
Geosci. Model Dev., 12, 4309–4346, 2019
https://doi.org/10.5194/gmd-12-4309-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

The biophysics, ecology, and biogeochemistry of functionally
diverse, vertically and horizontally heterogeneous ecosystems:
the Ecosystem Demography model, version 2.2 – Part 1: Model
description
Marcos Longo1,2,3, Ryan G. Knox4,5, David M. Medvigy6, Naomi M. Levine7, Michael C. Dietze8, Yeonjoo Kim9,
Abigail L. S. Swann10, Ke Zhang11, Christine R. Rollinson12, Rafael L. Bras13, Steven C. Wofsy1, and
Paul R. Moorcroft1

1Harvard University, Cambridge, MA, USA
2Embrapa Agricultural Informatics, Campinas, SP, Brazil
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
4Massachusetts Institute of Technology, Cambridge, MA, USA
5Lawrence Berkeley National Laboratory, Berkeley, CA, USA
6University of Notre Dame, Notre Dame, IN, USA
7University of Southern California, Los Angeles, CA, USA
8Boston University, Boston, MA, USA
9Department of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
10University of Washington, Seattle, WA, USA
11Hohai University, Nanjing, Jiangsu, China
12The Morton Arboretum, Lisle, IL, USA
13Georgia Institute of Technology, Atlanta, GA, USA

Correspondence: Marcos Longo (mlongo@post.harvard.edu)

Received: 14 February 2019 – Discussion started: 27 March 2019
Revised: 12 August 2019 – Accepted: 23 August 2019 – Published: 14 October 2019

Abstract. Earth system models (ESMs) have been devel-
oped to represent the role of terrestrial ecosystems on the
energy, water, and carbon cycles. However, many ESMs still
lack representation of within-ecosystem heterogeneity and
diversity. In this paper, we present the Ecosystem Demog-
raphy model version 2.2 (ED-2.2). In ED-2.2, the biophys-
ical and physiological processes account for the horizontal
and vertical heterogeneity of the ecosystem: the energy, wa-
ter, and carbon cycles are solved separately for a series of
vegetation cohorts (groups of individual plants of similar
size and plant functional type) distributed across a series of
spatially implicit patches (representing collections of micro-
environments that have a similar disturbance history). We de-
fine the equations that describe the energy, water, and car-
bon cycles in terms of total energy, water, and carbon, which
simplifies the differential equations and guarantees excel-

lent conservation of these quantities in long-term simulation
(< 0.1 % error over 50 years). We also show examples of ED-
2.2 simulation results at single sites and across tropical South
America. These results demonstrate the model’s ability to
characterize the variability of ecosystem structure, compo-
sition, and functioning both at stand and continental scales.
A detailed model evaluation was conducted and is presented
in a companion paper (Longo et al., 2019a). Finally, we high-
light some of the ongoing model developments designed to
improve the model’s accuracy and performance and to in-
clude processes hitherto not represented in the model.
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1 Introduction

The dynamics of the terrestrial biosphere play an integral
role in the Earth’s carbon, water, and energy cycles (Betts
and Silva Dias, 2010; Santanello Jr et al., 2018; Le Quéré
et al., 2018), and consequently, how the Earth’s climate sys-
tem is expected to change over the coming decades due to
the increasing levels of atmospheric carbon dioxide arising
from anthropogenic activities (IPCC, 2014; Le Quéré et al.,
2018). Models for the dynamics of the terrestrial biosphere
and its bidirectional interaction with the atmosphere have
evolved considerably over the past decades (Levis, 2010;
Fisher et al., 2014, 2018). As described by Sellers et al.
(1997), the first generation of land surface models (LSMs)
was limited to provide boundary conditions to atmospheric
models; they only solved a simplified energy and water bud-
get, and accounted for the effects of surface on frictional
effects on near-surface winds (e.g., Manabe et al., 1965;
Somerville et al., 1974). These models, however, did not
account for the active role of vegetation. The second gen-
eration of LSMs considered the active role of vegetation
and represented the spectral properties of the canopy, the
changes in roughness of vegetated surfaces, and the biophys-
ical controls on evaporation and transpiration (Sellers et al.,
1997); examples of these models include National Center
for Atmospheric Research Biosphere-Atmosphere Transfer
Scheme (NCAR/BATS) (Dickinson et al., 1986) and Simple
Biosphere model (SiB) (Sellers et al., 1986). The increas-
ing recognition of the role of vegetation in mediating the
exchanges of carbon, water, and energy between the land
and the atmosphere led to the third generation of LSMs,
which incorporated explicit representations of plant photo-
synthesis and resulting dynamics of terrestrial carbon uptake,
turnover, and release within terrestrial ecosystems (Sellers
et al., 1997); examples of such models included LSM (Bo-
nan, 1995) and SiB2 (Sellers et al., 1996). While the fluxes of
carbon, water, and energy predicted by these models would
change in response to changes in their climate forcing, the
biophysical and biogeochemical properties of the ecosystem
within each climatological grid cell were prescribed and thus
did not change over time.

Subsequently, building upon previous work (Prentice
et al., 1992; Neilson, 1995; Haxeltine and Prentice, 1996),
Foley et al. (1996) adopted an approach to calculate the pro-
ductivity of a series of plant functional types (PFTs), based
on a leaf-level model of photosynthesis. The abundance of
each PFT within each grid cell was dynamic, with the abun-
dance changes being determined by the relative productivity
of the PFTs. This allowed the fast-timescale exchanges of
carbon, water, and energy within the plant canopy to be ex-
plicitly linked with the long-term dynamics of the ecosystem.
This approach followed the concept of dynamic global veg-
etation model (DGVM), originally coined by Prentice et al.
(1989) to describe this kind of terrestrial biosphere model in
which changes in climate could drive changes in ecosystem

composition, structure, and functioning. DGVMs, when run
coupled to atmospheric models, would then feedback onto
climate. The subsequent generation of terrestrial biosphere-
based DGVMs (i.e., DGVMs incorporating couple carbon,
water, and energy fluxes) such as the Lund–Potsdam–Jena
(LPJ) model (Sitch et al., 2003), Community Land Model’s
Dynamic Global Vegetation Model (CLM-DGVM) (Levis
et al., 2004), and Top-down Representation of Interactive Fo-
liage and Flora Including Dynamics Joint UK Land Envi-
ronment Simulator (TRIFFID/JULES) (Hughes et al., 2004;
Clark et al., 2011; Mangeon et al., 2016) have included ad-
ditional mechanisms such as disturbance through fires and
multiple types of mortality.

Analyses have shown that most terrestrial biosphere mod-
els are capable of reproducing the current distribution of
global biomes (e.g., Sitch et al., 2003; Blyth et al., 2011)
and their carbon stocks and fluxes (Piao et al., 2013). How-
ever, they diverge markedly in their predictions of how ter-
restrial ecosystems will respond to future climate change
(Friedlingstein et al., 2014). In fully coupled Earth system
model simulations, some of these differing predictions arise
from divergent predictions about the direction and magni-
tude of regional climate change. However, offline analyses,
in which the models are forced with prescribed climatolog-
ical forcing, have shown that there is also substantial dis-
agreement between the models about how terrestrial ecosys-
tems will respond to any shift in climate (e.g., Sitch et al.,
2008; Zhang et al., 2015). In addition, the transitions be-
tween biome types, for example, the transition that occurs
between closed-canopy tropical forests and grass- and shrub-
dominated savannahs in South America, are generally far
more abrupt in typical DGVM results than in observations
(Good et al., 2011; Levine et al., 2016).

One important limitation of most DGVMs is that they do
not represent within-ecosystem diversity and heterogeneity.
The representation of plant functional diversity within ter-
restrial biosphere models is normally coarse, with broadly
defined PFTs defined from a combination of morphological
and leaf physiological attributes (Purves and Pacala, 2008).
In addition, there is limited variation in the resource con-
ditions (light, water, and nutrient levels) experienced by in-
dividual plants within the climatological grid cells of tradi-
tional DGVMs. Some models, such as CLM (Oleson et al.,
2013), have options to represent a multi-layer plant canopy
(e.g., two canopy layers allowing for Sun and shade leaves),
and/or differences in rooting depth between PFTs; however,
resource conditions are assumed to be horizontally homo-
geneous, meaning that there is no horizontal spatial varia-
tion in resource conditions experienced by individual plants.
The lack of significant variability in resource conditions lim-
its the range of environmental niches within the climatolog-
ical grid cells of terrestrial biosphere and makes the coex-
istence between PFTs difficult. Consequently, models often
predict ecosystems comprised of single homogeneous vege-
tation types (Moorcroft, 2003, 2006).
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Field- and laboratory-based studies conducted over the
past 30 years indicate that plant functional diversity sig-
nificantly affects ecosystem functioning (Loreau and Hec-
tor, 2001; Tilman et al., 2014, and references therein), and
variations in trait expression are strongly driven by dis-
turbances and local heterogeneity of abiotic factors such
as soil characteristics (Bruelheide et al., 2018; Both et al.,
2019). In many cases, biodiversity increases ecosystem pro-
ductivity and ecosystem stability (e.g., Tilman and Down-
ing, 1994; Naeem and Li, 1997; Cardinale et al., 2007;
García-Palacios et al., 2018), and biodiversity has also been
shown to contribute to enhanced ecosystem functionality
in highly stressed environments (e.g., Jucker and Coomes,
2012). Other studies have also established correlations be-
tween tropical forest diversity and carbon storage and pri-
mary productivity (Cavanaugh et al., 2014; Poorter et al.,
2015; Liang et al., 2016; Huang et al., 2018).

In addition to the absence of within-ecosystem diversity
in conventional terrestrial biosphere models, plants of each
PFT are also assumed to be homogeneous in size, while,
in contrast, most terrestrial ecosystems, particularly forests
and woodlands, exhibit marked size structure of individuals
within plant canopies (Hutchings, 1997). This size-related
heterogeneity is important because plant size strongly affects
the amount of light, water, and nutrients individual plants
within the canopy can access, which, in turn, affects their per-
formance, dynamics, and responses to climatological stress.
It also allows representation of the dynamics of pervasive
human-driven degradation of forest ecosystems (Lewis et al.,
2015; Haddad et al., 2015), which affects carbon stocks and
forest structure and composition, which cannot be easily rep-
resented in highly aggregated models (Longo and Keller,
2019).

An alternative approach to simulating the dynamics of
terrestrial ecosystems has been individual-based vegetation
models (Friend et al., 1997; Bugmann, 2001; Sato et al.,
2007; Fischer et al., 2016; Maréchaux and Chave, 2017).
Also known as forest gap models, due to the importance
of canopy gaps for the dynamics of closed canopy forests,
these models simulate the birth, growth, and death of individ-
ual plants, thereby incorporating diversity and heterogene-
ity of the plant canopy mechanistically. In forest gap mod-
els, the ecosystem properties such as total carbon stocks, and
net ecosystem productivity are emergent properties resulting
from competition of limiting resources and the differential
ability of plants to survive and be productive under a vari-
ety of micro-environments (e.g., gaps or the understory of a
densely populated patch of old-growth forest).

This approach has two main advantages. First, gap mod-
els represent the dynamic changes in the ecosystem structure
caused by disturbances such as tree fall, selective logging,
and fires. These disturbances create new micro-environments
that are significantly different from old-growth vegetation ar-
eas and allow plants with different life strategies (for exam-
ple, shade-intolerants) to coexist in the landscape. Second,

because individual trees are represented in the model, the
results can be directly compared with field measurements.
Gap models have various degrees of complexity, with some
models being able to represent the interactions between cli-
mate variability and gross primary productivity (Friend et al.,
1997; Sato et al., 2007), as well as the impact of climate
change in the ecosystem carbon balance (Fischer et al., 2016,
and references therein). However, because the birth and death
of individuals within a plant canopy are stochastic processes,
multiple realizations of given model formulation are required
to determine the long-term, large-scale dynamics of these
models, which limits their applicability over large regions
or global scales and has precluded their use in Earth system
modeling studies.

The need to represent heterogeneity in vegetation struc-
ture and composition in terrestrial biosphere models, without
the computational burden of simulating every tree at regional
and global scales, led to the development of cohort-based
models (Hurtt et al., 1998; Moorcroft et al., 2001; Fisher
et al., 2018). In the cohort-based approach, individual trees
are grouped according to their size (e.g., height or diameter at
breast height); functional groups, which can be defined along
trait axes (e.g., Reich et al., 1997; Wright et al., 2004; For-
tunel et al., 2012); and micro-environment conditions (e.g.,
whether plants are living in a gap, recently burned frag-
ment, or in a patch of old-growth forest). Over the past two
decades, several cohort-based models have emerged, includ-
ing the Ecosystem Demography model (ED; Moorcroft et al.,
2001; Hurtt et al., 2002; Albani et al., 2006; Medvigy et al.,
2009); the Lund–Potsdam–Jena General Ecosystem Simula-
tor (LPJ-GUESS; Smith et al., 2001; Ahlström et al., 2012;
Lindeskog et al., 2013); the Land Model version 3 with per-
fect plasticity approximation (LM3-PPA; Weng et al., 2015);
and the Functionally-Assembled Terrestrial Ecosystem Sim-
ulator (FATES; Fisher et al., 2015; Huang et al., 2019). Simi-
lar to gap models, these models represent functional diversity
and heterogeneity of micro-environments, and consequently
the ecosystem’s structure, diversity, and functioning emerge
from the interactions between plants with different life strate-
gies under different resource availability, albeit at a lesser ex-
tent than individual-based models (Fisher et al., 2018).

The Ecosystem Demography model (ED; Moorcroft et al.,
2001) is a cohort-based model. Through this approach, it ad-
dresses the need to incorporate heterogeneity into models
of the long-term, large-scale response of terrestrial ecosys-
tems to changes in climate and other environmental forcings
within a deterministic modeling framework. The size- and
age-structured partial differential equations that describe the
plant community are derived from individual-level proper-
ties but are properly scaled to account for the spatially local-
ized nature of interactions within plant canopies. The model
was later extended by Hurtt et al. (2002) and Albani et al.
(2006) to incorporate multiple forms of disturbance includ-
ing land clearing, land abandonment, and forest harvesting.
An important difference between ED and most DGVMs is
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that in ED, PFTs are defined not simply based on their bio-
geographic ranges but also represent diversity in plant life-
history strategies within any given ecosystem. These differ-
ent PFTs represent a suite of physiological, morphological,
and life-history traits that mechanistically represent the ways
different kinds of plants utilize resources (Fisher et al., 2010).

The original ED model formulation was an offline ecosys-
tem model describing the coupled carbon and water fluxes of
a heterogeneous tropical forest ecosystem (Moorcroft et al.,
2001). Subsequently, Medvigy et al. (2009) applied a similar
approach to develop the Ecosystem Demography model ver-
sion 2 (ED-2) that describes coupled carbon, water, and en-
ergy fluxes of the land surface. Since then, the ED-2 model
has been continuously developed to improve several aspects
of the model (see Supplement Sect. S1 for further informa-
tion): (1) the conservation and thermodynamic representation
of energy, water, and carbon cycles of the ecosystems; (2) the
representation of several components of the energy, water,
and carbon cycles, including the canopy radiative transfer,
aerodynamic conductances and eddy fluxes, and leaf physi-
ology (photosynthesis); (3) the structure of the code, includ-
ing efficient data storage, code parallelization, and version
control and code availability. ED-2 has been used in many
studies including offline simulations (e.g., Medvigy et al.,
2009; Antonarakis et al., 2011; Kim et al., 2012; Zhang et al.,
2015; Castanho et al., 2016; Levine et al., 2016) and sim-
ulations running interactively with a regional atmospheric
model (e.g., Knox et al., 2015; Swann et al., 2015).

In this paper, we describe in detail the biophysical, phys-
iological, ecological, and biogeochemical formulation of the
most recent version of the ED-2 model (ED-2.2), focusing in
particular on the model’s formulation of the fast timescale
dynamics of the heterogeneous plant canopy that occur at
subdaily timescales. While many parameterizations and sub-
models in ED-2.2 are based on approaches that are also used
in other DGVMs, their implementation in ED-2.2 has some
critical differences from other ecosystem models and also
previous versions of ED. (1) In ED-2.2, the fundamental bud-
get equations use energy and total mass as the main prog-
nostic variables; because we use equations that directly track
the time changes of the properties we seek to conserve, we
can assess the model conservation of such properties with
fewer assumptions. (2) In ED-2.2, all thermodynamic prop-
erties are scalable with mass, and the model is constructed
such that when individual biomass changes, due to growth
and turnover, the thermodynamic properties are also updated
to reflect changes in heat and water holding capacity. (3) The
water and energy budget equations for vegetation are solved
at the individual cohort level and the corresponding equa-
tions for environments shared by plants such as soils and
canopy air space are solved for each micro-environment in
the landscape, and thus ecosystem-scale fluxes are emergent
properties of the plant community. This approach allows the
model to represent both the horizontal and vertical hetero-
geneity of environments of the plant communities. It also

links the individual’s ability to access resources such as light
and water and accumulate carbon under a variety of micro-
environments, which ultimately drives the long-term dynam-
ics of growth, reproduction, and survivorship.

2 Model overview

2.1 The representation of ecosystem heterogeneity in
ED-2.2

In ED-2.2 the terrestrial ecosystem within a given region
of interest is represented through a hierarchy of structures
to capture the physical and biological heterogeneity in the
ecosystem’s properties (Fig. 1).

Physical heterogeneity. The domain of interest (grid) is ge-
ographically divided into polygons. Within each polygon, the
time-varying meteorological forcing above the plant canopy
is assumed to be spatially uniform. For example, a single
polygon may be used to simulate the dynamics of an ecosys-
tem in the neighborhood of an eddy flux tower, or alterna-
tively, a polygon may represent the lower boundary condition
within one horizontal grid cell in an atmospheric model. Each
polygon is subdivided into one or more sites that are designed
to represent landscape-scale variation in other abiotic prop-
erties, such as soil texture, soil depth, elevation, slope, as-
pect, and topographic moisture index. Each site is defined as
a fractional area within the polygon and represents all regions
within the polygon that share similar time-invariant physical
(abiotic) properties. Both polygons and sites are defined at
the beginning of the simulation and are fixed in time, and no
geographic information exists below the level of the polygon.

Biotic heterogeneity. Within each site, horizontal,
disturbance-related heterogeneity in the ecosystem at any
given time t is characterized through a series of patches that
are defined by the time elapsed since last disturbance (i.e.,
age, a) and the type of disturbance that generated them.
Like sites, patches are not physically contiguous: each patch
represents the collection of canopy gap-sized (∼ 10m) areas
within the site that have a similar disturbance history, defined
in terms of the type of disturbance experienced (represented
by subscript q, q ∈ 1,2, . . .,NQ; a list of indices is available
in Table 1) and time since the disturbance event occurred.
The disturbance types accounted for in ED-2.2, and the
possible transitions between different disturbance types, are
shown in Fig. S1. The collection of gaps within each given
site belonging to a polygon follows a probability distribution
function α, which can be also thought of as the relative area
within a site, that satisfies

NQ∑
q=1

 ∞∫
0

αq (a, t)da

= 1. (1)

Similarly, the plant community population is characterized
by the number of plants per unit area (hereafter number

Geosci. Model Dev., 12, 4309–4346, 2019 www.geosci-model-dev.net/12/4309/2019/



M. Longo et al.: Biophysical and biogeochemical cycles in ED-2.2 4313

Figure 1. Schematic representation of the multiple hierarchical lev-
els in ED-2.2, organized by increasing level of detail from top to
bottom. Static levels (grid, polygons, and sites) are assigned during
the model initialization and remain constant throughout the simula-
tion. Dynamic levels (patches and cohorts) may change during the
simulation according to the dynamics of the ecosystem.

density, n) and is further classified according to their PFT,
represented by subscript f (f ∈ 1,2, . . .,NF; Table 1) and
the type of gap (q). The number density distribution de-
pends on the individuals’ biomass characteristics (size, C),
the age since last disturbance (a), and the time (t), and is
expressed as nf q(C,a, t). Size is defined as a vector C =

n−1
f q (Cl;Cr;Cσ ;Ch;Cn) (units: kgC plant−1) corresponding

to biomass of leaves, fine roots, sapwood, heartwood, and
non-structural storage (starch and sugars), respectively.

Following Moorcroft et al. (2001), Albani et al. (2006),
and Medvigy and Moorcroft (2012), the partial differential
equations that describe the dynamics of plant density and

probability distribution of patches within each site in the
size-and-age structured model are defined as (dependencies
omitted in the equations for clarity)

∂nf q

∂t︸ ︷︷ ︸
Change rate

=−
∂nf q

∂a︸ ︷︷ ︸
Aging

−∇C ·
(
gf nf q

)︸ ︷︷ ︸
Growth

−mf nf q︸ ︷︷ ︸
Mortality

, (2)

−
∂αq

∂t︸︷︷︸
Change rate

=
∂αq

∂a︸︷︷︸
Aging

−

NQ∑
q ′=1

(
λq ′q αq

)
︸ ︷︷ ︸

Disturbance

, (3)

where mf is mortality rate, which may depend on the PFT,
size, and the individual carbon balance; gf is the vector of
the net growth rates for each carbon pool, which also may
depend on the PFT, size, and carbon balance; ∇C · is the di-
vergence operator for the size vector; and λq ′q is the transi-
tion matrix from gaps generated by previous disturbance q ′

affected by new disturbance of type q, which may depend on
environmental conditions. Boundary conditions are shown in
Sect. S2.

Equations (2) and (3) cannot be solved analytically ex-
cept for the most trivial cases; therefore, the age distribu-
tion is discretized into patches (subscript u, u ∈ 1,2, . . .,NP ;
Table 1) of similar age and same disturbance type, and the
population size structure living in any given patch u is dis-
cretized into cohorts (subscript k, k ∈ 1,2, . . .,NT; Table 1)
of similar size and same PFT (Fig. 1). Unlike polygons and
sites, patches and cohorts are dynamic levels: changes in dis-
tribution (fractional area) of patches are driven by aging and
disturbance rates, whereas changes in the distribution of co-
horts in each patch are driven by growth, mortality, and re-
cruitment (Fig. S2).

The environment perceived by each plant (e.g., incident
light, temperature, vapor pressure deficit) varies across large
scales as a consequence of changes in climate (macro-
environment) but also varies at small scales (within the land-
scape; micro-environment) because of the horizontal and ver-
tical position of each individual relative to other individ-
uals in the plant community (e.g., Bazzaz, 1979) and the
position of the local community in landscapes with com-
plex terrains. Both macro- and micro-environmental con-
ditions drive the net primary productivity of each individ-
ual, and ultimately determine growth, mortality, and recruit-
ment rates for each individual. Likewise, they can also af-
fect the disturbance rates: for example, during drought con-
ditions (macro-environment), open canopy patches (micro-
environment) may experience faster ground desiccation and
consequently increase local fire risk. To account for the
variability in micro-environments within the landscape and
within local plant communities, in ED-2.2 the energy, wa-
ter, and carbon dioxide cycles are solved separately for each
patch, and within each patch, fluxes and storage associated
with individual plants are solved for each cohort.

www.geosci-model-dev.net/12/4309/2019/ Geosci. Model Dev., 12, 4309–4346, 2019
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Table 1. List of subscripts associated with ED-2.2’s hierarchical levels for any variable X. NT is the total number of cohorts, NG is the total
number of soil (ground) layers, NS is the total number of temporary surface water/snowpack layers, and NC is the total number of canopy air
space layers, currently only used to obtain properties related to canopy conductance. The complete list of subscripts is available in Table S1.

Subscript Description

Xc Canopy air space (single layer)
Xcj Canopy air space, layer j (j ∈ {1,2, . . .,NC})
Xej Necromass pools: e1, metabolic litter (fast); e2, structural debris (intermediate); e3,

humified/dissolved (slow)
Xf Plant functional type
Xgj Soil (ground), layer j (j ∈ {1,2, . . .,NG})
Xq Disturbance type
Xsj Temporary surface water/snowpack, layer j (j ∈ {1,2, . . .,NS})
Xtk Cohort k (k ∈ {1,2, . . .,NT})
Xu Patch u (u ∈ {1,2, . . .,NP})
Xyk Property y of cohort k (k ∈ {1,2, . . .,NT}). Possible values of y: branch wood (b), structural tissue (heartwood) (h), leaves

(l), non-structural carbon storage (starch, sugars) (n), roots (r), total living tissues (α), branch boundary layer (β), carbon
balance (1), leaf boundary layer (λ), reproductive tissues (%), sapwood (σ )

The ED-2.2 model represents processes that have inher-
ently different timescales; therefore, the model also has a hi-
erarchy of time steps, in order to attain maximum compu-
tational efficiency (Table 2). Processes associated with the
short-term dynamics are presented in this paper. A sum-
mary of the phenological processes and those associated with
longer-term dynamics is presented in Sects. S3 and S4 (see
also Moorcroft et al., 2001; Albani et al., 2006; Medvigy
et al., 2009).

2.2 Software requirements and model architecture

Software requirements. The ED-2.2 source code is mainly
written in Fortran 90, with a few file management rou-
tines written in C. Most input and output files use the Hi-
erarchical Data Format 5 (HDF5) format and libraries (The
HDF Group, 2016). In addition, the Message Passing Inter-
face (MPI) is highly recommended for regional simulations
and is required for simulations coupled with the Brazilian
Improvements on Regional Atmospheric Modeling System
(BRAMS) atmospheric model (Knox et al., 2015; Swann
et al., 2015; Freitas et al., 2017). The source code can be
also compiled with shared memory processing (SMP) li-
braries, which enable parallel processing of thermodynamics
and biophysics steps at the patch level and thus allow shorter
simulation time.

Code design and parallel structure. ED-2.2 has been de-
signed to be run in three different configurations: (1) as a
stand-alone land surface model over a small list of specified
locations (sites); (2) as a stand-alone land surface model dis-
tributed over a regional grid; (3) coupled with an atmospheric
model distributed over a regional grid (e.g., ED-BRAMS;
Knox et al., 2015; Swann et al., 2015). For regional stand-
alone grids, the model partitions the grid into spatially con-
tiguous tiles of polygons, which access the initial and bound-

ary conditions and are integrated independently of each other
but write the results to a unified output file using collective
input/output functions from HDF5. In the case of simula-
tions dynamically coupled with an atmospheric model such
as BRAMS, polygons are defined to match each atmospheric
grid cell.

Memory allocation. The code uses dynamic allocation of
variables and extensive use of pointers to efficiently reduce
the amount of data transferred between routines. To reduce
the output file size, polygon-, site-, patch-, and cohort-level
variables are always written as long vectors, and auxiliary in-
dex vectors are used to map variables from higher hierarchi-
cal levels to lower hierarchical levels (for example, to which
patch a cohort-level variable belongs).

2.3 Model inputs

Every ED-2.2 simulation requires an initial state for forest
structure and composition (initial state), a description of soil
characteristics (edaphic conditions), and a time-varying list
of meteorological drivers (atmospheric conditions).

Initial state. To initialize a plant community from inven-
tory data, one must have either the diameter at breast height
of every individual or the stem density of different diam-
eter size classes, along with plant functional type identifi-
cation and location; in addition, necromass from the litter
layer, woody debris, and soil organic carbon are needed. Al-
ternatively, initial conditions can be obtained from airborne
lidar measurements (Antonarakis et al., 2011, 2014) or a pre-
scribed near-bare-ground condition may be used for long-
term spin up simulations. Previous simulations can be used
as initial conditions as well.

Edaphic conditions. The user must also provide soil char-
acteristics such as total soil depth, total number of soil lay-
ers, the thickness of each layer, as well as soil texture, color,
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Table 2. Time steps associated with processes resolved by ED-2.2. The thermodynamic substep is dynamic and it depends on the error
evaluation of the integrator, but it cannot be longer than the biophysics step, which is defined by the user. Other steps are fixed as of ED-2.2.
Processes marked with an asterisk are presented in the main paper. Other processes are described in Sects. S3 and S4.

Time step Timescale Processes

Thermodynamics Energy and water fluxes∗

(1tThermo) 1 s–1tBio Eddy fluxes (including CO2 flux)∗

Most thermodynamic state functions∗

Meteorological and CO2 forcing∗

Biophysics Radiation model∗

(1tBio) 2–15min Photosynthesis model∗

Respiration fluxes (autotrophic and heterotrophic)∗

Evaluation of energy, water, and CO2 budgets∗

Maintenance of active tissues
Update of the storage pool

Phenology 1d Leaf phenology
(1tPhen) Plant carbon balance

Integration of mortality rate due to cold
Soil litter pools

Growth of structural tissues
Cohort dynamics Mortality rate
(1tCD) 1month Reproduction – cohort creation

Integration of fire disturbance rate
Cohort fusion, fission, and extinction

Patch dynamics 1year Annual disturbance rates and patch creation
(1tPD) Patch fusion and termination

and the bottom soil boundary condition (bedrock, reduced
drainage, free drainage, or permanent water table). This flex-
ibility allows the user to easily adjust the soil characteristics
according to their regions of interest. Soil texture can be read
from standard data sets (e.g., Global Soil Data Task, 2000;
Hengl et al., 2017) or provided directly by the user. Soil lay-
ers, soil color, and bottom boundary condition must be pro-
vided directly by the user as of ED-2.2. In addition, simula-
tions with multiple sites per polygon also need to provide the
fractional areas of each site and the mean soil texture class,
soil depth, slope, aspect, elevation, and topographic moisture
index of each site.

Atmospheric conditions. Meteorological conditions
needed to drive ED-2.2 include temperature, specific humid-
ity, CO2 molar fraction, pressure of the air above the canopy,
precipitation rate, incoming solar (shortwave) irradiance
(radiation flux), and incoming thermal (longwave) irradiance
(Table 3) at a reference height that is at least a few meters
above the canopy. Subdaily measurements (0.5–6 h) are
highly recommended so the model can properly simulate
the diurnal cycle and interdiurnal variability. Meteorolog-
ical drivers can be either at a single location (e.g., eddy
covariance towers) or gridded meteorological drivers such
as reanalyses (e.g., Dee et al., 2011; Gelaro et al., 2017) or
bias-corrected products based on reanalysis (e.g., Sheffield
et al., 2006; Weedon et al., 2014). Whenever available, CO2

must be provided at comparable temporal and spatial resolu-
tion to other meteorological drivers; otherwise, it is possible
to provide spatially homogeneous, time-variant CO2, or
constant CO2, although this may increase uncertainties in
the model predictions (e.g., Wang et al., 2007). Alternatively,
the meteorological forcing (including CO2) may be provided
directly by BRAMS (Knox et al., 2015; Swann et al., 2015).

Plant functional types. The user must specify which PFTs
are allowed to occur in any given simulation. ED-2.2 has
a list of default PFTs, with parameters described in Ta-
bles S5–S6. Alternatively, the user can modify the parame-
ters of existing PFTs or define new PFTs through an exten-
sible markup language (XML) file, which is read during the
model initialization.

3 Overview of enthalpy, water, and carbon dioxide
cycles

Here, we present the fundamental equations that describe the
biogeophysical and biogeochemical cycles. Because the en-
vironmental conditions are a function of the local plant com-
munity and resources are shared by the individuals, these cy-
cles must be described at the patch level, and the response
of the plant community can be aggregated to the polygon
level once the cycles are resolved for each patch. In ED-2.2,
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Table 3. Atmospheric boundary conditions driving the ED-2.2 model. Variable names and subscripts follow a standard notation throughout
the paper (Tables S1 and S2). Flux variables between two thermodynamic systems are defined by a dot and two indices separated by a
comma, and they are positive when the net flux goes from the thermodynamic system represented by the first index to the one represented by
the second index.

Variable Description Units

ux Zonal wind speed ms−1

uy Meridional wind speed ms−1

pa Free-air pressure Pa
Ta Free-air temperature K
wa Free-air specific humidity kgW kg−1

ca Free-air CO2 mixing ratio molC mol−1

za Height of the reference point above canopy m

Ẇ∞,a Precipitation mass rate kgW m−2 s−1

Q̇
⇓

TIR(∞,a) Downward thermal infrared irradiance Wm−2

Q̇�PAR(∞,a) Downward photosynthetically active irradiance, direct Wm−2

Q̇
⇓

PAR(∞,a) Downward photosynthetically active irradiance, diffuse Wm−2

Q̇�NIR(∞,a) Downward near-infrared irradiance, direct Wm−2

Q̇
⇓

NIR(∞,a) Downward near-infrared irradiance, diffuse Wm−2

patches do not exchange enthalpy, water, and carbon dioxide
with other patches; thus, patches are treated as independent
systems. Throughout this section, we will only refer to the
patch and cohort levels, and indices associated with patches,
sites, and polygons will be omitted for clarity.

3.1 Definition of the thermodynamic state

Each patch is defined by a thermodynamic envelope (Fig. 2),
comprised of multiple thermodynamic systems: each soil
layer (total number of layers NG), each temporary surface
water or snow layer (total number of layers NS), leaves, and
branch wood portion of each cohort (total number of cohorts
NT), and the canopy air space. For simplicity, roots are as-
sumed to be in thermal equilibrium with the soil layers and
have negligible heat capacity compared to the soil layers. Al-
though patches do not exchange heat and mass with other
patches, they are allowed to exchange heat and mass with
the free air (i.e., the atmosphere above and outside of the
air space control volume we deem as within canopy) and
lose water and associated energy through surface and subsur-
face runoff. We also assume that intensive variables such as
pressure and temperature are uniform within each thermody-
namic system. Note that free air is not considered a thermo-
dynamic system in ED-2 because the thermodynamic state is
determined directly from the boundary conditions and thus
external to the model.

The fundamental equations that describe the system ther-
modynamics are the first law of thermodynamics in terms of
enthalpyH (Jm−2), and the mass continuity for incompress-

ible fluids for total water mass W (kgW m−2):

dH
dt︸︷︷︸

Change in enthalpy

= Q̇︸︷︷︸
Net heat flux

+ Ḣ︸︷︷︸
Enthalpy flux due

to mass flux

+ V
dp
dt︸ ︷︷ ︸

Pressure change

, (4)

dW
dt︸︷︷︸

Change in water mass

= Ẇ︸︷︷︸
Net water mass flux

, (5)

where V is the volume of the thermodynamic system and p
is the ambient pressure. The components on the right-hand
side of Eqs. (4) and (5) depend on the thermodynamic sys-
tem and will be presented in detail in the following sections.
Net heat fluxes (Q̇) represent changes in enthalpy that are not
associated with mass exchange (radiative and sensible heat
fluxes), whereas the remaining enthalpy fluxes (Ḣ ) corre-
spond to changes in heat capacity due to addition or removal
of mass from each thermodynamic system.

The merit of solving the changes in enthalpy over inter-
nal energy is that changes in enthalpy are equivalent to the
net energy flux when pressure is constant (Eq. 4). Pressure is
commonly included in atmospheric measurements, making it
easy to track changes in enthalpy not related to energy fluxes.
In reality, the only thermodynamic system where the dis-
tinction between internal energy and enthalpy matters is the
canopy air space. Work associated with thermal expansion

Geosci. Model Dev., 12, 4309–4346, 2019 www.geosci-model-dev.net/12/4309/2019/



M. Longo et al.: Biophysical and biogeochemical cycles in ED-2.2 4317

Table 4. List of state variables solved in ED-2.2. Unless otherwise noted, the reference equation is the ordinary differential equation that
defines the rate of change of the thermodynamic state. The list of fluxes that describe the thermodynamic state is presented in Table 5. For a
complete list of subscripts and variables used in this paper, refer to Tables S1–S2.

State variable Description Units Reference equation

cc CO2 mixing ratio – canopy air space molC mol−1 (23)
hc Specific enthalpy – canopy air space Jkg−1 (18)
Hgj Volumetric enthalpy – soil layer j Jm−3 (4)a

Hsj Enthalpy – temporary surface water layer j Jm−2 (4)
Htk Enthalpy – cohort k Jm−2 (4)
pc Atmospheric pressure – canopy air space Pa (S81)b

wc Specific humidity – canopy air space kgW kg−1 (19)
Wsj Water mass – temporary surface water layer j kgW m−2 (5)
Wtk Intercepted/dew/frost water mass – cohort k kgW m−2 (5)
zc Depth (specific volume) – canopy air space m (17)c

ϑgj Volumetric soil moisture – soil layer j m3
W m−3 (5)a

a Budget fluxes are in units of area, and the state variable is updated following the conversion described in Sect. 3.2.1. b Canopy air
space pressure is not solved using ordinary differential equations but based on the atmospheric pressure from the meteorological
forcing. c Canopy air space depth is determined from vegetation characteristics, not from an ordinary differential equation.

of solids and liquids is several orders of magnitude smaller
than heat (Dufour and van Mieghem, 1975), and changes
in pressure contribute significantly less to enthalpy because
the specific volumes of solids and liquids are comparatively
small. Likewise, enthalpy fluxes that do not involve gas phase
(e.g., canopy dripping and runoff) are nearly indistinguish-
able from internal energy flux, whereas differences between
enthalpy and internal energy fluxes are significant when gas
phase is involved (e.g., transpiration and eddy flux). For sim-
plicity, from this point on, we will use the term “enthalpy”
whenever internal energy is indistinguishable from enthalpy.
The complete list of state variables in ED-2.2 is shown in Ta-
ble 4.

Variations in enthalpy are more important than their ac-
tual values, but they must be consistently defined relative to
a pre-determined and known thermodynamic state, at which
we define enthalpy to be zero. For any material other than
water, enthalpy is defined as zero when the material temper-
ature is 0K; for water, enthalpy is defined as zero when water
is at 0K and completely frozen. The general definitions of en-
thalpy and internal energy states used in all thermodynamic
systems in ED-2.2 are described in Sect. S5. In ED-2.2, en-
thalpy is used as the prognostic variable because these are di-
rectly and linearly related to the governing ordinary differen-
tial equation (Eq. 4). Temperature is diagnostically obtained
based on the heat capacity of each thermodynamic system,
and the heat capacities of different thermodynamic systems
are defined in Sect. S6.

3.2 Heat (Q̇), water (Ẇ ), and enthalpy (Ḣ ) fluxes

The enthalpy and water cycles for each patch in ED-2.2 are
summarized in Fig. 2, and these cycles are solved every ther-
modynamic substep (1tThermo), using a fourth-order Runge–

Kutta integrator with dynamic time steps to maintain the er-
ror within prescribed tolerance. For all fluxes and variables,
we follow the subscript notation described in Table S1, and
denote flux variables with a dot and two indices separated
by a comma, denoting the systems impacted by the flux. For
any variable X that has flux between a system m and a sys-
tem n, we assume that Ẋm,n > 0 when the net flux goes from
system m to system n, and that Ẋm,n =−Ẋn,m. Arrows in
Fig. 2 indicate the directions allowed in ED-2.2. The list of
fluxes solved in ED-2.2 is provided in Table 5, and a com-
plete list of variables is provided in Table S2. In addition, the
values of global constants and global parameters are listed
in Tables S3 and S4, respectively, and the default parameters
specific for each tropical plant functional type are presented
in Tables S5–S6.

3.2.1 Soil

In ED-2.2, the soil characteristics (number of soil layers,
thickness of each soil layer and total soil depth, soil tex-
ture, soil color) are defined by the user, and assumed con-
stant throughout the simulation. Within each patch, each soil
layer (comprised by soil matrix and soil water in each layer)
is considered a separate thermodynamic system, with the
main size dimension being the layer thickness 1zgj , with
j = 1 being the deepest soil layer, and j =NG being the top-
most soil layer. Typically, the top layer thickness is set to
1zgNG

= 0.02m, which is a compromise between computa-
tional efficiency and ability to represent the stronger gradi-
ents near the surface, and layers with increasing thickness
(1zgj ) are added for the entire rooting zone.

The thermodynamic state is defined in terms of the soil
volume: the bulk specific enthalpy Hgj (Jm−3) and volu-
metric soil water content ϑgj (m3

W m−3), which can be re-
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Table 5. List of energy, water, and carbon dioxide fluxes that define the thermodynamic state in ED-2.2, along with sections and equations that
define them. Fluxes are denoted by a dotted letter, and two subscripts separated with a comma: Ẋm,n. Positive fluxes go from thermodynamic
system m to thermodynamic system n; negative fluxes go in the opposite direction. Acronyms in the description column: canopy air space
(CAS); temporary surface water (TSW). The complete list of subscripts and variables used in this paper is available in Tables S1–S2, and the
list of state variables is shown in Table 4.

Variable Description Section Equation Units

Ċa,c CO2 flux from turbulent mixing 4.4 (55)

kgCm−2 s−1

Ċej ,c Heterotrophic respiration flux (soil carbon pool ej ) 4.8 (102)
Ċlk,c Net leaf (cohort k)–CAS CO2 fluxa 4.6 (93)
Ċnk,c Storage turnover (cohort k) respiration flux 4.7 (100)
Ċrk,c Fine-root (cohort k) metabolic respiration flux 4.7 (99)
Ċ1k,c Growth and maintenance (cohort k) respiration flux 4.7 (101)

Q̇a,gNG Net absorbed irradiance (topmost soil layer) 4.3.2 (52)

Wm−2

Q̇a,sj Net absorbed irradiance (TSW layer j ) 4.3.2 (51)
Q̇a,tk Net absorbed irradiance (cohort k) 4.3.1 (49)
Q̇gNG,c Ground–CAS net sensible heat flux 4.5.2 (68)
Q̇gj−1,gj Net sensible heat flux between two soil layers 4.1 (26)
Q̇sNS,c TSW–CAS net sensible heat flux 4.5.2 (66)
Q̇sj−1,sj Net sensible heat flux between two TSW layers 4.1 (27)
Q̇tk,c Cohort k–CAS net sensible heat flux 4.5.1 (60)

Ḣa,c Enthalpy flux from turbulent mixing at the top of CAS 4.4 (54)

Wm−2

Ḣa,sNS Enthalpy flux to the top TSW layer associated with throughfall precipitation 4.2 (42)
Ḣa,tk Enthalpy flux associated with rainfall interception by cohort k 4.2 (41)
ḢgNG,c Enthalpy flux associated with ground–CAS evaporationb 4.5.3 (75)
Ḣgj−1,gj Enthalpy flux associated with water percolation between two soil layers 4.1 (35)
Ḣgj ,lk Enthalpy flux associated with soil water extraction from soil layer j by cohort k 4.6 (97)
Ḣg1,g0 Enthalpy flux associated with subsurface runoff from the bottom soil layer 4.1 (29)
Ḣlk,c Enthalpy flux associated with transpiration by cohort k 4.6 (98)
ḢsNS,c Enthalpy flux associated with TSW–CAS evaporationb 4.5.3 (75)
ḢsNS,o Enthalpy flux associated with surface runoff from the top TSW layer 4.1 (34)
Ḣsj−1,sj Enthalpy flux associated with water percolation between two TSW layers 4.1 (35)
Ḣtk,c Enthalpy flux associated with evaporationb of intercepted water (cohort k) 4.5.3 (75)
Ḣtk,sNS Enthalpy flux associated with canopy dripping from cohort k to the top TSW layer 4.2 (44)

Ẇa,c Water flux from turbulent mixing at the top of CAS 4.4 (53)

kgW m−2 s−1

Ẇa,sNS Precipitation throughfall flux to the top TSW layer 4.2 (37)
Ẇa,tk Water flux from rainfall interception (cohort k) 4.2 (36)
ẆgNG,c Ground–CAS evaporationb flux 4.5.2 (69)
Ẇgj−1,gj Water percolation flux between two soil layers 4.1 (28)
Ẇgj ,lk Water flux associated with soil water extraction by plants 4.6 (96)
Ẇg1,g0 Water flux associated with subsurface runoff from the bottom soil layer 4.1 (33)
Ẇlk,c Transpiration flux (cohort k) 4.6 (94)
Ẇsj−1,sj Water percolation flux between two TSW layers 4.1 (30)–(31)
ẆsNS,o Surface runoff water flux from the top TSW layer 4.1 (34)
ẆsNS,c TSW–CAS evaporationb flux 4.5.2 (67)
Ẇtk,c Evaporationb flux from intercepted water (cohort k) 4.5.1 (61)
Ẇtk,sNS Canopy dripping flux from cohort k to the top TSW layer 4.2 (43)

a Net flux between leaf respiration (positive) and gross primary productivity (negative). b When negative, this flux corresponds to dew or frost formation.
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Figure 2. Schematic of the fluxes that are solved in ED-2.2 for a single patch (thermodynamic envelope). In this example, the patch has NT
cohorts, NG soil layers, and NS = 1 temporary surface water. Both NG and the maximum NS are specified by the user; NT is dynamically
defined by ED-2.2. Letters near the arrows are the subscripts associated with fluxes, although the flux variables have been omitted here for
clarity. Solid red arrows represent heat flux with no exchange of mass, and dashed yellow arrows represent exchange of mass and associated
enthalpy. Arrows that point to a single direction represent fluxes that can only go in one (non-negative) direction, and arrows pointing to both
directions represent fluxes that can be positive, negative, or zero.

lated to Eqs. (4)–(5) by defining Hgj =Hgj1zgj and Wgj =

ρ` ·ϑgj ·1zgj , where ρ` is the density of liquid water (Ta-
ble S3). Soil net fluxes for any layer j are defined as

Q̇gj︸︷︷︸
Net heat flux

= Q̇gj−1,gj − Q̇gj ,gj+1︸ ︷︷ ︸
Net sensible heat flux

between consecutive layers
(Sect. 4.1)

+ δgjgNG
Q̇a,gNG︸ ︷︷ ︸

Absorbed irradiance
(Sect. 4.3.2)

− δgjgNG
Q̇gNG ,c︸ ︷︷ ︸

Ground–CAS sensible heat
(Sect. 4.5.2 and 4.5.3)

, (6)

Ḣgj︸︷︷︸
Net enthalpy flux
due to water flux

= Ḣgj−1,gj − Ḣgj ,gj+1︸ ︷︷ ︸
Water percolation

between consecutive layers
(Sect. 4.1)

− δgjgNG
ḢgNG ,c︸ ︷︷ ︸

Ground evaporation
(Sect. 4.5.2 and 4.5.3)

−

NT∑
k=1

Ḣgj ,lk︸ ︷︷ ︸
Water uptake

by cohorts
(Sect. 4.6)

,

(7)

Ẇgj︸︷︷︸
Net water flux

= Ẇgj−1,gj − Ẇgj ,gj+1︸ ︷︷ ︸
Water percolation

between consecutive layers
(Sect. 4.1)

− δgjgNG
ẆgNG ,c︸ ︷︷ ︸

Ground evaporation
(Sect. 4.5.2 and 4.5.3)

−

NT∑
k=1

Ẇgj ,lk︸ ︷︷ ︸
water uptake
by cohorts
(Sect. 4.6)

,

(8)

where δgjgj ′ is the Kronecker delta for comparing two
soil layers gj and gj ′ (1 if gj = gj ′ ; 0 otherwise), CAS
is the canopy air space, and subscript o denotes the loss
through runoff. References in parentheses underneath the
terms correspond to the sections in which each term is
presented in detail. In the equations above, we assume
Q̇g0,g1 to be zero (bottom boundary condition in thermal
equilibrium) and (Ḣg1,g0 =−Ḣg0,g1 ; Ẇg1,g0 =−Ẇg0,g1 ) to
be subsurface runoff fluxes (see Sect. 4.1). In addition,
(Q̇gNG ,gNG+1 ; ḢgNG ,gNG+1 ; ẆgNG ,gNG+1) are equivalent to
(Q̇gNG ,s1

; ḢgNG ,s1
; ẆgNG ,s1

), which are the fluxes between
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the topmost soil layer and the bottommost temporary surface
water layer (see also Sect. 3.2.2).

3.2.2 Temporary surface water (TSW)

Temporary surface water (TSW) exists whenever water falls
to the ground, or dew or frost develops on the ground. The
layer will be maintained only when the amount of water that
reaches the ground exceeds the water holding capacity of the
top soil layer (a function of the soil porosity), or when pre-
cipitation falls as snow. The maximum number of temporary
surface water layers Nmax

S is defined by the user, but the ac-
tual number of layers NS and the thickness of each layer de-
pends on the total mass and the water phase, following Walko
et al. (2000). When the layer is in liquid phase, only one layer
(NS = 1) is maintained. If a snowpack develops, the tempo-
rary surface water can be divided into several layers (sub-
script j , with j = 1 being the bottommost TSW layer, and
j =NS being the topmost TSW layer). Net TSW fluxes are
defined as

Q̇sj︸︷︷︸
Net heat flux

= Q̇sj−1,sj − Q̇sj ,sj+1︸ ︷︷ ︸
Net sensible heat flux

between consecutive layers
(Sect. 4.1)

+ Q̇a,sj︸ ︷︷ ︸
Absorbed irradiance

(Sect. 4.3.2)

− δsj sNS
Q̇sNS ,c︸ ︷︷ ︸

Ground–CAS sensible heat
(Sect. 4.5.2 and 4.5.3)

, (9)

Ḣsj︸︷︷︸
Net enthalpy flux
due to water flux

= Ḣsj−1,sj − Ḣsj ,sj+1︸ ︷︷ ︸
Water percolation

between consecutive layers
(Sect. 4.1)

+ δsj sNS
Ḣa,sNS︸ ︷︷ ︸

Throughfall
precipitation
(Sect. 4.2)

+ δsj sNS

(
NT∑
k=1

Ḣtk,sNS

)
︸ ︷︷ ︸

Canopy dripping
from cohorts
Sect. (4.2)

− δsj sNS
ḢsNS ,o︸ ︷︷ ︸

Surface runoff
Sect. (4.1)

− δsj sNS
ḢsNS ,c︸ ︷︷ ︸

Surface water
evaporation

(Sect. 4.5.2 and 4.5.3)

,

(10)

Ẇsj︸︷︷︸
Net water flux

= Ẇsj−1,sj − Ẇsj ,sj+1︸ ︷︷ ︸
Water percolation

between consecutive layers
(Sect. 4.1)

+ δsj sNS
Ẇa,sNS︸ ︷︷ ︸

Throughfall
precipitation
(Sect. 4.2)

+ δsj sNS

(
NT∑
k=1

Ẇtk,sNS

)
︸ ︷︷ ︸

Canopy dripping
from cohorts
(Sect. 4.2)

− δsj sNS
ẆsNS ,o︸ ︷︷ ︸

Surface runoff
(Sect. 4.1)

− δsj sNS
ẆsNS ,c︸ ︷︷ ︸

Surface water
evaporation

(Sect. 4.5.2 and 4.5.3)

, (11)

where δsj sj ′ is the Kronecker delta for comparing two TSW
layers sj and sj ′ (1 if sj = sj ′ ; 0 otherwise), CAS is the
canopy air space, and subscript o denotes loss from the ther-
modynamic envelope through runoff. Terms are described
in detail in the sections shown underneath each term. Sim-
ilarly to the soil fluxes (Sect. 3.2.1), we assume that (Q̇s0,s1 ;
Ḣs0,s1 ; Ẇs0,s1 ) is equivalent to (Q̇gNG ,s1

; ḢgNG ,s1
; ẆgNG ,s1

),
the fluxes between the topmost soil layer and the bottommost
TSW layer. When solving Eqs. (9)–(11) for layer sNS , we as-
sume the terms Q̇sj ,sj+1 , Ḣsj ,sj+1 and Ẇsj ,sj+1 to be all zero,
as layer NS+ 1 does not exist.

In the case of liquid TSW, the layer thickness of the single
layer is defined as 1zs1 = ρ

−1
` Ws1 , where ρ` is the density

of liquid water (Table S3). In the case of snowpack develop-
ment, the snow density and the layer thickness of the TSW
are solved as described in Sect. S7. The thickness of each
layer of snow (1zsj ) is defined using the same algorithm as
LEAF-2 (Walko et al., 2000) and is described in Sect. S7.

3.2.3 Vegetation

In ED-2.2, vegetation is solved as an independent thermo-
dynamic system only if the cohort is sufficiently large. The
minimum size is an adjustable parameter and the typical min-
imum heat capacity solved by ED-2.2 is on the order of
10 Jm−2 K−1 and total area index of 0.005 m2

leaf+wood m−2.
Cohorts smaller than this are excluded from all energy and
water cycle calculations and assumed to be in thermal equi-
librium with canopy air space. The net fluxes of heat, en-
thalpy, and water for each cohort k that can be resolved are

Q̇tk︸︷︷︸
Net heat flux

= Q̇a,tk︸ ︷︷ ︸
Cohort’s net

absorbed irradiance
(Sect. 4.3.1)

− Q̇tk,c︸︷︷︸
Cohort–CAS
sensible heat
(Sect. 4.5.1)

, (12)

Ḣtk︸︷︷︸
Net enthalpy flux
due to water flux

= Ḣa,tk︸︷︷︸
Rainfall

interception
(Sect. 4.2)

− Ḣtk,sNS︸ ︷︷ ︸
Canopy dripping
(Sect. 4.2)

+

(
NG∑
j=1

Ḣgj ,lk

)
︸ ︷︷ ︸

Soil moisture
uptake (transpiration)

(Sect. 4.6)

− Ḣlk,c︸︷︷︸
Transpiration
(Sect. 4.6)

− Ḣtk,c︸︷︷︸
Evaporation of

intercepted water
(Sect. 4.5.3)

,

(13)
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Ẇtk︸︷︷︸
Water flux

= Ẇa,tk︸ ︷︷ ︸
Rainfall

interception
(Sect. 4.2)

− Ẇtk,sNS︸ ︷︷ ︸
Canopy dripping
(Sect. 4.2)

+

(
NG∑
j=1

Ẇgj ,lk

)
︸ ︷︷ ︸

Soil moisture
uptake (transpiration)

(Sect. 4.6)

− Ẇlk,c︸ ︷︷ ︸
Transpiration
(Sect. 4.6)

− Ẇtk,c︸ ︷︷ ︸
Evaporation of

intercepted water
(Sect. 4.5.3)

.

(14)

Each term is described in detail in the sections shown under-
neath each term on the right-hand side of Eqs. (12)–(14).

3.2.4 Canopy air space (CAS)

The canopy air space is a gas; therefore, extensive properties
akin to the other thermodynamic systems are not intuitive
because total mass and total volume cannot be directly com-
pared to observations. Therefore, all prognostic and diagnos-
tic variables are solved in the intensive form. Total enthalpy
Hc and total water mass Wc of the canopy air space can be
written in terms of air density ρc and the equivalent depth of
the canopy air space zc as

Hc = ρc zc hc, (15)
Wc = ρc zcwc, (16)

zc =max

(
5.0,

∑NT (canopy)
k=1 ntk BAtk ztk∑NT (canopy)
k=1 ntk BAtk

)
, (17)

where BAtk (cm2) and ztk (m) are the basal area and the
height of cohort k, respectively; and NT (canopy) is the num-
ber of cohorts that are in the canopy, and we assume that
cohorts are ordered from tallest to shortest. In the event that
the canopy is open, NT (canopy) is the total number of cohorts,
and a minimum value of 5m is imposed when vegetation is
absent or too short to prevent numerical instabilities. Because
the equivalent canopy depth depends only on the cohort size,
zc is updated at the cohort dynamics step (1tCD, Table 2). If
we substitute Eqs. (15) and (16) into Eqs. (4) and (5), respec-
tively, and assume that changes in density over short time
steps are much smaller than changes in enthalpy or humidity,
and then we obtain the following equations for the canopy air

space budget:

dhc

dt
=

1
ρc zc

(
Q̇c+ Ḣc+ zc

dpc

dt

)
, (18)

dwc

dt
=

1
ρc zc

Ẇc, (19)

where

Q̇c︸︷︷︸
Net heat flux

=

(
NT∑
k=1

Q̇tk,c

)
︸ ︷︷ ︸

Cohort–CAS
sensible heat

(Sect. 4.5.1 and 4.5.3)

+ Q̇sNS ,c︸ ︷︷ ︸
Surface water–CAS

sensible heat
(Sect. 4.5.2 and 4.5.3)

+ Q̇gNG ,c︸ ︷︷ ︸
Ground–CAS
sensible heat

(Sect. 4.5.2 and 4.5.3)

, (20)

Ḣc︸︷︷︸
Net enthalpy flux

= Ḣa,c︸︷︷︸
Enthalpy flux from

turbulent mixing(Sect. 4.4)

+

(
NT∑
k=1

Ḣtk,c

)
︸ ︷︷ ︸
Evaporation of

intercepted water
(Sect. 4.5.1 and 4.5.3)

+

(
NT∑
k=1

Ḣlk,c

)
︸ ︷︷ ︸

Transpiration
(Sect. 4.6)

+ ḢsNS ,c︸ ︷︷ ︸
Surface water
evaporation

(Sect. 4.5.2 and 4.5.3)

+ ḢgNG ,c︸ ︷︷ ︸
Ground evaporation
(Sect. 4.5.2 and 4.5.3)

,

(21)

Ẇc︸︷︷︸
Net water flux

= Ẇa,c︸︷︷︸
Water flux from

turbulent mixing(Sect. 4.4)

+

(
NT∑
k=1

Ẇtk,c

)
︸ ︷︷ ︸
Evaporation of

intercepted water
(Sect. 4.5.1 and 4.5.3)

+

(
NT∑
k=1

Ẇlk,c

)
︸ ︷︷ ︸

Transpiration
(Sect. 4.6)

+ ẆsNS ,c︸ ︷︷ ︸
Surface water
evaporation

(Sect. 4.5.2 and 4.5.3)

+ ẆgNG ,c︸ ︷︷ ︸
Ground evaporation
(Sect. 4.5.2 and 4.5.3)

.

(22)

Unlike in the other thermodynamic systems (soil, tempo-
rary surface water, and vegetation), the net enthalpy flux of
the canopy air space is not exclusively due to associated wa-
ter flux: the eddy flux between the free air and the canopy air
space (Ḣa,c) includes both water transport and flux associ-
ated with mixing of air with different temperatures, and thus
enthalpy, between canopy air space and free air.

In addition, we must also track the CAS pressure pc. In
ED-2.2, CAS pressure is not solved through a differential
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equation; instead, pc is updated whenever the meteorologi-
cal forcing is updated, using the ideal gas law and hydrostatic
equilibrium following the method described in Sect. S8. The
rate of change of canopy air pressure is then applied in
Eq. (18). Likewise, CAS density (ρc) is updated at the end of
each thermodynamic step to ensure that the CAS conforms
to the ideal gas law.

3.3 Carbon dioxide cycle

In ED-2.2, the carbon dioxide cycle is a subset of the full
carbon cycle, which is shown in Fig. 3. The canopy air space
is the only thermodynamic system with CO2 storage that is
solved by ED-2.2; nonetheless, we assume that the contribu-
tion of CO2 to density and heat capacity of the canopy air
space is negligible; hence, only the molar CO2 mixing ratio
cc (molC mol−1) is traced.

The change in CO2 storage in the canopy air space is de-
termined by the following differential equation:

dcc

dt
=
Md

MC

1
ρc zc

Ċc, (23)

Ċc︸︷︷︸
Net carbon flux

= Ċa,c︸︷︷︸
Carbon flux from
turbulent mixing
(Sect. 4.4)

+

NT∑
k=1

Ċlk,c︸ ︷︷ ︸
Net leaf–CAS flux
(respiration–GPP)

(Sect. 4.6)

+

NT∑
k=1

Ċrk,c︸ ︷︷ ︸
Fine-root

respiration
(Sect. 4.7)

+

NT∑
k=1

Ċnk,c︸ ︷︷ ︸
Storage turnover

respiration
(Sect. 4.7)

+

NT∑
k=1

Ċ1k,c︸ ︷︷ ︸
Growth and maintenance

respiration
(Sect. 4.7)

+

3∑
j=1

Ċej ,c︸ ︷︷ ︸
Heterotrophic

respiration
(Sect. 4.8)

,

(24)

where Md and MC are the molar masses of dry air and
carbon, respectively, used to convert mass to molar fraction
(1 molC = 1 molCO2 ). The terms on the right-hand side of
Eq. (24) are described in detail in the sections displayed un-
derneath each term. The net leaf–CAS flux (Ċlk,c) for any
cohort k is positive when leaf respiration exceeds photo-
synthetic assimilation. The heterotrophic respiration is based
on a simplified implementation of the CENTURY model
(Bolker et al., 1998) that combines the decomposition rates
from three soil carbon pools, defined by their characteristic
lifetime: fast (metabolic litter and microbial; e1), intermedi-
ate (structural debris; e2), and slow (humified and passive soil
carbon; e3). Note that the soil carbon pools are not directly
related to the soil layers used to describe the thermodynamic
state (Sect. 3.2.1).

In addition to canopy air space, we also define a virtual co-
hort pool of carbon corresponding to the accumulated carbon
balance (C1k ). The accumulated carbon balance links short-
term carbon cycle components such as photosynthesis and

respiration with long-term dynamics that depend on carbon
balance such as such as carbon allocation to growth and re-
production, and mortality (long-term dynamics described in
Sect. S3). The accumulated carbon balance is defined by the
following equation:

dC1k
dt︸ ︷︷ ︸

Change in
carbon balance

=− Ċlk,c︸︷︷︸
Net leaf–CAS flux
(respiration–GPP)

(Sect. 4.6)

− Ċrk,c︸︷︷︸
Fine-root

respiration
(Sect. 4.7)

− Ċnk,c︸ ︷︷ ︸
Storage turnover

respiration
(Sect. 4.7)

− Ċ1k,c︸ ︷︷ ︸
Growth and maintenance

respiration
(Sect. 4.7)

− Ċtk,e1︸ ︷︷ ︸
Turnover of

non-lignified litter
(Sects. 4, S4)

− Ċtk,e2︸ ︷︷ ︸
Turnover of

lignified litter
(Sects. 4, S4),

(25)

where Ċtk,e1 and Ċtk,e2 are the individual carbon losses
caused by leaf shedding and turnover of living tissues that be-
come part of the litter (Ċtk,e1 ) and structural debris (Ċtk,e2 ).
The transfer of carbon from plants to the soil carbon pools
and between the soil carbon pools does not directly im-
pact the carbon dioxide budget but contributes to the long-
term ecosystem carbon stock distribution and carbon bal-
ance. These components have been discussed in previous ED
and ED-2 publications (Moorcroft et al., 2001; Albani et al.,
2006; Medvigy, 2006; Medvigy et al., 2009) and are summa-
rized in Sect. S4.

4 Submodels and parameterizations of terms of the
general equations

4.1 Hydrology submodel and ground energy exchange

The ground model encompasses heat, enthalpy, and water
fluxes between adjacent layers of soil and temporary surface
water, as well as losses of water and enthalpy due to surface
runoff and drainage. Fluxes between adjacent layers are pos-
itive when they are upwards, and runoff and drainage fluxes
are positive or zero.

Sensible heat flux between two adjacent soil or temporary
surface water layers j − 1 and j is determined from thermal
conductivity ϒQ and temperature gradient (Bonan, 2008),
with an additional term for temporary surface water to scale
the flux when the temporary surface water covers only a frac-
tion fTSW of the ground:

Q̇gj−1,gj =−
〈
ϒQ
〉
gj−1,gj

(
∂Tg

∂z

)
gj−1,gj

, (26)

Q̇sj−1,sj =−fTSW
〈
ϒQ
〉
sj−1,sj

(
∂Ts

∂z

)
sj−1,sj

, (27)

where the operator 〈 〉 is the log-linear interpolation
from the midpoint height of layers j − 1 and j to the
height at the interface. The bottom boundary condition of
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Figure 3. Schematic of the patch-level carbon cycle solved in ED-2.2 for a patch containing NT cohorts. Like Fig. 2, letters near the arrows
are the subscripts associated with fluxes. Fluxes shown in solid yellow lines are part of the CO2 cycle discussed in this paper, and dashed red
lines are part of the carbon cycle but do not directly affect the CO2 flux; these fluxes are summarized in Sects. S3 and S4.

Eq. (26) is
(
∂T
∂z

)
g0,g1
≡ 0. The interface between the top

soil layer and the first temporary surface water (Q̇gNG ,s1
)

is found by applying Eq. (27) with
(
Ts0;ϒQs0 ;1zs0

)
=(

TgNG
;ϒQgNG

;1zgNG

)
. Soil thermal conductivity depends

on soil moisture and texture properties, and the parameter-
ization is described in Sect. S9. Both the fraction of ground
covered by the temporary surface water and the thermal con-
ductivity of the temporary surface water are described in
Sect. S10.

Soil moisture exchange between layers occurs only if wa-
ter is in liquid phase. The water flux between soil layers
gj−1 and gj ,j ∈ {2,3, . . .,NG} is determined from Darcy’s
law (Bonan, 2008):

Ẇgj−1,gj =−ρ`〈ϒ9〉gj−1,gj

[
∂9

∂z
+

dzg
dz

]
gj−1,gj

, (28)

where 9 is the soil matric potential and ϒ9 is the hy-
draulic conductivity, both defined after Brooks and Corey
(1964), with an additional correction term applied to hy-
draulic conductivity to reduce conductivity in the event that
the soil is partially or completely frozen (Sect. S9). The bot-
tom boundary condition for soil matric potential gradient is(
∂9
∂z

)
g0,g1
≡ 0.

The term dzg
dz in Eq. (28) is the flux due to gravity, and it is

1 for all layers except the bottom boundary condition, which
depends on the subsurface drainage. Subsurface drainage at

the bottom boundary depends on the type of drainage and
is determined using a slight modification of Eq. (28). Let
ð be an angle-like parameter that controls the drainage be-
neath the deepest soil layer. Because we assume zero gradi-
ent in soil matric potential between the deepest soil layer and
the boundary condition, the subsurface drainage flux (Ẇg1,g0 )
becomes

Ẇg1,g0 =−Ẇg0,g1 = ρ`ϒ9g1
sinð. (29)

Special cases of Eq. (29) are the zero-flow conditions (ð= 0)
and free drainage (ð= π

2 ).
For the temporary surface water, water flux between lay-

ers through percolation is calculated similarly to LEAF-2
(Walko et al., 2000). Liquid water in excess of 10 % is in
principle free to percolate to the layer below, although the
maximum percolation of the first surface water layer is lim-
ited by the amount of pore space available at the top ground
layer:

Ẇs1,gNG
=−ẆgNG ,s1

=
1

1tThermo

max
{

0,min
[
Ws1

(
`sj − 0.1

0.9

)
,ρ`

(
ϑPo−ϑgNG

)
1zgNG

]}
,

(30)
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Ẇsj ,sj−1 =−Ẇsj−1,sj =
1

1tThermo

max
(

0,Wsj
`sj − 0.1

0.9

)
, for j > 1. (31)

Surface runoff of liquid water is simulated using a simple
extinction function, applied only at the topmost temporary
surface water layer:

ẆsNS ,o
= `sNS

WsNS
exp

(
−
1tThermo

tRunoff

)
, (32)

where tRunoff is a user-defined e-folding decay time, usually
on the order of a few minutes to a few hours (Table S4).

In addition to the water fluxes due to subsurface drainage,
surface runoff, and the transport of water between layers,
we must account for the associated enthalpy fluxes. Enthalpy
fluxes due to subsurface drainage and surface runoff are de-
fined based on the water flux and the temperature of the lay-
ers where water is lost by applying the definition of enthalpy
(Sect. S5):

Ḣg1,g0 = Ẇg1,g0 q`
(
Tg1 − T`0

)
, (33)

ḢsNS ,o
= ẆsNS ,o

q`

(
TsNS
− T`0

)
, (34)

where q` is the specific heat of liquid water (Table S3), and
T`0 is defined in Eq. (S53). The enthalpy flux between two
adjacent layers is solved similarly, but it must account for the
sign of the flux in order to determine the water temperature
of the donor layer:

Ḣxj−1,xj =

{
Ẇxj−1,xj q`

(
Txj − T`0

)
, if Ẇxj−1,xj < 0

Ẇxj−1,xj q`
(
Txj−1 − T`0

)
, if Ẇxj−1,xj ≥ 0

, (35)

where the subscript xj represents either soil (gj ) or tempo-
rary surface water (sj ).

4.2 Precipitation and vegetation dripping

In ED-2.2, precipitating water from rain and snow increases
the water storage of the thermodynamic systems, as rainfall
can be intercepted by the canopy or reach the ground. This
influx of water also affects the enthalpy storage due to the
enthalpy associated with precipitation, although no heat ex-
change is directly associated with precipitation.

To determine the partitioning of total incoming precipita-
tion (Ẇ∞,a) into interception by each cohort (Ẇa,tk ) and di-
rect interception by the ground (throughfall, Ẇa,sNS

), we use
the fraction of open canopy (O) and the total plant area index

of each cohort (8tk ):

Ẇa,tk = (1−O) Ẇ∞,a
8tk∑NT
k′=18tk′

, (36)

Ẇa,sNS
=O Ẇ∞,a, (37)

O =
NT∏
k=1

(
1−Xtk

)
, (38)

where 8tk =3tk +�tk is the total plant area index, 3tk and
�tk being the leaf and wood area indices, both defined from
PFT-dependent allometric relations (Sect. S18); Xtk is the
crown area index of each cohort, also defined in Sect. S18.
Throughfall precipitation is always placed on the topmost
temporary surface water layer. In the event that no temporary
surface water layer exists, a new layer is created, although it
may be extinct in the event that all water is able to percolate
down to the top soil layer.

Precipitation is a mass flux, but it also has an associ-
ated enthalpy flux (Ḣ∞,a) that must be partitioned and in-
corporated into the cohorts and temporary surface water.
Similar to the water exchange between soil layers, the en-
thalpy flux associated with rainfall uses the definition of en-
thalpy (Sect. S5). Because precipitation temperature is sel-
dom available in meteorological drivers (towers or gridded
meteorological forcing data sets), we assume that precipita-
tion temperature is closely associated with the free-air tem-
perature (Ta), and we use Ta to determine whether the pre-
cipitation falls as rain, snow, or a mix of both. Importantly,
the use of free-air temperature partly accounts for the thermal
difference between precipitation temperature and the temper-
ature of intercepted surfaces. Rain is only allowed when Ta is
above the water triple point (T3 = 273.16K); in this case, the
rain temperature is always assumed to be at Ta. Pure snow
occurs when the free-air temperature is below T3, and like-
wise snow temperature is assumed to be Ta. When free-air
temperature is only slightly above T3, a mix of rain and snow
occurs, with the rain temperature assumed to be Ta and snow
temperature assumed to be T3:

Ḣ∞,a = Ẇ∞,a
[
(1− `a) qi min(T3,Ta)+ `a q` (Ta− T`0)

]
, (39)

where (qi;q`) are the specific heats of ice and liquid, respec-
tively, and T`0 is temperature at which supercooled water
would have enthalpy equal to zero (Eq. S53). The fraction
of precipitation that falls as rain `a is based on the Jin et al.
(1999) parameterization, slightly modified to make the func-
tion continuous:

`a =


1.0, if Ta > 275.66K
0.4+ 1.2(Ta− T3− 2.0) , if 275.16K< Ta ≤ 275.66K
0.2 (Ta− T3) , if T3 < Ta ≤ 275.16K
0.0, if Ta ≤ T3

. (40)

The enthalpy flux associated with precipitation is then
partitioned into canopy interception (Ḣa,tk ) and throughfall
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(Ḣa,sNS
) using the same scaling factor as in Eqs. (36) and

(37):

Ḣa,tk = (1−O) Ḣ∞,a
8tk∑NT
k′=18tk′

, (41)

Ḣa,sNS
=O Ḣ∞,a. (42)

Leaves and branches can accumulate only a finite amount
of water on their surfaces, proportional to their total area.
When incoming precipitation rates are too high (or more
rarely when dew or frost formation is excessive), any water
amount that exceeds the holding capacity is lost to the ground
as canopy dripping. Similarly to incoming precipitation, the
excess water lost through dripping also has an associated en-
thalpy that must be taken into account, although dripping has
no associated heat flux. The canopy dripping fluxes of wa-
ter (Ẇtk,sNS

) and the associated enthalpy (Ḣtk,sNS
) are defined

such that the leaves and branches lose the excess water within
one time step:

Ẇtk,sNS
=−

1
1tThermo

max
(
0,Wtk − ŵmax8tk

)
, (43)

Ḣtk,sNS
= Ẇtk,sNS

[(
1− `tk

)
qiTtk + `tk

(
Ttk − T`0

)]
, (44)

where `tk is the liquid fraction of surface water on top of
cohort k and ŵmax is the cohort holding capacity, which is an
adjustable parameter (Table S4) but is typically of the order
of 0.05− 0.40kgW m−2

Leaf+Wood (Wohlfahrt et al., 2006).

4.3 Radiation model

The radiation budget is solved using a multi-layer version of
the two-stream model (Sellers, 1985; Liou, 2002; Medvigy,
2006) applied to three broad spectral bands: photosynthet-
ically active radiation (PAR, wavelengths between 0.4 and
0.7 µm), near-infrared radiation (NIR, wavelengths between
0.7 and 3.0 µm) and thermal infrared radiation (TIR, wave-
lengths between 3.0 and 15 µm).

4.3.1 Canopy radiation profile

For each spectral band m, the canopy radiation scheme as-
sumes that each cohort corresponds to one layer of vegeta-
tion within the canopy, and within each layer the optical and
thermal properties are assumed constant. For all bands, the
top boundary condition for each band is provided by the me-
teorological forcing (Table 3). In the cases of PAR (m= 1)
and NIR (m= 2), the downward irradiance is comprised of
a beam (direct) and isotropic (diffuse) components, whereas
TIR irradiance (m= 3) is assumed to be all diffuse. Direct
irradiance that is intercepted by the cohorts can be either
backscattered or forward-scattered as diffuse radiation, and
direct radiation reflected by the ground is assumed to be en-
tirely diffuse.

Following Sellers (1985), the extinction of downward di-
rect irradiance and the two-stream model for hemispheric dif-
fuse irradiance for each of the spectral bands (m= 1,2,3) is

given by

µ�k
dQ̇�mk

d8̃︸ ︷︷ ︸
Downward direct

profile

= −Q̇�mk︸ ︷︷ ︸
Interception

, (45)

µk
dQ̇⇓mk

d8̃︸ ︷︷ ︸
Downward diffuse

profile

= −Q̇
⇓

mk︸ ︷︷ ︸
Interception

+ (1−βmk) ςmk Q̇
⇓

mk︸ ︷︷ ︸
Forward scattering
(downward diffuse)

+ βik ςmk Q̇
⇑

mk︸ ︷︷ ︸
Backscattering

(upward diffuse)

+
µk

µ�k
ςmk

(
1−β�mk

)
Q̇�mk︸ ︷︷ ︸

Forward scattering
(downward direct)

+ (1− ςmk) Q̇
�
mk︸ ︷︷ ︸

Emission

,

(46)

−µk
dQ̇⇑mk

d8̃︸ ︷︷ ︸
Upward diffuse

profile

=− Q̇
⇑

mk︸︷︷︸
Interception

+ (1−βmk) ςmk Q̇
⇑

mk︸ ︷︷ ︸
Forward scattering
(upward diffuse)

+ βmk ςmk Q̇
⇓

mk︸ ︷︷ ︸
Backscattering

(downward diffuse)

+
µk

µ�k
ςmk β

�

mk Q̇
�

mk︸ ︷︷ ︸
Backscattering

(downward direct)

+ (1− ςmk) Q̇
�
mk︸ ︷︷ ︸

Emission

,

(47)

where index k ∈ {1,2, . . .,NT} corresponds to each cohort k
or its lower interface (Fig. 4); interface NT+ 1 is immedi-
ately above the tallest cohort; Q̇�mk is the downward direct
irradiance incident at interface k; (Q̇⇓mk and Q̇⇑mk) are the
downward and upward (hemispheric) diffuse irradiance inci-
dent at interface k; ςmk is the scattering coefficient, and thus
(1− ςmk) is the absorptivity; β�mk and βmk are the backscat-
tered fraction of scattered direct and diffuse irradiance, re-
spectively; 8̃ is the effective cumulative plant area index,
assumed zero at the top of each layer, and increasing down-
wards (8̃k is the total for layer k); µ�k and µk are the inverse
of the optical depth per unit of effective plant area index for
direct and diffuse radiation, respectively; and Q̇�

mk is the ir-
radiance emitted by a black body at the same temperature as
the cohort (Ttk ).

Equations (45)–(47) simplify for each spectral band. First,
Q̇�mk ≡ 0 for the TIR (m= 3) band, because we assume that
all incoming TIR irradiance is diffuse. Likewise, the black-
body emission Q̇�

mk = 0 for the PAR (m= 1) and NIR (m=
2) bands, because thermal emission is negligible at these
wavelengths. The black-body emission for the TIR band is
defined as

Q̇
�
m=3 k = σSB T

4
tk
, (48)
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Figure 4. Schematic of the radiation module for a patch with NT cohorts, showing the grid arrangement of the irradiance profiles relative
to the cohort positions. Index k corresponds to each cohort, or, in the case of

(
Q̇�
mk
,Q̇
⇓

mk
,Q̇
⇑

mk

)
, the interface beneath each cohort; m

corresponds to each spectral band;
(
Q̇�
m(∞,a)

,Q̇
⇓

m(∞,a)

)
are the incoming direct and diffuse irradiance (Table 3); Z� is the Sun’s zenith

angle;
(
Q̇�
mk
,Q̇
⇓

mk
,Q̇
⇑

mk

)
are the downward direct, downward diffuse, and upward diffuse irradiance (Eqs. 45–47); 8̃k is the effective plant

area index (Eq. S100); (ςmk;βmk) are the scattering coefficients and the backscattering fraction for diffuse irradiance (Eqs. S101, S102);(
ς�
mk
;β�
mk

)
are the scattering coefficients and the backscattering fraction for direct irradiance (Eqs. S104–S105); Q̇�

mk
is the black-body

irradiance (Eq. 48); and Q̇�a,tk is the net absorbed irradiance (Eq. 49).

where σSB is the Stefan–Boltzmann constant (Table S3).
Note that for emission of TIR radiation (Eqs. 45–47), we as-
sume that emissivity is the same as absorptivity (Kirchhoff’s
law; Liou, 2002) and hence the (1− ς) term.

The effective plant area index 8̃k is the total area (leaves
and branches) that is corrected to account for that leaves
are not uniformly distributed in the layer. It is defined as
8̃k =�k + fClumpk 3k , where fClumpk is the PFT-dependent
clumping index (Chen and Black, 1992, default values in Ta-
bles S5–S6), 3tk is the leaf area index, and �tk is the wood
area index. 8̃ is assumed zero at the top of each layer, in-
creasing downwards.

The optical properties of the leaf layers – optical depth
and scattering parameters for direct and diffuse radiation
for each of the three spectral bands – are assumed con-
stant within each layer. These properties are determined from
PFT-dependent characteristics such as mean orientation fac-
tor, spectral-band-dependent reflectivity, transmissivity, and
emissivity (Sect. S11). Because the properties are constant
within each layer, it is possible to analytically solve the full
profile of both direct and diffuse radiation using the solver
described in Sect. S12.

Once the profiles of Q̇�mk , Q̇
⇓

mk and Q̇⇑mk are determined,
we obtain the irradiance that is absorbed by each cohort

Q̇a,tk :

Q̇a,tk =

3∑
m=1

[(
Q̇�m(k+1)− Q̇

�

mk

)
+

(
Q̇
⇓

m(k+1)− Q̇
⇓

mk

)
+

(
Q̇
⇑

mk − Q̇
⇑

m(k+1)

)]
. (49)

This term is then used in the enthalpy budget of each cohort
(Eqs. 4 and 12).

4.3.2 Ground radiation

The ground radiation submodel determines the irradiance
emitted by the ground surface and the profile of irradiance
through the temporary surface water layers and top soil layer.
Note that the ground radiation and the canopy radiation
model are interdependent: the incoming radiation at the top
ground layer is determined from the canopy radiation model,
and the ground scattering coefficient (ςm0; see Sect. S11) is
needed for the canopy radiation bottom boundary condition
(Sect. S12). However, since the scattering coefficient does
not depend on the total incoming radiation, the irradiance
profile can be solved for a standardized amount of incom-
ing radiation, and once the downward radiation at the bottom
of the canopy has been calculated, the absorbed irradiance
for each layer can be scaled appropriately.
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Black-body emission from the ground (Q̇�
m0) is calculated

as an area-weighted average of the emissivities of exposed
soil and temporary surface water:

Q̇
�
m0 = 0 if m ∈ (1,2) ,[
(1− fTSW)

(
1− ς3g

) (
σSB T

4
gNG

)
+ fTSW (1− ς3s)

(
σSB T

4
sNS

)]
[
(1− fTSW)

(
1− ς3g

)
+ fTSW (1− ς3s)

]−1 if m= 3

(50)

where (1− ς3g) and (1− ς3s), are, respectively, the thermal-
infrared emissivities of the top soil layer and the temporary
surface water (Table S4), and fTSW is the fraction of ground
covered by temporary surface water. In ED-2.2, the soil and
snow scattering coefficients for the TIR band are assumed
constant (Table S4), following Walko et al. (2000).

Once the irradiance profile for the canopy is determined
from Eqs. (45) to (47), the irradiance absorbed by each tem-
porary surface water layer (j ∈ {1,2, . . .,NS}) is calculated
by integrating the transmissivity profile for each layer, start-
ing from the top layer:

Q̇a,sj =

∑2
m=1

{
fTSW

(
Q̇
⇓

m1+ Q̇
�

m1

) [
1− exp

(
−
1zsNS
µs

)]}
+fTSW (1− ς3s)

(
Q̇
⇓

m=3 k=1− σSBT
4
sNS

)
, if j =NS∑2

m=1

{
fTSW

(
Q̇
⇓

m1+ Q̇
�

m1

) [
exp

(
−

∑NS
j ′=j+11zsj

µs

)

−exp

(
−

∑NS
j ′=j

1zs
j ′

µs

)]}
, otherwise

,

(51)

where µs is the inverse of the optical depth of temporary sur-
face water.

The irradiance absorbed by the ground is a combination
of irradiance of exposed soil and irradiance that is transmit-
ted through all temporary surface water layers and the net
absorption of longwave radiation:

Q̇a,gNG
=

2∑
m=1


1− fTSW+ fTSW exp

−∑NS
j ′=11zsj ′

µs


(
Q̇
⇓

m1+ Q̇
�

m1

)}
+ (1− fTSW)

(
1− ς3g

)
(
Q̇
⇓

m=3 k=1− σSBT
4
gNG

)
. (52)

4.4 Surface layer model

The surface layer model determines the fluxes of enthalpy,
water, and carbon dioxide between the canopy air space and
the free air above. It is based on the Monin–Obukhov similar-
ity theory (Monin and Obukhov, 1954; Foken, 2006), which

has been widely used by biosphere–atmosphere models rep-
resenting a variety of biomes (e.g., Walko et al., 2000; Best
et al., 2011; Oleson et al., 2013), although this is often an ex-
trapolation of the theory that was not originally developed for
heterogeneous vegetation or tall vegetation (Foken, 2006).

In order to obtain the fluxes, we assume that the eddy dif-
fusivity of buoyancy is the same as the diffusivity of enthalpy,
water vapor, and CO2. This assumption allows us to define a
single canopy conductanceGc for the three variables, follow-
ing the algorithm described in Sects. S13 and S14.1. We then
obtain the following equations for fluxes between canopy air
space and the free atmosphere:

Ẇa,c = ρcGc (wa−wc) , (53)

Ḣa,c = ρcGc
(̃
ha−hc

)
, (54)

Ċa,c =
MC

Md
ρcGc (ca− cc) , (55)

where h̃a is the equivalent enthalpy of air at reference height
za when the air is adiabatically moved to the top of the
canopy air space, using the definition of potential tempera-
ture:

h̃a = h
(
T̃a,wa

)
, from Eq. (S50), (56)

T̃a = θa

(
pc

p0

) R
Md qpd

, (57)

where p0 is the reference pressure, R is the universal gas
constant, qpd is the specific heat of dry air at constant pres-
sure, and Md is the molar mass of dry air (Table S3).

Sensible heat flux between the free atmosphere and canopy
air space (Q̇a,c) can be derived from the definition of en-
thalpy and enthalpy flux (Eqs. S50 and 54), although it is
not directly applied to the energy balance in the canopy air
space (Ḣa,c is used instead):

Ḣa,c = ρcGc
[
(1−wa) qpd T̃a+wa qpv

(
T̃a− Tv0

)
−(1−wc) qpd Tc−wc qpv (Tc− Tv0)

]
= ρcGc

(
qpa T̃a− qpcTc

)︸ ︷︷ ︸
Q̇a,c

− ρcGc (wa−wc) qpv Tv0, (58)

Q̇a,c = Ḣa,c+ Ẇa,c qpv Tv0. (59)

4.5 Heat and water exchange between surfaces and
canopy air space

4.5.1 Leaves and branches

Fluxes of sensible heat (Q̇tk,c) and water vapor (Ẇtk,c) be-
tween the leaf surface and wood surface and the canopy air
space follow the same principle of conductance and gradi-
ent that define the eddy fluxes between the free atmosphere
and canopy air space (Eqs. 53, 54). Throughout this section,
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we use subscripts λk and βk to denote leaf and wood bound-
ary layers of cohort k, respectively; the different subscripts
are needed to differentiate fluxes coming from the leaves’ in-
tercellular space (e.g., transpiration; see also Sect. 4.6). Let
GQλk (ms−1) andGWλk (ms−1) be the conductances of heat
and water between the leaf boundary layer of cohort k and the
canopy air space, and GQβk and GWβk be the wood bound-
ary layer counterparts. The surface sensible heat and surface
water vapor fluxes are

Q̇tk,c = Q̇λk,c+ Q̇βk,c = 23k q̇λk,c+π �k q̇βk,c, (60)
Ẇtk,c = Ẇλk,c+ Ẇβk,c =3k ẇλk,c+�k ẇβk,c, (61)

q̇λk,c =GQλk ρc qpc

(
T Sfc
lk
− Tc

)
, (62)

q̇βk,c =GQβk ρc qpc

(
T Sfc
bk
− Tc

)
, (63)

ẇλk,c =GWλk ρc

(
wSfc
lk
−wc

)
, (64)

ẇβk,c =GWβk ρc

(
wSfc
bk
−wc

)
, (65)

where (q̇λk,c; q̇βk,c; ẇλk,c; ẇβk,c) are the leaf surface and
branch surface heat and water fluxes by unit of leaf and
branch area, respectively; the factors 2 and π in Eq. (60)
mean that sensible heat is exchanged on both sides of the
leaves and on the longitudinal area of the branches, which are
assumed cylindrical. Intercepted water and dew and frost for-
mation is allowed only on one side of the leaves, and an area
equivalent to a one-sided flat plate for branches, and there-
fore only the leaf and wood area indices are used in Eq. (61).
Canopy air space temperature, specific humidity, density, and
specific heat, leaf temperature, and wood temperature are de-
termined diagnostically. We also assume surface temperature
of leaves and branches to be the same as their internal tem-
peratures (i.e., T Sfc

lk
≡ Tlk and T Sfc

bk
≡ Tbk ). Specific humidity

at the leaf surface wSfc
lk
= wSat

(
T Sfc
lk
,pc

)
and branch surface

wSfc
βk
= wSat

(
T Sfc
bk
,pc

)
are assumed to be the saturation spe-

cific humidity wSat (Sect. S15).
Heat conductance for leaves and branches is based on the

convective heat transfer, as described in Sect. S14.2. Fur-
ther description of the theory can be found in Monteith and
Unsworth (2008, Sect. 10.1).

4.5.2 Temporary surface water and soil

Sensible heat and water fluxes between the temporary sur-
face water and soil and the canopy air space are calculated
similarly to leaves and branches. Surface conductance GSfc
is assumed to be the same for both heat and water, and also

the same for soil and temporary surface water:

Q̇sNS ,c
= fTSWGSfc ρc qpc

(
TsNS
− Tc

)
, (66)

ẆsNS ,c
= fTSWGSfc ρc

(
wsNS
−wc

)
, (67)

Q̇gNG ,c
= (1− fTSW) GSfc ρc qpc

(
TgNG
− Tc

)
, (68)

ẆgNG ,c
= (1− fTSW) GSfc ρc

(
wgNG

−wc

)
. (69)

Specific humidity for temporary surface water is com-
puted exactly as leaves and branches,wsNS

= wSat

(
TsNS

,pc

)
(Sect. S15). For soils, the specific humidity also accounts for
the soil moisture and the sign of the flux, using a method
similar to Avissar and Mahrer (1988):

wgNG
=


sg exp

(
Mw g9gNG

RTgNG

)
wSat(TgNG

,pc)+
(
1− sg

)
wc,

if wSat(TgNG
,pc) > wc

wSat(TgNG
,pc),

if wSat(TgNG
,pc)≤ wc

,

(70)

sg =
1
2

1.0− cos

π min
(
ϑgNG

,ϑFc

)
−ϑRe

ϑFc−ϑRe

 , (71)

where g is the gravity acceleration, Mw is the water mo-
lar mass, and R is the universal gas constant (Table S3);
TgNG

, ϑgNG
, and 9gNG

are the temperature, soil moisture,
and soil matric potential of the topmost soil layer, respec-
tively; and ϑFc and ϑRe are the soil moisture at field capacity
and the residual soil moisture, respectively. The exponential
term in Eq. (70) corresponds to the soil pore relative humid-
ity derived from the Kelvin equation (Philip, 1957), and sg
is the soil wetness function, which takes a similar functional
form as the relative humidity term from Noilhan and Planton
(1989) and the β term from Lee and Pielke (1992). The total
resistance between the surface and the canopy air space is a
combination of the resistance if the surface was bare, plus the
resistance due to the vegetation, as described in Sect. S14.3.

4.5.3 Enthalpy flux due to evaporation and
condensation

Dew and frost are formed when water in the canopy air space
condenses or freezes on any surface (leaves, branches, or
ground); likewise, water that evaporates and ice that subli-
mates from these surfaces immediately become part of the
canopy air space. In terms of energy transfer, two processes
occur, the phase change and the mass exchange, and both
must be accounted for the enthalpy flux. Phase change de-
pends on the specific latent heat of vaporization (llv) and
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sublimation (liv), which are linear functions of temperature,
based on Eqs. (S48) and (S49):

llv(T )= llv3+
(
qpv − q`

)
(T − T3) , (72)

liv(T )= liv3+
(
qpv − qi

)
(T − T3) , (73)

where llv3 and liv3 are the specific latent heats of vaporiza-
tion and sublimation at the water triple point (T3), qpv is the
specific heat of water vapor at constant pressure, and qi and
q` are the specific heats of ice and liquid water, respectively
(Table S3). The temperature for phase change must be the
surface temperature because this is where the phase change
occurs. In the most generic case, if a surface x at temperature
Tx has a liquid water fraction `x , the total enthalpy flux be-
tween the surface and canopy air space Ḣx,c associated with
the water flux Wx,c is

Ḣx,c = Ẇx,c

[(1− `x) qi Tx + `x q` (Tx − Tl0)]︸ ︷︷ ︸
Enthalpy flux due to mass exchange

+[(1− `x) liv(Tx)+ `x llv(Tx)]︸ ︷︷ ︸
Enthalpy flux due to phase change

 . (74)

By using the definitions from Eq. (S54), Eq. (74) can be fur-
ther simplified to

Ḣx,c = Ẇx,c

[
qpv (Tx − Tv0)

]
= Ẇx,c h(Tx,wx = 1)︸ ︷︷ ︸

Eq. (S50)

, (75)

which is consistent with the exchange of pure water vapor
and enthalpy between the thermodynamic systems. Equa-
tion (75) is used to determine ḢgNG ,c

, ḢsNS ,c
, and Ḣtk,c,k ∈

{1,2, . . .,NT }.

4.6 Leaf physiology

In ED-2.2, leaf physiology is modeled following Farquhar
et al. (1980) and Collatz et al. (1991) for C3 plants; Collatz
et al. (1992) for C4 plants; and the Leuning (1995) model
for stomatal conductance. This submodel ultimately deter-
mines the net leaf-level CO2 uptake rate of each cohort k (Ȧk ,
molC m−2

Leaf s−1), controlled exclusively by the leaf environ-
ment, and the corresponding water loss through transpiration
(Ėk , molW m−2

Leaf s−1).
The exchange of water and CO2 between the leaf intercel-

lular space and the canopy air space is mediated by the stom-
ata and the leaf boundary layer, which imposes an additional
resistance to fluxes of these substances. For simplicity, we as-
sume that the leaf boundary layer air has low storage capac-
ity, and thus the fluxes of any substance (water or CO2) enter-
ing and exiting the boundary layer must be the same. Fluxes
of water and carbon between the leaf intercellular space and
the canopy air space must overcome both the stomatal re-
sistance and the boundary layer resistance, whereas sensible

heat flux and water flux from leaf surface water must over-
come the boundary layer resistance only (Fig. 5). When soil
moisture is not a limiting factor, the fluxes of CO2 and water
can be written as

Ȧk = ĜCλk
(
cc− cλk

)
= ĜClk

(
cλk − clk

)
=

ĜCλk ĜClk

ĜCλk + ĜClk

(
cc− clk

)
, (76)

Ėk = ĜWλk
(
wc−wλk

)
= ĜWlk

(
wλk −wlk

)
=

ĜWλk ĜWlk

ĜWλk + ĜWlk

(
wc−wlk

)
, (77)

where

wlk = wSat
(
Ttk ,pc

)
(Sect. S15), (78)

and

ĜXλk =
ρcGXλk
Md

, (79)

and

ĜXlk =
ρcGXlk
Md

, (80)

where GXλk and GXlk (units ms−1) are the leaf boundary
layer and stomatal conductances for element X (either wa-
ter W or carbon C), respectively; cλk and wλk are the CO2
mixing ratio and the specific humidity of the leaf boundary
layer, respectively; clk and wlk are the CO2 and specific hu-
midity of the leaf intercellular space, respectively;Md is the
molar mass of dry air; and ρc is the air density. As stated in
Eq. (78), we assume the leaf intercellular space to be at wa-
ter vapor saturation. The leaf boundary layer conductances
are obtained following the algorithm shown in Sect. S14.2.
The net CO2 assimilation flux and stomatal conductances are
described below.

From Farquhar et al. (1980), the net CO2 assimilation flux
is defined as

Ȧk = V̇Ck︸︷︷︸
Carboxylation

−
1
2
V̇Ok︸ ︷︷ ︸

Oxygenation
(photorespiration)

− Ṙk︸︷︷︸
Leaf respiration

. (81)

Oxygenation releases 0.5 molCO2 for every molO2 , hence the
half multiplier, and it is related to carboxylation by means of
the CO2 compensation point 0k (Lambers et al., 2008):

V̇Ok =
20k
clk

V̇Ck , (82)

where clk is the CO2 mixing ratio in the leaf intercellular
space. The CO2 compensation point is determined after Col-
latz et al. (1991, 1992):

0k =

{ o⊕
2$

, in case cohort k is a C3 plant

0, in case cohort k is a C4 plant
, (83)
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Figure 5. Schematic of fluxes between a leaf and the surrounding canopy air space for a hypostomatous plant during the photo period, as
represented in ED-2.2. Conductances are represented by the resistances between the different environments (G−1). Leaf-level sensible heat
flux (q̇λk,c; Eq. 60) and leaf-level vapor flux between intercepted water and canopy air space (ẇλk,c; Eq. 61) are also shown for comparison.
Cohort index k is omitted from the figure for clarity.

where o⊕ is the reference O2 mixing ratio (Table S3), and
$ represents the ratio between the rates of carboxylase to
oxygenase and is a function of temperature. The general form
of the function T describing the metabolic dependence upon
temperature for any variable x (including $ ) is

T (T ,x)= x15×Q
T−T15

10
10x , (84)

where x15 is the value of variable x at temperature T15 =

288.15 K (15 ◦C), andQ10x is the parameter which describes
temperature dependence (Table S4).

Because C4 plants have a mechanism to concentrate
CO2 near the CO2-fixing enzyme RuBisCO (ribulose-1,5-
biphosphate carboxylase oxygenase), photorespiration is
nearly nonexistent in C4 plants (Lambers et al., 2008) and
hence the assumption that 0k is zero. For C4 plants, the car-
boxylation rate under ribulose-1,5-biphosphate (RuBP) sat-
urated conditions becomes the maximum capacity of Ru-
BisCO to perform the carboxylase function (V̇Ck = V̇

max
Ck

).
For C3, this rate is unattainable even under RuBP-saturated
conditions because carboxylation and oxygenation are mu-
tually inhibitive reactions (Lambers et al., 2008). Therefore,
the maximum attainable carboxylation (V̇Ck = V̇

RuBP
Ck

) is ex-
pressed by a modified Michaelis–Menten kinetics equation:

V̇ RuBP
Ck

=

{
V̇ max
Ck

clk
clk+KMEk

, if cohort k is a C3 plant

V̇ max
Ck

, if cohort k is a C4 plant
, (85)

where KMEk =KCk
(
1+ o⊕/KOk

)
is the effective Michaelis

constant, and KCk and KOk are the Michaelis constants for
carboxylation and oxygenation, respectively. Both KCk and
KOk are dependent on temperature, following Eq. (84) (de-
fault parameters in Table S4), whereas V̇ max

Ck
follows a mod-

ified temperature-dependent function to account for the fast
decline of both productivity and respiration at low and high
temperatures (Sellers et al., 1996; Moorcroft et al., 2001):

T ′ (T ,x)

=
T(T ,x){

1+ exp
[
−fCold (T − TCold)

]} {
1+ exp

[
+fHot (T − THot)

]} ,
(86)

where fCold, fHot, TCold, and THot are PFT-dependent phe-
nomenological parameters to reduce the function value at
low and high temperatures (Tables S5–S6).

The original expression for the initial slope of the carboxy-
lation rate under near-zero CO2 (V̇ InSl

Ck
) for C4 plants by Col-

latz et al. (1992) has been modified later (e.g., Foley et al.,
1996) to explicitly include V̇ max

Ck
; this is the same expression

used in ED-2.2:

V̇ InSl
Ck
= kPEP V̇

max
Ck

clk , (87)

where kPEP represents the initial slope of the response curve
to increasing CO2; the default value in ED-2.2 (Table S4) is
the same value used by Foley et al. (1996).
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From the total photosynthetically active irradiance ab-
sorbed by the cohort Q̇PAR:a,tk (Eq. 49), we define the photon
flux that is absorbed by the leaf (q̇PAR

k ,molm−2
Leaf s−1):

q̇PAR
k =

1
Ein

fClumpk

8̃k
Q̇PAR:a,tk , (88)

where Ein is the average photon-specific energy in the PAR
band (0.4–0.7 µm; Table S3). Even though a high fraction
ε?k of the absorbed irradiance is used to transport electrons
needed by the light reactions of photosynthesis (Lambers
et al., 2008), only a fraction of the irradiance absorbed by
the leaf is absorbed by the chlorophyll; in addition, the num-
ber electrons needed by each carboxylation and oxygenation
reaction poses an additional restriction to the total carboxyla-
tion rate. The product of these three factors is combined into
a single scaling factor for total absorbed PAR, the quantum
yield (εk), which is a PFT-dependent property in ED-2.2 (Ta-
bles S5–S6). The maximum carboxylation rate under light
limitation V̇ PAR

Ck
is

V̇ PAR
Ck
=


εk q̇

PAR
k

clk
clk+20k

,

if cohort k is a C3 plant
εk q̇

PAR
k ,

if cohort k is a C4 plant

. (89)

Carboxylation may also be limited by the export rate of
starch and sucrose that is synthesized by triose phosphate,
especially when CO2 concentration and irradiance are simul-
taneously high, at low temperatures, or O2 concentration is
low (von Caemmerer, 2000; Lombardozzi et al., 2018). This
limitation is not included in ED-2.2.

The leaf respiration term Ṙk comprises all leaf respiration
terms that are not dependent on photosynthesis, and is pri-
marily constituted of mitochondrial respiration; it is currently
represented as a function of the maximum carboxylation rate,
following Foley et al. (1996):

Ṙk = fR V̇
max
Ck

, (90)

where fR is a PFT-dependent parameter (Tables S5–S6).
A plant’s stomatal conductance is a result of a trade-off

between the amount of carbon that leaves uptake and the
amount of water that they lose. Leuning (1995) proposed
a semi-empirical stomatal conductance expression for water
based on these trade-offs:

ĜWlk =


Ĝ

∅
Wlk
+

Mk Ȧk(
cλk−0k

)(
1+

wlk
−wλk
1wk

) , if Ȧk > 0

Ĝ
∅
Wlk

, if Ȧk ≤ 0

, (91)

where Ĝ∅
Wlk

is the residual conductance when stomata are
closed,Mk is the slope of the stomatal conductance function,
and 1wk is an empirical coefficient controlling conductance
under severe leaf-level water deficit; Ĝ∅

Wlk
,Mk , and1wk are

PFT-dependent parameters (Tables S5–S6). From Cowan and

Troughton (1971), stomatal conductance of CO2 is estimated
by the ratio fGl between the diffusivities of water and CO2
in the air (Table S4):

ĜWlk = fGl ĜClk . (92)

Variables wlk , V̇
max
Ck

, Ṙk , $k , KOk , KCk , 0k , and KMEk
are functions of leaf temperature and canopy air space pres-
sure and thus can be determined directly. In contrast, nine
variables are unknown for each limitation case, namely the
RuBP-saturated (Eq. 85), CO2-limited (Eq. 87), and light-
limited (Eq. 89) variables, as well as for the case when the
stomata are closed (Eq. 91 for when Ȧk ≤ 0): Ėk , Ȧk , V̇Ck ,
V̇Ok , clk , cλk ,wλk , ĜWlk , and ĜClk . These are determined nu-
merically for each limiting case, and the value of Ȧk is taken
to be the limiting case that yields the lowest Ȧk , following
the algorithm described in Sect. S16.

The stomatal conductance model by Leuning (1995)
(Eq. 91) is regulated by leaf vapor pressure deficit. However,
Eqs. (76) and (77) do not account for soil moisture limita-
tion of photosynthesis. To represent this effect, we define a
soil-moisture-dependent scaling factor (fWlk ; Sect. S17) to
reduce productivity and transpiration as soil available wa-
ter decreases. Because stomatal conductance cannot be zero,
the scaling factor fWlk interpolates between the fully closed
case (Ȧ∅

k ; Ė
∅
k ) and the solution without soil moisture limi-

tation (Ȧk; Ėk), yielding to the actual fluxes of CO2 (Ċlk,c,
kgC m−2 s−1) and water (Ẇlk,c, kgW m−2 s−1):

Ċlk,c =−þkMC3k

[(
1− fWlk

)
Ȧ

∅
k + fWlk Ȧk

]
, (93)

Ẇlk,c = þkMw3k

[(
1− fWlk

)
Ė

∅
k + fWlk Ėk

]
, (94)

where þk is 1 if the PFT is hypostomatous or 2 if the PFT
is amphistomatous or needleleaf (Tables S5–S6). Alterna-
tively, Xu et al. (2016) implemented a process-based plant
hydraulics scheme that solves the soil–stem–leaf water flow
in ED-2.2; details of this implementation are available in the
above-mentioned paper.

For simplicity, we assume that the water content in the leaf
intercellular space and the plant vascular system is constant;
therefore, the amount of water lost by the intercellular space
through transpiration always matches the amount of water
absorbed by roots. Plants may extract water from all layers
to which they have access, and the amount of water extracted
from each layer is proportional to the available water in the
layer relative to the total available water (W ?

gj
):

NG∑
j=j0k

Ẇgj ,lk = Ẇlk,c, (95)

Ẇgj ,lk = Ẇlk,c

W ?
gj
−W ?

gj+1

W ?
gj0

, (96)

whereW ?
gj

is defined following Sect. S17 andW ?
g(NG+1) ≡ 0.

The net water flux in the leaf intercellular space due to tran-
spiration is assumed to be zero; however, the associated net
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energy flux is not: water enters the leaf intercellular space as
liquid water at the soil temperature, reaches thermal equilib-
rium with leaves, and is lost to the canopy air space as water
vapor at the leaf temperature. Therefore, the enthalpy flux
between the soil layers and the cohort (Ḣgj ,lk ) is calculated
in a similar manner to Eq. (35), whereas the enthalpy flux
between the leaf intercellular space and the canopy air space
(Ḣlk,c) is solved in a similar manner to Eq. (75):

Ḣgj ,lk = Ẇgj ,lk q`

(
Tgj − T`0

)
, (97)

Ḣlk,c = Ẇlk,c qpv
(
Ttk − Tv0

)
. (98)

4.7 Non-leaf autotrophic respiration

Respiration from fine roots is defined using a phenomeno-
logical function of temperature that has the same functional
form as leaf respiration (Moorcroft et al., 2001). Because
roots are allowed in multiple layers, and in ED-2.2 roots have
a uniform distribution of mass throughout the profile, the to-
tal respiration (Ċrk,c: kgC m−2 s−1) is the integral of the con-
tribution from each soil layer, weighted by the layer thick-
ness:

Ċrk,c = Crk

∑NG
j=j0k

[
T ′
(
Tgj , rrk

)
1zgj

]
∑NG
j=j0k

1zgj

, (99)

where rrk (s−1) is the PFT-dependent factor that describes
the relative metabolic activity of fine roots at the reference
temperature (15 ◦C) (Tables S5–S6), and T ′ is the same
temperature-dependent function from Eq. (86); default pa-
rameters are listed in Tables S5–S6.

Plants have two additional respiration terms: a phe-
nomenological term that represents the long-term turnover
rate of the accumulated storage pool (Ċnk,c), assumed con-
stant (Medvigy et al., 2009), and a term related to the losses
associated with the assimilated carbon for growth and main-
tenance of the living tissues (Ċ1k,c; Amthor, 1984). The lat-
ter term is a function of the plant metabolic rate, which has
strong daily variability and hence is a function of the daily
carbon balance:

Ċnk,c = τnk Cnk , (100)
Ċ1k,c = τ1k C1k , (101)

where (τnk ,τ1k ) are the PFT-dependent decay rates asso-
ciated with storage turnover and consumption for growth,
respectively (Tables S5–S6); and C1k (kgC m−2) is the to-
tal accumulated carbon from the previous day as defined in
Eq. (25). The transport from non-structural storage and the
accumulated carbon for maintenance, growth, and storage is
summarized in Sect. S3.

4.8 Heterotrophic respiration

Heterotrophic respiration comes from the decomposition of
carbon in the three soil/litter carbon pools. For each car-

bon pool ej ;j ∈ (1,2,3), we determine the maximum car-
bon loss based on the characteristic decay rate, which corre-
sponds to the typical half-life for metabolic and microbial lit-
ter (fast, e1), structural litter (intermediate, e2), and humified
and passive soil carbon (slow, e3), determined from Bolker
et al. (1998):

Ċej ,c = Cej fhej Bej ET
(
T g20

)
Eϑ ′

(
ϑ
′

20

)
, (102)

where fhe is the fraction of decay that is lost through respi-
ration (Table S4), and by definition fhe3 must always be 1
(slow soil carbon can only be lost through heterotrophic res-
piration); Bej is the decay rates at optimal conditions of soil
carbon ej , based on Bolker et al. (1998) (Table S4); T g20 and
ϑ
′

20 are the average temperature and relative soil moisture of
the top 0.2m of soil; the relative soil moisture for each layer
is defined as

ϑ ′gj =
ϑgj −ϑRe

ϑPo−ϑRe
; (103)

and ET (T g20) and Eϑ ′(ϑ
′

20) are functions that reduces the de-
composition rate due to temperature or soil moisture under
non-optimal conditions:

ET (T g20 )=

1{
1+ exp

[
−f̂Cold

(
T g20 − TgCold

)]}{
1+ exp

[
+f̂Hot

(
T g20 − TgHot

)]} ,
(104)

Eϑ ′(ϑ
′

20)=

1{
1+ exp

[
−f̂Dry

(
ϑ
′

20−ϑ
′
Dry

)]}{
1+ exp

[
+f̂Wet

(
ϑ
′

20−ϑ
′
Wet

)]} ,
(105)

where (f̂Cold;TgCold ), (f̂Hot;TgHot ), (f̂Dry;ϑ ′Dry), and

(f̂Wet;ϑ ′Wet) are phenomenological parameters to de-
crease decomposition rates at low and high temperatures,
and dry and saturated soils, respectively (Table S4). The
decay fraction from fast and structural soil carbon that is not
lost through heterotrophic respiration is transported to the
slow soil carbon (Sect. S4).

5 Results

5.1 Conservation of energy, water, and carbon dioxide

The ED-2.2 simulations show a high degree of conservation
of the total energy, water, and carbon (Fig. 6). In the ex-
ample simulation for one patch at Paracou, French Guiana
(GYF), a tropical forest site, the accumulated deviation from
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perfect closure (residual) of the energy budget over 50 years
(2 629 800 time steps) was 0.1 % of the total enthalpy stor-
age – sum of enthalpy stored at the canopy air space, co-
horts, temporary surface water and soil layers, (Fig. 6a) and
0.002 % of the accumulated losses through eddy flux, the
largest cumulative flux of enthalpy. Results for the water bud-
get were even better, with maximum accumulated residuals
of 0.04 % of the total water stored in the ED-2.2 thermody-
namic systems, or 0.0006 % of the total water input by pre-
cipitation (Fig. 6b), and the accumulated residual of carbon
was 0.008 % of the total carbon storage or 0.017 % the to-
tal accumulated loss through eddy flux. The average abso-
lute residual errors by time step, relative to the total storage,
ranged from 3.6×10−11 (carbon) to 3.8×10−10 (energy) and
were thus orders of magnitude less than the truncation error
of single-precision numbers (1.2× 10−7) and the model tol-
erance for each time step (1.2× 10−5).

The conservation of energy and water of ED-2.2 also rep-
resents a substantial improvement from previous versions
of the model. We carried out additional decade-long simu-
lations with ED-2.2 and two former versions of the model
(ED-2.0.12 and ED-2.1) and the most similar configuration
possible among versions, and found that cumulative resid-
ual of enthalpy relative to eddy flux loss decreased from
15.2 % (ED-2.0.12) or 5.7 % (ED-2.1) to 6.1 %× 10−5 %
(ED-2.2) (Fig. S3a–c). Similarly, the cumulative violation of
perfect water budget closure, relative to total precipitation in-
put, decreased from 3.4 % (ED-2.0.12) or 1.1 % (ED-2.1) to
1.2 %× 10−4 % (ED-2.2) (Fig. S3d–f).

5.2 Simulated ecosystem heterogeneity

Because ED-2.2 accounts for the vertical distribution of the
plant community and the local heterogeneity of ecosystems,
it is possible to describe the structural variability of ecosys-
tems using continuous metrics. To illustrate this, we show the
results of a 600-year simulation (1400–2002) carried out for
tropical South America, starting from near-bare-ground con-
ditions and driven by the Princeton Global Meteorological
Forcing (Sheffield et al., 2006, 1969–2008), and with active
fires (Sect. S3.4). For the last 100 years, we also prescribed
land use changes derived from Hurtt et al. (2006) and Soares-
Filho et al. (2006). The distribution of basal area binned by
diameter at breast height (DBH) classes shows high vari-
ability across the domain and even within biome bound-
aries (Fig. 7). For example, larger trees (DBH≥ 50 cm) are
nearly absent outside the Amazon biome, with the exception
of more humid regions such as the Atlantic forest along the
Brazilian coast, western Colombia, and Panama (Fig. 7d,e).
In contrast, in seasonally dry areas such as the Brazilian
Cerrado, intermediate-sized trees (10≤ DBH< 50cm) con-
tribute the most to the basal area (e.g., areas near the Brasília
(BSB) site; Fig. 7b, c). Even within the Amazon ecoregion,
basal area shows variability in the contribution of trees with
different sizes, including the areas outside the arc of defor-

estation along the southern and eastern edges of the biome
(Fig. 7). Similarly, the abundance of different plant func-
tional groups shows great variability across the region, with
dominance of grasses and early successional tropical trees in
deforested regions and in drier areas in the Brazilian Cerrado,
whereas late-successional tropical trees dominate the tropical
forests, albeit with lower dominance in parts of central Ama-
zonia (Fig. S4).

The variability of forest structural and functional composi-
tion observed in regional simulations emerges from both the
competition among cohorts in the local micro-environment
and the environmental controls on the disturbance regime. In
Fig. 8, we present the impact of different disturbance regimes
modulating the predicted ecosystem structure and composi-
tion for two sites: Paracou (GYF), a tropical forest region in
French Guiana, and Brasília (BSB), a woody savanna site
in central Brazil. Both sites were simulated for 500 years
using a 40-year meteorological forcing developed from lo-
cal meteorological observations, following the methodology
described in Longo et al. (2018); we allowed fires to occur
but for simplicity we did not prescribe land use change. Af-
ter 500 years of simulation, the structure at the two sites is
completely different, with large, late-successional trees dom-
inating the canopy at GYF (Fig. 8a) and open areas with
shorter, mostly early successional trees dominating the land-
scape at BSB (Fig. 8b). For GYF, the structural and func-
tional composition is achieved only after 200 years of simu-
lation, whereas in BSB a dynamic steady state caused by the
strong fire regime is achieved in about 100 years (Fig. S5).
At both sites, early successional trees dominate the canopy
at recently disturbed areas (Fig. 8c, d) with late-successional
(GYF) or mid-successional trees (BSB) increasing in size
only at the older patches (> 30 years, Fig. 8c, d), and the vari-
ation of basal area as a function of age since last disturbance
show great similarity at both sites (Fig. 8e). However, the dis-
turbance regimes are markedly different: at GYF, fires never
occurred and disturbance was driven exclusively by tree fall
(prescribed at 1.11%year−1), whereas fires substantially in-
crease the disturbance rates at BSB (average fire return inter-
val of 19.3 years). Consequently, old-growth patches (older
than 100 years) are nonexistent at BSB and abundant at GYF
(Fig. 8f). In addition, the high disturbance regime at BSB
meant that large trees and late-successional trees (slow grow-
ers) failed to establish but succeeded and maintained a stable
population at GYF (Fig. S5).

The impacts of simulating structurally and functionally di-
verse ecosystems are also observed in the fluxes of energy,
water, carbon, and momentum. For example, in Fig. 9, we
show the monthly average fluxes from the last 40 years of
simulation at GYF, along with the interannual variability of
the fluxes aggregated to the polygon level (hereafter poly-
gon variability; error bars) and the interannual variability
of the fluxes accounting for the patch probability (hereafter
patch variability; colors in the background). The polygon-
level variability can be thought as the variability attributable
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Figure 6. Examples of (a) enthalpy, (b) water, and (c) carbon conservation assessment in ED-2.2, for a single-patch simulation at GYF for
50 years. Terms are presented as the cumulative contribution to the change storage. Total storage is the combination of canopy air space,
cohorts, and temporary surface water and soil layers in the cases of enthalpy and water, and canopy air space, cohorts, seed bank, and soil
carbon pools in the case of carbon. Positive (negative) values mean accumulation (loss) by the combined storage pool over the time. Pressure
change accounts for changes in enthalpy when pressure from the meteorological forcing is updated, and density change accounts for changes
in mass to ensure the ideal gas law. CAS change and vegetation heat capacity (Veg Hcap) change reflect the addition/subtraction of carbon,
water, and enthalpy due to the vegetation dynamics modifying the canopy air space depth and the total heat capacity of the vegetation due to
biomass accumulation or loss. Storage change is the net gain or loss of total storage, and the residual corresponds to the deviation from the
perfect closure. Note that we present the y axis in cube root scale to improve visualization of the smallest terms.

Figure 7. Simulated distribution of size-dependent basal area across tropical South America, aggregated for the following diameter at breast
height (DBH) bins: (a) 0–10 cm; (b) 10–30 cm; (c) 30–50cm; (d) 50–80 cm; (e) ≥ 80cm. Maps were obtained from the final state of a
6000-year simulation (1400–2002), initialized with near-bare-ground conditions, active fires, and prescribed land use changes between 1900
and 2002. Points indicate the location of the example sites (Fig. 8): (�) Paracou (GYF), a tropical forest site; (©) Brasília (BSB), a woody
savanna site. White contour is the domain of the Amazon biome, and grey contours are the political borders.
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Figure 8. Examples of size, age, and functional structure simulated by ED-2.2, after 500 years of simulation using local meteorological
forcing and active fires. (a, b) Individual realization of simulated stands for sites (a) Paracou (GYF, tropical forest); (b) Brasília (BSB,
woody savanna). The number of individuals shown is proportional to the simulated stem density, the distribution in local communities is
proportional to the patch area, the crown size and stem height are proportional to the cohort size, and the crown color indicates the functional
group. (c, d) Distribution of cohorts as a function of size (DBH and height) and age since last disturbance (patch age) for sites (c) GYF and
(d) BSB. Crown sizes are proportional to the logarithm of the stem density within each patch. (e, f) Patch-specific properties as a function of
age since last disturbance (patch age) for sites GYF and BSB after 500 years of simulation: (e) basal area and (f) probability density function
of patch age (fractional patch area). See Fig. 7 for the location of both example sites.

exclusively to climate variability, whereas the patch variabil-
ity also incorporates the impact of the structural heterogene-
ity in the variability. Most highly aggregated (“big-leaf”)
models characterize the polygon-level variability but not the
patch variability. However, in all cases, the patch variabil-
ity greatly exceeded the polygon variability, indicating that
structural variability is as important as the interannual vari-
ability in complex ecosystems. In the case of sensible heat,
the polygon variable was between 39 % and 64 % of the patch
variability (Fig. 9a). The polygon-to-patch variability ratio
was similar for both friction velocity (19 %–39 %) and wa-
ter fluxes (17 %–44 %) (Fig. 9b, c). In the case of gross pri-

mary productivity, the relevance of patch variability was even
higher, with the polygon-to-patch variability ratio ranging
from 3.7 % during the dry season to 17 % during the wet sea-
son (Fig. 9d). Importantly, the broader range of fluxes across
patches in the site can be entirely attributed to structural and
functional diversity, because all patches were driven by the
same meteorological forcing.
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Figure 9. Monthly averages and variability of fluxes attributable to meteorological conditions and plant community heterogeneity combined
with interannual variability. Results are shown for GYF, a tropical forest site, for (a) sensible heat flux; (b) friction velocity (momentum flux);
(c) water vapor flux; and (d) gross primary productivity. The variability was calculated for the last 40 years of a 500-year simulation starting
from near-bare ground. Points correspond to the 40-year monthly averages for the entire polygon, line bars correspond to the 2.5 %–97.5 %
quantile of monthly averages aggregated at the polygon level (polygon interannual variability), and background colors represent the 40-year
probability density function of monthly means for each simulated patch, and scaled by the area of each patch (patch interannual variability).
Density function colors outside the 2.5 %–97.5 % quantile interval are not shown. Note that the density function scale is logarithmic. See
Fig. 7 for the location of the example site.

6 Discussion

6.1 Conservation of biophysical and biogeochemical
properties

As demonstrated in Sect. 5.1, it is possible to represent the
long-term, large-scale dynamics of heterogeneous and func-
tionally diverse plant canopy, while still accurately conserv-
ing the fluxes of carbon, water, and energy fluxes that oc-
cur in the ecosystem. ED-2.2 exhibits excellent conservation
of energy, water, and carbon dioxide even in multi-decadal
scales. After 50 years of simulation, the accumulated resid-
uals from perfect closure never exceeded 0.1 % of the total
energy, water, and carbon stored in the pools resolved by the

model (Fig. 6), which is significantly less than the error ac-
cepted in each time step (1 %).

The model’s excellent conservation of these three key
properties is possible because the ordinary differential equa-
tions are written directly in terms of the variables that
we sought to conserve, thus reducing the effects of non-
linearities. A key feature that facilitates the model’s high
level of energy conservation is the use of enthalpy as the
primary energy-related state variable within the model. This
contrasts with most terrestrial biosphere models, which use
temperature as their energy state variable (e.g., Best et al.,
2011; Oleson et al., 2013). By using enthalpy, the model
can seamlessly incorporate energy storage changes caused
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by rapid changes in water content and consequently heat ca-
pacity. It also reduces errors near phase changes (freezing
or melting), when changes in energy may not correspond to
changes in temperature. Nonetheless, the residual errors in
ED-2.2 are larger than the error of each time step after inte-
grating the model over multiple decades (Fig. 6), which sug-
gests that the errors may have a systematic component that
deserves further investigation. The main contribution to the
remaining residual errors in carbon, water, and energy fluxes
comes from the linearization of the prognostic equations due
to changes in density in the canopy air space (Eqs. 18–19;
23). The magnitude of these residuals would likely be fur-
ther reduced by using the bulk enthalpy, water content, and
carbon dioxide content in the canopy air space as the state
variables instead of the specific enthalpy, specific humidity,
and CO2 mixing ratio.

Unlike most existing terrestrial biosphere models (but see
SiB2, e.g., Baker et al., 2003; Vidale and Stöckli, 2005), in
ED-2.2, we explicitly include the dynamic storage of energy,
water, and carbon dioxide in the canopy air space. Canopy
air space storage is particularly important in tall, dense trop-
ical forests; accounting for this storage term, as well as the
energy storage of vegetation, allows a more realistic repre-
sentation of the fluxes between the ecosystem and the air
above (see also Haverd et al., 2007). In addition, the sepa-
ration of the ecosystem fluxes in the model into eddy fluxes
and change in canopy air space storage allows a thorough
evaluation of the model’s ability to represent both the total
exchange and the ventilation of water, energy, and carbon in
and out of the ecosystem with eddy covariance towers, as
shown in the companion paper (Longo et al., 2019a).

6.2 Heterogeneity of ecosystems

It has been long advocated that terrestrial biosphere models
must incorporate demographic processes and ecosystem het-
erogeneity to improve their predictive ability in a changing
world (Moorcroft, 2006; Purves and Pacala, 2008; Evans,
2012; Fisher et al., 2018). In ED-2.2, we aggregate individ-
uals and forest communities according to similar character-
istics (Fig. 1). For example, individuals are only aggregated
into cohorts if they are of similar size, same functional group,
and live in comparable micro-environments. Likewise, local
plant communities are aggregated only if their disturbance
history and their vertical structure are similar. The level of
aggregation of ED-2.2 still allows mechanistic representation
of ecological processes such as how individuals’ access to
and competition for resources vary depending on their size,
adaptation, and presence of other individuals. This approach
allows representing a broad range of structure and compo-
sition of ecosystems (Figs. 7, S4), as opposed to simplified
biome classification. In this paper, we presented the func-
tional diversity using only the default tropical PFTs, which
describe the functional diversity along a single functional
trait axis of broadleaf tropical trees. However, the ED-2.2

framework allows users to easily modify the traits and trade-
offs of existing PFTs, or include new functional groups; pre-
vious studies using ED-2.2 have leveraged this feature of the
code to define PFTs according to the research question both
in the tropics (e.g., Xu et al., 2016; Trugman et al., 2018;
Feng et al., 2018) and in the extratropics (e.g., Raczka et al.,
2018; Bogan et al., 2019).

Previous analysis by Levine et al. (2016) has shown that
the dynamic, fine-scale heterogeneity and functional diver-
sity of the plant canopy in ED-2.2 is essential for captur-
ing macro-scale patterns in tropical forest properties. Specifi-
cally, Levine et al. (2016) found that ED-2.1 was able to char-
acterize the smoother observed transition in tropical forest
biomass across a dry-season length gradient in the Amazon,
whereas a highly aggregated (big-leaf-like) version of ED-
2.1 predicted abrupt shifts in biomass, which is commonly
observed in many dynamic global vegetation models (e.g.,
Good et al., 2011). Results from two related studies have
shown that the incorporation of subgrid-scale heterogeneity
and diversity within ED-2 also improves its ability to cor-
rectly capture the responses of terrestrial ecosystems to envi-
ronmental perturbation. First, in an assessment of the ability
of four terrestrial biosphere models to capture the impact of
rainfall changes on biomass in Amazon forests (Powell et al.,
2013), ED-2.1 was the only model that captured the tim-
ing and average magnitude of aboveground biomass loss that
was observed in two experimental drought treatments, while
all three big-leaf model formulations predicted minimal im-
pacts of the drought experiment. Second, a recent analysis by
Longo et al. (2018) on the impact of recurrent droughts in the
Amazon found that drought-induced carbon losses in ED-2.2
arose mostly from the death of canopy trees, a characteristic
that is consistent with field and remote-sensing observations
of drought impacts in the region (Phillips et al., 2010; Yang
et al., 2018).

Importantly, since its inception, the ED model accounts for
the disturbance-driven horizontal heterogeneity of ecosys-
tems (Moorcroft et al., 2001). As demonstrated in Moor-
croft et al. (2001), the continuous development of tree-
fall gaps is fundamental to explaining the long-term tra-
jectory of biomass accumulation in tropical forests; for ex-
ample, by representing both recently disturbed and old-
growth fragments of forests, it is possible to simulate micro-
environments where either shade-intolerant plants thrive
or slow-growing, shade-tolerant individuals dominate the
canopy (Fig. 8a, c). Moreover, ED-2.2 can also represent
dynamic and diverse disturbance regimes, which ultimately
mediate the regional variation of ecosystem properties. For
example, tropical forests and woody savannas may share
similarities in local communities with similar age since dis-
turbance (Fig. 8e); however, because fire disturbances fre-
quently affect large areas in the savannas, fragments of old-
growth vegetation are nearly absent in these regions (Fig. 8f),
which creates an environment dominated mostly by smaller
trees (Fig. S5c).
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Furthermore, the heterogeneity of ecosystems in ED-2.2
is integrated across all timescales, because we solve the bio-
physical and biogeochemical cycles for each cohort and each
patch separately (Figs. 2–3). While solving the cycles at sub-
grid scale adds complexity, it also improves the characteriza-
tion of heterogeneity of available water and energy for plants
of different sizes, even within the same polygon: for example,
the light profile and soil water availability are not only de-
termined by meteorological conditions but also by the num-
ber of individuals, their height and rooting depth, and their
traits and trade-offs that determine their ability to extract soil
moisture or assimilate carbon. As a result, the variability in
ecosystem functioning represented by ED-2.2 is significantly
increased relative to the variability that a highly aggregated
model based on the average ecosystem structure would be
able to capture (Fig. 9).

6.3 Current and future developments

In this paper, we focused on describing the biophysical and
biogeochemical core of the ED-2.2 model, and appraising its
ability to represent both short-term (intra-annual and inter-
annual) and long-term (decades to century) processes. How-
ever, the ED-2.2 community is continuously developing and
improving the model. In this section, we summarize some of
the recent and ongoing model developments being built on
top of the ED-2.2 dynamic core.

Terrestrial biosphere models still show significant uncer-
tainties in representing photosynthesis due to missing pro-
cesses and inconsistencies in parameter estimations (Rogers
et al., 2017). We are currently implementing the carboxyla-
tion limitation by the maximum electron transport rate and
by the triose phosphate utilization (von Caemmerer, 2000;
Lombardozzi et al., 2018), and constrained by observations
(Norby et al., 2017), and nitrogen and phosphorus limitation
have been recently incorporated (Medvigy et al., 2019). In
addition, the model has also been recently updated to mech-
anistically represent plant hydraulics, and initial results in-
dicate a significant improvement of the model’s predictions
of water use efficiency and water stress in tropical forests in
Central America (Xu et al., 2016). Also, to better represent
the dynamics of soil carbon in ED-2.2, we are implementing
and optimizing a more detailed version of the CENTURY
decomposition model (Bolker et al., 1998).

To improve the representation of surface and soil water dy-
namics, the model has been coupled with a hydrological rou-
tine model that accounts for lateral flux of water as a func-
tion of terrain characteristics and simulates river discharge
(Pereira et al., 2017; Arias et al., 2018). Moreover, an inte-
grated approach of hydraulic routing based on TOPMODEL
(Walko et al., 2000; Beven and Freer, 2001), which allows
exchange of water and internal energy exchange between dif-
ferent sites as a function of topographic characteristics, is be-
ing implemented in ED-2.2.

The ED-2.2 model framework is designed to simulate
functionally diverse ecosystems, but trait values within each
functional group are fixed. To account for the observed plas-
ticity in many leaf traits, a new parameterization of leaf trait
variation as function of the light level, based on the param-
eterization by Lloyd et al. (2010) and Xu et al. (2017) is
being implemented. In addition, the ED-2.2 model has also
been recently updated to represent the light competition and
parasite–host relationships between lianas and trees (di Por-
cia e Brugnera et al., 2019), and it is currently being ex-
tended to incorporate plant functional types from different
biogeographic regions, such as temperate semi-arid shrub-
lands (Pandit et al., 2018), as well as boreal ecosystems,
building on previous works using ED-1 (Ise et al., 2008).

Anthropogenic forest degradation is pervasive throughout
the tropics (Lewis et al., 2015). To improve the model’s abil-
ity to represent damage and recovery from degradation, we
are implementing a selective logging module that represents
the direct impact of felling of marketable tree stems, and
accounts the damage associated with skid trails, roads, and
decks, which are modulated by logging intensity and log-
ging techniques (Pereira Jr. et al., 2002; Feldpausch et al.,
2005). In addition, the original fire model has been recently
improved to account for size- and bark-thickness-dependent
survivorship (Trugman et al., 2018), and is being developed
to account for natural and anthropogenic drivers of ignition,
fire intensity, fire spread, and fire duration, building on exist-
ing process-based fire models (Thonicke et al., 2010; Le Page
et al., 2015).

The complexity and sophistication of ED-2.2 also creates
important scientific challenges. For example, the multiple
processes for functionally diverse ecosystems represented by
the model also require a large number of parameters, with
some of them being highly uncertain given the scarcity of
data. To explore the effect of parameter uncertainty on model
results and leverage the growing number of observations, the
ED-2.2 model has been fully integrated with the Predictive
Ecosystem Analyzer (LeBauer et al., 2013; Dietze et al.,
2014), a hierarchical Bayesian-based framework that con-
strains model parameters based on available data and quanti-
fies the uncertainties on model predictions due to parameter
uncertainty.

Importantly, the need to incorporate terrestrial ecosystem
heterogeneity in Earth system models has been long advo-
cated (e.g., Moorcroft, 2006; Purves et al., 2008; Evans,
2012), but only recently have global models been incorporat-
ing ecological mechanisms that allow representing function-
ally diverse and heterogeneous biomes at global scale with-
out relying on artificial climate envelopes. Two examples
are the Geophysical Fluid Dynamics Laboratory (GFDL)
Land Model version 3 with perfect plasticity approximation
(Weng et al., 2015, LM3-PPA;) and the Functionally Assem-
bled Terrestrial Ecosystem Simulation (FATES; Fisher et al.,
2015), which incorporated the patch and cohort structure
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of ED-2.2 into the Community Land Model (CLM; Oleson
et al., 2013) framework.

7 Conclusions

ED-2.2 represents a significant advance in how to integrate
a variety of processes ranging across multiple timescales
in heterogeneous landscapes: it retains all the detailed rep-
resentation of the long-term dynamics of functionally di-
verse, spatially heterogeneous landscapes and long-term dy-
namics from the original ED ecosystem model (Moorcroft
et al., 2001; Hurtt et al., 2002; Albani et al., 2006) but also
solves for the associated energy, water, and CO2 fluxes of
plants living in horizontally and vertically stratified micro-
environments within the plant canopy, which was initially
implemented by Medvigy et al. (2009) (ED-2) by adapting
the big-leaf land surface model LEAF-3 (Walko et al., 2000)
to the cohort-based structure of ED-2.

The results presented in the model description demon-
strated that ED-2.2 has a high degree of conservation of
carbon, energy, and water, even over multi-decadal scales
(Fig. 6). Importantly, the current formulation of the model
allows representation of functional and structural diversity
both at local and regional scales (Figs. 7–8; S4–S5), and the
effect of the heterogeneity on energy, water, carbon, and mo-
mentum fluxes (Fig. 9). In the companion paper, we use data
from eddy covariance towers, forest inventory, bottom-up es-
timates of carbon cycles, and remote-sensing products to as-
sess the strengths and limitations of the current model imple-
mentation (Longo et al., 2019a).

This paper focused on the major updates to the energy,
water, and carbon cycle within the ED-2.2 framework; the
model continues to be actively developed. Some of the fur-
ther developments include implementing more mechanisms
that influence photosynthesis and water cycle, such as plant
hydraulics; additional nutrient cycles; expanding the repre-
sentation of plant functional diversity, including trait plastic-
ity and lianas; and expanding the types of natural and anthro-
pogenic disturbances. ED-2.2 is a collaborative, open-source
model that is readily available from its repository, and the sci-
entific community is encouraged to use the model and con-
tribute with new model developments.

Code availability. The ED-2.2 software and further developments
are publicly available. The most up-to-date source code, post-
processing R scripts, and an open discussion forum are available on
the GitHub repository (The ED-2 Model Development Team, 2014).
The code described in this paper, along with a wiki-based techni-
cal manual, is stored as a permanent release at https://github.com/
mpaiao/ED2/releases/tag/rev-86 (last access: 25 September 2019)
and permanently stored at Longo et al. (2019b).
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