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Abstract. The veracity of urban climate simulation models
should be systematically evaluated to demonstrate the trust-
worthiness of these models against possible model uncertain-
ties. However, existing studies paid insufficient attention to
model evaluation; most studies only provided some simple
comparison lines between modelled variables and their cor-
responding observed ones on the temporal dimension. Chal-
lenges remain since such simple comparisons cannot con-
cretely prove that the simulation of urban climate behaviours
is reliable. Studies without systematic model evaluations, be-
ing ambiguous or arbitrary to some extent, may lead to some
seemingly new but scientifically misleading findings.

To tackle these challenges, this article proposes a method-
ological framework for the model evaluation of high-
resolution urban climate simulations and demonstrates its ef-
fectiveness with a case study in the area of Shenzhen and
Hong Kong SAR, China. It is intended to (again) remind ur-
ban climate modellers of the necessity of conducting system-
atic model evaluations with urban-scale climatology mod-
elling and reduce these ambiguous or arbitrary modelling
practices.

1 Introduction

Recently, studies on urban climate have received growing
attention. It is forecasted that 66 % of the world’s popula-
tion will be living in an urban area by 2050 (United Nations,
2014). The fundamental well-being of the urban population,
such as their comfort and health, is directly and significantly
affected by urban meteorological conditions, such as temper-
ature, wind speed, and air pollution. Meanwhile, the ongoing
global trend of climate change adds to the urgency and signif-
icance of achieving a better understanding of urban climate
and obtaining more precise predictions of future changes. In
this vein, many tools have been developed, and rapidly devel-
oping urban climate simulation models are among the most
widely used ones. These simulation models have been widely
applied in analyses and predictions of urban climate as well
as assessments of urban climate impacts brought by dramatic
human interferences in cities (Dale, 1997; Kalnay and Cai,
2003).

Model evaluation is necessary for urban climate simula-
tions to make sure the results are reliable and trustworthy
to some extent. Model evaluation refers to comparisons be-
tween the modelled variables and corresponding observa-
tions. After modelling, a model evaluation should be con-
ducted for establishing the trustworthiness of the results be-
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cause of the incompleteness caused by the approximations
and assumptions in scientific mechanisms of the model even
if it was configured appropriately. Moreover, urban climate
simulation is employed to obtain fine-scale details from the
lateral boundary condition of coarse-scale meteorological
data by using a limited-area model which takes land sur-
face forcing into account in order to construct precisely these
fine-scale details in the area of interest (Lo et al., 2008). The
fine-scale details do not exist in the coarse-scale meteoro-
logical data, and accordingly they have the possibility of de-
viating from their corresponding natural values. Urban cli-
mate simulation, with a higher resolution requirement (spa-
tial and temporal) for modelling urban climatological phe-
nomena (for example, the urban heat island and temperature
difference between urban and non-urban areas), is more sen-
sitive to the inadequacies of the atmospheric model, the in-
appropriate configuration of the modelling system (Warner,
2011), and the quality of input data (Bruyère et al., 2014).
Therefore, model evaluation is even more critical to urban
climate simulation.

However, recent efforts understandably paid little attention
to model evaluation in the community of urban climate mod-
ellers, which weakens the reliability of conclusions based
on the insufficiently justified model results. Among existing
literature, researchers mostly conducted some simple com-
parisons between modelled variables and their correspond-
ing observed ones by drawing their short-term time-history
plots. For example, Jiang et al. (2008) made a bold predic-
tion that the near-surface temperature in the Houston area
will increase by 2 ◦C in future years (2051–2053). How-
ever, the conclusion was only supported by a simple com-
parison between the observed diurnal 2 m air temperature
and that modelled by the Weather Research and Forecasting
(WRF) model during August 2001–2003. Meng et al. (2011)
modelled the 2 m air temperature and heat-island intensity
by using three different modelling schemes, thus conclud-
ing which one is best in modelling performance. However,
these seemingly robust conclusions are only based on a com-
parison of the observed temperatures with their correspond-
ing modelled ones over a 3 d period. With a simple model
evaluation comparing 3 months of diurnal patterns of WRF-
modelled 2 m surface temperature, special humidity, and rel-
ative humidity with their corresponding observed ones, Yang
et al. (2012) asserted that the WRF model could reconstruct
urban climate features at a high resolution of 1 km accurately
in modelled surface air temperature and relative humidity in
the Nanjing area. Although the aforementioned efforts par-
tially addressed the evaluation issue, significant challenges
remain in establishing the trustworthiness of the model: even
an exact match between a modelled variable in some grids
and its corresponding observed one in a period cannot con-
clude that the model simulates urban climate successfully,
not to mention a non-exact match. These model evaluation
methods are not convincing and may even be reckless. This
kind of modelling practice without a convincing model eval-

uation is still prevalent in the climate modelling community,
even in the most recent literature, such as the papers of Gu
and Yim (2016), Wang et al. (2016), and Bhati and Mo-
han (2016). Based on simulated model results without any
model evaluation, Gu and Yim (2016) declared a sensation-
alized statement that “22 % of Taiwan premature mortalities
due to air pollution are caused by TBI (trans-boundary im-
pacts) from China” (Gu and Yim, 2016). Wang et al. (2016)
provided a simple model evaluation for only a 2-month study
period (January and July). Bhati and Mohan (2016) provided
a rough model evaluation for only a 1-month study period
(March 2010). Moreover, even with these inadequate model
evaluations, previous literature also did not analyse the inter-
val between simulated variables and their corresponding ob-
served ones. To sum up, insufficient model evaluations have
not been paid attention in the climate-modelling community.

In spite of some previous literature already adverting to
the importance of model evaluation in interpreting mod-
elling results, such as Osborn and Hulme (1997), Caldwell et
al. (2009), Gosling et al. (2009), and Sillmann et al. (2013),
a systematic framework for model evaluation has not been
provided in the literature. This is a research gap in urban cli-
matology. Thus, in this paper, we dig deeper into model eval-
uation to propose a systematic framework and methods for
evaluating model results from multiple perspectives, in order
to benefit future studies with more choice for model quality
control and make urban-scale simulation more robust. More-
over, we also provide a case analysis of the departure be-
tween the modelled atmospheric variable and its correspond-
ing observed one.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed framework for model evalu-
ation, experimental design, and data used for modelling and
model evaluation. Section 3 introduces the technical prepara-
tion for urban climate simulation. Section 4 presents results
of the proposed model evaluation methods in our case study.
Section 5 concludes the paper with discussion.

2 Methodology

2.1 Urban climate modelling

In an urban area, the natural texture of the land surface has re-
markably changed to the human-made, impervious land sur-
face of today. The textural change of the land surface leads
to modifications in the interchange of energy, momentum,
and mass between the land surface and planetary boundary
layer (PBL) (Wang et al., 2009). Moreover, in an urban area,
the anthropogenic heat release caused by human activities
increases sensible and latent heat emission. Furthermore, the
urban building morphology also has an impact on radiation
exchange and airflow. Tewari et al. (2007) developed the ur-
ban canopy model (UCM) to couple with the Advanced Re-
search WRF (ARW) model via the Noah land surface model
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Table 1. An evaluation framework for urban climate modelling.

Metrics Temporal resolution

Statistical perspectives Method Annual Monthly Daily

Descriptive statistics Temporal comparison of
spatial variation (TCSV)

Annual variation
pattern

Monthly variation
pattern

Diurnal
pattern

Urban climatological spatial pattern

Statistical distributions Perkins’ skill score (PSS) Annual mean PSS Monthly PSS

PDF of the difference between
modelled and observed data

Annual mean score Monthly score

(Noah LSM) to improve the simulation accuracy of urban
processes by integrating these physical characters below the
urban canopy.

We took an area encompassing Shenzhen and Hong Kong
SAR, a region in China that had gone through intensive
urbanization, as the study area. We took the year of 2010
as the study period because both the land surface data and
observation data were obtainable for 2010. A WRF–ARW
model coupled with the Noah LSM/SLUCM (single-layer ur-
ban canopy model) (WRF ARW/Noah LSM/SLUCM v3.7.1)
was used for modelling urban climate in 2010 at 1 km2 grid
spacing. Through comparison, we found that some of the ter-
restrial input data provided by the National Center for At-
mospheric Research (NCAR) were out-of-date, especially
for data describing the fast-developing area. To more reflect
precisely the artificial changes on the physical environment
brought by urbanization, we developed four sets of high-
resolution urban data, including vegetation coverage, build-
ing morphology, land cover, and anthropogenic heat; by us-
ing these variables as inputs for the follow-up urban climate
simulation, the simulated urbanization impacts on urban cli-
mate would be more accurate.

Since running an atmospheric model consumes a consider-
able amount of computational resources, especially for sim-
ulating long-term climate, we divided the urban climate sim-
ulation case into sequenced 4-day simulation segments due
to limitations in computational resources. For each segment,
the first day overlaps with the last day of its previous simu-
lation segment, which was used for model spin-up. For more
details, please refer to Sect. S3 of the Supplement.

2.2 The methodological framework for urban climate
model evaluation

For urban climate model evaluation, comparing modelled
meteorological attributes with their corresponding observed
ones is the most widely accepted way of model evaluation
in the literature. Given a certain study area and period, such
comparisons are carried out respectively for each meteoro-
logical variable of interest.

Different views on your data are vital for urban cli-
mate model evaluation since meteorological processes con-
tain substantial spatiotemporal patterns and variances. Most
existing literature conducted comparisons simply including
all observations within their spatiotemporal coverage. De-
spite that comparing all observations provides an aggre-
gated evaluation of model performance, such a comparison
is conducted under the assumption that urban climate be-
haviours are similar across space and time, which is usually
not true. Therefore, we included three different temporal res-
olutions in our model evaluation framework (Table 1): an-
nual, monthly, and daily. This is done in order to provide
a sophisticated view on whether the modelled results could
replicate the temporal and spatial patterns in the observations
or not.

For each perspective, existing literature commonly com-
pares the descriptive statistics, that is, the range, mean, and
variance, between the modelled and observed attributes. The
importance of examining climate statistics other than climate
means is not new (Katz and Brown, 1992; Lambert and Boer,
2001). The descriptive statistics are useful in providing ag-
gregated information on the distribution of the attributes, but
they can be misleading since various statistical distributions
can lead to similar descriptive statistics, and aggregated met-
rics can be sensitive to outliers. Therefore, we compared not
only the descriptive statistics but also the statistical distri-
butions of modelled and observed meteorological variables.
The probability density function (PDF) was used to calcu-
late the statistical distribution of modelled and observed me-
teorological variables or the differences between pairs of
them. The overlap of two distributions was quantified using
Perkins’ skill score (PSS). The PSS ranges from 0 to 1, with 1
indicating perfect modelling and 0 indicating the worst mod-
elling. The advantages of using the PDFs and PSS for climate
statistics have been discussed in Perkins et al. (2007).

In urban climatology, the urban–rural difference is among
the most essential spatial patterns to investigate. Therefore,
we evaluated the model by comparing the temporal evolution
of the observed and simulated meteorological characteristics
in urban and non-urban areas.
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Following the proposed framework, we designed a guide-
line (Sect. S4 of the Supplement) and a workflow (Fig. 1) in
the practice of model evaluation.

2.3 Observation datasets and modelled variables for
model evaluation

In the existing literature, numerical weather prediction
(NWP) models are typically evaluated by comparing the spa-
tiotemporal patterns of the modelled variables with those
of its corresponding near-surface observations. Moreover,
we selected seven meteorological variables for the compari-
son, including 2 m air temperature, surface temperature, 10 m
wind at u direction, 10 m wind at v direction, accumulated
total cumulus precipitation, accumulated total grid precipita-
tion, and 2 m relative humidity. These variables are the crit-
ical variables in the prognostic and diagnostic equations in
the NWP model.

Table 2 lists the modelled variables and their correspond-
ing observations in the model evaluation. The observation
datasets are the point data except for the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) dataset, which
is the grid data. All the modelled variables are grid data.
The comparisons between modelled variables and their cor-
responding observed ones are comparisons between the grid
value of the modelled variable and the point value matched
to geographical locations, except for the comparison between
the modelled surface temperature (TSK) and its correspond-
ing observation retrieved from MODIS imagery. Moreover,
the MODIS land surface temperature is the result of an in-
verse calculation based on longwave radiation through the
atmosphere received by satellite according to the theory of
blackbody. The MODIS land surface temperature is the man-
ifestation of the surface synthetic radiation brightness tem-
perature. Furthermore, in the land surface process, TSK is
calculated iteratively according to the energy balance which
involves longwave radiation, shortwave radiation, sensible
heat, and latent heat, and accordingly, the final TSK value is
also a manifestation of the surface synthetic radiation bright-
ness temperature. Although there are some differences be-
tween TSK and the brightness temperatures observed by
satellites, they describe relatively similar physical quantities.
Therefore, we use TSK to compare with the MODIS land
surface temperature.

3 Technical preparation

3.1 Model setup

A telescoping nest’s structure with four nested domains
which are centred at 22◦39′30′′ N, 114◦11′30′′ E was set up
as the horizontal domain baseline configuration in this study.
Moreover, the same set of eta levels with 51 members was
used in each horizontal domain. Furthermore, there were
some physics components in the model, and each component

had some different schemes for choosing. Table 3 shows the
scheme chosen for each component. For more details, please
refer to Sect. S4 of the Supplement.

3.2 Data preparation

Firstly, the 2010 National Centers for Environmental Pre-
diction (NCEP) FNL (Final) Operational Global Analysis
dataset (1◦ grid spatial resolution and 6-hourly temporal res-
olution) was used as the gridded data in this study. Secondly,
the geographical input data of the completed dataset of the
WRF Preprocessing System (WPS) were used as the static
geographical dataset in this study. Thirdly, the 2010 Pearl
River Delta (PRD) urban land surface dataset, whose major
sets of data include the land cover, vegetation coverage, ur-
ban morphology, and anthropogenic heat, was used. This was
specially developed for refining the WRF primary data.

3.3 Primary data processing

Firstly, the primary data included the interpolated geodata
files, the intermediate format meteorological data files, the
horizontally interpolated meteorological data files, the ini-
tial condition data files, and the lateral boundary condition
data files. Secondly, two primary data processing software
packages (the geo_data_refinement processing package and
wrf_input_refinement processing package) were developed
for extracting the urban land surface attributes from the 2010
PRD urban land surface dataset and revising the correspond-
ing fields of the related primary data files with these at-
tributes.

4 Model evaluation

4.1 Evaluation of the 2 m air temperature

Using descriptive statistics, Fig. 2 compares the range and
median values of the observed and the modelled 2 m air tem-
perature at 02:00, 08:00, 14:00, and 20:00 in each month of
the year. The modelled air temperatures always have similar
spatiotemporal behaviour compared with the observed ones.
Moreover, Fig. 3 compares the diurnal range and median of
the observed and modelled air temperature each month of
the year. Both the range and median of the 2 m modelled air
temperature have the same diurnal variation as their corre-
sponding observed ones in each month, although there are
differences between the modelled and observed ones. Fur-
thermore, as shown in Figs. 4 and 5, the modelled air tem-
peratures have the same urban climatological spatial pattern
as the observed ones in which the air temperature is higher
in the urban areas than in non-urban areas irrespective of the
time at which it is measured.

Using PSS to compare the statistical distribution of the
observed and modelled air temperature, the model produces
quite a good simulation of 2 m air temperature with an an-
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Figure 1. The workflow for model evaluation.

nual mean PSS of 0.724. Figure 6 shows that the monthly
PSS of 2 m air temperature ranges from a minimum of 0.595
in July to a maximum of 0.886 in January and has an annual
mean value of 0.724. This demonstrates that the model cap-
tured the PDF for the observed air temperature at least about
60 % in a month and over 72 % in a year. Figure 7 shows the
PDF of differences between each value of each month’s time
series of modelled grid air temperatures and its correspond-
ing observed ones. The probability of 3 ◦C bias interval (the
absolute value of the difference between modelled surface
temperature and its corresponding observed one is 3 ◦C) in
a month varies from 64 % to 91 % and has an annual mean
probability of this interval of 78 %.

In Fig. 6, the modelled distribution shifts to low temper-
atures in the period of June to October (summertime in the
research area). Figure 7 shows that the differences between
the modelled 2 m air temperatures and their corresponding
observed ones exist the whole year. In fact, the difference
includes not only the modelling bias but also an essential dif-
ference between a 1 km grid spatial average value and a value

of a point located in this grid. Moreover, the observation is
always located in an open area, and thus, the observed 2 m
air temperature is the temperature of a point in the open area.
The modelled 2 m air temperature is the mean temperature of
a 1 km grid which always includes some vegetation-covered
areas. In the summertime, the point air temperature in the
open area without tree coverage is always higher than its cor-
responding mean air temperature of a 1 km grid with some
vegetation coverage.

To sum up, the model produces quite a good simulation
of 2 m air temperature with an annual mean PSS of 0.724. It
also captures the behaviours of monthly and diurnal variation
of observed 2 m air temperatures. Moreover, the modelled air
temperatures have the same urban climatological patterns as
those of the observed ones.

4.2 Evaluation of surface temperature

For descriptive statistics, the modelled surface temperatures
have the same annual variations as those of the MODIS ones.
Moreover, both the modelled surface temperatures and their
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Table 2. Modelled variables for model evaluation.

Modelled variables for model evaluation Corresponding observation datasets

Name Description Datasets Sources

T2 2 m air temperature 2010 PRD 2 m air temperature

U10 10 m wind at u direction 2010 PRD 10 m wind speed

V10 10 m wind at v direction

RAINC Accumulated total cumulus
precipitation

2010 PRD precipitation Meteorological Bureau of
Shenzhen Municipality

RAINNC Accumulated total grid scale
precipitation

RH2 2 m relative humidity 2010 PRD relative humidity

TSK Surface temperature 2010 MODIS/Aqua Land Sur-
face Temperature and Emissivity
(LST/E) product

NASA Earth Observing System
Data and Information System
(EOSDIS) Land Processes
Distributed Active Archive Center
(LP DAAC), USGS Earth
Resources
Observation and Science
(EROS) Center

Table 3. Schemes of the physics components.

Component Scheme

Cumulus New simplified
Arakawa–Schubert

Microphysics WRF double movement 5-class
(WDM5)

Radiation Rapid Radiative Transfer Model
for GCMs (general circulation
models) (RRTMG)

Planetary boundary layer Bougeault–Lacarrère
Surface layer Revised Fifth-Generation Penn-

sylvania State University–NCAR
Mesoscale Model (MM5)

Land surface model Noah LSM
Urban canopy model Single-layer

corresponding observations from MODIS also have the same
urban climatological patterns; that is, urban areas have higher
surface temperatures than non-urban areas during the entire
day. For more details, please refer to Figs. S6, S7, and S8 in
the Supplement.

Regarding the statistical distribution, the modelled 02:00
and 14:00 surface temperatures represent the corresponding
MODIS ones with an acceptable PSS. The monthly PSS of
modelled surface temperatures ranges from 0.629 to 0.794 at
02:00 and from 0.479 to 0.777 for modelled at 14:00 respec-
tively. The annual mean PSS of modelled surface tempera-
tures at 02:00 and 14:00 is 0.702 and 0.623 respectively. Ac-

cordingly, both modelled surface temperatures at 02:00 and
14:00 are quite a good fit in MODIS surface temperature with
a PSS of over 0.6. Moreover, the monthly probabilities of a
3 ◦C bias interval (the absolute value of the difference be-
tween modelled surface temperature and its corresponding
MODIS one is 3 ◦C) at 02:00 range between 69 % and 98 %
and have quite a high annual mean value of 87 %. The prob-
abilities of a 3 ◦C bias interval at 14:00 range from 54 % to
84 % and have a high annual mean value of 73 %. For more
details, please refer to Figs. S9, S10, S11 and S12.

However, we also observed noticeable differences be-
tween the modelled surface temperature and its correspond-
ing MODIS one in some grids. An analysis which was con-
ducted on the MYD11A1 dataset finds that there are many
grids whose quality was not evaluated in the MYD11A1
dataset, and accordingly, it is highly possible that this dif-
ference includes an observation bias. Moreover, due to the
difference between the temporal coverages of the model out-
come and its corresponding observation from MODIS, the
observed difference also includes a bias introduced by the
difference in measured time. Furthermore, the resampling
operation on the MODIS dataset also causes a technical bias
in some grids.

To sum up, the modelled 02:00 and 14:00 surface temper-
atures represent the corresponding MODIS ones with an ac-
ceptable PSS. Moreover, the modelled surface temperatures
also have the same annual variations and the same urban cli-
matological spatial patterns as that of those MODIS ones.
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Figure 2. Comparison of modelled and observed 2 m air temperature at 02:00, 08:00, 14:00, and 20:00.

4.3 Evaluation of the 10 m wind speed

Using descriptive statistics, we compared the range and me-
dian values of the observed and the modelled 10 m wind
speeds at 08:00, 14:00, 20:00, and 02:00 in each month of the
year. The modelled 10 m wind speed always has a similar be-
haviour of spatiotemporal variation with the observed ones.
Moreover, the modelled 10 m wind speed also has the same
urban climatological spatial pattern as the observed ones in
which the 10 m wind speed is lower in the urban areas than in
non-urban areas, irrespective of the time at which it is mea-
sured. For more details, please refer to Figs. S13, S14, and
S15.

From the point of view of the statistical distribution, the
monthly PSS of the modelled 10 m wind speed ranges be-
tween 0.482 and 0.802 and has an annual mean value of
0.660. Moreover, the monthly probabilities of the 3 m s−1

bias interval (the absolute value of the difference between

modelled wind speed and its corresponding observed one is
3 m s−1) range between 61 % and 83 %. For more details,
please refer to Figs. S16 and S17.

We also observed the deviation which the modelled dis-
tribution shifts to high speed. The difference in the speed of
the modelled 10 m wind and its corresponding observed one
is not entirely caused by the model bias. The observation al-
titude of the modelled 10 m wind is different from its cor-
responding observed one. The modelled outcomes measure
the upper air movement of the urban canopy, but the obser-
vations measure the air movement inside the canopy. The lo-
cations of modelled and observed air movements concerning
the canopy would cause an essential difference between the
modelled and observed values. Moreover, this difference also
includes an essential difference between a 1 km grid spatial
average value and a value of a point located in this grid.

Demonstrated by comparisons, the modelled ones of 10 m
wind speed also have the same annual variation and the same
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Figure 3. Diurnal variation of 2 m air temperature.

urban climatological spatial pattern as that of the observed
ones. The model also simulates 10 m wind speed with ac-
ceptable PSS and accuracy.

4.4 Evaluation of precipitation

From descriptive statistics, the modelled precipitations al-
ways have similar behaviour of spatiotemporal variation
compared with the observed ones. For more details, please
refer to Figs. S18, S19, and S20.

Demonstrated by the statistical distribution, the monthly
PSS of modelled precipitation ranges between 0.444 and
0.747 and has an annual mean value of 0.579. Moreover, the
model simulated precipitation with an accuracy in which the
monthly probabilities of the 3 mm bias interval (the absolute
value of the difference between modelled precipitation and
its observed one is 3 mm) range between 39 % and 89 % and
have an acceptable annual mean value of 67 %. For more de-
tails, please refer to Figs. S21 and S22.

However, the probability of 3 mm bias intervals is quite
low in some months; for example, the one was 39 %, 50 %,
and 53 % in June, September, and May respectively. The
modelled precipitations deviated from their corresponding
observed ones in these 3 months.

To sum up, the modelled precipitations also have the same
annual variation as those of the observed ones. Moreover, the
comparison of experiments and observations concerning the
modelled and observed measurements of precipitation pro-

vide evidence that the model simulates precipitation with an
acceptable PSS and accuracy.

4.5 Evaluation of relative humidity

We compared the range and median values of the observed
and modelled relative humidity values across the spatial ex-
tent of the interested area stratified by time of day (08:00,
14:00, 20:00, and 02:00) and month. It is apparent that the
modelled values always have similar behaviour in spatiotem-
poral variation with the observed ones, although all modelled
median values are higher than the corresponding observed
ones. Moreover, the modelled relative humidity has a simi-
lar spatial pattern compared with the observed one in which
the relative humidity is lower in the urban areas than in the
non-urban areas for all times of day and months. For more
details, please refer to Figs. S23, S24, and S25.

Demonstrated by the statistical distribution, the monthly
PSS of the modelled relative humidity ranges between 0.525
and 0.786 and has an annual mean value of 0.673. Moreover,
the model simulates the relative humidity with quite good
accuracy in which the monthly probabilities of the 20 % bias
interval (the absolute value of the difference between mod-
elled precipitation and its observed one is 20 %) range be-
tween 77 % and 96 % and have a high annual mean value of
91 %. For more details, please refer to Figs. S26 and S27.

To sum up, the model simulates the relative humidity with
acceptable PSS and accuracy. Moreover, it also stimulates the
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Figure 4. Comparison of observed air temperatures (at 02:00, 08:00, 14:00, and 20:00) in urban and non-urban areas.

monthly variation and urban climatological spatial patterns
of relative humidity appropriately.

5 Discussion and conclusions

5.1 Model evaluation using observations

We need more practical model evaluation methods for bet-
ter comparisons between model outcomes and observations
to serve as partial support for the reliability of urban climate
simulations and any conclusions based on the simulation re-
sults. The atmospheric model also is one of the earth science
numerical models. An earth science model can simulate a
resonance with the natural system (Oreskes et al., 1994), and
accordingly, a climate simulation should aim at modelling
the temporal and spatial meteorological features of climate.
Therefore, a model evaluation should aim at assessing the

similarity of temporal and spatial features between the mod-
elled results and observations. In this study, the PSS was used
for assessing the similarity quantitatively, and the graphic of
a temporal comparison of spatial variation was used for as-
sessing the similarity qualitatively. The quality of simulation
was evaluated by using both descriptive statistics, such as the
annual mean accuracy, and statistical distributions, such as
the PSS metric. Similar spatial and temporal behaviours be-
tween the modelled variables and their corresponding obser-
vations are also illustrated.

Utilizing the proposed model evaluation methods, evalua-
tion results in this case study indicate that this atmospheric
model appropriately portrayed the annual variations in the
climatological patterns of air temperature, surface tempera-
ture, 10 m wind speed, and air relative humidity. We observe
that the simulation model captured similar temporal and spa-
tial meteorological features of urban climate. From a quanti-
tative perspective, the model achieved at least an acceptable

www.geosci-model-dev.net/12/4571/2019/ Geosci. Model Dev., 12, 4571–4584, 2019
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Figure 5. Comparison of modelled air temperatures (at 02:00, 08:00, 14:00, and 20:00) in the urban and non-urban areas.

PSS and accuracy in the simulations of 2 m air temperature,
surface temperature, 10 m wind speed, precipitation, and air
relative humidity, which means that the simulation results are
acceptable approximations of the observations. Apparently,
according to the above evaluations, the proposed simulation
model in our case study is sufficiently reliable in reproduc-
ing meteorological features of urban climate at a 1 km spatial
resolution.

The good match, in our study or any other study, be-
tween the model outcomes and observations can only sup-
port that the simulation results are acceptable approximations
of the observations in the specific spatiotemporal coverages
in respective studies. These comparisons are inadequate for
model “verification” or “validation”. Returning to the philo-
sophical basis, the terms verification and validation imply the
confirmation of truth and legitimacy respectively (Oreskes et
al., 1994). We get observations of meteorological characters
from monitoring stations, and that is why the observations

come in points and suffer from frequent missing data. There-
fore, it is common that the spatiotemporal coverage of the ob-
servations can only partially match that of the modelling out-
comes, which can be proved by the model evaluation process
regarding air temperature, surface temperature, and other fac-
tors mentioned above. A good match between a model out-
come and its corresponding observation at specific locations
is no guarantee of a good match at other locations. Similarly,
a good match between the model outcomes and the corre-
sponding observations for a historical period is no guarantee
of a good match in the future. Moreover, a good match be-
tween the model outcomes and corresponding observations
for a limited spatiotemporal range does not guarantee that
the model is free from initial and model uncertainties. Con-
sequently, even a complete match between the observations
and model outcomes does not ensure a successful verification
and validation of the modelling system, let alone an incom-
plete match in practice (Oreskes et al., 1994). Theoretically,
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Figure 6. Monthly PSS of the 2 m air temperature.

Figure 7. Monthly PDF of the 2 m air temperature difference.
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verifying or validating an atmospheric model is impossible.
However, an earth science model can represent a natural sys-
tem accurately to some extent (Oreskes et al., 1994), so it
is feasible to evaluate atmospheric model outcomes with the
observation data using practical spatial and temporal com-
parisons, which seems to be the best way possible to evaluate
the performance of an atmospheric model. Nevertheless, we
should always be aware of imperfectness.

5.2 The essential difference, observation bias, and
model bias

Observations are probably the best reference we get to eval-
uate the simulation results, but that does not mean obser-
vations are perfect for such an evaluation. The comparison
between the model outcome and observations alone cannot
make a complete model evaluation, since it does not rule out
the essential difference, observation bias, and model bias.

The essential difference refers to the fact that model out-
comes from the simulation models are average values of
a grid, while the observations are point-based, which only
measure the meteorological conditions around the location of
the monitoring station. Comparing the average value within
a spatial area, the size of which ranges from 0.25 to over
100 km2, with point-based observations is problematic for
two main reasons. (1) The average value in a grid is cal-
culated under the assumption that the grid is homogeneous,
which is usually not true especially when detailed urban mor-
phology is considered, and so the average value is usually
lower than that of point-based observations. (2) Point-based
observations are likely to be significantly affected by the sur-
rounding environment of the monitoring site, lacking rep-
resentativeness of the meteorological condition in the area.
Therefore, the comparison between modelled outcomes and
observations is biased, although it is usually the only model
evaluation approach we get so far. The only exception is us-
ing the observations from remotely sensed imagery; for ex-
ample, we used the land surface temperature product from
MODIS/Aqua to evaluate the modelled temperature of the
surface skin. However, there are many grids whose qual-
ity has not been evaluated in the MODIS/Aqua Land Sur-
face Temperature product, and accordingly, the difference
between the modelled temperature of the surface skin of a
grid and its corresponding one in the MODIS/Aqua Land
Surface Temperature product possibly includes an observa-
tion bias.

The model bias refers to the uncertainty caused by differ-
ences between the actual atmospheric physical processes and
the approximations in the model (Skamarock et al., 2005,
2008). The fine-scale details are constructed by a limited
area atmospheric model which consists of physical compo-
nents driven by the lateral boundary conditions of coarse-
scale meteorological data and land surface forcing data (Lo
et al., 2008; Hong and Kanamitsu, 2014). However, these
details do not exist in the coarse-scale meteorological data

(Hong and Kanamitsu, 2014). A limited area atmospheric
model can represent a natural atmospheric system accurately
to some extent rather than entirely. The simulation models
are supposed to include many more complex atmospheric
physical processes to explain meteorological states with high
spatial and temporal resolutions, but many of them have to
be omitted or empirically approximated due to limitations
in knowledge and computational efficiency. Given the com-
plexity of simulation models, estimating error propagation
in these models is complicated, and thus model evaluation
becomes the only quality control of simulation results, es-
pecially for high-resolution urban climate simulations which
are more sensitive to the inadequacies of the atmospheric
model, inappropriate configuration of the modelling system
(Warner, 2011), and the quality of input data.

5.3 Conclusions

Following the proposed framework, we first measured both
the descriptive statistics of each pair of the modelled and ob-
served meteorological variables and the difference between
them at each spatiotemporal epoch. Secondly, we respec-
tively analysed the probability density function of modelled
and observed meteorological variables, and the probability of
the difference values between them. With visualized PDFs,
we can understand the empirical distribution of the simula-
tion bias and notice outliers directly, which may shed light
on the calibrations of further models’ results. Thirdly, we ap-
ply the analysis using descriptive statistics and statistical dis-
tributions to the other temporal scales: monthly and time of
day. By doing so, we further investigate temporal variations
in different months of the year and times of the day.

In conclusion, we emphasize in this paper that model eval-
uation is necessary and usually the only process that guaran-
tees the reliability of simulation outcomes, and so utilizing
a practical model evaluation process to reach an acceptable
agreement between the simulated and observed meteorolog-
ical variables should be the premise of any conclusion drawn
from the modelling results. The emerging high-resolution
urban climate simulation models are especially sensitive to
possible initial and model uncertainties. In this vein, we pro-
posed a practical methodological framework for urban cli-
mate model evaluation that examines not only the matches
between the spatiotemporal patterns of the modelled and ob-
served variables but also the statistical distribution of the
difference between the modelled variables and their corre-
sponding observations. Moreover, the proposed method uti-
lized PSS to statistically quantify the extent of overlap be-
tween the PDFs of modelled variables and their correspond-
ing observations, which, we argue, was a more informa-
tive and useful indicator for the quality of modelling out-
comes compared to existing metrics such as residuals and
correlations. By doing so, we hope to provide more capa-
ble tools that improve the quality control in future research
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using numerical meteorological simulations, especially high-
resolution urban climate simulations.

We also intend to raise awareness and attention over
model evaluation methods within the modelling community,
since new findings without sophisticated understanding, con-
trol of model uncertainties, and systematic assessments of
model outcomes may be scientifically misleading. More-
over, we reminded the modeller that they should be cautious
about concluding a quantitative finding because it is impos-
sible to identify the essential difference, observation bias,
and model bias in the difference between observations and
their corresponding modelled values. Furthermore, although
this methodological framework of model evaluation was de-
signed for urban climate simulation, it can also be applied in
local-scale climate simulation in urban or non-urban regions.

At the spatial dimension, the climate areas were clas-
sified into the different scales, such as local (less than
104 km2), regional (from 104 to 107 km2), and global (greater
than 107 km2) scales (Intergovernmental Panel on Climate
Change, 2012). The similarity between the spatial patterns
of the modelled and observed variables is indeed a signif-
icant component in model evaluation of regional and global
climate, especially regarding the spatial difference of the pre-
cipitation belt and atmospheric circulation. In the previous
literature, there were not many papers on the methods of spa-
tial pattern comparison for local climate simulation, which is
a research gap for future exploration.

Finally, some future research ideas were inspired. The ef-
fects of the selected physical components on the evaluated
modelling accuracy are not clear, which requires further con-
trol experiments. Also, the effects of the refined urban land
surface datasets on the evaluated modelling accuracy also re-
quire further discussion.

Code availability. The source code of the WRF–ARW modelling
system packages (WRF Model 3.7.1 and WRF Pre-Processing
System (WPS) 3.7.1) are publicly available at http://www2.
mmm.ucar.edu/wrf/users/download/get_source.html (last access:
10 June 2018).

The configuration profile of the WRF–ARW modelling system
(namelist.wps and namelist.input), the changes in the WRF–ARW
modelling system (the source code for inputting the 2-D anthro-
pogenic sensible and latent heat), the geo_data_refinement process-
ing package, and the wrf_input_refinement processing package are
available upon request from the corresponding author.

Data availability. The 2010 NCEP FNL (Final) Operational Global
Analysis dataset is available at https://rda.ucar.edu/datasets/ds083.
2/ (last access: 22 March 2016, National Centers for Environmen-
tal Prediction/National Weather Service/NOAA/U.S. Department of
Commerce, 2016).

The completed dataset of the WRF Preprocessing System (WPS)
geographical input data is publicly available at http://www2.mmm.
ucar.edu/wrf/users/download/get_sources_wps_geog.html (last ac-

cess: 22 March 2016, National Center for Atmospheric Research,
2016).

The 2010 PRD observation locations, 2010 PRD urban land sur-
face dataset, 2010 PRD 2 m air temperature, 2010 PRD 10-metre
wind speed, 2010 PRD precipitation, and 2010 PRD relative hu-
midity are available upon request from the corresponding author.

2010 MODIS/Aqua Land Surface Temperature and Emissiv-
ity (LST/E) product is publicly available at https://modis.gsfc.
nasa.gov/data/dataprod/mod11.php (last access: 13 January 2017,
MODIS, 2012).

The modelling variables for model evaluation (T2, TSK, U10,
V10, RAINC, RAINNC, RH2, and SWDOWN – shortwave down-
ward) are available upon request from the corresponding author.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-12-4571-2019-supplement.
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