longer be applicable. Dependent on the model pre-
cision demands, an optimal spatial resolution can be chosen
for which the simulation difference becomes insignificant.
However, the calibration difference can still be substantial,
dependent on the representation error. A study by Nelson
et al. (2009), who looked at the effect of spatial resolution
on forest inventories, concluded that there is an optimal res-
olution of around 300 m at which the pixel size is slightly
smaller than the forest patch size and the essential hetero-
genic characteristics of the landscape are captured. In line
with our findings, this suggests there is a similar optimal res-
olution for burned area, and other spatial data used in fire
emission modelling, at which finer resolution no longer sig-
nificantly improves captured variability in the data used and
computational resources are optimized.

5 Conclusions

We have developed a carbon cycle model to estimate fire
emissions for sub-Saharan Africa, using the native spatial
resolution of MODIS data (500 m). A key objective was to
compare fire emission estimates at 500 m resolution with
the coarser resolutions used more often such as the 0.25◦

resolution of GFED4. We estimated total fire emissions for
sub-Saharan Africa of 0.68 Pg C yr−1 averaged over 2002–
2017. This is 24 % lower than the most recent estimates from
GFED4 (without small fires).

The difference was mainly caused by reduced represen-
tation errors in model calibration at finer resolution, when
tuning the model to match field measurements of fuel load.
In addition, estimates were different dependent on the reso-
lution of the model simulation. At a more local scale, these
simulation differences were substantial, with differences up
to a factor 4 in regions with large landscape heterogene-
ity, such as biome transition zones. The error mechanisms
we identified as main contributors to these simulation differ-
ences are all the result of spatial aggregation of the datasets
used and the consequent coarse-resolution model simula-
tion. Spatial aggregation leads to a reduction in data vari-
ability, both in the case of majority-based aggregation of
land cover types and in the case of average-based aggrega-

tion of all other, continuous, input data. The identified error
mechanisms explained most of the simulation difference, and
the remaining unexplained difference is most likely caused
by the variability inside individual biomes, which was not
accounted for in our method. This variability can only be
fully accounted for by running the model at native resolu-
tion. However, our study of error mechanisms also illustrates
that a large share of these errors can be accounted for by im-
proved parameterizations and error reduction measures. Fur-
thermore, temporal effects, such as differences in post-fire
fuel recovery, may also explain part of the remaining differ-
ence. These temporal effects should be further investigated.

As a next step, we plan to run our model for the globe to
improve global emission estimates, with a focus on highly
heterogeneous regions such as deforestation zones. Under-
standing the underlying mechanisms that create errors in
coarse-resolution models enables the development of error
reduction measures. This knowledge can be used to improve
the next version of GFED. Our results indicate that fuel con-
sumption in GFED may be overestimated, at least for Africa.
Whether correcting for the resolution-dependent errors dis-
cussed in this work will lead to lower global emissions in
the next version of GFED depends on to the extent to which
small-fire burned area may offset the decline in emissions.
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