
Geosci. Model Dev., 12, 4261–4274, 2019
https://doi.org/10.5194/gmd-12-4261-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Fast domain-aware neural network emulation of a planetary
boundary layer parameterization in a numerical
weather forecast model
Jiali Wang1, Prasanna Balaprakash2, and Rao Kotamarthi1
1Environmental Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Lemont, IL 60439, USA
2Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,
Lemont, IL 60439, USA

Correspondence: Rao Kotamarthi (vrkotamarthi@anl.gov)

Received: 27 March 2019 – Discussion started: 29 April 2019
Revised: 10 August 2019 – Accepted: 1 September 2019 – Published: 10 October 2019

Abstract. Parameterizations for physical processes in
weather and climate models are computationally expensive.
We use model output from the Weather Research Forecast
(WRF) climate model to train deep neural networks (DNNs)
and evaluate whether trained DNNs can provide an accurate
alternative to the physics-based parameterizations. Specifi-
cally, we develop an emulator using DNNs for a planetary
boundary layer (PBL) parameterization in the WRF model.
PBL parameterizations are used in atmospheric models to
represent the diurnal variation in the formation and collapse
of the atmospheric boundary layer – the lowest part of the
atmosphere. The dynamics and turbulence, as well as veloc-
ity, temperature, and humidity profiles within the boundary
layer are all critical for determining many of the physical pro-
cesses in the atmosphere. PBL parameterizations are used to
represent these processes that are usually unresolved in a typ-
ical climate model that operates at horizontal spatial scales in
the tens of kilometers. We demonstrate that a domain-aware
DNN, which takes account of underlying domain structure
(e.g., nonlocal mixing), can successfully simulate the verti-
cal profiles within the boundary layer of velocities, temper-
ature, and water vapor over the entire diurnal cycle. Results
also show that a single trained DNN from one location can
produce predictions of wind speed, temperature, and water
vapor profiles over nearby locations with similar terrain con-
ditions with correlations higher than 0.9 when compared with
the WRF simulations used as the training dataset.

1 Introduction

Model developers use approximations to represent the phys-
ical processes involved in climate and weather that can-
not be resolved at the spatial resolution of the model grids
or in cases where the phenomena are not fully understood
(Williams, 2005). These approximations are referred to as
parameterizations (McFarlane, 2011). While these parame-
terizations are designed to be computationally efficient, cal-
culation of a model physics package still takes a good portion
of the total computational time. For example, in the Com-
munity Atmospheric Model (CAM) developed by the Na-
tional Center for Atmospheric Research (NCAR), with a spa-
tial resolution of approximately 300 km and 26 vertical lev-
els, the physical parameterizations account for about 70 %
of the total computational burden (Krasnopolsky and Fox-
Rabinovitz, 2006). In the Weather Research Forecast (WRF)
model, with spatial resolution of tens of kilometers, time
spent by physics is approximately 40 % of the computational
burden. The input and output overhead is around 20 % of
the computational time at low node count (100s) and can in-
crease significantly at higher node count as a percentage of
the total wall-clock time.

An increasing need in the climate community is perform-
ing high spatial-resolution simulations (grid spacing of 4 km
or less) to assess risk and vulnerability due to climate vari-
ability at a local scale. Another emerging desire of the cli-
mate community is generating large-ensemble simulations in
order to address uncertainty in the model projections. De-
veloping process emulators (Leeds et al., 2013; Lee et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



4262 J. Wang et al.: Fast domain-aware neural network emulation

2011) that can reduce the time spent in calculating the phys-
ical processes will lead to much faster model simulations,
enabling researchers to generate high spatial-resolution sim-
ulations and a large number of ensemble members.

A neural network (NN) is composed of multiple layers
of simple computational modules, where each module trans-
forms its inputs to a nonlinear output. Given sufficient data,
an appropriate NN can model the underlying nonlinear func-
tional relationship between inputs and outputs with mini-
mal human effort. During the past 2 decades, NN techniques
have found a variety of applications in atmospheric science.
For example, Collins and Tissot (2015) developed an artifi-
cial NN by taking numerical weather prediction model (e.g.,
WRF) output as input to predict thunderstorm occurrence
within a few hundreds of square kilometers about 12 h in ad-
vance. Krasnopolsky et al. (2016) used NN techniques for
filling the gaps in satellite measurements of ocean color data.
Scher (2018) used deep learning to emulate the complete
physics and dynamics of a simple general circulation model
and indicated a potential capability of weather forecasts us-
ing this NN-based emulator. NNs are particularly appealing
for emulations of model physics parameterizations in numer-
ical weather and climate modeling, where the goal is to find
a nonlinear functional relationship between inputs and out-
puts (Cybenko, 1989; Hornik, 1991; Chen and Chen, 1995a,
b; Attali and Pagès, 1997). NN techniques can be applied to
weather and climate modeling in two ways. One approach
involves developing new parameterizations by using NNs.
For example, Chevallier et al. (1998, 2000) developed a new
NN-based longwave radiation parameterization, NeuroFlux,
which has been used operationally in the European Centre for
Medium-Range Weather Forecasts four-dimensional varia-
tional data assimilation system. NeuroFlux is found to be 8
times faster than the previous parameterization. Krasnopol-
sky et al. (2013) developed a stochastic convection parame-
terization based on learning from data simulated by a cloud-
resolving model (CRM), initialized with and forced by the
observed meteorological data. The NN convection parame-
terization was tested in the NCAR Community Atmospheric
Model (CAM) and produced reasonable and promising re-
sults for the tropical Pacific region. Jiang et al. (2018) devel-
oped a deep NN-based algorithm or parameterization to be
used in the WRF model to provide flow-dependent typhoon-
induced sea surface temperature cooling. Results based on
four typhoon case studies showed that the algorithm reduced
maximum wind intensity error by 60 %–70 % compared with
using the WRF model. The other approach for applying NN
to weather and climate modeling is to emulate existing pa-
rameterizations in these models. For example, Krasnopolsky
et al. (2005) developed an NN-based emulator for imitating
an existing atmospheric longwave radiation parameterization
for the NCAR CAM. They used output from the CAM simu-
lations with the original parameterization for the NN train-
ing. They found the NN-based emulator was 50–80 times

faster than the original parameterization and produced almost
identical results.

We study NNs to emulate existing physical parameteri-
zations in atmospheric models. Process emulators that can
reproduce physics parameterization can ultimately lead to
the development of a faster model emulator that can oper-
ate at very high spatial resolution as compared with most
current model emulators that have tended to focus on simpli-
fied physics (Kheshgi et al., 1999). Specifically, this study in-
volves the design and development of a domain-aware NN to
emulate a planetary boundary layer (PBL) parameterization
using 22-year-long output created by the WRF. To the best of
our knowledge, we are among the first to apply deep neural
networks (DNNs) to the WRF model to explore the emula-
tion of physics parameterizations. As far as we know from
the literature available at the time of this writing, the only ap-
plication of NNs for emulating the parameterizations in the
WRF model is by Krasnopolsky et al. (2017). In their study,
a three-layer NN was trained to reproduce the behavior of the
Thompson microphysics (Thompson et al., 2008) scheme in
the Weather Research and Forecasting (WRF) model using
the Advanced Research WRF (ARW) core. While we fo-
cus on learning the PBL parameterization and developing
domain-aware NN for the emulation of PBL, the ultimate
goal of our ongoing project is to build an NN-based algo-
rithm to empirically understand the process in the numeri-
cal weather/climate models that could be used to replace the
physics parameterizations that were derived from observa-
tional studies. This emulated model would be computation-
ally efficient, making the generation of large-ensemble simu-
lations feasible at very high spatial/temporal resolutions with
limited computational resources. The key objective of this
study is to answer the following questions specifically for
PBL parameterization emulation: (1) What and how much
data do we need to train the model? (2) What type of NN
should we apply for the PBL parameterization studied here?
(3) Is the NN emulator accurate compared with the original
physical parameterization? This paper is organized as fol-
lows. Section 2 describes the data and the neural network
developed in this study. The efficacy of the neural network
is investigated in Sect. 3. Discussion and summary follow in
Sect. 4.

2 Data and method

2.1 Data

The data we use in this study are the 22-year output from
the regional climate model WRF version 3.3.1, driven by
NCEP-R2 for the period 1984–2005. WRF is a fully com-
pressible, nonhydrostatic, regional numerical prediction sys-
tem with proven suitability for a broad range of applications.
The WRF model configuration and evaluations are given by
Wang and Kotamarthi (2014). Covering all the troposphere

Geosci. Model Dev., 12, 4261–4274, 2019 www.geosci-model-dev.net/12/4261/2019/



J. Wang et al.: Fast domain-aware neural network emulation 4263

Table 1. Inputs and outputs for the DNNs developed in this study.
The variable names from the WRF output are shown in the paren-
theses.

Input variables

2 m water vapor mixing ratio (Q2)
2 m air temperature (T 2)
10 m zonal and meridional wind (U10, V 10)
Ground heat flux (GRDFLX)
Downward short wave flux (SWDOWN)
Downward long wave flux (GLW)
Latent heat flux (LH)
Upward heat flux (HFX)
Planetary boundary layer height (PBLH)
Surface friction velocity (UST)
Ground temp (TSK)
Soil temperature at 2 m below ground (TSLB)
Soil moisture for 0–0.3 cm below ground (SMOIS)
Geostrophic wind component at 700 hPa (Ug , Vg)

Output variables

Zonal wind (U )
Meridional wind (V )
Vertical velocity (W )
Temperature (tk)
Water vapor mixing ratio (QVAPOR)

are 38 vertical layers, between the surface and approximately
16 km (100 hPa). The lowest 17 layers cover from the surface
to about 2 km above the ground. The PBL parameterization
we used for this WRF simulation is known as the Yonsei Uni-
versity (YSU) scheme (Hong et al., 2006). The YSU scheme
uses a nonlocal mixing scheme with an explicit treatment of
entrainment at the top of the boundary layer and a first-order
closure for the Reynolds-averaged turbulence equations of
momentum of air within the PBL.

The goal of this study is to develop an NN-based emu-
lator that can be used to replace the PBL parameterization
in the WRF model. Thus, we expect the NN to receive a
set of inputs that are equivalent to the inputs provided to
the YSU scheme at each time step. Table 1 shows the ar-
chitecture in terms of inputs and outputs used in our exper-
iments. The inputs are near-surface characteristics including
2 m water vapor and air temperature, 10 m zonal and merid-
ional wind, ground heat flux, incoming shortwave radiation,
incoming longwave radiation, PBL height, sensible heat flux,
latent heat flux, surface friction velocity, ground temperature,
soil temperature at 2 m below the ground, soil moisture at 0–
0.3 cm below the ground, and a geostrophic wind component
at 700 hPa. The outputs for the NN architecture are the ver-
tical profiles of the following five model prognostic and di-
agnostic fields: temperature, water vapor mixing ratio, zonal
and meridional wind (including speed and direction), as well
as vertical motions. In this study we develop an NN emula-
tion of the PBL parameterization; hence we focus only on

predicting the profiles within the PBL, which is on average
around 200 and 400 m during the night and afternoon of win-
ter, respectively, and around 400 and 1300 m during the night
and afternoon of summer, respectively, for the locations stud-
ied here. The middle and upper troposphere (all layers above
the PBL) are considered fully resolved by the dynamics sim-
ulated by the model and hence are not parameterized. There-
fore, we do not consider the levels above PBL height because
(1) they carry no information about input/output functional
dependence that affects the PBL and (2), if not removed,
they introduce additional noise in the training. Specifically,
we use the WRF output from the first 17 layers, which are
within 1900 m.

2.2 Deep neural networks for PBL parameterization
emulation

A class of machine learning approaches that is particularly
suitable for the emulation of PBL parameterization is su-
pervised learning. This approach models the relationship be-
tween the outputs and independent input variables by using
training data (xi , yi), for xi ∈ T⊂D, where T is a set of train-
ing points, D is the full dataset, and xi and yi = f (xi) are
inputs and their corresponding output yi , respectively. The
function f that maps the inputs to the outputs is typically
unknown and hard to derive analytically. The goal of the su-
pervised learning approach is to find a surrogate function h

for f such that the difference between f (xi) and h(xi) is
minimal for all xi ∈T.

Many supervised learning algorithms exist in the machine
learning literature. This study focuses on DNNs. DNNs are
composed of an input layer, a series of hidden layers, and an
output layer. The input layer receives the input xi , which is
connected to the hidden layers. Each hidden layer receives
inputs from the previous hidden layer (except the first hidden
layer that is connected to the input layer) and performs cer-
tain nonlinear transformations through a system of weighted
connections and a nonlinear activation function on the re-
ceived input values. The last hidden layer is connected to the
output layer from which the predicted values are obtained.
The training data are given to the DNN through the input
neural layer. The training procedure consists of modifying
the weights of the connections in the network to minimize
a user-defined objective function that measures the predic-
tion error of the network. Each iteration of the training proce-
dure comprises two phases: forward pass and backward pass.
In the forward pass, the training data are passed to the net-
work and the prediction error is computed; in the backward
pass, the gradients of the error function with respect to all
the weights in the network is computed and used to update
the weights in order to minimize the error. Once the entire
dataset passes both forward and backward through the DNN
(with many iterations), one epoch is completed.

Deep feed-forward neural network (FFN). This is a fully
connected feed-forward DNN constructed as a sequence of

www.geosci-model-dev.net/12/4261/2019/ Geosci. Model Dev., 12, 4261–4274, 2019



4264 J. Wang et al.: Fast domain-aware neural network emulation

K hidden layers, where the input of the ith hidden layer is
from the {i− 1}th hidden layer and the output of the ith hid-
den layer is given as the input of the {i+ 1}th hidden layer.
The sizes of the input and output neural layers are 16 (=
near-surface variables) and 85 (= 17 vertical levels ×5 out-
put variables). See Fig. 1a for an illustration.

While the FFN is a typical way of applying NN for find-
ing the nonlinear relationship between input and output, a
key drawback is that it does not consider the underlying PBL
structure, such as the connection between different vertical
levels within the PBL. In fact, the FFN does not know which
data (among the 85 variables) belong to which vertical level
in a certain profile. This is not typically needed for NNs in
general and in fact is usually avoided because, for classifi-
cation and regression, one can find visual features regardless
of their locations. For example, a picture can be classified
as a certain object even if that object has never appeared in
the given location in the training set. In our case, however,
the location is fixed and the profiles over that location are
distinguishable from the profiles over other locations if they
are far from each other or have different terrain conditions.
Consequently, it is desired to learn about vertical connection
between multiple altitude levels within each particular PBL
in the forecast. For example, the feature at a lower level of a
profile plays a role in the feature at a higher level and can help
refine the output at the higher level and accordingly the en-
tire profile. This dependence may inform the NN and provide
better accuracy and data efficiency. To that end, we develop
two variants of DNNs for PBL emulation.

Hierarchically connected network with previous layer only
connection (HPC). We assume that the outputs at each alti-
tude level depend not only on the 16 near-surface variables
but also on the adjacent altitude level below it. To model this
explicitly, we develop a DNN variant as follows: the input
layer is connected to the first hidden layer followed by the
output layer of size 5 (five variables at each layer: temper-
ature, water vapor, zonal and meridional wind, and vertical
motions) that corresponds to the first PBL. This output layer
along with the input layer is connected to a second hidden
layer, which is connected to the second output layer of size 5
that corresponds to the second PBL. Thus, the input to an ith
hidden layer comprises the input layer of the 16 near-surface
variables and the i−1th output layer below it. See Figure 1b
for an example.

Hierarchically connected network with all previous layers
connected (HAC). We assume that the outputs at each PBL
depend not only on the 16 near-surface variables but also on
all altitude levels below it. To model this explicitly, we mod-
ify HPC DNN as follows: the input to an ith hidden layer
comprises the input layer of the 16 near-surface variables and
all output layers {1,2, }, i−1} below it. See Fig. 1c for an ex-
ample.

From the physical process perspective, HPC and HAC
consider both local and nonlocal mixing processes within the
PBL by taking into account not only the connection between

a given point and its adjacent point (local mixing) but also the
connections from multiple altitude levels (e.g., surface and
all the points that below the given points). Compared with
solely local mixing processes, nonlocal mixing processes are
shown to perform more accurately in simulating deeper mix-
ing within an unstable PBL (Cohen et al., 2015). From the
neural network perspective, the key advantage of HPC and
HAC over FFN is effective back-propagation while training.
In HPC and HAC, each hidden layer has an output layer; con-
sequently, during the back-propagation, the gradients from
each of the output layer can be used to update the weights
of the hidden layer directly to minimize the error for PBL
specific outputs.

2.3 Setup

For preprocessing, we applied StandardScaler (removes the
mean and scales each variable to unit variance) and Min-
MaxScaler (scales each variable between 0 and 1) transfor-
mations before training, and we applied the inverse trans-
formation after prediction so that the evaluation metrics are
computed on the original scale.

We note that there is no default value for N units in a dense
hidden layer. We conducted an experimental study on FFN
and found that setting N to 16 results in good predictions.
Therefore, we used the same value of N = 16 in HPC and
HAC.

For the implementation of DNN, we used Keras (ver-
sion 2.0.8), a high-level neural network Python library that
runs on top of the TensorFlow library (version 1.3.0). We
used the scikit-learn library (version 0.19.0) for the prepro-
cessing module. The experiments were run in a Python (Intel
distribution, version 3.6.3) environment.

All three DNNs used the following setup for training: op-
timizer: adam; learning rate = 0.001; epochs = 1000; batch
size = 64. Note that batch size defines the number of ran-
domly sampled training points required before updating the
model parameters, and the number of epoches defines the
number of times that training will work through the entire
training dataset. To avoid overfitting issues in DNNs, we
use an early stopping criterion in which the training stops
when the validation error does not reduce for 10 subsequent
epochs.

The 22-year data from the WRF simulation was parti-
tioned into three parts: a training set consisting of 20 years
(1984–2003) of 3-hourly data to train the NN; a development
set (also called validation set) consisting of 1 year (2004) of
3-hourly data used to tune the algorithm’s hyperparameters
and to control overfitting (the situation where the trained net-
work predicts well on the training data but not on the test
data); and a test set consisting of 1 year of records (2005) for
prediction and evaluations.

We ran training and inference on a NVIDIA DGX-1 plat-
form: a dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz pro-
cessor with 8 NVIDIA P100 GPUs with 512 GB of memory.

Geosci. Model Dev., 12, 4261–4274, 2019 www.geosci-model-dev.net/12/4261/2019/



J. Wang et al.: Fast domain-aware neural network emulation 4265

Figure 1. Three variants of DNN developed in this study. Red, yellow, and purple indicate the input layer (16 near-surface variables), output
layers, and hidden layers, respectively. (a) Fully connected feed-forward neural network (FFN), which has only one output layer with 85
variables (five variables for each of the 17 WRF model vertical levels), and 17 hidden layers which only consider the near-surface variables
as inputs. (b) Hierarchically connected network with previous layer only connection (HPC), which has 17 output layers (corresponding to
the PBL levels) with each of them having five variables, and 17 hidden layers with each of them considering both near-surface variables and
five output variables from previous output layer as inputs. (c) Hierarchically connected network with all previous layers connected (HAC);
same as HPC, but each hidden layer also considers output variables from all previous output layers as inputs.

The DNN’s training and inference leveraged only a single
GPU.

3 Results

In the following discussion we evaluate the efficacy of the
three DNNs by comparing their prediction results with WRF
model simulations. We refer to the results of WRF model
simulations as observations because the DNN learns all the
knowledge from the WRF model output, not from in situ
measurements. We refer to the values from the DNN models
as predictions. We initiate our DNN development at one grid
cell from WRF output that is close to a site in the midwestern
United States (Logan, Kansas; 38.8701◦N,100.9627◦W)
and another grid cell at a site in Alaska (Kenai Peninsula
Borough; 60.7237◦N,150.4484◦W) to evaluate the robust-
ness of the developed DNNs. We then apply our DNNs to
an area with a size of ∼ 1100 km×1100 km, centered at the
Logan site to assess the spatial transferability of the DNNs.
In other words, we train our DNNs using data from a sin-
gle location and then apply the DNNs to multiple grid points

nearby. While the Alaska site has different vertical profiles,
especially for wind directions, and lower PBL heights in both
January and July (not illustrated), the conclusion in terms
of the model performance is similar to the site over Logan,
Kansas.

3.1 DNN performance in temperature and water vapor

Figure 2 shows the diurnal variation (explicitly 15:00 and
00:00 local time at Logan, Kansas) of temperature and water
vapor mixing ratio vertical profiles in the first 17 layers from
the observation and three DNN model predictions. The fig-
ures present results for both January and July of 2005. The
dashed lines show the lowest and highest (5th and 95th per-
centile, respectively) PBL heights for that particular time. In
general, the DNNs are able to produce similar shapes of the
observed profiles, especially within the PBL. Both the tem-
perature and water vapor mixing ratio are lower in January
and higher in July. Within the PBL, the temperature and wa-
ter vapor do not change much with height; above the PBL to
the entrainment zone, the temperature and water vapor start
decreasing. Among the three DNNs, HAC and HPC show

www.geosci-model-dev.net/12/4261/2019/ Geosci. Model Dev., 12, 4261–4274, 2019



4266 J. Wang et al.: Fast domain-aware neural network emulation

Figure 2. Temperature and water vapor mixing ratio from the observation and three DNN predictions: FFN, HPC, and HAC in January and
July of 2005 at 15:00 and 00:00 local time of Logan, Kansas. The y axis uses a log scale. The training data are from the 3-hourly output
of WRF from 1984 to 2003. The lower and upper dashed lines show the lowest and highest (5th and 95th percentile) PBL heights at that
particular time. For example, the lowest PBL height is about 19 m, while the highest PBL height is about 365 m at 00:00 in January.

very low bias and high accuracy in the PBL; the FFN shows
a relatively large discrepancy from the observation. Figure 3
shows the root-mean-square error (RMSE) and Pearson cor-
relation coefficient (COR) between observation and three
DNN predictions in the afternoon and midnight in January
and July. The RMSE and COR consider not only the time se-
ries of observation and prediction but also their vertical pro-
files below the PBL heights for each particular time. Among
the three DNNs, HPC and HAC always show better skill with
smaller RMSEs and higher CORs than does FFN. The rea-
son is that the FFN uses only the 16 near-surface variables
as inputs; FFN uses all the 85 variables (17 layers ×5 vari-
ables/layer) as output without knowing the vertical connec-
tions between each of the altitude levels. In contrast, HPC
and HAC use both the near-surface variables and the five
output variables of one previous vertical level (HPC) or all
previous vertical levels (HAC) as inputs for predicting a cer-
tain altitude level of each field. This architecture is helpful
for reducing errors of each hidden layer during the backward
propagation. It is also important because PBL parameteriza-
tions are used to represent the vertical mixing of heat, mois-

ture, and momentum within the PBL, and this mixing can
be across a larger scale than just the adjacent altitude levels.
This process is usually unresolved in a typical climate and
in weather models that operate at horizontal spatial scales in
the tens of kilometers. We found in general that HAC and
HPC perform similarly; the RMSE of temperature predicted
by HAC is larger than that predicted by HPC during mid-
night of winter when the PBL is shallow. In contrast, during
the afternoon of summer when the PBL is deep, the RMSE
of temperature predicted by HAC is smaller than that pre-
dicted by HPC. This emphasizes the importance of consider-
ing a multi-level vertical connection for deep PBL cases in
the DNNs.

3.2 DNN performance in wind component

Figure 4 shows the diurnal variation in zonal and meridional
wind (including wind speed and direction) profiles in Jan-
uary and July 2005 from observation and three DNN predic-
tions. Compared with the temperature and water vapor pro-
files, the wind profiles are more difficult to predict, especially

Geosci. Model Dev., 12, 4261–4274, 2019 www.geosci-model-dev.net/12/4261/2019/



J. Wang et al.: Fast domain-aware neural network emulation 4267

Figure 3. RMSE and correlations for time series of temperature and water vapor vertical profiles within the PBL predicted by the three DNNs
compared with the observations. The vertical lines show the range of RMSEs and correlations when considering the lowest and highest PBL
heights (shown by the dashed horizontal lines in Fig. 2).

for days (e.g., summer) that have a higher PBL. The wind di-
rection does not change much below the majority of the PBL,
and it turns to westerly winds when going up and beyond the
PBL. The DNN has difficulty predicting the profile above the
PBL height, as is expected because these layers are consid-
ered fully resolved by the dynamics simulated by the WRF
model and hence not parameterized. Therefore, we do not
consider DNN performance at the levels above PBL height.
The wind speed increases with height in both January and
July within the PBL. Above the PBL heights, the wind speed
still increases in January but decreases in July. The reason is
that in January the zonal wind, especially the westerly wind,
is dominant in the atmosphere and the wind speed increases
with height; in July, however, the zonal wind is relatively
weak, and the meridional wind is dominant with southerly
wind below ∼ 2 km and northerly wind above 2 km. The de-
crease in wind speed above the PBL is just about the transi-
tion of wind direction from southerly to northerly wind. Fig-
ure 5 shows the RMSEs and CORs between the observed and
predicted wind component within the PBL. The wind compo-
nent is fairly well predicted by the HAC and HPC networks
with correlation above 0.8 for wind speed and 0.7 for wind
direction except in July at midnight, which is near 0.5. Sim-
ilar to the predictions for temperature and water vapor, the

FFN shows the poorest prediction accuracy with large RM-
SEs and low CORs, especially for wind direction in July at
midnight, the COR is below zero. For accurately predicting
the wind direction, we found that using the geostrophic wind
at 700 hPa as one of the inputs for the DNNs is important.

3.3 DNN dependence on length of training period

Next, we evaluate how sensitive the DNN is to the amount of
available training data and how much data one would need
in order to train a DNN. While we present Figs. 2–5 us-
ing 20-year (1984–2003) training data, here we gradually
decrease the length of the training set to 12 (1992–2003),
6 (1998–2003), and 2 (2002–2003) years and 1 (2003) year.
The validation data (for tuning hyper-parameters and con-
trolling overfit) and the test data (for prediction) are kept
the same as in our standard training dataset, which is the
year 2004 and 2005, respectively. Figures 6 and 7 show the
RMSE and CORs between observed and predicted profiles of
temperature, water vapor, and the wind component for Jan-
uary midnight. Overall, the FFN network depends heavily on
the length of the training dataset. For example, the RMSE of
FFN predicted temperature decreases from 7.2 K using 1 year
of training data to 3.0 K using 20-year training data. HAC

www.geosci-model-dev.net/12/4261/2019/ Geosci. Model Dev., 12, 4261–4274, 2019



4268 J. Wang et al.: Fast domain-aware neural network emulation

Figure 4. Same as Fig. 2 but for wind direction and wind speed.

and HPC also depend on the length of training data espe-
cially when less than 6 years of training data is available, but
even their worst prediction accuracy (using 1 year of training
data) is still better than FFN using 20-year training data. The
RMSEs of HPC and HAC predicted a temperature decrease
from ∼ 2.4 K using 1 year of training data to ∼ 1.5 K using
20 years of training data. The CORs of FFN predicted a tem-
perature increase from 0.73 using 1 year of training data to
0.92 using 20 years of training data. The CORs for HPC and
HAC increase slightly with more training data, but overall
they are above 0.85 using 1 year to 20 years of training data.

Regarding the question about how much data one would
need to train a DNN, for FFN, at least from this study, the
performance is not stable until one has 12 or more years of
training data, which is significantly better than having only
6 years or less of training data. For HAC and HPC, however,
having 6 years of training data seems sufficient to show a sta-
ble prediction. Increasing the amount of training data shows
only a marginal improvement in predictive accuracy. In fact,
in contrast to HAC and HPC, the performance of FFN has not
reached a plateau even with the 20 years of training data. This
suggests that with longer training sets the predicting skill of

FFN could be further improved even though it does not ex-
plicitly consider the physical process within a PBL.

3.4 DNN performance for nearby locations

This section assesses the spatial transferability of the
domain-aware DNNs (specifically HAC and HPC) by us-
ing a trained NN from one location (Logan, Kansas, as
presented above) in other locations within an area with
size of 1100 km×1100 km, covering latitude from 33.431 to
44.086◦ N and longitude from 107.418 to 93.6975◦W, cen-
tered at the Logan site with different terrain and vegetation
conditions (Fig. 8a). To reduce the computational burden, we
pick every other seven grid points in this area and use the
13× 13 grid points (which can still capture the terrain vari-
ability) to test the spatial transferability of the DNNs devel-
oped based on the single location at Logan, Kansas. For each
of the 13× 13 grid points, we calculate the differences and
correlations between observations and predictions. Different
from the preceding section, here we calculate normalized
RMSEs relative to each grid point’s observations averaged
over a particular time period, in order to make the compari-
son feasible between different grid points over the area. As
shown in Figs. 8 and 9 by the normalized RMSEs and CORs,

Geosci. Model Dev., 12, 4261–4274, 2019 www.geosci-model-dev.net/12/4261/2019/



J. Wang et al.: Fast domain-aware neural network emulation 4269

Figure 5. Same as Fig. 3 but for wind direction and wind speed.

in general, for temperature, water vapor, and wind speed, the
domain-aware DNNs (HAC and HPC) still work fairly well
for surrounding locations and even far locations with similar
terrain height, except over the grid points where the terrain
height is much higher than the Logan site, and the predic-
tion skill gets worse with larger RMSEs. This suggests the
DNNs developed based on the Logan site are not applicable
for these locations. However, for wind direction, the predic-
tion skill is good over the western part of the tested area, but it
is not so good over the far eastern part of the area. One of the
reasons is perhaps because the drivers of the wind direction
over the western and the eastern part of the area are differ-
ent (complex terrain versus large-scale system). Overall, the
results indicate that, at least for this study, as long as the ter-
rain conditions (slope, elevation, and orientation) are similar,
the DNNs developed based on one single location can be ap-
plied with similar prediction skill for locations that are as far
as 520 km away (equal to more than 40 grid cells in the WRF
output used in this study) to predict the variables assessed in
this study. The results also suggest that when implementing
the NN-based algorithm into the WRF model, if a number of
grid cells are over a homogenous region, one may not need to
train the NN over every grid cell. This will save a significant
amount of computing resource because the training process
takes up the majority of the computing resources (see below).
While we show results predicted by HAC in January here, we

find a similar conclusion from HPC prediction and both HAC
and HPC predictions in July, expect that the prediction skills
are even better in July for the adjacent locations.

3.5 DNN training and prediction time

Table 2 shows the number of epochs and the time required
for training FNN, HPC, and HAC for various numbers of
training years. Because of the early stopping criterion, the
number of training epochs performed by different methods is
not the same. Despite setting the maximum epochs to 1000,
all these methods terminate within 178 epochs. We observed
that HPC performs more training epochs than do FFN and
HAC: given the same optimizer and learning rate for all the
methods, HPC has a better learning capability because it can
improve the validation error more than HAC and FNN can.
For a given set of training data, the difference in the train-
ing time per epoch can be attributed to the number of train-
able parameters in FNN, HPC, and HAC (10 693, 16 597,
and 26 197, respectively). As we increase the size of train-
ing data, the training time per epoch increases significantly
for all three DNN models. The increase also depends on the
number of parameters in the model. For example, increasing
the training data from 1 to 20 years increases the training
time per epoch from 1.4, 1.1, and 1.4 s to 11.4, 17.4, and
19.6 s for FNN, HPC, and HAC, respectively.

www.geosci-model-dev.net/12/4261/2019/ Geosci. Model Dev., 12, 4261–4274, 2019



4270 J. Wang et al.: Fast domain-aware neural network emulation

Figure 6. RMSEs for temperature, water vapor, and wind components at midnight in January using three DNNs. Left y axis is for RMSEs
of HAC and HPC; right y axis is for RMSEs of FFN. The RMSEs are calculated along the time series below the PBL height for January
midnight at local time. The lower and upper end of the dashed lines are RMSEs that consider the lowest and highest PBL heights as shown
in Fig. 2.

Table 2. Training and prediction time (unit: seconds) for the three DNNs using a different number of years for training. The predicted period
is for 1 year (2005).

DNN type Training data Training Number of Training time Prediction
(years) time epochs per epoch time

FNN 1 85.969 61 1.409 0.197
FNN 2 137.359 47 2.923 0.196
FNN 6 376.209 70 5.374 0.171
FNN 12 199.468 23 8.673 0.193
FNN 20 306.665 27 11.358 0.199

HPC 1 199.152 178 1.119 0.336
HPC 2 454.225 91 4.991 0.343
HPC 6 1233.908 133 9.278 0.317
HPC 12 1225.880 88 13.930 0.302
HPC 20 1181.716 68 17.378 0.331

HAC 1 131.104 95 1.380 0.366
HAC 2 468.884 85 5.516 0.411
HAC 6 870.753 80 10.884 0.406
HAC 12 737.921 47 15.700 0.420
HAC 20 1351.898 69 19.593 0.381

Geosci. Model Dev., 12, 4261–4274, 2019 www.geosci-model-dev.net/12/4261/2019/



J. Wang et al.: Fast domain-aware neural network emulation 4271

Figure 7. Same as Fig. 6 but for Pearson correlations.

The prediction times of FNN, HPC, and HAC are within
0.5 s for 1-year data, making these models promising for
PBL emulation deployment. The difference in the prediction
time between models can be attributed to the number of pa-
rameters in the DNNs: the larger the number of parameters,
the longer the prediction time. For example, the prediction
times for FFN are below 0.2 s when using different numbers
of years for training, while those for HAC are around 0.4 s.
Despite the difference in the number of training years, the
number of parameters for a given model is fixed. Therefore,
once the model is trained, the DNN prediction time depends
only on the model and the number of points in the test data
(1 year in this study). Theoretically, for the given model and
the test data, the prediction time should be constant even with
different amounts of training dataset. However, we observed
slight variations in the prediction times that range from 0.17
to 0.29 s for FNN, 0.30 to 0.34 s for HPC, and 0.36 to 0.42 s
for HAC, which can be attributed to the system software.

4 Summary and discussion

This study developed DNNs for emulating the YSU PBL pa-
rameterization that is used by the WRF model. Two of the
DDNs take into account the domain-specific features (e.g.,
nonlocal mixing in terms of vertical dependence between
multiple PBLs). The input and output data for the DNNs are
taken from a set of 22-year-long WRF simulations. We devel-
oped the DNNs based on a midwestern location in the United
States. We found that the domain-aware DNNs (e.g., HPC
and HAC) can reproduce the vertical profiles of wind, tem-
perature, and water vapor mixing ratio with higher accuracy
yet require fewer data than the traditional DNN (e.g., FFN),
which does not consider the domain-specific features. The
training process takes the majority of the computing time.
Once trained, the model can quickly predict the variables
with decent accuracy. This ability makes the deep neural net-
work appealing for parameterization emulator.

Following the same architecture that we developed for Lo-
gan, Kansas, we also built DNNs for one location in Alaska.
The results share the same conclusion as we have seen for the
Logan site. For example, among the three DNNs, HPC and
HAC show much better skill with smaller RMSEs and higher

www.geosci-model-dev.net/12/4261/2019/ Geosci. Model Dev., 12, 4261–4274, 2019



4272 J. Wang et al.: Fast domain-aware neural network emulation

Figure 8. (a) Terrain height (in meters) over the tested area; (b) nor-
malized RMSEs in percent (relative to their corresponding obser-
vations) of HAC-predicted temperature, water vapor mixing ratio,
wind direction, and speed at midnight in January. The star shows
where the DNNs are developed (Logan, Kansas).

correlations than does FFN. The wind profiles are more dif-
ficult to predict than the profiles of temperature and water
vapor. For FFN, the prediction accuracy increases with more
training data; for HPC and HAC, the prediction skill stays
similar when having 6 or more years of training data.

While we trained our DNNs over individual locations in
this study using only one computing node (with multiple pro-

Figure 9. Person correlations between observed and HAC-predicted
temperature, water mixing ratio, wind direction, and speed for mid-
night in January in 2005.

cessors), there are 300 000 grid cells over our WRF model
domain, which simulated the North American continent at a
horizontal resolution of 12 km. To train a model for all the
grid cells or all the homogenous regions over this large do-
main, we will need to scale up the algorithm to hundreds if
not thousands of computing nodes to accelerate the training
time and the make the entire NN-based simulation faster than
the original parameterization.

The ultimate goal of this project is to build an NN-
based algorithm to empirically understand the process in
the numerical weather and climate models and to replace
the PBL parameterization and other time-consuming param-
eterizations that were derived from observational studies.
The DNNs developed in this study can provide numeri-
cally efficient solutions for a wide range of problems in en-
vironmental numerical models where lengthy and compli-
cated calculations describing physical processes must be re-
peated frequently or a large ensemble of simulations needs
to be done to represent uncertainty. A possible future di-
rection for this research is implementing these NN-based
schemes in WRF for a new generation of hybrid regional-
scale weather/climate models that fully represent the physics

Geosci. Model Dev., 12, 4261–4274, 2019 www.geosci-model-dev.net/12/4261/2019/



J. Wang et al.: Fast domain-aware neural network emulation 4273

at a very high spatial resolution with a short computing
time period so as to provide the means for generating large-
ensemble model runs.

Code and data availability. The data used and the code developed
in this study are available at https://github.com/pbalapra/dl-pbl (last
access: 25 March 2019).

Author contributions. JW participated in the entire project by pro-
viding domain expertise and analyzing the results from the DNNs.
PB developed and conducted all the DNN experiments. RK pro-
posed the idea of this project and provided high-level guidance and
insight for the entire study.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The WRF model output was developed
through computational support by the Argonne National Laboratory
Computing Resource Center and National Energy Research Scien-
tific Computing Center.

Financial support. This research has been supported by the U.S.
Department of Energy, Office of Science (grant no. DE-AC02-
06CH11357).

Review statement. This paper was edited by Richard Neale and re-
viewed by two anonymous referees.

References

Attali, J. G. and Pagès, G.: Approximations of functions by a mul-
tilayer perception: A new approach, Neural Networks, 6, 1069–
1081, 1997.

Chen, T. and Chen, H.: Approximation capability to functions of
several variables, nonlinear functionals and operators by radial
basis function neural networks, Neural Networks, 6, 904–910,
1995a.

Chen, T. and Chen, H.: Universal approximation to nonlinear opera-
tors by neural networks with arbitrary activation function and its
application to dynamical systems, Neural Networks, 6, 911–917,
1995b.

Chevallier, F., Chéruy, F., Scott, N. A., and Chédin, A.: A neural net-
work approach for a fast and accurate computation of longwave
radiative budget, J. Appl. Meteorol., 37, 1385–1397, 1998.

Chevallier, F., Morcrette, J.-J., Chéruy, F., and Scott, N. A.: Use of a
neural-network-based longwave radiative transfer scheme in the
EMCWF atmospheric model, Q. J. Roy. Meteor. Soc., 126, 761–
776, 2000.

Collins, W. and Tissot, P.: An artificial neural network model to pre-
dict thunderstorms within 400 km2 South Texas domains, Mete-
orol. Appl., 22, 650–665, 2015.

Cohen, A. E., Cavallo, S. M., Coniglio, M. C., and Brooks, H. E.:
A review of planetary boundary layer parameterization schemes
and their sensitivity in simulating a southeast U.S. cold season
severe weather environment, Weather Forecast., 30, 591–612,
2015.

Cybenko, G.: Approximation by superposition of sigmoidal func-
tions, Math. Control Signal., 2, 303–314, 1989.

Hong, S.-Y., Noh, S. Y., and Dudhia, J.: A new vertical diffu-
sion package with an explicit treatment of entrainment processes,
Mon. Weather Rev., 134, 2318–2341, 2006.

Hornik, K.: Approximation capabilities of multilayer feedforward
network, Neural Networks, 4, 251–257, 1991.

Jiang, G.-Q., Xu, J., and Wei, J.: A deep learning algorithm of neural
network for the parameterization of typhoon-ocean feedback in
typhoon forecast models, Geophys. Res. Lett., 45, 3706–3716,
2018.

Kheshgi, H. S., Jain, A. K., Kotamarthi, V. R., and Wuebbles, D.
J.: Future atmospheric methane concentrations in the context of
the stabilization of greenhouse gas concentrations, J. Geophys.
Res.-Atmos., 104, 19183–19190, 1999.

Krasnopolsky, V. M. and Fox-Rabinovitz, M. S.: Complex hybrid
models combining deterministic and machine learning compo-
nents for numerical climate modeling and weather prediction,
Neural Networks, 19, 122–134, 2006.

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Chalikov, D. V.:
New approach to calculation of atmospheric model physics: Ac-
curate and fast neural network emulation of long wave radiation
in a climate model, Mon. Weather Rev., 133, 1370–1383, 2005.

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Belochitski,
A. A.: Using ensemble of neural networks to learn stochas-
tic convection parameterizations for climate and numerical
weather prediction models from data simulated by a cloud
resolving model, Adv. Artif. Neural. Syst., 2013, 485913,
https://doi.org/10.1155/2013/485913, 2013.

Krasnopolsky, V. M., Nadiga, S., Mehra, A., Bayler, E.,
and Behringer, D.: Neural networks technique for fill-
ing gaps in satellite measurements: Application to ocean
color observations, Comput. Intel. Neurosc., 2016, 6156513,
https://doi.org/10.1155/2016/6156513, 2016.

Krasnopolsky, V. M., Middlecoff, J., Beck, J., Geresdi, I., and Toth,
Z.: A neural network emulator for microphysics schemes, 97th
AMS annual meeting, Seattle, WA, 24 January 2017.

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and
Spracklen, D. V.: Emulation of a complex global aerosol model
to quantify sensitivity to uncertain parameters, Atmos. Chem.
Phys., 11, 12253–12273, https://doi.org/10.5194/acp-11-12253-
2011, 2011.

Leeds, W. B., Wikle, C. K., Fiechter, J., Brown, J., and Milliff, R.
F.: Modeling 3D spatio-temporal biogeochemical processes with
a forest of 1D statistical emulators, Environmetrics, 24, 1–12,
2013.

McFarlane, N.: Parameterizations: representing key processes in
climate models without resolving them, Wiley Interdisciplinary
Reviews: Climate Change, 2, 482–497, 2011.

www.geosci-model-dev.net/12/4261/2019/ Geosci. Model Dev., 12, 4261–4274, 2019

https://github.com/pbalapra/dl-pbl
https://doi.org/10.1155/2013/485913
https://doi.org/10.1155/2016/6156513
https://doi.org/10.5194/acp-11-12253-2011
https://doi.org/10.5194/acp-11-12253-2011


4274 J. Wang et al.: Fast domain-aware neural network emulation

Scher, S.: Toward data-driven weather and climate forecasting: Ap-
proximating a simple general circulation model with deep learn-
ing, Geophys. Res. Lett., 45, 12616–12622, 2018.

Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.:
Explicit forecasts of winter precipitation using an improved bulk
microphysics scheme. Part II: Implementationof a new snow pa-
rameterization, Mon. Weather Rev., 136, 5095–5115, 2008.

Wang, J. and Kotamarthi, V. R.: Downscaling with a nested regional
climate model in near-surface fields over the contiguous United
States, J. Geophys. Res.-Atmos., 119, 8778–8797, 2014.

Williams, P. D.: Modelling climate change: the role of unresolved
processes, Philos. T. Roy. Soc. A, 363, 2931–2946, 2005.

Geosci. Model Dev., 12, 4261–4274, 2019 www.geosci-model-dev.net/12/4261/2019/


	Abstract
	Introduction
	Data and method
	Data
	Deep neural networks for PBL parameterization emulation
	Setup

	Results
	DNN performance in temperature and water vapor
	DNN performance in wind component
	DNN dependence on length of training period
	DNN performance for nearby locations
	DNN training and prediction time

	Summary and discussion
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

