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Abstract. Pysteps is an open-source and community-driven
Python library for probabilistic precipitation nowcasting, that
is, very-short-range forecasting (0–6 h). The aim of pysteps is
to serve two different needs. The first is to provide a modular
and well-documented framework for researchers interested
in developing new methods for nowcasting and stochastic
space–time simulation of precipitation. The second aim is
to offer a highly configurable and easily accessible platform
for practitioners ranging from weather forecasters to hydrol-
ogists. In this sense, pysteps has the potential to become an
important component for integrated early warning systems
for severe weather.

The pysteps library supports various input/output file for-
mats and implements several optical flow methods as well
as advanced stochastic generators to produce ensemble now-
casts. In addition, it includes tools for visualizing and post-
processing the nowcasts and methods for deterministic, prob-
abilistic and neighborhood forecast verification. The pys-
teps library is described and its potential is demonstrated us-
ing radar composite images from Finland, Switzerland, the
United States and Australia. Finally, scientific experiments
are carried out to help the reader to understand the pysteps
framework and sensitivity to model parameters.

1 Introduction

As defined by the World Meteorological Organization
(WMO), nowcasting encompasses a description of the cur-
rent state of the atmosphere along with forecasts up to 6 h
ahead (Wang et al., 2017). These short-term forecasts, typ-
ically obtained by extrapolation of observations, statistical
models or numerical weather prediction (NWP), represent an
essential tool to predict severe weather, such as heavy precip-
itation and intense thunderstorms.

Excessive rainfall can act as a trigger for water-related haz-
ards (Alfieri et al., 2012), and this is particularly true in an in-
creasingly urbanized territory or in the presence of steep to-
pography. When vulnerable objects become exposed to such
hazards, risk can manifest in terms of property damage and
loss of lives.

Reliable precipitation nowcasts are therefore needed to
support decision making during severe weather, for example,
to decide whether to interrupt a train line exposed to debris
flows or to evacuate buildings in flood-prone areas, as well
as in the context of the optimization of airport operations and
regulation of sewage systems during storm events. All such
scenarios can benefit from the availability of real-time now-
casting systems that take into account the predictability of
precipitation and related hazards at a high spatial and tempo-
ral resolution so that risk is mitigated.
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1.1 From deterministic to probabilistic nowcasting

Weather radars are ideally suited for providing the input data
for precipitation nowcasting at high resolution, namely spa-
tial scales under 2 km and time ranges between 5 min and
3 h (Berne et al., 2004). Despite recent advances in numeri-
cal weather prediction (e.g., Sun et al., 2014), extrapolation-
based nowcasting remains the primary approach at such
space- and timescales, typically outperforming NWP fore-
casts in the first 2–5 h, depending on the weather situa-
tion, domain and NWP characteristics (e.g., Berenguer et al.,
2012; Mandapaka et al., 2012; Simonin et al., 2017; Jacques
et al., 2018). Other recent developments include machine
learning methods, for which promising results have been ob-
tained (e.g., Xingjian et al., 2015; Foresti et al., 2019), but
these have not so far been deployed in operational nowcast-
ing systems.

Precipitation exhibits variability over a wide range of
space- and timescales (e.g., Lovejoy and Schertzer, 2013)
which, in combination with the chaotic nature of the atmo-
sphere (e.g., Lorenz, 1996), limits our ability to predict its
evolution in a deterministic manner. The NWP community
recognized this challenge in the early 1990s and tackled the
problem by producing an ensemble of NWP forecasts by per-
turbing the set of initial conditions (e.g., Toth and Kalnay,
1997). Those perturbations grow exponentially and lead to
an ensemble of solutions that reflect forecast uncertainties.
The information contained in the ensemble can then be used
to derive probabilistic forecasts.

Just as any other forecasting technique, the skill of radar-
based nowcasting was found to depend on multiple factors
such as the meteorological conditions, geographical location,
spatial and temporal scales (e.g., Germann and Zawadzki,
2002; Foresti and Seed, 2014; Atencia et al., 2017; Mejsnar
et al., 2018). It is therefore not surprising that also the now-
casting community rapidly acknowledged the importance of
estimating predictive uncertainty (e.g., Seed, 2003; Germann
and Zawadzki, 2004; Bowler et al., 2006). A common ap-
proach is based on stochastic simulation, in which correlated
noise fields are used to perturb a deterministic nowcast (e.g.,
Bowler et al., 2006; Berenguer et al., 2011; Liguori and Rico-
Ramirez, 2014; Foresti et al., 2016). Substantial research ef-
forts have been made to make the perturbation fields as real-
istic as possible and consistent with the nowcast uncertainty
(e.g., Seed et al., 2013; Nerini et al., 2017). For a review
of the history of nowcasting starting from the 1950s, and its
evolution to the probabilistic framework, we refer the reader
to Pierce et al. (2012).

1.2 The pysteps open-source initiative

Similarly to other research fields, the nowcasting com-
munity has invested a significant amount of time to re-
implement from scratch routines and algorithms that have
been around for decades, for example, optical flow and ad-

vection schemes. Part of this problem is due to the unavail-
ability of software, which is often proprietary or too poorly
documented to be understood, trusted and used.

Recognizing that nowcasting methods and related appli-
cations can be further developed and distributed by pro-
moting universal access to existing knowledge, a Python-
based software package, called pysteps, is being devel-
oped as a community-driven effort. Such effort fits well
into the weather radar community with emergence of open
data and an increasing number of open-source software
projects (Heistermann et al., 2015), for instance, in radar data
processing (Heistermann et al., 2013; Helmus and Collis,
2016). More recently, community-based initiatives dedicated
to nowcasting have emerged, for example, Com-SWIRLS by
the Regional Specialized Meteorological Centre (RSMC) for
Nowcasting operated by the Hong Kong Observatory (HKO),
IMPROVER by the UK MetOffice or rainymotion at the Uni-
versity of Potsdam (see Table 1).

In this article, we present pysteps, an open-source and
community-driven Python library for probabilistic precipita-
tion nowcasting. The objective of pysteps is two-fold. First,
it aims at providing a well-documented and modular frame-
work for development of new nowcasting methods. In this
sense, pysteps promotes the adoption of open-science prac-
tices, as the lack of common standards, transparency, code
availability and well-documented workflows in computa-
tional disciplines can lead to non-reproducible results, hence
questioning their scientific value (Hutton et al., 2016). Sec-
ond, pysteps aims at providing an easily accessible software
package for practitioners ranging from weather forecasters to
hydrologists.

1.3 Outline of the paper

The paper is structured as follows. The theoretical framework
for precipitation nowcasting and using stochastic perturba-
tions to characterize the uncertainty is formulated in Sect. 2.
The general architecture of the pysteps library is presented in
Sect. 3. A comprehensive verification of pysteps nowcasts is
given in Sect. 4. Various experiments to understand the sen-
sitivity of pysteps to the model parameters and define the de-
fault configuration are done in Sect. 5. The limits of pysteps
are tested in Sect. 6 using a tropical cyclone and severe con-
vection case in Australia. Section 7 concludes the paper and
lists potential future applications of pysteps. Finally, code
listings demonstrating the use of pysteps are given in Ap-
pendix A.

2 Formulation of precipitation nowcasting

This section introduces the basic concepts and components
of probabilistic nowcasting models based on the Lagrangian
persistence of radar precipitation fields and describes how
these are currently implemented in pysteps.
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Table 1. Non-exhaustive list (in alphabetical order) of precipitation nowcasting packages that are in principle available to the public. Open-
source libraries have their source code available to the general public. Free-license libraries can be obtained upon request.

Library Language Website Availability Reference

Com-SWIRLS Python, C++ https://com-swirls.org Open source∗ Wong et al. (2016)
(last access: 23 September 2019)

IMPROVER Python, Shell https://improver.readthedocs.io Open source Flowerdew (2018)
(last access: 23 September 2019)

INCA C, Fortran, Shell https://www.zamg.ac.at Free license Haiden et al. (2011)
(last access: 23 September 2019)

pysteps Python https://pysteps.github.io Open source This study
(last access: 23 September 2019)

rainymotion Python https://github.com/hydrogo/rainymotion Open source Ayzel et al. (2019)
(last access: 23 September 2019)

STEPS C, C++ https://www.bom.gov.au Free license Bowler et al. (2006),
(last access: 23 September 2019) Seed et al. (2013)

∗ Only for national meteorological and hydrological services within WMO.

2.1 Lagrangian persistence and optical flow

In its simplest form, extrapolation-based precipitation now-
casting assumes that over the time frame of a few hours the
evolution of precipitation can be captured by moving the
radar echoes along a stationary motion field without changes
in intensity. In the literature, this is known as Lagrangian per-
sistence (Zawadzki et al., 1994).

Denoting a precipitation parcel by R and its displacement
vector by α(τ ), the conservation equation for an incompress-
ible flow is written as

R(x0; t + τ)= R(x0−α(τ ); t), (1)

or equivalently in differential form as

dR
dt
=
∂R

∂t
+ u

∂R

∂x
+ v

∂R

∂y
, u=

dx
dt
, v =

dy
dt
, (2)

where dR/dt = 0, and u and v are the x and y components of
the motion field. In the so-called optical flow methods, u and
v are estimated for a given location by solving Eq. (2) numer-
ically based on a sequence of precipitation intensity fields.
Typically, a constraint on the spatial continuity of nearby u
and v is imposed to guarantee a unique solution. Once the
motion field is known, the radar echoes are extrapolated by
means of an advection scheme.

Three methods are currently implemented in pysteps for
motion field estimation: a local Lucas–Kanade method (Lu-
cas and Kanade, 1981; Bouguet, 2001), a global variational
echo-tracking approach (Laroche and Zawadzki, 1994; Ger-
mann and Zawadzki, 2002) and a spectral approach (DARTS,
Ruzanski et al., 2011). The currently implemented advection
method is the backward-in-time semi-Lagrangian scheme de-
scribed in Germann and Zawadzki (2002), which is robust
against numerical diffusion.

2.2 Sources of uncertainty

The predictability of the atmosphere is intrinsically limited
by the fact that its state cannot be observed with absolute pre-
cision nor expressed without approximations in its governing
laws (Lorenz, 1996). In the case of radar-based precipitation
nowcasting, predictive uncertainty originates from errors in
the estimation of the current state of the rainfall and motion
fields (initial state errors), and limitations of Lagrangian per-
sistence as a model to predict the evolution of the rainfall and
motion fields (model errors).

The main contribution to model errors in the Lagrangian
approach stems from the evolution of precipitation in terms
of initiation, growth, decay and termination processes that
violate the steady-state assumption. Other sources of model
uncertainty include the assumption of stationarity of the mo-
tion field, inaccuracies due to the practical implementation
of the method, as the discretization in time, space and re-
flectivity, and numerical diffusion of the advection scheme
(Germann et al., 2006b).

Currently, pysteps focuses on the representation of the
model errors, whereas incorporation of the initial state errors
in the nowcasting is left for future work.

2.3 Data transformation

The statistics of intermittent precipitation rates are non-
Gaussian and display a typical asymmetric distribution that
is bounded at zero. Such properties restrict the usage of well-
established stochastic models that assume Gaussianity. A
common workaround is to introduce a suitable data trans-
formation to approximate a normal distribution (e.g., Erdin
et al., 2012).
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Currently, pysteps assumes a log-normal distribution of
rain rates by applying the logarithmic transformation

R→

{
10log10R, if R ≥ 0.1mmh−1

−15, otherwise
, (3)

that corresponds to logarithmic radar rain rates (units of
dBR). The value of−15 dBR is equivalent to assigning a rain
rate of approximately 0.03 mm h−1 to the zeros. Hereafter, R
refers to the transformed rain rates, unless otherwise stated.

Using the logarithmic transformation is motivated by the
fact that rain rates are approximately log-normally dis-
tributed (Crane, 1990). This has two main advantages. First,
it simplifies the estimation of distribution parameters, partic-
ularly with limited sample size and in the presence of mea-
surement noise (Harris et al., 1997). Second, the decomposi-
tion of log-transformed rainfall fields defines a multiplicative
cascade, where multiplication is replaced with summation in
the transformed space (Seed, 2003).

2.4 A cascade of spatial scales

It has been shown that the lifetime of precipitation relates
to its spatial scale (e.g., Venugopal et al., 1999; Seed, 2003;
Germann et al., 2006b), often denominated as dynamic scal-
ing. Recognizing this fundamental property, Seed (2003) in-
troduced the Spectral Prognosis (S-PROG) model, which laid
the foundation for the development of Short-Term Ensemble
Prediction System (STEPS) (Bowler et al., 2006; Seed et al.,
2013). The key idea is to decompose the precipitation field
into a multiplicative cascade, where the cascade levels repre-
sent different spatial scales, and treat them separately in the
nowcasting model.

In STEPS, the scale decomposition is done by applying a
fast Fourier transform (FFT) to the input precipitation field.
This is motivated by the fact that for a grid of size L×L
pixels, the radial Fourier wavenumbers |k| =

√
k2
x + k

2
y are

related to spatial scales via

radial wavenumber
(pixels)︷︸︸︷
|k| →

wavelength
(pixels)︷︸︸︷
L

|k|
→

wavelength (km)︷ ︸︸ ︷
L1x

|k|
→

scale (km)︷ ︸︸ ︷
L1x

2|k|
, (4)

where 1x denotes the grid resolution (km). Thus, the spatial
scale is half the wavelength. Alternative approaches to per-
form a scale decomposition include the discrete-cosine trans-
form (Germann and Zawadzki, 2002; Surcel et al., 2014) or
wavelets (Turner et al., 2004; Scovell, 2018).

In the current implementation of pysteps, we adopt the ap-
proach of Pulkkinen et al. (2018), where Gaussian weight
functions are used for separating the Fourier spectrum into a
set of radial bands. An example of the weight functions for
the domain covered by the Finnish Meteorological Institute
(FMI) radars is shown in Fig. 1. After the FFT and Gaus-
sian filtering, each frequency band is transformed back to the

Figure 1. Normalized weight functions with corresponding Fourier
wavenumbers and spatial scales for the FMI domain. The domain is
a 760× 1226 grid at 1 km resolution.

spatial domain, which results in a cascade with n levels each
representing a different scale (see an example in Fig. 2).

2.5 Temporal evolution

In nowcasting, the typical approach to model the temporal
evolution of precipitation fields employs an auto-regressive
(AR) process that combines the deterministic component
from Lagrangian persistence with a stochastic innovation
term, also referred to as a noise or perturbation term. For in-
stance, S-PROG and STEPS use a second-order AR(2) pro-
cess with two parameters. Separate AR(2) processes are ap-
plied to each cascade level to account for the dynamic scal-
ing of precipitation. The combination of the auto-regressive
model in time and the cascade model in space allows one
to control the temporal evolution and correlation structure of
precipitation.

Currently, a more general AR(p) model has been imple-
mented in pysteps. For each cascade level j , the recursion
formula is given by

Rj (x,y, t)=

p∑
k=1

φj,kRj (x,y, t−k1t)+φj,0εj (x,y, t). (5)

The first term corresponds to the deterministic predictable
component at cascade level j (i.e., Lagrangian persistence).
The second term is a stochastic term that represents the un-
predictable component at the same cascade level j , that is,
mainly initiation, growth and decay of precipitation. The
symbol 1t denotes the time difference between consecutive
precipitation fields Rj that are normalized to zero mean and
unit variance.

The parameters φj,k in the above model are estimated
from time-lagged auto-correlation coefficients ρj,k for k =
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Figure 2. The radar observations and seven first levels of the cascade decomposition of an FMI rain rate composite at 16:00 UTC on
28 September 2016. Values below −10 dBR were set to −15 dBR before applying the decomposition in order to reduce the discontinuity at
the boundaries of precipitation areas. The observed field and the cascade levels have been normalized to zero mean and unit variance. See
Listing A1 in Appendix A for obtaining the decomposition.

1,2, . . .,p using the Yule–Walker equations (Hamilton,
1994). For p = 2, the correlation coefficients can be adjusted
to ensure that the resulting AR(p) process is stationary and
non-periodic (Box et al., 2013). Finally, the parameters φj,0
are chosen as

φj,0 =

√√√√1−
p∑
k=1

ρj,kφj,k. (6)

Given that the variance of the noise fields εj is one, this
choice guarantees that the AR(p) process is normalized to
unit variance (Hamilton, 1994).

The theoretical auto-correlation function (ACF) of the
AR(2) process can be computed recursively from the
model parameters and auto-correlation coefficients (Chat-
field, 2003) according to

ρj (t)= φj,1ρj (t −1t)+φj,2ρj (t − 21t). (7)

The empirical ACF can be derived by computing the correla-
tion coefficients between the extrapolation nowcasts and the
observations.

For an exponentially decaying ACF, the precipitation life-
time is defined as the time when the ACF, theoretical or em-
pirical, falls below the value 1/e ≈ 0.37, where e is the Euler
number. Alternatively, one can estimate the lifetime by inte-

grating the ACF according to

T =

∞∫
0

ρ(τ)dτ. (8)

It is not common to employ an AR(p) process with p >
2 for several reasons. First, it is not trivial to guarantee
the stationarity and non-periodicity of the process. Second,
when estimated in Lagrangian frame, the higher-order auto-
correlation coefficients are affected by the uncertainty of the
motion field. This occurs especially at small spatial scales
as it is difficult to properly track convective cells over sev-
eral time steps. Third, a low-order AR process is generally
sufficient to model the loss of predictability in the nowcast-
ing range; departures are usually observed only after ≈ 2 h
(Atencia and Zawadzki, 2014).

2.6 Stochastic perturbations of precipitation intensities

The perturbation field ε in Eq. (5) is typically generated as
a correlated Gaussian random field using FFT filtering (e.g.,
Pegram and Clothier, 2001; Bowler et al., 2006). The process
consists of three steps:

1. generate a Gaussian white noise field,
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2. apply the FFT and a Fourier filter to the above to gener-
ate a random field having the desired correlation struc-
ture and

3. apply the inverse FFT to transform the noise field back
to the spatial domain.

This technique is also known as power–law filtering of white
noise or fractional integration (Schertzer and Lovejoy, 1987).

At present, three methods for filtering white noise fields
have been implemented in pysteps. In the absence of a model
that predicts the evolution of the spatial correlation structure,
one assumes that the correlation structure remains constant
through the nowcast. An example is provided in Fig. 3.

In the parametric method introduced by Pegram and Cloth-
ier (2001), the filtered noise field ε is obtained from the white
noise field εw as

ε(x,y)= F−1
{f (|k|)F{εw}(kx,ky)}, (9)

where F denotes the Fourier transform and the function
f defines the slope of the radially averaged power spec-
trum (RAPS).

Our implementation follows the approach by Seed (2003),
which uses a piecewise linear function with two spectral
slopes (β1,β2) and one breaking point. The main limitation of
such model relates to the assumption of an isotropic power–
law scaling relationship, meaning that anisotropic structures
such as rainfall bands cannot be represented.

In the non-parametric method (Seed et al., 2013), the
Fourier filter is obtained directly from the power spectrum
of the observed precipitation field R such that

ε(x,y)= F−1
{|F{R}(kx,ky)|F{εw}(kx,ky)}. (10)

Differently to the parametric method, the non-parametric
approach allows generating perturbation fields with
anisotropic structures. On the other hand, the approach
requires a larger sample size and is sensitive to the quality
of the input data, e.g., the presence of residual clutter in the
radar image. In addition, both techniques assume spatial
stationarity of the covariance structure of the field.

The third method is an extension of the non-parametric
approach, where the noise field is generated locally to ac-
count for spatial inhomogeneities in the covariance structure
of the rainfall field. The technique is based on the short-space
Fourier transform (SSFT) and it is described in Nerini et al.
(2017). Essentially, the non-parametric approach in Eq. (10)
is localized in (x,y) by

ε(x,y)= F−1
{|F{Rwh(n1,n2)}(kx,ky)|F{εw}(kx,ky)}, (11)

where wh(n1,n2)= wh(n1)wh(n2) is the outer product of
two Hanning windows of sizes n1 and n2 centered in (x,y).

2.7 Stochastic perturbations of the motion field

A second source of uncertainty in Lagrangian persistence
nowcasting stems from temporal evolution of the motion

field (Germann et al., 2006b). This can be accounted for
by adding stochastic perturbations. In the current implemen-
tation of pysteps, this is done by applying the method of
Bowler et al. (2006).

For simplicity, the perturbation field is assumed to be spa-
tially constant for each ensemble member, but the magnitude
of the perturbations increases with respect to lead time. For a
given initial advection field w0 and lead time t , the perturbed
velocities are given by

wp(x,y)= w0(x,y)+αpar(t)εpar(x,y)ŵpar

+αperp(t)εperp(x,y)ŵperp,
(12)

where ŵpar and ŵperp denote the components parallel and
perpendicular to the initial advection field w0, respectively.
The random variables (εpar and εperp) are sampled from the
Laplace distribution with zero mean and unit variance. Scal-
ing of the perturbations is done according to

αpar(t)= apart
bpar + cpar (13)

αperp(t)= aperpt
bperp + cperp, (14)

where the parameters are climatologically fitted by using a
large sample of advection fields. Example values of these pa-
rameters can be found in Table 5.

2.8 Post-processing of nowcasts

To ensure that the forecast fields have the same statistical
properties with the observed ones, post-processing is typi-
cally done at the very end of the chain. This is necessary be-
cause intermediate steps may introduce discrepancies. One
major source of such discrepancies is related to the difficulty
to model the intermittency of precipitation. Typically, the ba-
sic statistical properties such as wet-area ratio, mean, vari-
ance and the marginal distribution of precipitation intensities
are assumed to remain invariant through the nowcast.

In the present implementation of pysteps, the post-
processing involves two different types of methods:
(1) masking and (2) matching the statistics of the forecast
fields with the most recently observed ones. Methods of type
(1) are used to avoid generation of stochastic cells into ar-
eas that are too distant from existing precipitation. Methods
of type (2) can be applied unconditionally or only to pixels
within the mask.

Three different masking methods have been implemented.
In the first method, the mask is obtained from pixels exceed-
ing an intensity threshold in the observed precipitation field,
and the mask is kept constant in Lagrangian coordinates for
the whole forecast. In the second method, adapted from Seed
(2003), the mask is obtained by using the S-PROG (i.e., the
unperturbed STEPS) nowcast. In the third method, a lead-
time-dependent precipitation mask is applied. The mask is
defined by the pixels exceeding a given intensity threshold
in the observed precipitation field and then progressively re-
laxed to allow the stochastic evolution of the wet area.

Geosci. Model Dev., 12, 4185–4219, 2019 www.geosci-model-dev.net/12/4185/2019/
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Figure 3. Comparison of three +30 min stochastic nowcasts produced with the FFT noise generators available in pysteps as described in
Sect. 2.6. (a) The radar-based rainfall analysis from the Australian radar network valid at 06:05 UTC on 1 January 2019 on a 512× 512
pixel grid (event no. 2 in Table 10). (b)–(d) One member of a +30 min nowcast produced using (b) the parametric noise generator, (c) the
non-parametric generator or (d) the short-space Fourier transform (SSFT) generator with a 128× 128 pixel sliding window. All realizations
share the same random seed.

Two methods have been implemented for matching the
statistics of forecast fields with the observed ones. In the first
method, which is used together with the S-PROG mask, the
conditional mean of the masked forecast field is adjusted to
match the conditional mean of the observed field (excluding
intensities below the threshold). Alternatively, the cumula-
tive distribution function (CDF) of the forecast field can be
mapped to the observed one (Foresti et al., 2016). This is de-
fined as

R′(x,y)= F−1
obs(F (R(x,y))), (15)

where Fobs and F denote the CDFs of the observed and the
input forecast field R, respectively.

3 The pysteps library

3.1 Key features and development model

The implementation language of pysteps is Python (http:
//python.org, last access: 23 September 2019). As a high-
level language with an extensive built-in standard library
and a large number of external libraries available, it is ide-
ally suited for open-source software development. Python
distributions, such as Anaconda, providing the necessary
software to run pysteps are available for all major plat-
forms. Python also provides interfaces for compiled lan-
guages such as C/C++ and Fortran, allowing to improve
performance in time-critical modules. In addition, Python-
based tools, like the IPython shell (Pérez and Granger, 2007)
or the Jupyter notebooks (https://jupyter.org, last access: 23
September 2019), allow an interactive use of pysteps for re-
search and demonstration purposes.

The pysteps library is extensively documented. The doc-
umentation describes in detail the different modules and the
application programming interfaces (APIs). The modules are
documented by using the docstring concept of Python. This is
implemented using Read the docs (https://readthedocs.org/,

last access: 23 September 2019) and Sphinx (http://www.
sphinx-doc.org/en/master, last access: 23 September 2019)
to automatically compile and update an online version of
the documentation, available at https://pysteps.readthedocs.
io (last access: 23 September 2019). In addition, tutorials for
performing various tasks with pysteps are included as exam-
ple scripts.

Pysteps development is done by using git, a distributed
version control system. The source code of pysteps is hosted
in GitHub (https://pysteps.github.io, last access: 23 Septem-
ber 2019). In addition to code hosting, the features of GitHub
include development in multiple branches, issue tracking and
wiki pages. Developers outside the core team may fork the
main repository and integrate the proposed changes via pull
requests, which allow community-driven development. Con-
tinuous integration and testing is done by using the Travis CI
framework (https://travis-ci.com/pySTEPS/pysteps, last ac-
cess: 23 September 2019).

Pysteps is published under the three-clause BSD license.
It allows copying, redistribution and modification of the soft-
ware as long as the modification are tracked and the source
code is made available under the same license. The permis-
sive license model makes the software easily accessible to
potential users, even allowing use for commercial purposes.

3.2 External dependencies

Pysteps relies on several external libraries that are listed in
Table 2. It is built on top of NumPy, SciPy and Matplotlib,
that together provide a MATLAB-like computing environ-
ment in Python. These libraries provide data structures and
wrappers for low-level BLAS and LAPACK libraries for
high-performance matrix and array operations, image pro-
cessing methods and also high-level functionality for data
visualization. The NumPy array is the basic data structure
used in pysteps.
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Table 2. External libraries used by pysteps.

Library Website Reference Description

h5py http://www.h5py.org
Input/output(last access: 23 September 2019)

NetCDF4 http://unidata.github.io/netcdf4-python
(last access: 23 September 2019)

PIL https://github.com/python-pillow/Pillow
(last access: 23 September 2019)

OpenCV http://opencv.org Bradski (2000) Image processing
(last access: 23 September 2019)

NumPy http://www.numpy.org Van Der Walt et al. (2011)
Mathematical routines

(last access: 23 September 2019)
SciPy http://www.scipy.org Jones et al. (2001)

(last access: 23 September 2019)

FFTW/pyFFTW
http://www.fftw.org Frigo and Johnson (2005)

Fast Fourier transform
(last access: 23 September 2019)
https://github.com/pyFFTW
(last access: 23 September 2019)

dask http://dask.org Dask Development Team (2016) Parallelization
(last access: 23 September 2019)

cartopy https://github.com/SciTools/cartopy Met Office (2010–2015)
Visualization(last access: 23 September 2019)

Matplotlib http://matplotlib.org Hunter (2007)
(last access: 23 September 2019)

mpl_toolkits.basemap http://matplotlib.org/basemap
(last access: 23 September 2019)

Support for NetCDF (the default file format), HDF5 and
various image file formats is implemented via the NetCDF4,
h5py and PIL libraries. A complete list of supported in-
put/output file formats is given in the official pysteps doc-
umentation. Plotting precipitation data with basemaps has
been implemented via mpl_toolkits.basemap and cartopy
packages. The Lucas–Kanade optical flow algorithm used in
pysteps is implemented in the OpenCV library and accessed
via a Python interface. Parallelized computation of nowcast
ensembles is done by using Dask, which provides a platform-
independent back end for low-level methods.

3.3 Key design principles

The aim of pysteps is to be a modular software library where
all the main components are interchangeable. This makes the
pysteps an ideal research platform for developing and testing
new methods as well as a valuable tool for operational mete-
orology, easily allowing the comparison of different nowcast
algorithms or running multi-model ensemble nowcasts. Pys-
teps is currently divided into 11 modules that perform dif-
ferent tasks. The modules and their descriptions are listed
in Table 3.

The modularity is implemented via interface-based design.
To this end, each module implements one subtask and an in-

terface method for retrieving the desired method for this task.
All mutually interchangeable methods implement the same
interface. Another key principle is that whenever possible,
the data are stored in n-dimensional arrays, which allow an
efficient and compact representation.

The above design principles are demonstrated in the fol-
lowing example. A precipitation nowcast by using STEPS
can be generated by

>>> nowcast_method = nowcasts.get_method("steps")
>>> nowcast = nowcast_method(R, V, num_timesteps)

where the required inputs are

R: array of shape (t,m,n) containing a time series of t
observed precipitation intensity fields with shape (m,n),

V : a previously computed array of shape (2,m,n) con-
taining the x and y components of the advection field

num_timesteps number of time steps to forecast.

Additional parameters can be specified by using keyword
arguments. The output of stochastic nowcasting methods is a
four-dimensional array of shape (num_ensemble_members,
num_timesteps, height, width). For deterministic nowcasts,
the first dimension is dropped.
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3.4 Data structures

In addition to being modular, pysteps implements object-
oriented features. However, instead of using customized
classes, we use dictionaries and functions that operate on
the dictionaries similarly to class member functions. This
design decision is motivated by the principle of using the
core Python data types rather than implementing customized
classes. The flat design of pysteps should facilitate user inter-
action and embedding of individual modules and functions
in other software. In this way, pysteps is similar to wradlib
(Heistermann et al., 2013).

To demonstrate the above design, the following example
shows how to construct a Gaussian bandpass filter for eight
cascade levels using the filter_gaussian function im-
plemented in the cascade.bandpass_filters mod-
ule:

>>> filter = filter_gaussian(R.shape, 8)

The output is a dictionary with three elements: (1) one-
dimensional weights corresponding to the radial wavenum-
bers, (2) a two-dimensional weight field for the FFT of the
input image and (3) a list of central frequencies for each
weight function (see Fig. 1). The resulting filter object can
then be passed to decomposition_fft as follows:

>>> decomp = decomposition_fft(R, filter)

The decomposition is applied to a two-dimensional precip-
itation fieldR, and the output is again a dictionary with three-
elements: (1) a three-dimensional array containing the eight
cascade levels having the same dimension as R, (2) mean
precipitation values of each cascade level and (3) standard
deviations for each level. More detailed examples of pysteps
usage are provided in Appendix A.

3.5 Workflow

Figure 4 illustrates the workflow for generating precipitation
nowcasts using pysteps. The first step is reading the input
data using the io module. Methods for reading radar com-
posites from Australian Bureau of Meteorology (BoM), FMI,
KNMI and MeteoSwiss have been implemented. In addi-
tion, the importers module supports reading the European-
wide OPERA radar composites in the ODIM HDF5 format.
Conversion from reflectivity (dBZ) to precipitation intensity
(mm h−1) and other preprocessing can be done by using the
utils module. Due to the modular design of pysteps, read-
ing custom data formats and conversions (e.g., by using dif-
ferent Z−R relationships and polarimetric parameters) can
also be implemented.

Reading the input data is followed by determination
of the motion field using the methods implemented in
the motion module. The precipitation intensity and mo-
tion fields are supplied as inputs to a user-chosen now-
casting method implemented in the nowcasts module.
For the Lagrangian persistence method implemented in

Table 3. Overview of pysteps modules.

Module Description

io reading radar composites and writing
nowcast files

motion optical flow methods for motion field
computation

extrapolation advection-based extrapolation
timeseries time series methods (e.g., AR models)
noise generation of stochastic noise to perturb

precipitation and motion fields
cascade scale-based decomposition of precipita-

tion fields
nowcasts implementation of nowcasting methods
postprocessing statistical post-processing of nowcasts
verification statistical verification of nowcasts and

plotting the results
visualization plotting of precipitation and advection

fields
utils miscellaneous utility functions

(e.g., converting and transforming
data and computing the FFT)

nowcasts.extrapolation, the remaining step of gen-
erating the nowcast is extrapolation.

When the cascade decomposition and the autoregressive
model are used for scale filtering (the S-PROG model), the
additional steps include those marked with green color in
Fig. 4. When generating ensembles (the STEPS model),
stochastic perturbations are added to the AR(p) models and
to the advection field using the methods implemented in
the noise module. These steps are marked with blue color
in Fig. 4.

The ensemble generation is parallelized by using the dask
library. For each time step, this is done by splitting the com-
putation to the available processor cores so that each core is
responsible for computation of one ensemble member.

Given the input radar composites and the motion field, all
operations involved in generating a nowcast are called from
the nowcast module, except optional post-processing. This
can be done either by supplying the requested method to
the nowcast generator or separately by using the function-
ality implemented in the postprocessing module. The
post-processing includes methods to ensure that the now-
casts have the same statistical properties of the observations
(see Sect. 2.8), as well as methods for generating differ-
ent products, such as ensemble mean or exceedance proba-
bilities of given intensity thresholds. Computation of accu-
mulations from instantaneous rain rates can be done by us-
ing the methods implemented in the utils.dimension
module. Finally, the nowcasts or nowcast ensembles can
be verified and plotted by using the verification and
visualization modules, respectively.
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Figure 4. Workflow for computing precipitation nowcasts using
pysteps. For each chart element, the top row describes the task and
the bottom row is the name of the module used for this purpose.
White colors represent the operations that are done with all now-
casting methods. Green colors represent the additional operations
included when the cascade decomposition and the autoregressive
AR(p) model are applied (i.e., the S-PROG model). Finally, blue
colors represent the operations that are done when stochastic per-
turbations are added and the ensemble computation is parallelized
(i.e., the full STEPS model).

4 Evaluation of nowcast quality

Verification is an essential step of forecasting, not only to
monitor forecast performance over time but also to provide
feedback on how to improve the model itself (diagnostic ver-
ification). For an ensemble forecast, it is necessary to check
whether it is unbiased and has the correct dispersion, and
that the forecast probabilities are reliable and sharp (e.g.,
Jolliffe and Stephenson, 2003). In this section, we evaluate
these attributes of pysteps ensemble nowcasts using radar
composites from Switzerland and Finland, while data from
the United States and Australia will also be used in Sects. 5
and 6.

Table 4. Overview of the radar quantitative precipitation estimation
(QPE) composites that have been used to evaluate pysteps. The grid
size is given as the number of pixels in the x and y dimensions.

Dataset Country Resolution Grid size

FMI Finland 1 km, 5 min 760× 1226
MeteoSwiss Switzerland 1 km, 5 min 710× 640
WDSS∗ United States 4 km, 5 min 1361× 1056
BoM Australia 0.5 km, 5 min 512× 512

∗ Upscaled from original data at 1 km resolution (5445× 4226).

4.1 Description of the data

As of 2019, the radar network operated by the FMI con-
sists of 10 polarimetric C-band Doppler radars. After clut-
ter filtering, the measured radar reflectivities are interpolated
into a grid with spatial and temporal resolutions of 1 km
and 5 min, respectively. The correction for the vertical pro-
file of reflectivity (VPR) is applied in order to reduce range-
dependent biases (Koistinen and Pohjola, 2014). Finally, re-
flectivities are converted to rainfall intensities using theZ−R
relation, Z = 223R1.53, adapted to the Finnish climate con-
ditions (Leinonen et al., 2012). A total of 10 precipitation
events from Finland containing both stratiform and convec-
tive precipitation were chosen for this study (Table 7).

The latest fourth-generation MeteoSwiss network consists
of five polarimetric C-band Doppler radars (Germann et al.,
2015). The quantitative precipitation estimation (QPE) prod-
uct used in this study includes automatic hardware calibra-
tion, clutter filtering, correction for beam shielding, correc-
tion for VPR effects, Z−R relation (Z = 316R1.5) and bias
adjustment (Germann et al., 2006a). The radar composite is
calculated on a 1 km grid every 5 min. Overall, 10 events con-
sisting of predominantly convective precipitation were cho-
sen from the Swiss data (Table 8).

The US dataset comprises the radar mosaics provided by
Warning Decision Support System-Integrated Information
(WDSS-II Lakshmanan et al., 2006, 2007), covering the con-
tinental United States at a spatial resolution of approximately
1 km. For the WDSS data, the resolution of the precipita-
tion fields is upscaled from 1 to 4 km by averaging 4×4 grid
points to reduce the computational requirements. The chosen
precipitation events are described in Table 9.

The radar network operated by BoM consists of 66 radars,
mostly C-band Doppler radars, with S-band polarimetric
Doppler radars operating at four major cities. Raw reflec-
tivity observations are quality controlled in real time to re-
move non-meteorological echoes and estimate the reflectiv-
ity at the Earth’s surface. This equivalent reflectivity at the
surface is converted into an instantaneous rainfall rate by use
of power–law functions tuned on a per radar basis. Finally,
rainfall depths are estimated by adjusting the bias of instanta-
neous rainfall rates based on observations at real-time gauge
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Table 5. The default configuration used in the experiments.

Parameter Value

Optical flow Lucas–Kanade
Extrapolation Semi-Lagrangian
Cascade levels 8
Order of the AR(p) model 2
Precipitation intensity perturbations Non-parametric
Transformation R to dBR
Minimum precipitation 0.1 mm h−1

Value for dry pixels −15 dBR
Mask method Incremental
Ensemble size 24
Probability matching Yes
Seed number 24
Velocity perturbation parameters apar = 2.32, bpar = 0.34,
(fitted to pooled FMI cpar =−2.65
and MeteoSwiss data) aperp = 1.91, bperp = 0.34,

cperp =−2.07

locations. The QPE grids are calculated with a spatial resolu-
tion of 0.5 km every 5 min. The BoM radar dataset comprises
two precipitation events: a tropical cyclone in northern Aus-
tralia and a severe convective event in Sydney (Table 10).

Table 4 summarizes the different data sources and resolu-
tions.

4.2 Verification metrics

Pysteps includes a number of verification metrics to help
users to analyze the general characteristics of the nowcasts in
terms of consistency and quality (or goodness). Probabilis-
tic forecasts have been verified using the relative operating
characteristic (ROC) curve, reliability diagrams and rank his-
tograms, as implemented in the verification module of
pysteps.

The ROC curve (Jolliffe and Stephenson, 2003) measures
the ability of a probabilistic forecast to discriminate between
precipitation and no precipitation exceeding a given intensity
threshold. For a set of probability thresholds, the ROC curve
is constructed by plotting the probability of detection (POD)
against the false alarm rate (POFD), not to be confused with
the false alarm ratio (FAR). For a perfect forecast, the curve
passes through the upper left corner (i.e., 100 % hit rate and
0 % false alarm rate). The area under the ROC curve can be
used as a measure of potential skill. For more details on the
contingency tables and the formulas of the categorical scores,
the reader is referred to Jolliffe and Stephenson (2003).

The reliability diagram (Bröcker and Smith, 2007) mea-
sures the bias (reliability) and resolution of a probabilistic
forecast. For a given intensity threshold, the diagram shows
the forecast probability against the observed frequencies,
where the probability range [0,1] is divided into n bins. For
a perfectly reliable forecast, the curve lies on the diagonal.
The reliability diagram is often accompanied by a histogram

showing the sample size in each bin (sharpness diagram). A
sharp forecast has few samples in the middle of the histogram
and many on the sides (probability of either 1 or 0).

The rank histogram (Hamill, 2001) measures how well
the ensemble spread corresponds to the observed uncertainty.
For each nowcast grid pixel, the ensemble members are
ranked in increasing order. A pooled histogram is computed
by assigning each verifying observation a bin which it falls
into among the ensemble members. The first and last bins
are assigned for observations below or above all members,
respectively. For a forecast ensemble whose distribution is
consistent with the observations, the histogram is flat and
no observations fall into the first or last bin. To handle ties
(e.g., when both the observed precipitation and several en-
semble members are equal to 0), we implemented the method
of Hamill and Colucci (1997). The method randomly chooses
a bin between (M + 1) and (M +Mtied)+ 1, where M is the
number of members smaller than the observation and Mtied
is the number of ties (ensemble members equal to the obser-
vation).

An additional metric that can be derived from rank his-
tograms is the outlier percentage (OP). The OP measures the
proportion of observations falling outside the ensemble, de-
fined by

OP=
h1+hn+1∑n+1

i=1 hi
, (16)

where hi denotes the ith bin of the rank histogram.
Pysteps also includes standard neighborhood verification

methods, such as the fractions skill score (FSS). FSS pro-
vides an intuitive assessment of the dependency of skill
on spatial scale from high-resolution precipitation forecasts
(Mittermaier and Roberts, 2010). The FSS is computed by
comparing the forecast and observed fractional coverage of
precipitation exceeding certain thresholds in spatial windows
(neighborhoods) of increasing size. Using FSS it is possible
to determine how the forecast skill varies with neighborhood
size and then determine the smallest scale that provides a suf-
ficiently skillful forecast.

4.3 Verification results

The quality of ensemble nowcasts produced by pysteps was
verified by using the MeteoSwiss data and the default config-
uration listed in Table 5. Using the reliability diagram, ROC
curve and rank histogram as verification metrics, the results
of the experiments are shown in Figs. 5–7. The results ob-
tained by using the FMI data were very similar and thus not
shown here.

Figure 5 shows that for the 0.1 mm h−1 intensity thresh-
old, reliable and sharp nowcasts can be obtained up to 2 h.
The ROC area remains over 0.85, and the deviation of the
reliability diagrams from the diagonal remains below 0.25.
However, there is a noticeable loss of sharpness after 3 h.
In addition, the curved shape of the reliability diagrams in-
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Figure 5. Reliability diagrams (a) and ROC curves (b) computed from STEPS nowcasts during the MeteoSwiss events listed in Table 8 with
different lead times and threshold 0.1 mm h−1. The default settings listed in Table 5 were used for computing the nowcasts. The optimal
probability thresholds that maximize POD-POFD are marked in the ROC curves with black crosses.

Figure 6. Same as Fig. 5 but for an intensity threshold of 5 mm h−1.

dicates that the pysteps nowcasts are slightly overconfident
(Tippett et al., 2014).

When a higher 5 mm h−1 intensity threshold is used,
Fig. 6a shows a significant deviation of the reliability dia-
gram from the diagonal only after 45 min, which is accom-
panied by loss of sharpness. However, the ROC area remains
above 0.8, indicating potentially useful skill. This suggests
that more reliable nowcasts could be obtained by implement-
ing additional calibration procedures in a future version of
pysteps. Another observation that suggests lack of calibration
is that the optimal nowcasts for precipitation/no precipitation
are obtained by choosing a very low probability threshold
(for a well-calibrated nowcast, this would be 0.5).

The rank histograms (Fig. 7) also show some ensemble
underdispersion with larger values on the first and last bins.
In general, we found that there are more misses than false
alarms (i.e., cases when all members are lower than the ob-
servations). This occurs, for instance, in cases of convective
initiation. Despite the ability of pysteps to generate some new
light random rain, it is not designed to represent the uncer-
tainty related to an explosive initiation of a thunderstorm.

4.4 Numerical diffusion analysis

Conventional semi-Lagrangian schemes are implemented
in a recursive way so that the precipitation intensities
are interpolated at each time step, which usually leads
to substantial numerical diffusion (i.e., loss of power
at high spatial frequencies). In the pysteps method (the
extrapolation.semilagrangian module), this is
done by iteratively tracing the locations of precipitation
parcels and interpolating the intensities only as the final step
of the advection (Germann and Zawadzki, 2002).

To verify the advantage of this implementation, we com-
puted radially averaged Fourier spectra of deterministic now-
casts at various lead times for FMI event no. 3 (Fig. 8). The
analysis is performed using the three optical flow methods
to understand whether the semi-Lagrangian scheme is sensi-
tive to quality of the motion field. Figure 8 shows an almost
perfect overlap of the forecast and observed spectra, an in-
dication that the numerical diffusion of the semi-Lagrangian
scheme is very low. Several cases have been analyzed and
provided similar results (not shown).
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Figure 7. Rank histograms computed from STEPS nowcasts during
the MeteoSwiss events listed in Table 8 with different lead times.
The default settings listed in Table 5 were used for computing the
nowcasts.

4.5 Spatial structure analysis

The aim of probabilistic nowcasting is to generate a reliable
ensemble of equiprobable realizations of precipitation fields
characterized by power spectra similar to those in Fig. 8. Fig-
ure 9a shows the average spectra of a stochastic 48-member
nowcast for FMI precipitation event no. 3. Despite a small
loss of power for scales (< 100 km), all spectra are close to
the observations. In other words, the spatial structure of en-
semble members remains realistic at all forecast lead times.

Figure 9b shows the results of the same analysis but for the
ensemble mean forecast (the average of ensemble members).
The process of ensemble averaging should produce precipi-
tation fields that become smoother with lead time, which is
the aftermath of the loss of predictability at small scales (Sur-
cel et al., 2014). As expected, Fig. 9b shows a gradual loss
of power at small scales. The departure of the forecast spec-
tra from the observed ones occurs at increasing wavelengths,
i.e., ≈ 16 km at 5 min and ≈ 128 km at 60 min. However, af-
ter 30 min, there is a certain increase of power at wavelengths
smaller than 16–32 km. This behavior is attributed to the lim-
ited ensemble size, which is not large enough to filter out pre-
cipitation features at small scales. Thus, one may argue that
if the ensemble is too small to model the loss of predictabil-
ity at such scales, it may also be too small to reliably model
the forecast uncertainty.

An alternative way to deterministically represent the fore-
cast uncertainty is to filter out the unpredictable features us-
ing the S-PROG model (Fig. 9c). Also, in this case, the depar-
tures of forecast spectra from the observed one occur grad-
ually as in the ensemble mean. The first two lead times are
remarkably similar, while for lead times beyond 30 min the
S-PROG filtering is stronger (at small spatial wavelengths).
Again, this level of filtering could be reached with an ensem-
ble of infinite size.

Figure 8. Numerical diffusion analysis of the semi-Lagrangian ad-
vection scheme using radially averaged Fourier spectra for different
optical flow methods and different forecast lead times. The now-
casts are for FMI event no. 3 (16:00 UTC on 28 September 2016).

The previous result suggests that we could exploit the dis-
crepancies between the S-PROG and ensemble mean spec-
tra to obtain an estimate of the required ensemble size (as a
function of spatial scale and lead time). If the two spectra are
similar, it is an indication that the ensemble is large enough.

4.6 Temporal structure analysis

To demonstrate the effectiveness of the hierarchy of AR(2)
models in modeling the temporal evolution of precipitation,
we derived the theoretical ACF from the estimated AR pa-
rameters (see Eq. 7). The obtained ACF is compared to the
empirical ACF between the nowcasts and the corresponding
observations. The correlation coefficients are computed sep-
arately for each cascade level obtained using the bandpass
filters shown in Fig. 1.

Figure 10 shows the average theoretical and empirical
ACFs for all the FMI cases. It clearly indicates that the
AR(2) process gives accurate estimates of the temporal auto-
correlations up to 3 h. For smaller scales (0–35 km) having
short lifetimes, the estimates coincide nearly exactly with
the observed ones, but for larger scales the auto-correlations
are slightly overestimated. This is due to the relatively short
memory of the AR(2) process compared to the precipitation
lifetimes at these scales (over 2 h).

5 Sensitivity analysis

The objective of this section is to analyze the sensitivity of
pysteps to its configuration options and parameters such as
the optical flow method, the ensemble size, the parameter lo-
calization and the cascade decomposition. The default pys-
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Figure 9. Spatial structure analysis of (a) stochastic ensemble mem-
bers, (b) ensemble mean and (c) S-PROG filtering. To be compara-
ble, the incremental mask and probability matching were used for
both the ensemble mean and S-PROG nowcasts. All nowcasts used
the Lucas–Kanade optical flow on the same event of Fig. 8. The en-
semble is composed of 48 members. All models used a cascade of
eight levels without motion perturbations.

Figure 10. Temporal auto-correlation estimates obtained from
AR(2) models (dashed lines) and the correlation between an extrap-
olation nowcast and the corresponding observations. The analysis is
based on the FMI events (Table 7). The line numbers correspond to
the frequency bands shown in Fig. 1 from left to right.

teps configuration used in Sect. 4 is based on the results pre-
sented here.

5.1 Optical flow and scale filtering

Determination of the advection field by optical flow is a key
component of any extrapolation-based nowcasting system.
Pysteps allows to easily analyze the impact of the optical flow
method and also scale filtering on the forecast skill. More-
over, the three methods currently available in the motion
module constitute an ideal testbed as they cover three very
distinct approaches; see the references in Sect. 2.1 for de-
tails. The experiments were done by using the MeteoSwiss
and US precipitation events described in Tables 8 and 9.

Each optical flow method was used with two deter-
ministic nowcasting methods: a simple extrapolation-based
method and S-PROG, which incorporates a scale filter-
ing procedure as described in Seed (2003). Both meth-
ods are available in the nowcasts.extrapolation and
nowcasts.sprog modules, respectively. The VET and
Lucas–Kanade methods use two input images, while DARTS
uses nine input images. The forecast quality was evaluated
using the critical success index (CSI) and the mean absolute
error (MAE) as described in Jolliffe and Stephenson (2003).

The results of the experiments are shown in Fig. 11. First
of all, large differences between the simple extrapolation
and S-PROG nowcasts are observed, which is mainly due
to the scale filtering implemented in S-PROG (see Sect. 4.5).
For the MeteoSwiss events, applying the filtering improves
both CSI and MAE, especially at longer lead times (Fig. 11a
and c). After 2 h, the S-PROG nowcasts show a ∼ 20 % in-
crease in the CSI and ∼ 40 % reduction in the MAE. A simi-
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Figure 11. Comparison of forecast skill using different optical flow and extrapolation methods. Panels (a) and (c) show the averaged CSI
and MAE for the MeteoSwiss events listed in Table 8, while (b) and (d) show the same results but for the US events listed in Table 9. The
CSI is computed using a 0.1 mm h−1 threshold.

lar behavior is observed for the US events (Fig. 11b and 11d)
but with a ∼ 20 % the reduction in MAE after 2 h.

On the other hand, no significant differences can be ob-
served between different optical flow methods (less than
2 %), with DARTS performing slightly worse than the other
methods. This is possibly explained by the fact that, with the
default configuration, DARTS produces only a large-scale
approximation of the advection field.

Figure 12 shows advection fields obtained using different
optical flow methods for a selected case (US, 11 April 2013
at 08:00 UTC). Lucas–Kanade and VET produce smooth
fields that are remarkably similar, particularly close to the
precipitation areas (Fig. 12a and b). Within precipitation ar-
eas, DARTS produces similar motion fields to the other two
methods, but outside precipitation the fields are considerably
different.

We also measured the computation times of different op-
tical flow methods in the MeteoSwiss and FMI domains,
and the results are shown in Table 6. The experiments were
done using an Intel Xeon E5645 CPU with 12 cores running
at 2.4 GHz with parallelization enabled in the optical flow
methods. The results reflect the fact that the Fourier space
and local methods (DARTS and Lucas–Kanade) have sig-
nificantly lower computational requirements than variational
methods (VET), which are however still within the needs of
a real-time operational system. Thus, our conclusion from
the results shown in Fig. 11 and Table 6 is that the choice
of the optical flow method plays a less significant role, while

Table 6. Average computation times of different optical flow meth-
ods in the MeteoSwiss and FMI domains (seconds). Domain sizes
are given in parentheses.

12 cores

Method MeteoSwiss FMI
(710× 640) (760× 1226)

DARTS 4.02 4.07
Lucas–Kanade 2.02 4.29
VET 13.73 28.98

1 core

Method MeteoSwiss FMI
(710× 640) (760× 1226)

DARTS 4.27 4.78
Lucas–Kanade 2.07 4.46
VET 41.65 85.14

nowcast errors are more clearly determined by the dynamic
scaling properties of precipitation as highlighted by the large
impact of scale filtering on the forecast skill.

5.2 Ensemble size

The ensemble size is one of the main factors contributing to
the quality and computation time of pysteps nowcasts, and
one has to make a trade-off between these two. To determine
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Figure 12. Comparison of advection fields obtained by differ-
ent optical flow methods for a selected precipitation event: US,
11 April 2013 at 08:00 UTC.

the optimal number, the skill of the nowcasts with different
intensity thresholds and ensemble sizes was evaluated by us-
ing two metrics. These are the area under the ROC curve and
the outlier percentage (OP). The results are shown in Figs. 13
and 14.

Figure 13 shows that the choice of the ensemble size plays
a significant role, which is particularly true when nowcasts
of higher precipitation intensities are desired. Figure 13a
shows that for n= 6, the ROC area falls below 0.85 after
2 h, while it is close to 0.9 when n is increased to 48. How-
ever, there is only marginal improvement when n is increased
from 24 to 48, which suggests that 24 members are suffi-
cient when nowcasts of precipitation/no precipitation are de-
sired with low-intensity thresholds (e.g., 0.1 mm h−1). On the
other hand, Fig. 13b shows that when the threshold is in-

Figure 13. ROC areas for (a) 0.1 mm h−1 and (b) 5 mm h−1 thresh-
olds with different ensemble sizes as a function of lead time during
the MeteoSwiss events listed in Table 8.

Figure 14. Outlier percentages (OPs) with different ensemble sizes
as a function of lead time during the MeteoSwiss events listed in
Table 8.

creased to 5 mm h−1, a significant improvement can be ex-
pected when increasing n from 48 to 96 or even over 100.

The OP is highly dependent on the ensemble size, which
can be observed from Fig. 14. With 96 ensemble members,
OP is below 15 % after 20 min, which indicates that the en-
sembles are well able to capture the uncertainties in the spa-
tiotemporal evolution of precipitation. The OP could be fur-
ther reduced by increasing the ensemble size over 100. An-
other observation from Fig. 14 is the significant dependence

Geosci. Model Dev., 12, 4185–4219, 2019 www.geosci-model-dev.net/12/4185/2019/



S. Pulkkinen et al.: Pysteps v1.0 4201

Figure 15. Averaged computation times of pysteps nowcast ensem-
bles with different ensemble sizes and number of parallel threads
for the (a) MeteoSwiss and (b) FMI domain. The grid sizes for the
domains are 710×640 and 760×1226 pixels, respectively. The 1 h
nowcasts with 12 time steps of 5 min were computed for both do-
mains. The computation times include only the ensemble computa-
tion, excluding the optical flow, the initialization of the model and
writing the results to disk.

of OP on the lead time. The highest OP can be observed at
20 min, and after 3 h it is up to 50 % smaller.

We also analyzed the computation times needed to gener-
ate nowcast ensembles. In a real-time setting, it is essential
to know how many ensemble members can be produced be-
fore the arrival of the next input radar rainfall image (usually
every 5 min). To this end, 1 h nowcasts were computed with
different ensemble sizes and number of parallel threads us-
ing the FMI and MeteoSwiss data listed in Tables 7 and 8,
respectively.

The results of the above experiments are shown in Fig. 15.
Figure 15a shows that for the input grid of 710× 640 pixels
used in the MeteoSwiss domain, it is possible to generate 1 h
nowcast ensembles of up to 48 members in less than 2 min
using a server with 12 processor cores.

The results for the larger FMI domain with grid size of
760× 1226 pixels are shown in Fig. 15b. Compared to the
MeteoSwiss domain, the height of the grid is doubled, which
also doubles the computation time (the computational com-

plexity increases quadratically with respect to grid size).
Nevertheless, using 12 processor cores, the computation time
of a 48-member ensemble still remains below 2 min.

In addition, Fig. 15a and b show the effectiveness of
the parallelization scheme implemented in pysteps. That is,
when plotted in logarithmic scale, the computation time de-
creases approximately linearly with respect to the number of
threads (i.e., the computation time is halved when the num-
ber of threads is multiplied by 2).

5.3 Localization

This experiment investigates the impact of localization on the
nowcast quality. In this context, localization means restrict-
ing the nowcasting model into small subdomains instead of
applying it the whole domain assuming spatial homogeneity
of the precipitation field, as in the earlier STEPS implemen-
tations (e.g., Bowler et al., 2006). To this end, the short-space
approach presented in Nerini et al. (2017) for stochastic noise
generation is generalized to the whole nowcasting system
(see module nowcasts.sseps). Adapting the approach
described in Sideris et al. (2018), the parameter estimation
and the nowcasting model are implemented in a moving win-
dow of predetermined size. The localization is applied to the
cascade decomposition, the autoregressive process (5), the
non-parametric Fourier filter (10) and the probability match-
ing (15).

The impact of localization is assessed in terms of rank his-
tograms and reliability diagrams (threshold of 1.0 mm h−1)
for a 30 min lead time (Fig. 16). The localization shows pos-
itive effects in the ensemble spread, which improves both in
terms of reliability and conditional bias, although we also ob-
serve a slight decrease of sharpness. This is reflected in the
rank histograms, which tend to get flatter as the localization
window gets smaller. This seems to be mainly driven by a
reduction in the proportion of observations lying above the
ensemble, which reduces from approximately 13 % to 8 %.

5.4 Cascade decomposition

The cascade decomposition was designed to account for dy-
namic scaling (i.e., the dependence of predictability on spa-
tial scale; see Sect. 2.4). Without the decomposition, precip-
itation fields are expected to evolve similarly at all spatial
scales following a single AR process. In such cases, the life-
time of small-scale (large-scale) precipitation features would
be overestimated (underestimated). Thus, our main hypoth-
esis is that dynamic scaling properties are necessary to pro-
duce a realistic temporal evolution (lifetime) of precipitation
across spatial scales. Consequently, this would give correct
ensemble dispersion because the standard deviation of the
perturbations is inversely related to predictability via Eq. (6).

To test our hypothesis, we compared the stochastic now-
casts (nowcasts.steps module) with and without cas-
cade decomposition, that is, using eight or one cascade lev-
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Figure 16. Effect of localization in terms of (a) rank histograms
and (b) reliability diagrams computed for the 30 min lead time and
1 mm h−1 during the MeteoSwiss events (Table 8). The localization
window was reduced from the full domain (710 km) to three differ-
ent local scales (360, 180 and 90 km).

els, respectively. The objective is to analyze the realism of
the temporal evolution, not whether the AR is an appropri-
ate model of the forecast error as in Sect. 4.6. In practice,
this implies comparing the theoretical ACFs of forecast and
observed fields as follows: (1) generate nowcasts with either
an eight-level or one-level cascade, (2) transform the fore-
cast fields into the Lagrangian frame (by using the same mo-
tion field estimated at start time), (3) decompose the forecast
fields into a six-level cascade, (4) estimate the AR(2) param-
eters at each scale, (5) derive the full temporal ACF (see also
Fig. 10) and (6) integrate the ACF to estimate the precipita-
tion lifetime. The procedure is repeated for each forecast lead
time up to 2 h and also for the corresponding observations.

Figure 17. Verification of dynamic scaling properties of stochas-
tic nowcasts generated with one and eight cascade levels. All Me-
teoSwiss events were analyzed, but nowcasts were run only ev-
ery 4 h.

Figure 17 shows the average lifetime for all the Me-
teoSwiss events plotted against spatial wavelength (in log–
log scale). As expected, the model with eight cascade levels
reproduces well the dynamic scaling properties, especially at
small wavelengths. However, there is some degree of over-
estimation of the lifetime at large wavelengths compared to
the observations. One possibility would be to adjust the AR
parameters to obtain faster decorrelation, and thus a shorter
lifetime, at such scales.

The model without cascade decomposition compen-
sates for the overestimation of persistence at large wave-
lengths but strongly overestimates the one of small wave-
lengths. Hence, the evolution of convective cells in the
stochastic nowcast is too slow compared with reality.
This could be checked visually by looking at the ani-
mations of stochastic realizations with and without de-
composition (*_stoch_*.gif in https://github.com/pySTEPS/
pysteps-publication/tree/master/animations, last access: 23
September 2019).

Another approach to understand the impact of the cascade
decomposition is to analyze the filtering properties of the en-
semble mean forecast (e.g., Surcel et al., 2014). Figure 18
illustrates the evolution of the ensemble mean forecast spec-
tra with eight and one cascade levels, respectively. When
using the cascade decomposition the process of ensemble
averaging leads to a loss of power at small spatial wave-
lengths, in agreement with the expected loss of predictability
(see Sect. 4.5). Instead, the model with one cascade level is
not able to filter out the unpredictable features. As a conse-
quence, it may not be able to adequately characterize the loss
of predictability (and uncertainty) at different spatial scales.

Figure 19 illustrates the ensemble and probabilistic veri-
fication for all the MeteoSwiss events with and without cas-
cade decomposition. The sensitivity of forecast uncertainty
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Figure 18. Spatial structure analysis of the ensemble mean forecast using (a) eight cascade levels and (b) one cascade level. Both experiments
have an ensemble size of 24 members. MeteoSwiss event no. 3 was used.

Figure 19. Ensemble and probabilistic verification of the cascade experiments for all the MeteoSwiss cases with and without cascade
decomposition, and with and without masking. (a) Rank histograms at 60 min, (b) spread–error relationship, (c, d) reliability diagrams at
60 min for probability of rain exceeding 0.1 and 1 mm h−1, respectively.

estimations on using the incremental precipitation mask is
also included.

The rank histograms behave differently depending on the
chosen forecast settings (Fig. 19a). The two models without
decomposition denote a clear overdispersion with a charac-
teristic dome-shape in the bin range 13–22, especially for the
setting with one level and no mask. Instead, the models with
eight levels display a flat histogram, except for the very last
bin, which contains the frequency of observations exceeding
all the ensemble members (misses). As shown in Fig. 14, this

underdispersion can be reduced by increasing the ensemble
size. The last bin is also quite sensitive to using the mask,
which prevents the ensemble to capture the uncertainty asso-
ciated to precipitation initiation far from the main precipita-
tion body.

Figure 19b shows the spread–error relationship analysis
(i.e., the standard deviation among all ensemble members)
against the average RMSE of all members against the obser-
vations. The experiments with eight levels have both a lower
RMSE and spread than the ones using one level. It can also
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Figure 20. Comparison of a member of 5 min rainfall ensemble for (b) +30 min, (c) +60 min and (d) +120 min nowcasts initialized with
(a) radar-based rainfall analysis from the Australian radar network valid at 06:05 UTC on 1 January 2019 on a 512× 512 pixel grid (256×
256 km) (event no. 2 in Table 10).

Figure 21. Comparison of a member of 5 min rainfall ensemble for (b) +30 min, (c) +60 min and (d) +120 min nowcasts initialized with
(a) radar-based rainfall analysis from the Australian radar network valid at 07:15 UTC on 8 February 2019 on a 512× 512 pixel grid
(256× 256 km) (event no. 1 in Table 10).

be noticed that the one-level models do not show the same
overdispersion that was observed on the rank histograms.

Finally, the reliability diagrams of Fig. 19c–d demonstrate
a very good reliability for all forecast settings, although the
forecast probabilities of the models with one level are slightly
lower than the observed frequencies. In addition, the eight-
level model has better sharpness, i.e., a larger proportion of
high forecast probabilities (> 0.9).

6 Nowcasting the extremes: two severe-weather case
studies from Australia

An example of applying the pysteps library in order to fore-
cast rainfall fields for tropical cyclone Penny and severe con-
vection in Sydney (Australia) is shown in Figs. 20 and 21,
respectively. The ability of pysteps to estimate diverse advec-
tion patterns from observed data is quite clear in these exam-
ples, with the tropical cyclone case showing a clear clock-
wise rotational pattern, while the severe convection shows an
almost even easterly flow pattern across the whole domain.
Tropical cyclone nowcasts preserve the original cyclonic pat-
tern up to 60 min ahead but some distortions are induced for
longer lead times due to convergence and divergence. The
severe convection case has a simpler advection pattern that

helps to preserve the general structure of the observed rain-
fall fields beyond 60 min. Additional data sources such as
satellite or NWP forecasts may help to estimate future advec-
tion velocities and reduce potential anomalies for longer lead
times. It is important to note, however, that post-processing
of nowcasts (see Sect. 2.8) ensures that the forecast rainfall
fields have the same statistical properties with the observed
ones in both case studies.

6.1 Neighborhood verification

Figures 22 and 23 show examples of FSS results calculated
by pysteps for different forecast times for both Australian
case studies.

The FSS decays in both case studies when spatial scale
is reduced or when the intensity threshold is increased, al-
though differences exist between the two case studies. For
example, the tropical cyclone case seems to have a less acute
reduction in the skill with changes in spatial scale. This can
be related to the presence of a more uniform rainfall dis-
tribution across the domain (large bands of rainfall moving
in an organized way) limiting displacement errors at small
scales. Instead, the skill reduces heavily as rainfall intensity
increases. This drop in skill could have been accentuated by
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Figure 22. Comparison of fractions skill score (FSS) values for (a) +10 min, (b) +30 min and (c) +60 min nowcasts rainfall ensembles
for tropical cyclone Penny (event no. 1 in Table 10). FSS values were calculated comparing the ensemble mean for each lead time with
observations.

Figure 23. Same as Fig. 22 but for the severe convection case study (event no. 2 in Table 10).

the relatively low number of high-intensity samples in these
events.

On the other hand, the severe convection case displays a
stronger decay of skill when spatial scale is reduced, prob-
ably due to the presence of sharp spatial gradients and iso-
lated convective cells. This said, it is interesting to note how
for the higher intensities and large spatial scales the FSS val-
ues do not decay as heavily as seen in the other case study.
This difference could be a consequence of having more high-
intensity values in the severe convection event.

6.2 Lifetime of rainfall fields per spatial scale

To compare the behavior of the AR(2) model for these two
case studies, temporal auto-correlation functions for each
spatial scale were calculated using Eq. (7) and then inte-
grated to estimate the precipitation lifetimes for each scale
and runtime. Figure 24 summarizes the precipitation lifetime
results for each case study. Overall, a more diverse set of
spatial and temporal patterns observed during the severe con-
vection event makes interquartile ranges of precipitation life-
times larger for this case study for all scales. In comparison,

similar organized patterns were present during most of the
duration of the tropical cyclone event and therefore precipi-
tation lifetime values have a narrower range. Smaller scales
seem to have similar average lifetime values for both cases
with no strong temporal variations within the events. For the
larger scales, however, precipitation lifetime values for trop-
ical cyclone event are greater than severe convection ones,
again as a consequence of large-scale organized patterns ob-
served in this event.

From an operational perspective, these results illustrate the
importance of using an AR(2) model with parameters contin-
uously adjusted to the latest observed patterns to adequately
simulate rainfall nowcasts instead of using fixed, historical
parameters. However, it is important to note as well that a
number of outliers were obtained in both cases (mainly for
the larger spatial scales). These anomalous values may indi-
cate the need for introducing a temporal smoothing scheme
during the estimation of the AR(2) parameters. Having a
more stable, slowly evolving parameters would help to (i) re-
duce the possibility of generating unrealistic nowcasts from
one particular set of observations and also (ii) create smooth
transitions between consecutive rainfall nowcasts.
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Table 7. Precipitation events in Finland (FMI). The duration of each event is 12 h.

No. Date Start time Description
(UTC)

1 8 Jun 2016 13:00 A low-pressure system over northern Finland causes frontal rain associated with a warm front
and frontal rain and convective cells associated with a cold front. The system moves eastward
with precipitation areas rotating around its center.

2 15 Jul 2016 12:00 Frontal precipitation approaches measurement area from the south.
3 28 Sep 2016 09:00 Frontal precipitation intermixed with convection, some scattered convective cells.
4 22 Feb 2017 22:00 Widespread heavy frontal precipitation associated with a low-pressure system traversing over

southern Finland.
5 8 Jun 2017 04:00 Narrow and slowly moving precipitation band.
6 14 Jul 2017 01:00 Precipitation starts out as a narrow precipitation band with some scattered convective cells and

later evolves into predominantly convective precipitation.
7 4 Aug 2017 11:00 Frontal rain associated with a warm front and some convective activity.
8 12 Sep 2017 03:00 Frontal precipitation moves northward and slightly rotates.
9 12 Aug 2018 05:00 Frontal precipitation intermixed with convection. Some convective activity, which rotates.

Convective activity increases noticeably in a few hours.
10 29 Sep 2018 16:00 Frontal precipitation moves eastward and is followed by convective activity. New convective

cells are continuously generated at the northern coast of Estonia after the frontal precipitation
has passed.

Table 8. Precipitation events in Switzerland (MeteoSwiss). The duration of each event is 12 h.

No. Date Start time Description
(UTC)

1 16 Apr 2016 18:00 Prefrontal precipitation induced by a low-pressure system over the North Sea. Lines of
convection develop over western Switzerland.

2 11 Jul 2016 13:00 An approaching cold front causes widespread convective activity in a southwesterly flow.
3 31 Jan 2017 10:00 A strong northwesterly flow causes orographic blocking on the northern slopes of the Alps

resulting in widespread precipitation.
4 14 Jun 2017 13:00 Fairly uniform pressure distribution across central Europe; scattered convection develops

during the afternoon.
5 24 Jun 2017 22:00 Prefrontal activity with intense thunderstorms south of the Alps. Measured peak intensity

reached 33.5 mm in 10 min and presence of large-size hailstones (3–5 cm) was observed.
6 27 Jun 2017 20:00 A frontal passage during the night induces organized convection over the domain and important

prefrontal convective activity on the southern side of the Alps.
7 19 Jul 2017 13:00 In a southwesterly flow, development of large convective cells over central Switzerland.
8 21 Jul 2017 13:00 Flat pressure distribution across central Europe, southwesterly flow associated to a low over the

British Islands. Clusters of intense thunderstorms develop over western Switzerland.
9 29 Jul 2017 13:00 Southwesterly flow connected to large depression over British Islands. Large clusters of

convection develop south of the Alps.
10 31 Aug 2017 14:00 Strong southwesterly flow over the Alps associated to a cold front. Important lines of stationary

convection affect the southern Alps, while more stratiform precipitation occurs in the west and
north of Switzerland.

7 Conclusions

Pysteps is an open-source library for radar-based probabilis-
tic precipitation nowcasting written in Python. It represents
a community-based initiative that aims at connecting now-
casting scientists by sharing code, methods, ideas and results
and also providing an easy-to-use tool for operational appli-
cations.

Pysteps implements the main components of an ensem-
ble precipitation nowcasting system. These are input/output,
optical flow and extrapolation routines, time series methods
for modeling the temporal evolution of precipitation fields,
stochastic noise generation in space and time, visualization
and forecast verification.

The development of pysteps is done by using a distributed
version control system, and the project is hosted on GitHub
(https://pysteps.github.io, last access: 23 September 2019).
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Table 9. Precipitation events from the US. The duration of each event is 12 h.

No. Date Start time Description
(UTC)

1 16 Apr 2011 08:00 Large extratropical cyclone. The low-pressure center was located over the Great Lakes with a
strong cold front extending south.

2 15 Nov 2011 23:00 Frontal precipitation associated with a stationary front in the southeastern US.
3 4 Apr 2013 18:00 Two widespread precipitation systems produced by two cyclonic systems over the US, located

in the northwest and southeast of the US.
4 11 Apr 2013 00:00 Midlatitude cyclone over the eastern US with the eastern line of precipitation caused by a cold

front extending in the south–north direction from eastern Texas to central Missouri and in the
west–east direction from Missouri to the south of the state of New York.

5 18 May 2013 06:00 Mesoscale convective systems (MCSs) located in northern and southeastern US.
6 27 May 2017 00:00 MCSs developed over central and northwestern US, along with a cyclonic precipitation system

located in southeastern Canada.

Table 10. Precipitation events from Australia (BoM). The duration of each event is 12 h.

No. Date Start time Description
(UTC)

1 1 Jan 2019 00:00 Tropical cyclone Penny moving from the Gulf of Carpentaria and making landfall on the
western Cape York Peninsula coastline just south of Weipa C-band Doppler radar.

2 8 Feb 2019 05:00 Severe convection activity observed by the S-band polarimetric radar of Terry Hills near
Sydney. Convective cells are continuously generated inland New South Wales and intensifying
as they move east. This event produced thunderstorms, heavy rainfall and flash flooding in the
city of Parramatta and western Sydney suburbs.

Figure 24. Distribution of precipitation lifetime values for each spa-
tial scale during tropical cyclone (event no. 1 in Table 10) and severe
convection (event no. 2 in Table 10) case studies.

The library has a modular design so that developers can eas-
ily interchange components and embed them into other soft-
ware packages.

In this paper, we briefly explained the framework of prob-
abilistic precipitation nowcasting and how such nowcasts
can be produced using pysteps. The potential of pysteps
was demonstrated using radar composite images from Fin-
land (FMI), Switzerland (MeteoSwiss), the United States and
Australia (BoM). Finally, we performed experiments where
the quality of pysteps nowcasts and computational perfor-
mance were evaluated with different configurations. This
brought us to the following conclusions:

1. Probabilistic precipitation nowcasts computed with pys-
teps have good reliability that, however, decreases for
increasing rainfall intensity thresholds and lead time.
Using the MeteoSwiss data, it was shown that for the
0.1 mm h−1 threshold, reliable nowcasts with poten-
tially useful skill can be obtained up to 3 h. When the
threshold was increased to 5 mm h−1, useful nowcasts
could still be obtained up to 45 min (Figs. 5 and 6).

2. Rank histograms show that the ensemble spread has
a good correspondence with the nowcast uncertainty.
However, we also observed some underdispersion with
10 %–15 % of observations falling outside of the 24-
member ensemble verified on MeteoSwiss data (Figs. 7
and 14). This was mostly related to the inability of
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Figure 25. The deterministic S-PROG nowcast (a), ensemble mean (b) and two ensemble members (c, d) of a 1 h STEPS nowcast starting
at 16:00 UTC on 28 September 2016.

persistence-based nowcasting to predict the initiation of
new convection (misses).

3. The stochastic ensemble members have realistic spatial
and temporal structure, as confirmed by Fourier analysis
(Figs. 8, 9, 10 and 17).

4. The three optical flow methods that we tested,
i.e., Lucas–Kanade, DARTS and VET, provided sim-
ilar forecast accuracy (differences less than 2 %; see
Fig. 11). We conclude that the choice of optical flow
method is not a first-order problem in terms of now-
cast quality, although there may be some specific sit-
uations requiring more advanced schemes, e.g., in the
presence of orographic rain and/or multiscale motion.
Choosing a fast optical flow routine provides more time
to generate a larger ensemble. When tested with the FMI

and MeteoSwiss data, DARTS and Lucas–Kanade com-
puted the motion field in less than 5 s.

5. With parallelization implemented via the Dask library,
pysteps can generate relatively large ensembles within
typical time constraints of real-time nowcasting sys-
tems. For example, by using four CPU cores on the Me-
teoSwiss grid (710× 640), it is possible to produce a
48-member ensemble up to +1 h (12 frames) in about
2 min (Fig. 15).

6. Localizing the nowcasting procedure, that is, having
spatially variable model parameters, is beneficial in
terms of probabilistic forecast skill (Fig. 16). The need
for localization is intuitively important for large do-
mains, where different weather systems can coexist, but
also for smaller domains that are characterized by com-
plex orography, as it was demonstrated in this study.
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Figure 26. Probability of exceeding 0.5 mm h−1 computed from the
STEPS nowcast ensemble shown in Fig. 25 with 24 members.

These results highlight the importance of defining an ap-
propriate model domain for pysteps. That is to say, one
that compromises between the need for homogeneous
statistical properties (i.e., a small domain) and the need
for a robust estimation of model parameters (i.e., large
domain).

7. Considering the scale dependence of precipitation pre-
dictability is clearly important. The Fourier-based cas-
cade decomposition provides an adequate framework,
which can be easily extended to account for spatial lo-
calization (i.e., the short-space FFT). Other decomposi-
tion frameworks can be explored, but it is not yet clear
whether there is a benefit in terms of forecast quality.

8. In the presence of extreme precipitation, pysteps can
still deliver skillful nowcasts up to 1 h for specific inten-
sity and spatial scales (Figs. 22 and 23). A wide range of
predictability is observed between and within the events
(Fig. 24), thus highlighting the importance of having an
adaptive approach that continuously updates the model
parameters in real time.

Our analyses not only helped understanding the impor-
tance of certain nowcasting concepts but were the basis to
define a minimum viable product (MVP), which constitutes
the default configuration of pysteps (see Table 5). Additional
levels of complexity (e.g., localization) can be included at the
cost of computational time and robustness. Users are respon-
sible for evaluating whether it is worth the effort in terms of
forecast quality and computational resources.

7.1 Potential extensions and applications of pysteps

Pysteps represents a long-term effort that does not end with
the publication of this paper. The current pysteps version
(1.0) provides a quite comprehensive library but still misses
two important modules: (1) a module to generate QPE en-
sembles characterizing the radar measurement uncertainty
(e.g., Jordan et al., 2003; Germann et al., 2009) and (2) a
module for seamless blending of precipitation fields from
different data sources, such as radar nowcasts and NWP fore-
casts (Bowler et al., 2006; Nerini et al., 2019), radar, satellite
and NWP data (Renzullo et al., 2017).

It would be interesting to include other state-of-the-art en-
semble precipitation nowcasting systems in pysteps, for ex-
ample, PHAST (Metta et al., 2009), SBMcast (Berenguer
et al., 2011), SAMPO-TBM (Leblois and Creutin, 2013),
SWIRLS ensemble rainstorm nowcast (SERN; Woo and
Wong, 2017) and NowPrecip (Sideris et al., 2018). A large-
scale forecast verification intercomparison project could be
foreseen to better understand the advantages and disadvan-
tages of different ensemble nowcasting techniques.

Pysteps opens a number of possibilities that go beyond the
field of nowcasting. The most natural application of pysteps
is to use the precipitation ensembles as inputs into hydrolog-
ical models for uncertainty quantification, in both urban and
rural environments (e.g., Zappa et al., 2011; Thorndahl et al.,
2017).

An obvious and crucial application of nowcasting systems
is to support the operational warnings for rainstorms, thun-
derstorms and severe weather.

Individual pysteps modules can also serve different pur-
poses. For example, the optical flow modules can be used
to study precipitation growth and decay in moving coordi-
nates (e.g., Foresti et al., 2018, 2019; Zeder et al., 2018), to
correct radar field accumulations accounting for advection
(e.g., Wang et al., 2015; Lukach et al., 2017), to synchronize
the individual radar elevation scans (e.g., Tabary, 2007) or
to separate the location error of NWP precipitation forecasts
(Marzban and Sandgathe, 2010).

The tools available in the noise and the time series mod-
ules can be used for stochastic simulation of design storms
(e.g., Seed et al., 1999; Paschalis et al., 2013) and weather
generators (Peleg et al., 2017), and also to understand and
quantify the subpixel variability of radar rainfall (e.g., Gires
et al., 2014; Benoit et al., 2018; Peleg et al., 2016). Other ap-
plications can include stochastic downscaling or emulation
of climate model output (e.g., Raut et al., 2018; Beusch et al.,
2019).

We encourage the nowcasting community and potential
users to implement new nowcasting methods, propose new
modules, try pysteps on different applications, provide feed-
back and contribute to the library for the benefit of everyone.
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Code and data availability. The pysteps library version
1.0 is available at https://doi.org/10.5281/zenodo.2631911
(Pulkkinen et al., 2019). The scripts to run the experi-
ments and produce the figures of this paper are available at
https://doi.org/10.5281/zenodo.3458712 (Pulkkinen et al., 2019).
The radar data are available upon request.
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Appendix A: Pysteps use cases

Listing A1 demonstrates how to browse and read archived
radar composites using the io module and decompose a
radar image into a cascade using the cascade module.
The desired time stamp, root path of the data archive,
the file name pattern and extension for finding the input
file are specified at lines 9–12. Finding the input files is
done by using io.archive.find_by_date at lines
14 and 15. Nine previous input files preceding the de-
sired time stamp are also retrieved with the given time
step of 5 min. The retrieved file names are then supplied to
io.read_timeseries that returns a three-dimensional
array of shape (num_timesteps,height,width) containing the
radar precipitation fields and a metadata dictionary (line
19). The cascade decomposition is done by initializing
the Fourier filter with filter_gaussian and calling
decomposition_fft (lines 24–25).

Listing A2 demonstrates computation of a deterministic
S-PROG nowcast and a STEPS nowcast ensemble. This is
done in two stages: computation of the advection field us-
ing the Lucas–Kanade method implemented in the motion
module (lines 8–9) and then computing the nowcasts with
the motion field supplied as input (lines 12–18). The callable
functions for these are retrieved using the get_method in-
terface. The inputs for the nowcasting methods are a time
series of three radar composites (Z), the motion field (V ),
the number of time steps (12), the number of cascade lev-
els (eight) and the threshold for rain/no rain (−10 dBR). In
addition, for STEPS, the ensemble size and the spatial and
temporal resolution of the data are set to 24, 1 km and 5 min,
respectively. The resulting nowcasts are shown in Figs. 25
and 26.

Verification of a nowcast ensemble is shown in Listing A3
using three metrics: ROC, reliability diagram and rank his-
togram (see Sect. 4.2). The verifying observations are im-
ported at lines 4–10 by using the iomodule. This is followed
by a loop over the time steps of the nowcast. For each time
step, the verification metric is initialized with the *_init
function, and the verification data are accumulated to the re-
sulting object by calling *_accum, which allows accumulat-
ing data from multiple events. In addition, exceedance prob-
abilities (P_f) for the 0.1 mm h−1 threshold used above are
computed by using ensemblestats.excprob.
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Listing A1. Read 10 archived radar reflectivity composites in portable gray map (PGM) format, apply thresholding and decompose the last
one into a seven-level cascade and plot the cascade levels.
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Listing A2. Compute the advection field and S-PROG and STEPS nowcasts from the reflectivity composites obtained in Listing A1 and
plot the nowcasts. The nowcasts are computed by using 12 time steps (i.e., 1 h nowcast with the 5 min time step), eight cascade levels and
−10 dBR intensity threshold. The STEPS nowcast is computed by using 24 ensemble members.
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Listing A3. Compute and plot ROC curves, reliability diagrams and rank histograms for the STEPS nowcast generated in Listing A2 with
different lead times.

Geosci. Model Dev., 12, 4185–4219, 2019 www.geosci-model-dev.net/12/4185/2019/
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Appendix B: Precipitation events

The precipitation events to test pysteps come from Finland,
Switzerland, USA and Australia. They are described in Ta-
bles 7, 8, 9 and 10, respectively.
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