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Abstract. Ecosystem dynamic models are useful for under-
standing ecosystem characteristics over time and space be-
cause of their efficiency over direct field measurements and
applicability to broad spatial extents. Their application, how-
ever, is challenging due to internal model uncertainties and
complexities arising from distinct qualities of the ecosystems
being analyzed. The sagebrush-steppe ecosystem in west-
ern North America, for example, has substantial spatial and
temporal heterogeneity as well as variability due to anthro-
pogenic disturbance, invasive species, climate change, and
altered fire regimes, which collectively make modeling dy-
namic ecosystem processes difficult. Ecosystem Demogra-
phy (EDv2.2) is a robust ecosystem dynamic model, ini-
tially developed for tropical forests, that simulates energy,
water, and carbon fluxes at fine scales. Although EDv2.2
has since been tested on different ecosystems via develop-
ment of different plant functional types (PFT), it still lacks a
shrub PFT. In this study, we developed and parameterized
a shrub PFT representative of sagebrush (Artemisia spp.)
ecosystems in order to initialize and test it within EDv2.2,
and to promote future broad-scale analysis of restoration ac-
tivities, climate change, and fire regimes in the sagebrush-
steppe ecosystem. Specifically, we parameterized the sage-
brush PFT within EDv2.2 to estimate gross primary pro-
duction (GPP) using data from two sagebrush study sites
in the northern Great Basin. To accomplish this, we em-
ployed a three-tier approach. (1) To initially parameterize the
sagebrush PFT, we fitted allometric relationships for sage-
brush using field-collected data, information from existing

sagebrush literature, and parameters from other land mod-
els. (2) To determine influential parameters in GPP predic-
tion, we used a sensitivity analysis to identify the five most
sensitive parameters. (3) To improve model performance and
validate results, we optimized these five parameters using an
exhaustive search method to estimate GPP, and compared re-
sults with observations from two eddy covariance (EC) sites
in the study area. Our modeled results were encouraging,
with reasonable fidelity to observed values, although some
negative biases (i.e., seasonal underestimates of GPP) were
apparent. Our finding on preliminary parameterization of the
sagebrush shrub PFT is an important step towards subsequent
studies on shrubland ecosystems using EDv2.2 or any other
process-based ecosystem model.

1 Introduction

Ecosystem dynamic models have been widely used to esti-
mate terrestrial carbon flux and to project ecosystem char-
acteristics over time and space (Dietze et al., 2014; Fisher
et al., 2018), largely due to their efficiency over direct field
measurements and their applicability to broad spatial scales.
However, these models have also been associated with high
levels of internal uncertainty and questions regarding their
applicability to distinct and often complex ecosystems at
large scale (Kwon et al., 2008). Sagebrush (Artemisia spp.)
ecosystems in western North America provide a good exam-
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ple of these types of modeling challenges, as these ecosys-
tems are spatially heterogeneous and shaped by complex
dynamics over time. Sagebrush ecosystems hold both high
ecological and socioeconomic value, but they have been re-
duced to nearly half of their historical range and are declin-
ing at an alarming rate (Knick et al., 2003; Schroeder et
al., 2004). Various factors have contributed to this decline,
including land clearing, invasion of nonnative species such
as cheatgrass (Bromus tectorum), and climate change, that
have collectively altered vegetation composition, hydrolog-
ical function, and wildfire frequency (Bradley, 2010; Con-
nelly et al., 2004; McArthur and Plummer, 1978; Schlaepfer
et al., 2014). In an attempt to restore portions of the sage-
brush ecosystem, land managers have focused on reducing
flammable vegetation, controlling invasive species, and seed-
ing native plant species (Chambers et al., 2014; McIver and
Brunson, 2014). There are relatively few studies that have
evaluated carbon flux in sagebrush ecosystems in response
to prescribed fire or restoration activities, and most of them
used observational data from eddy covariance (EC) stations.
However, given the large spatial extent of the sagebrush
biome (> 500 000 km2; Miller et al., 2011) and the paucity of
EC station sites in sagebrush landscapes, the function of this
ecosystem remains poorly understood, especially as man-
agement activities, fire, climate change, and invasive species
continue to alter ecosystem structure, composition, and spa-
tiotemporal dynamics.

Ecosystem Demography (EDv2.2) is a process-based
ecosystem dynamic model that approximates the behavior of
ensembles of size and age-structured individual plants to cap-
ture subgrid level ecosystem heterogeneity using partial dif-
ferential equations (Medvigy et al., 2009; Moorcroft et al.,
2001). This model was originally developed to study tropi-
cal ecosystems with trees as a primary component, but it has
since been modified and applied to several different ecosys-
tems, including boreal forests (Trugman et al., 2016) and
temperate forests (Antonarakis et al., 2014; Medvigy et al.,
2009, 2013). However, its application to semiarid shrubland
ecosystems has not been explored and it lacks a shrub plant
functional type (PFT) to study these ecosystems. Thus, we
developed and parameterized a sagebrush PFT for EDv2.2,
and used it to estimate gross primary production (GPP) for
the sagebrush ecosystems in the Reynolds Creek Experimen-
tal Watershed (RCEW) located in the northern Great Basin of
the United States, a cold-desert region dominated by expan-
sive, shrub-steppe ecosystems.

In this study, our primary objective was to develop pre-
liminary sagebrush PFT parameters in EDv2.2 and to con-
strain uncertainties through optimization of selected PFT pa-
rameters. To accomplish this, we employed a three-tiered ap-
proach. First, we parameterized the sagebrush PFT, by fitting
allometric relationships for sagebrush using field-collected
data, information from existing sagebrush literature, and bor-
rowing parameters from other land models. Second, to iden-
tify the most influential parameters in GPP prediction, we

used a sensitivity analysis and identified the five most sensi-
tive parameters affecting changes in GPP estimates. Third,
to improve upon and assess model performance, we opti-
mized the five most sensitive parameters using an exhaustive
search method to estimate GPP and then compared the re-
sults with observations from two eddy covariance (EC) sites
in the study areas. Our preliminary parameterization of the
sagebrush shrub PFT is an important first step towards fur-
ther study of shrubland ecosystem function using EDv2.2 or
similar process-based ecosystem models.

2 Material and methods

2.1 Ecosystem Demography (EDv2.2) model

EDv2.2 is a process-based terrestrial biosphere model that
occupies a mid-point on the continuum of individual-based
(or gap) to area-based (or big-leaf) models (Fisher, 2010;
Smith et al., 2001). Area-based models like LPJ-DGVM
(Lund-Potsdam-Jena Dynamic Vegetation Model) (Sitch et
al., 2003) and BIOME BGC (Running and Hunt, 1993, as
cited in Bond-Lamberty et al., 2015) represent plant commu-
nities with area-averaged representation of a PFT for each
grid cell. The simplification and computational efficiency
of these models make them widely applicable for regional
ecosystem analysis; however, this advantage often comes
with a limited ability to properly capture light competition
and competitive exclusion (Fisher, 2010; Bond-Lamberty et
al., 2015; Smith et al., 2001). In contrast, individual-based
models (IBMs), such as JABOWA (Botkin et al., 1972) and
SORTIE (Pacala et al., 1993), represent vegetation at the in-
dividual plant level, thus making it possible to incorporate
community processes like growth, mortality, recruitment,
and disturbances. Recent improvements in computational ef-
ficiency have permitted the use of IBMs beyond traditional
applications confined to limited spatial and temporal scales.
EDv2.2 is a cohort-based model where individual plants with
similar properties, in terms of size, age, and function, are
grouped together to reduce the computational cost while re-
taining most of the dynamics of IBMs. Each cohort is defined
by a PFT, number of plants per unit area, and dimensions of
a single representative plant like diameter, height, structural
biomass, and live biomass (Fisher et al., 2010). The cohort-
based modeling approach in EDv2.2 has been applied to cap-
ture detailed ecological processes in studies investigating the
effects of fire, drought, insect infestations, and climate effects
on ecosystems at broad spatial scales (Fisher et al., 2018).

The land surface in EDv2.2 is composed of a series of
gridded cells, which experience meteorological forcing from
corresponding gridded data or from a coupled atmospheric
model (Medvigy, 2006). The mechanistic scaling from indi-
vidual to the region is achieved through size and age struc-
tured partial differential equations that closely approximate
mean behavior of a stochastic gap model (Medvigy et al.,
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Table 1. Parameters used to explore model performance for sagebrush PFT.

Parameter Description Unit

Maximum carboxylation rate (Vm0) Maximum carboxylation rate at 15 ◦C µmol m−2 s−1

Stomatal slope (M) Slope of stomatal conductance–photosynthesis relationship –
Cuticular conductance (b) Intercept of stomatal conductance–photosynthesis relationship µmol m−2 s−1

Water conductance (Kw) Supply coefficient for plant water uptake ms−1 kg C per root
Leaf width (Wleaf) Controls leaf boundary layer conductance (m) m
SLA Specific leaf area m2 kg−1

GRF (rg) Growth respiration factor –
Q ratio (q) Ratio of fine roots to leaves –
Leaf turnover rate (αleaf) Inverse of leaf life span Per annum (a−1)
Fine root turnover rate (αroot) Inverse of fine root life span Per annum (a−1)
Storage turnover rate (αstorage) Turnover rate of plant storage pools Per annum (a−1)

2009; Moorcroft et al., 2001). Each grid cell is subdivided
into a series of dynamic horizontal tiles, which represent lo-
cations that experience similar disturbance history and have
an explicit vertical canopy structure. This mechanism helps
capture both vertical and horizontal distributions of vege-
tation structure and compositional heterogeneity compared
to area-based models (Kim et al., 2012; Moorcroft et al.,
2001, 2003; Sellers et al., 1992). EDv2.2 consists of mul-
tiple submodels for plant growth and mortality, phenology,
disturbance, biodiversity, hydrology, land surface biophysics,
and soil biogeochemistry to predict short-term and long-term
ecosystem fluxes and to represent natural and anthropogenic
disturbances (Kim et al., 2012; Medvigy et al., 2009; Zhang
et al., 2015). Submodels in EDv2.2 rely mostly on many PFT-
specific parameters, representing unique attributes of that
particular group of species, to define the stated biological
processes (Knox et al., 2015). Studies on shrub parameter-
ization have been performed in LPJ-GUESS for the tundra
region (Miller and Smith, 2012; Wolf, 2008); however, pa-
rameterization for shrub PFT is lacking for semiarid shrub-
land ecosystems. EDv2.2 has parameters defined for 17 dif-
ferent PFTs including grasses (C3 and C4), conifers, decidu-
ous trees (temperate and tropical), and agricultural crops. In
this study, we identified parameters for the sagebrush (shrub)
ecosystem to simulate it in the model as a new PFT. We
limited the scope of this study to sagebrush PFT parame-
terization using model structures and processes adopted in
EDv2.2 for trees (e.g., seed dispersal, competition, mortality,
and phenology), which we assumed would be generally ap-
plicable to shrubs (Wolf et al., 2008). Because we explored
model performance based on GPP estimates, we selected
11 different parameters related to plant ecophysiology and
biomass allocation to conduct sensitivity and optimization
assessments (Table 1). We mainly relied on similar studies
(Dietze et al., 2014; Fisher et al., 2010; LeBauer et al., 2013;
Medvigy et al., 2009; Mo et al., 2008; Pereira et al., 2017),
our preliminary sensitivity analyses, and consultation with

other developers and users of the EDv2.2 model to select the
parameters.

Detailed descriptions of submodels of EDv2.2 are avail-
able in existing literature (Medvigy et al., 2009; Moorcroft
et al., 2001); thus, here we describe the ones related to the
parameters used in this study. The ecophysiological sub-
model has a coupled photosynthesis and stomatal conduc-
tance scheme developed by Farquhar and Sharkey (1982)
and Leuning (1995), respectively, and which estimates leaf-
level carbon and water fluxes. Leaf-level carbon demand of
C3 plants is determined by the minimum of light-limited rate
(Je) and Rubisco-limited rate (Jc), and Vm0 controls the latter
as given by Eq. (1) after being scaled to a given temperature.

Jc =
Vm(Tv)(Cinter− τ)

Cinter+K1(1+K2)
, (1)

where Vm (Tv) is the maximum capacity of Rubisco to per-
form its carboxylase function at a given temperature Tv,
scaled from Vm0 using an exponential function (Medvigy et
al., 2009) given below (Eq. 2); Cinter is the intercellular CO2
concentration; τ is the compensation point for gross photo-
synthesis; K1 is the Michaelis–Menten coefficient for CO2;
and K2 is proportional to the Michaelis–Menten coefficient
for O2.

Vm(Tv)=

Vm0

exp
(

3000
(

1
288.15 −

1
Tv

))
(1− exp

(
0.4

(
Tv,lo− Tv

))
(1+ exp(0.4(Tv− 318.15))

,

(2)

where Tv is any given temperature for which the scaling is
being done and Tv,lo is the lower cutoff temperature.

Stomatal conductance, which is modeled using Leun-
ing (1995), a variant of the Ball–Berry model (Eq. 3), is in-
fluenced by stomatal slope and cuticular conductance.

gsw =
MAo

(Cs− τ)
(

1+ Ds
D0

) + b, (3)
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Table 2. Coefficients for sagebrush (shrub) PFT to allometric equations in EDv2.2 (temperate PFTs).

Relationship Equation Coefficients

DBH (cm) to height (m) Ht= a(1− eb×DBH) a = 4.7562, b =−0.002594
DBH (cm) to woody biomass (kg) WB= a

C2B ×DBHb a = 5.709× 10−8, b = 4.149
DBH (cm) to leaf biomass (kg) LB= a

C2B ×DBHb a = 2.582× 10−6, b = 2.746
DBH (cm) to canopy area (m2) CA= a×DBHb a = 6.35× 10−5, b = 2.18
DBH (cm) to volume (m3) V = a×Ht×DBHb a = 2.035× 10−5, b = 2.314
Volume (m3) to root depth (m) D = a×V b a =−3.0, b = 0.15
DBH (cm) to wood area index WAI= nplant× a×DBHb a = 0.0096, b = 2.0947

DBH is diameter at breast height; Ht is height; WB is woody biomass; C2B is carbon to biomass ratio; LB is leaf biomass; CA is
canopy area; V is volume; D is root depth; and WAI is wood area index.

where gsw is stomatal conductance for water, Ao is photo-
synthetic rate, M is stomatal slope, b is cuticular conduc-
tance, D0 is empirical constant, Ds is water vapor deficit,
Cs is CO2 concentration within leaf boundary, and τ is as
described above. Stomatal control is also affected by the
soil moisture supply term, which is a function of soil mois-
ture, fine root biomass, and water conductance. When the
available water supply is less than the demand predicted by
the photosynthesis–conductance model, then photosynthe-
sis, transpiration, and stomatal conductance are all linearly
weighted down to match the supply (Dietze et al., 2014).

Water and CO2 concentrations within the leaf boundary
layer are influenced by leaf width along with other factors
like wind speed, leaf area index, and molecular diffusivity
of heat. Specific leaf area (SLA) has units of leaf area per
unit leaf carbon and is used to scale up leaf-level to canopy-
level fluxes. Relationships between growth respiration and
net photosynthesis are controlled by the growth respiration
factor. In EDv2.2, while leaf biomass is determined by the
PFT-specific allometric equation (as shown in Table 2 for
sagebrush) based on diameter, fine root biomass is defined
by a ratio of leaves to fine roots. Leaf turnover and fine root
turnover rates together influence overall litter turnover rate,
even though in deciduous trees dropping of leaves also af-
fects this rate. Turnover rate of stored leaf pool and storage
respiration depends on storage turnover rate, size of stored
leaf pool, and storage biomass.

2.2 Study area

While the PFT was developed broadly for sagebrush, we de-
veloped the EDv2.2 model runs focused on the Reynolds
Creek Experimental Watershed (RCEW), located in the
northern Great Basin region of western United States
(Fig. 1). The RCEW is operated by the USDA Agricultural
Research Service and is also a Critical Zone Observatory
(CZO) (referred to as RC-CZO). We used two 200 m× 200 m
polygons centered at two EC sites within RC-CZO to closely
represent the footprint area of these sites. The AmeriFlux
US-Rls EC station, located at 43.1439◦ N, 116.7356◦W and
at an elevation of 1583 m, is within the Lower Sheep Creek

drainage in RCEW. The footprint of this site is dominated by
low sagebrush (Artemisia arbuscula) and Sandberg bluegrass
(Poa secunda) (Stephenson, 1970; Seyfried et al., 2000) and
is characterized as having light cattle grazing (AmeriFlux,
2018). The second AmeriFlux tower, US-Rws, is located
at 43.1675◦ N, 116.7132◦W in the Nancy Gulch drainage,
about 2 km northeast of the US-Rls site. This area is domi-
nated by Wyoming big sagebrush (A. tridentata ssp. wyomin-
gensis) and bluebunch wheatgrass (Pseudoroegneria spicata)
(Stephenson, 1970). Hereafter, these two sites are designated
as LS (for low sagebrush) and WBS (for Wyoming big sage-
brush).

2.3 Inventory and EC tower data

A field inventory dataset of sagebrush shrubs from RCEW
recorded in 2014 (Glenn et al., 2017) was used to fit the al-
lometric equations (for temperate PFTs) in EDv2.2 and to
initialize the ecosystem structure for the model simulations.
Variables used to fit allometric equations for the sagebrush
included volume, crown diameter, height, and stem diame-
ter. EDv2.2 was originally developed for tropical forests, and
thus typically specifies allometric relationships in terms of
diameter at breast height (DBH). However, this length-scale
variable has limited application to shrubs of the sagebrush-
steppe ecosystem, which rarely exceed 1.5 m in height. Thus,
we developed a substitute length-scale variable for DBH that
effectively corresponds to shrub volume. To accomplish this,
shrub volume was first calculated using crown area (charac-
terized as an ellipse and approximated with semimajor and
semiminor axis lengths) and height, and the cube root of
this volume was then used as the characteristic length-scale
variable required to parameterize allometric relationships
in EDv2.2. To test this relationship, we compared height
predicted from cube root volume with observed sagebrush
height using a different set of data from the eastern side of
the Sierra Nevada mountains, CA, in the Great Basin (Qi et
al., 2018). We found a good fit for the data (r2

= 0.71)with a
small negative bias of−1.88 cm and a random residual distri-
bution (Fig. S1). Using our field inventory from RCEW, we
identified the coefficients in allometric equations (Table 2)
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Figure 1. Location of EC flux sites in the RCEW study area: designated as LS (for low sagebrush) and WBS (for Wyoming big sagebrush).
Field plots depicted were used to develop the allometric equations. The inset map shows the location of the RCEW study area within the
northern Great Basin (LCC, 2018).

Table 3. Meteorological forcing data from the Weather Research
and Forecasting (WRF) model used for simulation.

Variable WRF name Unit

Temperature at 2 m T2 K
Surface pressure PSFC Pa
Accumulated precipitation RAINNC mm
Terrain height HGT m
U wind (zonal) component at 10 m U10 m s−1

V wind (meridional) component
at 10 m

V10 m s−1

Specific humidity at 2 m Q2 kg kg−1

Downward longwave flux at
ground surface

GLW W m−2

Downward shortwave flux
at ground surface

SWDOWN W m−2

for shrub height, leaf biomass, structural biomass, canopy
area, and wood area index as a function of this cube root of
volume measure (used as DBH in the equation).

GPP data from 2015 to 2017 water years were derived
from the LS and WBS EC stations (Fellows et al., 2017) us-
ing the REddyProc software in R (Reichstein et al., 2005) to
fill and partition net ecosystem exchange (NEE) into ecosys-
tem respiration and GPP.

2.4 Meteorological forcing data

Outputs from a long-term high-resolution climate reanalysis
obtained from the Weather Research and Forecasting (WRF)
model (Skamarock et al., 2008) were used to provide me-
teorological forcing data for the EDv2.2 model (Table 3).
The WRF outputs correspond to atmospheric temperature
and specific humidity at 2 m height, wind speed at 10 m
height, downward shortwave radiation and longwave radi-
ation at ground surface, surface pressure, and accumulated
precipitation (Flores, et al., 2016). The spatial and temporal
resolutions of the data are 1 km and 1 h, respectively. The
EDv2.2 model then partitions shortwave radiation into direct
and diffuse as well as visible and near-infrared components
as summarized by Weiss and Norman (1985). We obtained
these forcing data from 2001 to 2017 for two WRF pixels
that spatially bound the LS and WBS sites (Fig. 1).

2.5 Initial parameterization and sensitivity analysis

We identified initial sagebrush shrub PFT parameters based
on field allometric equations, previous research studies on
the sagebrush ecosystem (Ahrends et al., 2009; Cleary et
al., 2010; Comstock and Ehleringer, 1992; Gill and Jackson,
2000; Li et al., 2009; Olsoy et al., 2016; Qi et al., 2014;
Sturges, 1977; Tabler, 1964), and information from other
general PFT parameters in EDv2.2 (Table S1 in the Supple-
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ment). The initial ecosystem states for the model run for the
LS and WBS sites were designated to be a single sagebrush
with 1 plant per square meter representing the average spac-
ing from the 2014 field inventory data. For the LS site, we
used 0.57 m of cube root volume (diameter) and 0.56 m for
height and for WBS we used 0.62 m of cube root volume
and 0.63 m for height. The soil column was configured to be
2.3 m deep with nine vertical layers and a free-drainage lower
boundary. Corresponding to a gravelly loam soil in the study
site (USDA, 2018a), we used a soil texture with 55 % sand,
25 % silt, and 20 % clay for both sites. Initial soil moisture
was set to near saturation with no temperature offset, and the
initial atmospheric carbon dioxide level matching the year
2001 (370 ppm), when we initialized the simulation. We ran
the EDv2.2 model with these initial settings and initial shrub
PFT parameters for the sensitivity analysis at the LS site for
a 15-year simulation period. We selected this simulation pe-
riod based on our pre-sensitivity trial runs, previous studies
(Medvigy and Moorcroft, 2012; Antonarakis, et al., 2014)
where authors had initialized models using inventory data,
and taking into account that there have been no major dis-
turbances in recent history at these sites. We used only one
of our sites (LS site) for the sensitivity analysis because we
assumed both sites are quite similar in terms of meteorologi-
cal forcing (given their proximity) and ecosystem conditions,
and particularly as we used a range of maximum and mini-
mum values of parameters in the analysis.

Since our study focused preliminary on parameterization
of the sagebrush PFT, we limited the sensitivity analysis to
explore the linear dependence of selected parameters over
target variables, assuming minimum nonlinear dependence
among these parameters. We used a sensitivity index (SI)
suggested by Hoffman and Gardner (1983) (Eq. 4) to perform
a one-at-a-time sensitivity analysis and rank the parameters.
Because this index is highly affected by the extreme values
of parameters being studied, it is recommended that the pa-
rameter range cover the entire range of possible values. SI
has been used in different areas of study including ecology
(Waring et al., 2016) and hydrology (Wambura et al., 2015),
mostly to assess the effect of parameters on target variables
and sometimes to reduce the number of variables for further
analysis.

SI=
GPPmax−GPPmin

GPPmax
, (4)

where SI is sensitivity index, GPPmax is the value of GPP
corresponding to the simulation with the maximum value of
a parameter, and GPPmin is the value of GPP correspond-
ing to the simulation with the minimum value of a param-
eter. We identified minimum and maximum possible values
for each of the selected parameters based on previous sensi-
tivity and optimization studies, the range of parameters for
other PFTs in EDv2.2, and our preliminary sensitivity anal-
yses (Table 4). EDv2.2 was then run for a 15-year period
with both minimum and maximum values of each parame-

ter while keeping all other parameters constant. The average
daily GPP outputs throughout the simulation years for maxi-
mum and minimum values of parameters were used to derive
GPPmax and GPPmin, respectively. We limited the optimiza-
tion to the five most sensitive parameters to keep time and
computing performance manageable.

2.6 Optimization and validation

In the third step, optimization of the five selected parame-
ters was performed for both the LS and WBS sites using
an exhaustive search (brute-force) method within the spec-
ified range of values. This process was performed to identify
the best values for the five selected parameters for each EC
station in predicting GPP. A Bayesian method is often pre-
ferred in parameter optimization as it can assimilate multi-
ple input data with a single model run and provide separate
uncertainties for parameters, processes, and data. However,
for a model like EDv2.2, it is nearly computationally pro-
hibitive as we would need 104 to 107 model runs to perform
associated Markov Chain Monte Carlo processes (Dietze et
al., 2018; Fer et al., 2018). Likewise, there are model em-
ulators (surrogate models) where statistical models are cre-
ated to mimic full models by fitting parameters and response
variables using distributions such as Gaussian. Experiments
done with these model emulators are later transferred into
the full model thus making this method computationally ef-
ficient. One of the drawbacks of this method is that it fre-
quently fails to converge with nonlinear parameters (Fer et
al., 2018; Keating et al., 2010). An alternative to these ap-
proaches is the brute-force method where all possible com-
binations of parameters from a uniform distribution within
a predefined range are examined to get the best result. Ad-
vantages of the brute-force method are a higher possibility
of identifying global optimums or fine tuning of posterior
parameter ranges and assessing nonlinearity among parame-
ters. The major disadvantage of this method is the compu-
tational cost but this can be reduced significantly by lim-
iting the range of the parameter domain (Fer et al., 2018;
Schmidtlein et al., 2010).

For each site, we ran 720 simulations with a unique com-
bination of parameter values for 15 years (2001–2016), at
which point it was assumed to reach an equilibrium with
climate. EDv2.2 simulations were configured to allow for
growth of the C3 grass, northern pines, and late conifers
together with the shrub PFT. This was done because al-
though the vegetation assemblages in the flux site footprints
are primarily composed of sagebrush and grasses, conifers
are present in some parts of the experimental watershed
(Seyfried et al., 2000). For each simulation, we calculated a
skill score, Nash–Sutcliffe efficiency (NSE) (Nash and Sut-
cliffe, 1970), to compare the simulated GPP from 2015 and
2016 with those derived from LS and WBS EC stations for
respective years. Although, NSE is closely related to root
mean square error (RMSE) (or mean square error, MSE), the
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Figure 2. Simulated daily GPP outputs from 1 to 15 years for the study location with (a) initial values of all five parameters and (b–
f) maximum (green), minimum (blue), and initial (red) parameter values for SLA, stomatal slope, Vm,0, Q ratio, and fine root turnover
rate.

skill score from it can be interpreted as comparative ability
of the model over a baseline model, which is the mean of site
observations in this case. While the RMSE value depends
on the unit of predicted variables, which can vary from 0 to
infinity, the NSE is dimensionless and varies from negative
infinity to 1 (Krause et al., 2005; Gupta et al., 2009). NSE is
calculated using Eq. (5):

NSE= 1−
∑n
i=1(Oi −Pi)

2∑n
i=1
(
Oi −O

)2 , (5)

where Oi is observation, Pi is predicted value, O is mean of
observation, and n is number of observations. For both EC
stations, we selected the 10 best simulations based on NSE
scores, computed ensemble means of all five parameter val-
ues, and estimated mean GPP. Outputs from process-based
models like EDv2.2 are often ill-posed outputs, meaning that
there may not be a unique solution of parameter combina-
tions but rather several combinations of parameters produce
the same solution. One way to solve the ill-posed problem is
by selecting more than one of the best combinations, from
which we can either explore average outputs or select one
of the ensemble members that would better match any prior
information such as any correlation among parameters, avail-
able data, vegetation characteristics, or ecosystem conditions
(Combal et al., 2002; Quan et al., 2015). The simulated GPP
from these runs were then compared against respective EC

site data from 2017, which was withheld from the optimiza-
tion as a means of providing an independent validation.

3 Results

3.1 Initial parameterization and sensitivity analysis

For the model run based on the initial values of parameters
(Table S1 of the Supplement), the 15-year simulations pro-
duced an annual cycle in GPP that decreases in amplitude
during the initial 1–3 years, and remains at a level of approx-
imately 0.07 kg C m−2 yr−1 in the remaining years (Fig. 2a).
Observed GPP values in 2016 were 0.51 kg C m−2 yr−1 and
0.38 kg C m−2 yr−1 for the LS and WBS sites, respectively.
This result was significantly lower than the observed GPP
from either of the EC sites, and thus we followed up with
sensitivity and optimization analyses to constrain some of the
influential parameters.

Based on the SI ranking, SLA, stomatal slope, Vm0, fine
root turnover rate, and Q ratio were identified as the top five
sensitive parameters compared to the other parameters ex-
plored (Fig. 2; Table 4). Related studies (Dietze et al., 2014;
Medvigy et al., 2009; Pereira et al., 2017; Zaehle et al., 2005)
have also identified similar model parameters being impor-
tant in estimating GPP. In our study, higher parameter values
of SLA, stomatal slope, and Vm0, resulted in higher GPP es-
timates (Fig. 2b, c, and d), whereas for Q ratio and fine root
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Table 4. Summary of sensitivity analysis of studied PFT parameters ranked by sensitivity index (SI).

Parameters Initial Min Max SI Reference

SLA (m2 kg−1) 4.5 2 15 0.988 Lambrecht et al. (2007); Brabec (2014);
Olsoy et al. (2016)

Stomatal slope 7 2 15 0.983 Dietze et al. (2014); Bonan et al. (2014)
Vm0 (µmol m−2 s−1) 16.5 4 30 0.982 Comstock and Ehlenger (1992); Oleson

et al. (2013)
Q ratio 3.2 0.4 12 0.898 Dietze et al. (2014)
Fine root turnover rate (a−1) 0.33 0.1 2 0.895 Gill and Jackson (2000)
Cuticular conductance (µmol m−2 s−1) 103 102 107 0.813 Barnard and Bauerle (2013); Duursma

et al. (2019)
Leaf turnover rate (a−1) 1 0.1 2 0.779 ∗

GRF 0.33 0.11 0.66 0.694 Wang et al. (2013)
Water conductance (ms−1 kg C per root) 1.9× 10−5 1.9× 10−6 1.9× 10−4 0.168 ∗

Storage turnover rate (a−1) 0.624 0.33 0.95 0.004 ∗

Leaf width (m) 0.05 0.01 0.10 0.002 ∗

∗ Information about the range comes from range of values for other PFTs in EDv2.2, and our preliminary sensitivity analysis.

turnover rate higher parameter values produced lower GPP
(Fig. 2e and f). The impact of shifts in SLA, Vm0, and stom-
atal slope values are observed from the very beginning of
the simulations, while changes in fine root turnover rate and
Q-ratio parameters start to show differences from roughly 3–
4 years after the initial model run. Although not ranked in the
top five, cuticular conductance, leaf turnover rate, and growth
respiration factor also had considerable influences over GPP
(Table 4).

3.2 Optimization and validation

For our exhaustive search of parameter values, we limited
search domains for parameters based on previous studies
and the result of our sensitivity analysis. SLA search lim-
its were largely based on Olsoy et al. (2016), who suggested
a range of 3 to 6 m2 kg−1 for sagebrush SLA, with regional
and seasonal variations. Similarly, limits for Vm0 were ex-
tended slightly beyond the recommendations by Comstock
and Ehleringer (1992) for the Great Basin shrubs, and the up-
per limit for stomatal slope was extended slightly beyond that
used by Oleson et al. (2013) for a shrub PFT in the Commu-
nity Land Model (CLMv4.5). We set search domains for Q
ratio based on a leaf and root biomass study of sagebrush by
Cleary et al. (2010), and fine root turnover ratio was based on
results from a study on Artemisia ordosica in a semiarid re-
gion of China (Li et al., 2009). Interval distances (or “steps”)
were calculated to equally space out the range between the
maximum and minimum of each parameter for a given num-
ber of intervals (Table 5). Parameters identified as exerting
more control on GPP prediction were assigned a higher num-
ber of steps, resulting in the following: five steps for SLA,
four steps for Vm0, and stomatal slope, and three steps for Q
ratio and fine root turnover rate. Among 720 possible simula-
tions for unique parameter value combinations for each site,

Table 5. Minimum value, maximum value, interval size, and num-
ber of steps for each parameter used in optimization.

Number
Parameter Min Max Interval of steps

SLA (m2 kg−1) 3.00 9.00 1.50 5
Vm0 (µmol m−2 s−1) 14.00 21.50 2.50 4
Stomatal slope 7.00 10.00 1.00 4
Fine root 0.11 0.33 0.11 3
turnover (a−1)
Q ratio 0.40 3.20 1.40 3

92 cases from LS and 116 cases from WBS, which did not
provide model optimization results because of numerical in-
stabilities (with GPP approaching zero), were excluded from
subsequent analysis.

We selected 10 simulations with the best NSE scores for
both the LS and WBS sites (Table S2 and Fig. S1 in the Sup-
plement) and determined ensemble means of parameter val-
ues for these sites (Table 6). To perform validation of these
10 best simulations from each EC station, we extended the
model runs to obtain GPP estimates for the year 2017. We
then compared the biases and skill scores associated with
the top-performing simulation (hereafter the “best case”) and
the mean from all 10 simulations (hereafter the “ensemble
mean”). Among the 10 best simulations selected for each
EC site, 4 of them were common to both sites (Table S2 in
the Supplement). We observed that the variation in parame-
ter values was more pronounced for the LS site, especially
with regard to Vm0 and stomatal slope. Likewise, we identi-
fied more variation in GPP estimates among 10 best simula-
tions for LS site than for WBS site, especially during the peak
and trough periods in the plots (Fig. S2 in the Supplement).
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Table 6. Optimized parameter values from best cases and top 10 ensembles (mean and standard deviation (SD)) for LS and WBS EC stations.

Parameters LS EC station WBS EC station

Best case Ensemble mean and SD Best case Ensemble mean and SD

Vm0 (µmol m−2 s−1) 19.00 19.00± 1.66 19.00 18.25± 1.21
SLA (m2 kg−1) 7.50 8.10± 0.77 7.50 8.10± 0.77
Stomatal slope 9.00 8.70± 0.94 9.00 9.10± 0.32
Fine root turnover (a−1) 0.22 0.19± 0.09 0.33 0.23± 0.08
Q ratio 3.20 2.08± 1.29 1.80 1.80± 1.14

Figure 3. Observed and simulated GPP for the optimization period (water years 2015 and 2016) for both EC towers. (a–b) Simulated daily
GPP (kg C m−2 yr−1) from best case, 1 standard deviation of ensembles, and range of ensemble simulations compared with observations
for (a) LS and (b) WBS sites. (c–d) Simulated mean monthly GPP (kg C m−2 yr−1) from best case and ensemble means compared against
observation data for (c) LS and (d) WBS sites. Note that observation data from 11 December 2014 to 17 February 2015 are missing for LS
site.

The best case for WBS site showed traces of C3 grass growth
through some intermediate simulation years even though we
initialized the model with only the shrub PFT (Fig. S3 in the
Supplement). Optimized parameter values were only slightly
different between the best case and ensemble means for both
sites, possibly suggesting little interaction effects among the
parameters (Table 6). In the best case, parameter values for
Vm0, SLA, and stomatal slope were the same for both sites,
whereas Q ratio and fine root turnover rate were different.
We also observed that fine root turnover rate and Q ratio had
higher variability among the 10 best simulations compared
to the rest of the parameters for both sites. Our comparison

of variation between the two sites among ensemble members
showed that the WBS site had overall lower variation than
the LS site (Table 6), and Vm0 had noticeably lower variation
for the WBS site.

Figure 3 presents simulated GPP from the best case, varia-
tion among 10 best ensemble members, and ensemble mean
for the final two model years (October 2014 to Septem-
ber 2016) along with the observed GPP from the same pe-
riod from each EC station. Optimization results for the LS
site in Fig. 3a show that simulated GPP matches well with
observed data for most days, except during the spring sea-
son, during which strong peaks in observed GPP were not
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Table 7. Bias, NSE, and RMSE for optimization and validation of GPP for the best case and the top 10 ensemble means for both EC stations.

Simulations Optimization Validation

Bias RMSE Bias RMSE
(kg C m−2 yr−1) NSE (kg C m−2 yr−1) (kg C m−2 yr−1) NSE (kg C m−2 yr−1)

LS

Best case −0.137 0.277 0.456 −0.257 0.069 0.554
Ensemble mean −0.172 0.281 0.455 −0.278 0.053 0.559

WBS

Best case −0.028 0.452 0.213 −0.252 0.079 0.411
Ensemble mean −0.030 0.456 0.212 −0.265 0.036 0.420

captured by the simulation results. Average monthly com-
parisons (Fig. 3c) show that simulated GPPs are close to the
observations for most of the months except for April, May,
and June, during which the model is clearly underestimat-
ing GPP. We observed a small variation (Fig. 3a) among
10 ensemble simulations with an average standard devia-
tion of 0.057 kg C m−2 yr−1, where most of the variations
were observed during fall and early spring. Variations dur-
ing fall months are evident in the monthly average GPP, in
which there was often considerable difference between en-
semble mean and best case estimations for September and
October (Fig. 3c and d). Despite GPP estimation from en-
semble mean (−0.17 kg C m−2 yr−1) having higher negative
bias compared to the best case (−0.14 kg C m−2 yr−1), its
skill score (NSE) was marginally higher (Table 7). In com-
parison to the LS site, the WBS site had lower spring peaks
in GPP, which were also limited to fewer months (Fig. 3b
and d) and were far more comparable to the simulation re-
sults. The average standard deviation among ensemble sim-
ulations (0.037 kg C m−2 yr−1) was lower for WBS than for
LS, resulting in little difference between best case and en-
semble mean estimations for that site. Both the WBS and
LS ensemble mean simulations produced only a marginally
higher NSE than the best case results. However, the spring
mismatch in the LS site resulted in higher Bias and lower
NSE when compared to the WBS site (Table 7). Yet, despite
negative biases during spring, positive NSE scores for both
sites suggest that the parameters were generally functioning
to allow the model to track observed daily GPP over time.

For validation of the parameter estimates, we ran the
EDv2.2 model for all 10 best simulations with corre-
sponding parameter values from 2016 to 2017 for both
the LS and WBS sites and compared the simulated GPPs
from the 2017 water year with observed GPP from the
respective locations in the same year. Results from the
model validation showed greater negative biases and lower
NSEs for both sites compared to the optimization results
(Table 7). Moreover, there were substantial differences in
mean GPP observations from EC sites for both LS and WBS

sites, between optimization (LS= 0.61 kg C m−2 yr−1,
WBS= 0.35 kg C m−2 yr−1) and validation
(LS= 0.55 kg C m−2 yr−1, WBS= 0.46 kg C m−2 yr−1)
years. Validation results were slightly better for the WBS
than the LS site; however, the difference in validation
performance among the two sites was not as distinct as with
the optimization results. Overall, positive NSE values for
both cases (best case and ensemble mean) for both sites
suggest that the simulated estimates provided better GPP
predictions than the observed means. Poor validation results
could be attributed to interannual variability in observed
GPPs and to the inability of the model to adequately capture
peak spring growth.

Validation results shown in Fig. 4 also indicate that the
simulated daily GPPs for both sites matched observed val-
ues relatively well from late fall until early spring months
(October–April) but performed poorly in the late spring and
summer months (May–September) when compared with ob-
servation data from 2017. Daily patterns of simulated GPP
were almost identical for both sites, with GPP falling sharply
through late summer months and remaining close to zero.
Observed GPP data values at both sites showed similar pat-
terns of decline in 2017 during late summer months (July
and August), though not as sharply as the simulated re-
sults (Fig. 4). The observed increase in GPP at the begin-
ning of fall (September) was not well captured by the sim-
ulated outputs for either site. Monthly averages also clearly
show differences between simulated and observed GPP for
May through September (Fig. 4c, d). Variation among en-
semble simulations was higher for the LS site compared
to the WBS site, with standard deviations of 0.056 and
0.02 kg C m−2 yr−1, respectively. When validation and op-
timization results are compared, the variation between the
ensemble simulations of the LS site were relatively similar,
whereas ensemble variation was generally lower in the val-
idation output for the WBS site. Ensemble means for both
sites for validation exhibited almost identical patterns as the
best case simulations, though at slightly lower levels for most
of the months.
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Figure 4. Observed and simulated GPP for validation period (water year 2017) for both EC towers. (a–b) Simulated daily GPP
(kg C m−2 yr−1) from best case, 1 standard deviation of ensembles, and range of ensemble simulations compared with observations for
(a) LS and (b) WBS sites. (c–d) Simulated mean monthly GPP (kg C m−2 yr−1) from best case and ensemble means compared against
observation data for (c) LS and (d) WBS sites.

4 Discussion

Using our newly developed sagebrush shrub PFT, we were
able to effectively simulate sagebrush ecosystem productiv-
ity in EDv2.2 as represented by the two study sites. Simu-
lated results, after about 4 modeled years, clearly maintained
annual shrub GPP over time, although at a lower level than
the observed data from these sites. To improve GPP estimates
and reduce uncertainty, we assessed the sensitivity of 11 dif-
ferent parameters closely associated with biomass growth.
Results from this preliminary analysis were similar to pre-
vious studies (Dietze et al., 2014; LeBauer et al., 2013; Med-
vigy et al., 2009), wherein parameters Vm0, SLA, fine root
turnover rate, and stomatal slope were found to be the most
influential in determining carbon flux or primary productiv-
ity. We observed variation in these parameter values for 10
best simulations selected based on NSE values (Table S2 in
the Supplement) for both sites where the LS site had higher
variation in Vm0 and stomatal slope than the WBS site. The
effects of some parameters (stomatal slope, fine root turnover
rate, and Q ratio) on GPP prediction differed when they were
altered individually versus simultaneously with other param-
eters. For instance, sensitivity analysis suggested GPP in-
creases when fine root turnover ratio and Q ratio are low-

ered individually, yet the best results for each site did not im-
prove (i.e., still underpredicted GPP) with the lowest values
of these parameters. Indeed, in addition to 1st-order effects
of the studied parameters, the top 10 best parameter com-
binations exhibited variation in parameter values for both
EC sites, suggesting interacting effects and potential nonlin-
ear dependence among parameters. The best case parameters
identified from the optimization suggested some difference
in fine root turnover rate and Q ratio between the LS and
WBS sites. We found a similar pattern of marginally higher
fine root turnover rate and lower Q ratio at WBS with the en-
semble mean, despite substantial variation among the 10 en-
semble members. We can potentially relate these differences
in parameters between the LS and WBS sites with differences
in the root systems and vegetation height of low sagebrush
and Wyoming big sagebrush species, which are the dominant
vegetation types of the respective sites. Low sagebrush is a
smaller plant with primarily a shallow fibrous root system,
whereas Wyoming big sagebrush is taller with a dual taproot
and shallow-root system (Steinberg, 2002; USDA, 2018b).

Negative bias in estimated GPP for the best simulations
resulted from an inability of the model to correctly produce
daily GPPs for late spring and summer months. Although a
higher annual GPP could be obtained to compensate for neg-
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ative bias by changing parameter values, the highest GPP was
not necessarily the one with the best NSE since NSE was
calculated based on daily GPP values. Limiting optimiza-
tion to 5 of the 11 parameters initially identified may have
also contributed to the error and bias observed in our mod-
eled estimates. Our generalization of shrubland ecosystem
processes (as trees in the EDv2.2 model structure) may also
be one of the limiting factors. Open and scattered shrubland
ecosystems as in our study area (Mitchell et al., 2011) do not
follow the same pattern of recruitment and competition as
we would expect for a closed canopy ecosystem (Schwantes
et al., 2016; Wolf et al., 2008). In addition, future studies
should give special consideration to phenology, seed disper-
sal, and mortality that are unique to these shrubland ecosys-
tems. Even though the PFT parameters and allometric coeffi-
cients that we developed for shrub PFT influence the above-
mentioned ecosystem processes, we suggest modification of
some of these model structures in future studies to test their
influence and potentially improve GPP estimates.

GPP simulations for the WBS site had better optimiza-
tion scores than for the LS site, and also a slight edge over
the latter for validation results. This could be due to differ-
ences in soils and hydraulic conditions between the sites as
we used similar setups for our simulation. Moreover, varia-
tion between morphological characteristics of the vegetation
at the LS and WBS EC towers (characterized by low sage-
brush and Wyoming big sagebrush, respectively), including
growing seasons and flowering seasons, may also have re-
sulted in the observed differences in GPP (Howard, 1999;
USDA, 2018b). Since Wyoming big sagebrush is the domi-
nant species in the Reynolds Creek Experimental Watershed
area (Seyfried et al., 2000), the allometric equations fitted for
sagebrush (representing most areas of RCEW) could favor
the more realistic growth pattern of this species in the model
(e.g., Figs. 3 and 4).

Additionally, differences in the phenology of the associ-
ated grass species between the two sites could result in dif-
ferences in seasonal and annual productivity (Cleary et al.,
2015). For instance, the perennial grass at the LS site is Sand-
berg bluegrass, which is photosynthetically active in early
spring and senesces by early summer (USDA, 2016), and
thus may have contributed to the observed higher spring GPP
peak at the LS site. Although, we observed small amounts
of simulated GPP growth for C3 grasses for certain interme-
diate years, these levels were not sustained. However, cur-
rent parameters for C3 grasses were unlikely to adequately
produce coexistence of grasses in the area, and we could
not validate results in terms of the actual species composi-
tion and ecosystem dynamics of the EC sites as we did not
have GPP observations for unique PFTs. We also observed
high interannual variation in observed GPP for both sites,
leading to poor results in validation of simulation outputs.
In summary, site-specific variability, model complexity, and
optimizing for only five parameters likely contributed to, or

were responsible for, the differences between modeled and
observed GPP estimates.

While the emphasis of this study was to develop and opti-
mize the shrub PFT parameters, we expect that simultaneous
optimization of both grass and shrub PFTs would result in
improved representation of the vegetation composition in the
study area. Such an effort would also increase the number of
parameters required, potentially complicating the process of
optimization and validation unique to each PFT. Moreover,
several studies suggest that the parameters Vm0 and SLA vary
considerably across seasons (Groenendijk et al., 2011; Kwon
et al., 2016; Olsoy et al., 2016; Zhang et al., 2014). The
mismatch in daily GPP patterns between simulated and flux
tower data for specific seasons could be partly attributed to
the lack of the model’s ability to address these seasonal devi-
ations correctly. Like most other terrestrial biosphere models,
EDv2.2 does not incorporate seasonal variation in Vm0, SLA,
or other model parameters (Medvigy et al., 2009).

The optimization scheme implemented in our study has
some limitations. For example, we assumed the distribution
of all parameters of interest to be uniform but this may not
be true. Similarly, to keep computational time practical, we
excluded some of the sensitive parameters such as cuticu-
lar conductance, leaf turnover rate, and GRF from the opti-
mization analysis. We may achieve better results in param-
eter optimization and GPP estimates by making advances
in our methods in future studies. For example, we can uti-
lize additional sensitivity (including variance decomposition
and 1st- and 2nd-order analyses) (Zhang et al., 2017) and
optimization (including cost function, gradient descent, and
uncertainty analysis) (Richardson et al., 2010) methods to
fine-tune the sagebrush PFT parameters. Similarly, if we in-
clude additional years of observation data, we may better
capture interannual variability normally observed in ecosys-
tem fluxes, and potentially improve validation outcomes.

5 Conclusions

This study demonstrates that despite the complexity of
the sagebrush-steppe ecosystem, estimating GPP using the
newly developed sagebrush PFT is comparable, although
with seasonal bias, to observations obtained from EC sta-
tion sites. Since our primary focus here was to develop initial
parameters (including allometric relationships) for the shrub
(sagebrush) PFT in EDv2.2, we focused our efforts on utiliz-
ing simple sensitivity and optimization tools to constrain er-
rors associated with simulated GPP. Our identification of co-
efficients for allometric equations coupled with the other pa-
rameters for the semiarid shrub PFT for EDv2.2 will permit
exploration of additional research questions. For instance,
EDv2.2 could be run at regional scales with optimized pa-
rameters to model the spatiotemporal dynamics of the sage-
brush community composition and ecosystem flux under dif-
ferent climate and ecological restoration scenarios. PFT pa-
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rameters identified and constrained from this study can be
used as preliminary prior information in future studies re-
lated to sagebrush. We can either use the best case parameter
sets from one of the study sites, depending upon the domi-
nant sagebrush type, or we can use any 1 of the 10 ensem-
ble parameters if we have reliable information on the studied
parameters. With additional time and computing resources
(to facilitate large numbers of simulations), we can further
refine sagebrush parameters to explore variance decomposi-
tion and nonlinear dependencies using different sensitivity
and optimization methods. Optimization of associated or co-
occurring PFTs (C3 grass and conifers) in the region, span-
ning out to include additional study sites, would also help
to better understand and constrain uncertainties in estimating
the complex dynamics of the sagebrush-steppe ecosystem.

Code and data availability. The original EDv2.2 is available on
the GitHub repository at https://github.com/EDmodel/ED2 (ED-
2 Model Development Team, 2014, last access: 20 September,
2019), which is maintained and continuously updated by the own-
ers of the repository. Modified source codes for EDv2.2 with shrub
PFT parameters used in this paper and input data are available at
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