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Abstract. The increasing volume of scientific datasets re-
quires the use of compression to reduce data storage and
transmission costs, especially for the oceanographic or me-
teorological datasets generated by Earth observation mission
ground segments. These data are mostly produced in netCDF
files. Indeed, the netCDF-4/HDF5 file formats are widely
used throughout the global scientific community because of
the useful features they offer. HDF5 in particular offers a dy-
namically loaded filter plugin so that users can write com-
pression/decompression filters, for example, and process the
data before reading or writing them to disk. This study eval-
uates lossy and lossless compression/decompression meth-
ods through netCDF-4 and HDF5 tools on analytical and
real scientific floating-point datasets. We also introduce the
Digit Rounding algorithm, a new relative error-bounded data
reduction method inspired by the Bit Grooming algorithm.
The Digit Rounding algorithm offers a high compression ra-
tio while keeping a given number of significant digits in the
dataset. It achieves a higher compression ratio than the Bit
Grooming algorithm with slightly lower compression speed.

1 Introduction

Ground segments processing scientific mission data are fac-
ing challenges due to the ever-increasing resolution of on-
board instruments and the volume of data to be processed,
stored and transmitted. This is the case for oceanographic
and meteorological missions, for instance. Earth observation
mission ground segments produce very large files mostly in
netCDF format, which is standard in the oceanography field
and widely used by the meteorological community. This file

format is widely used throughout the global scientific com-
munity because of its useful features. The fourth version of
the netCDF library, denoted netCDF-4/HDF5 (as it is based
on the HDF5 layer), offers “Deflate” and “Shuffle” algo-
rithms as native compression features. However, the com-
pression ratio achieved does not fully meet ground process-
ing requirements, which are to significantly reduce the stor-
age and dissemination cost as well as the I/O times between
two modules in the processing chain.

In response to the ever-increasing volume of data, scien-
tists are keen to compress data. However, they have certain
requirements: both compression and decompression have to
be fast. Lossy compression is acceptable only if the compres-
sion ratios are higher than those of lossless algorithms and if
the precision, or data loss, can be controlled. There is a trade-
off between the data volume and the accuracy of the com-
pressed data. Nevertheless, scientists can accept small losses
if they remain below the data’s noise level. Noise is difficult
to compress and of little interest to scientists, so they do not
consider data degradation that remains under the noise level
as a loss (Baker et al., 2016). In order to increase the com-
pression ratio within the processing chain, “clipping” meth-
ods may be used to degrade the data before compression.
These methods increase the compression ratio by removing
the least significant digits in the data. Indeed, at some level,
these least significant digits may not be scientifically mean-
ingful in datasets corrupted by noise.

This paper studies compression and clipping methods that
can be applied to scientific datasets in order to maximize
the compression ratio while preserving scientific data content
and numerical accuracy. It focuses on methods that can be ap-
plied to scientific datasets, i.e. vectors or matrices of floating-
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point numbers. First, lossless compression algorithms can be
applied to any kind of data. The standard is the “Deflate” al-
gorithm (Deutsch, 1996) native in netCDF-4/HDF5 libraries.
It is widely used in compression tools such as zip, gzip, and
zlib libraries, and has become a benchmark for lossless data
compression. Recently, alternative lossless compression al-
gorithms have emerged. These include Google Snappy, LZ4
(Collet, 2013) or Zstandard (Collet and Turner, 2016). To
achieve faster compression than the Deflate algorithm, none
of these algorithms use Huffman coding. Second, prepro-
cessing methods such as Shuffle, available in HDF5, or Bit-
shuffle (Masui et al., 2015) are used to optimize lossless com-
pression by rearranging the data bytes or bits into a “more
compressible” order. Third, some lossy/lossless compression
algorithms, such as FPZIP (Lindstrom and Isenburg, 2006),
ZFP (Lindstrom, 2014) or Sz (Tao et al., 2017), are specifi-
cally designed for scientific data – and in particular floating-
point data – and can control data loss. Fourth, data reduction
methods such as Linear Packing (Caron, 2014a), Layer Pack-
ing (Silver and Zender, 2017), Bit Shaving (Caron, 2014b),
and Bit Grooming (Zender, 2016a) lose some data con-
tent without necessarily reducing its volume. Preprocessing
methods and lossless compression can then be applied to ob-
tain a higher compression ratio.

This paper focuses on compression methods implemented
for netCDF-4 or HDF5 files. These scientific file formats
are widespread among the oceanographic and meteorolog-
ical communities. HDF5 offers a dynamically loaded filter
plugin that allows users to write compression/decompression
filters (among others), and to process data before read-
ing or writing them to disk. Consequently, many compres-
sion/decompression filters – such as Bitshuffle, Zstandard,
LZ4, and Sz – have been implemented by members of the
HDF5 user community and are freely available. The netCDF
Operator toolkit (NCO) (Zender, 2016b) also offers some
compression features, such as Bit Shaving, Decimal Round-
ing and Bit Grooming.

The rest of this paper is divided into five sections. Sec-
tion 2 presents the lossless and lossy compression schemes
for scientific floating-point datasets. Section 3 introduces the
Digit Rounding algorithm, which is an improvement of the
Bit Grooming algorithm that optimizes the number of man-
tissa bits preserved. Section 4 defines the performance met-
rics used in this paper. Section 5 describes the performance
assessment of a selection of lossless and lossy compression
methods on synthetic datasets. It presents the datasets and
compression results before making some recommendations.
Section 6 provides some compression results obtained with
real CFOSAT and SWOT datasets. Finally, Sect. 7 provides
our conclusions.

Figure 1. Compression chain showing the data reduction, prepro-
cessing and lossless coding steps.

2 Compression algorithms

Compression schemes for scientific floating-point datasets
usually entail several steps: data reduction, preprocessing,
and lossless coding. These three steps can be chained as il-
lustrated in Fig. 1. The lossless coding step is reversible. It
does not degrade the data while reducing its volume. It can
be implemented by lossless compression algorithms such as
Deflate, Snappy, LZ4 or Zstandard. The preprocessing step
is also reversible. It rearranges the data bytes or bits to en-
hance lossless coding efficiency. It can be implemented by
algorithms such as Shuffle or Bitshuffle. The data reduction
step is not reversible because it entails data losses. The goal
is to remove irrelevant data such as noise or other scientifi-
cally meaningless data. Data reduction can reduce data vol-
ume, depending on the algorithm used. For instance, the Lin-
ear Packing and Sz algorithms reduce data volume, but Bit
Shaving and Bit Grooming algorithms do not.

This paper evaluates lossless compression algorithms De-
flate, LZ4, and Zstandard; Deflate because it is the bench-
mark algorithm, LZ4 because it is a widely-used, very-high-
speed compressor, and Zstandard because it provides bet-
ter results than Deflate both in terms of compression ra-
tios and of compression/decompression speeds. The Deflate
algorithm uses LZ77 dictionary coding (Ziv and Lempel,
1977) and Huffman entropy coding (Huffman, 1952). LZ77
and Huffman coding exploit different types of redundancies
to enable Deflate to achieve high compression ratios. How-
ever, the computational cost of the Huffman coder is high
and makes Deflate compression rather slow. LZ4 is a dic-
tionary coding algorithm designed to provide high compres-
sion/decompression speeds rather than a high compression
ratio. It does this without an entropy coder. Zstandard is a
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fast lossless compressor offering high compression ratios. It
makes use of dictionary coding (repcode modeling) and a
finite-state entropy coder (tANS) (Duda, 2013). It offers a
compression ratio similar to that of Deflate coupled with high
compression/decompression speeds.

This paper also evaluates Shuffle and Bitshuffle. The Shuf-
fle groups all the data samples’ first bytes together, all the
second bytes together, etc. In smooth datasets, or datasets
with highly correlated consecutive sample values, this re-
arrangement creates long runs of similar bytes, improving
the dataset’s compression. Bitshuffle extends the concept of
Shuffle to the bit level by grouping together all the data sam-
ples’ first bits, second bits, etc.

Last, we evaluate the lossy compression algorithms Sz,
Decimal Rounding and Bit Grooming. We chose to evalu-
ate the Sz algorithm because it provides better rate-distortion
results than FPZIP and ZFP, see Tao et al. (2017). The Sz
algorithm predicts data samples using an n-layers prediction
model and performs an error-control quantization of the data
before variable length encoding. Unpredictable data samples
are encoded after a binary representation analysis: the in-
significant bits are truncated after computation of the small-
est number of mantissa bits required to achieve the speci-
fied error bound. The Decimal Rounding algorithm achieves
a uniform scalar quantization of the data. The quantization
step is a power of 2 pre-computed so as to preserve a specific
number of decimal digits. The Bit Grooming algorithm cre-
ates a bitmask to remove the least significant bits of the man-
tissa of IEEE 754 floating-point data. Given a specified total
number of significant digits, nsd, the Bit Grooming algorithm
tabulates the number of mantissa bits that has to be preserved
to guarantee the specified precision of nsd digits: to guaran-
tee 1–6 digits of precision, Bit Grooming must retain 5, 8,
11, 15, 18, and 21 mantissa bits respectively. The advantage
is that the number of mantissa bits that must be preserved is
computed very quickly. The disadvantage is that this compu-
tation is not optimal. In many cases, more mantissa bits are
preserved than strictly necessary. Table 1 provides an exam-
ple using the value of π with a specified precision of nsd = 4
digits. This table reproduces some of the results from Table 1
in Zender (2016a). The Bit Grooming algorithm preserves 15
mantissa bits. Table 1 shows that only 12 bits were actually
necessary. Optimizing the number of mantissa bits preserved
has a favorable impact on the compression ratios since it al-
lows more bits to be zeroed, thus creating longer sequences
of zero bits. In the next section, we propose the Digit Round-
ing algorithm to overcome this limitation of the Bit Groom-
ing algorithm.

3 The Digit Rounding algorithm

The Digit Rounding algorithm is similar to the Decimal
Rounding algorithm in the sense that it computes a quanti-
zation factor q, which is a power of 2, in order to set bits to

zero in the binary representation of the quantized floating-
point value. It is also similar to Sz’s error-controlled quan-
tization (Tao et al., 2017) in the sense that the quantization
error is bounded. The difference with the Decimal Rounding
algorithm and with Sz’s error-controlled quantization is that
the Digit Rounding algorithm adapts the quantization factor
to each sample value to achieve a specified relative precision
of nsd digits.

The Digit Rounding algorithm uses uniform scalar quanti-
zation with reconstruction at the bin center:

s̃i = sign(si)×
(⌊
|si |

qi

⌋
+ 0.5

)
× qi, (1)

where s̃i is the quantized value of sample value si . The quan-
tization error is bounded by:

|si − s̃i | ≤ qi/2. (2)

The number of digits di before the decimal separator in value
si is:

di =
⌊

log10 |si | + 1
⌋

(3)

We want to preserve nsd significant digits of sample value s.
This is approximately equivalent to having a rounding error
of less than half the last tenth digit preserved. The quantiza-
tion error shall thus be lower than or equal to:

|si − s̃i | ≤ 0.5× 10di−nsd (4)

This condition guarantees that the Digit Rounding algorithm
always preserves a relative error lower than or equal to half
the value of the least significant digit. Combining Eqs. (2)
and (4), we look for the highest quantization factor qi such
that:

qi/2≤ 0.5× 10di−nsd or log10 (qi)≤ di − nsd

Moreover, in order to lower the computational cost and in-
crease compression efficiency, we seek a quantization factor
that is a power of two. This allows bit-masking instead of
division, and creates sequences of zero bits:

qi = 2pi (5)

We thus look for the greatest integer pi such that

pi ≤ (di − nsd) log210. (6)

Finally, we take value pi such that:

pi =
⌊
(di − nsd) log210

⌋
(7)

The log computation in Eq. (3) is the more computationally
intensive, but optimization is possible because only the inte-
ger part of the result is useful. The optimization consists of
computing the number of digits before decimal separator d
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Table 1. Representation of the value of π in IEEE-754 single-precision binary representation (first row) and results preserving 4 significant
digits with the Bit Grooming algorithm (second row) or preserving 12 mantissa bits (third row). This table builds on Table 1 in Zender (2016a).

Sign Exponent Mantissa Decimal Notes

0 10000000 10010010000111111011011 3.14159265 Exact value of π

0 10000000 10010010000111100000000 3.14154053 Result of Bit Grooming with nsd= 4, 15 mantissa bits preserved

0 10000000 10010010000100000000000 3.14111328 Result preserving only 12 mantissa bits, allows the 4 significant
digits of π to be preserved.

from binary exponent ei and mantissa mi of value si , which
in binary representation is written:

si = sign(si)× 2ei ×mi (8)

The mantissami is a number between 0.5 and 1. Hence, using
Eq. (3) we obtain:

di =
⌊

log10
(
2ei ×mi

)⌋
+ 1 or

di =
⌊
ei log10 (2)+ log10 (mi)

⌋
+ 1

The log10 (mi) value is tabulated. Only 5 tabulated values
are used in our implementation, enough to provide a good
precision. The tabulated values v for log10 (mi) are such
that v ≤ log10 (mi). They are provided in the Supplement.
Number di of significant digits before the decimal separator
in sample value si is thus approximated with the following
equation:

di ≈
⌊
ei log10 (2)+ v

⌋
+ 1 (9)

This computation slightly underestimates the values for
di but provides a more conservative quantization, guar-
anteeing the specified number of significant digits. The
optimization slightly decreases the achievable compres-
sion ratios in exchange for a much higher compression
speed. The Digit Rounding algorithm is summarized below.

We have developed an HDF5 dynamically loaded fil-
ter plugin so as to apply the Digit Rounding algorithm to
netCDF-4 or HDF5 datasets. It should be noted that data val-
ues rounded by the Digit Rounding algorithm can be read
directly: there is no reverse operation to Digit Rounding, and
users do not need any software to read the rounded data. Ta-
ble 2 provides the results of the Digit Rounding algorithm on
the value of π with specified precisions nsd varying from 1 to
8 digits. It can be compared to the Bit Grooming results pro-
vided in Table 2 in Zender (2016a). For a specified precision
of nsd= 4 digits, the Digit Rounding algorithm preserves 11
bits in the mantissa and sets the 12th bit to 1. Compared to
the Bit Grooming algorithm, 3 more bits have been set to 0.
Table 3 provides the maximum absolute errors, the mean ab-
solute errors and the mean errors (defined in Sect. 4) obtained
with varying nsd values on an artificial dataset composed of
1 000 000 values evenly spaced over the interval [1.0,2.0).
This is the same artificial dataset used in Table 3 in Zender
(2016a). It shows that Digit Rounding always preserves an
absolute error lower than or equal to half the value of the
least significant digit, i.e. |si − s̃i | ≤ 0.5×10di−nsd. We com-
pare the compression ratio obtained with the Digit Rounding
algorithm to that obtained with the Bit Grooming algorithm
for the same meteorological data from MERRA re-analysis
studied in Zender (2016a). Table 4 reports the Bit Groom-
ing results extracted from Table 6 in Zender (2016a) and
provides the results of the Digit Rounding algorithm. The
same lossless compression is employed: Shuffle and Deflate
with level 1 compression. From nsd= 7 to nsd= 5, Digit
Rounding and Bit Grooming provide similar compression ra-
tios with a slight advantage for the Bit Grooming algorithm.
However, from nsd= 4 to nsd= 1, the compression ratios
obtained with Digit Rounding are clearly better.

The following section first defines the various performance
metrics used hereinafter, then studies the performance of var-
ious lossless and lossy compression algorithms – including
Digit Rounding – when applied to both synthetic and real
scientific datasets.

4 Performance metrics

One of the features required for lossy scientific data compres-
sion is control over the amount of loss, or the accuracy, of the
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Table 2. Representation of the value of π in IEEE-754 single-precision binary representation (first row) and results preserving a varying
number of significant digits (nsd) with the Digit Rounding algorithm. This table can be compared to Table 2 in Zender (2016a) providing the
Bit Grooming results for π .

Sign Exponent Mantissa Decimal Notes

0 10000000 10010010000111111011011 3.14159265 Exact value of π
0 10000000 10010010000111111011011 3.14159265 nsd= 8
0 10000000 10010010000111111011010 3.14159250 nsd= 7
0 10000000 10010010000111111010000 3.14159012 nsd= 6
0 10000000 10010010000111110000000 3.14157104 nsd= 5
0 10000000 10010010000100000000000 3.14111328 nsd= 4
0 10000000 10010010100000000000000 3.14453125 nsd= 3
0 10000000 10010100000000000000000 3.15625000 nsd= 2
0 10000000 11000000000000000000000 3.50000000 nsd= 1
0 10000000 00000000000000000000000 4.00000000 nsd= 0

Table 3. Maximum absolute errors, mean absolute errors and mean
errors of the Digit Rounding algorithm preserving a varying num-
ber of significant digits (nsd) on an artificial dataset composed of
1 000 000 values evenly spaced over the interval [1.0,2.0). The er-
ror metrics are defined in Sect. 4.

nsd Maximum Mean absolute Mean error
absolute error

error

1 0.4999999999 0.1732423125 −0.0796879687
2 0.0312500000 0.0127722254 −0.0003056211
3 0.0039062500 0.0016125222 −0.0000074545
4 0.0004882812 0.0001983929 −0.0000001013
5 0.0000305176 0.0000125886 −0.0000000017
6 0.0000038147 0.0000015736 −0.0000000002
7 0.0000004768 0.0000001937 0.0000000000

Table 4. Comparison of the Bit Grooming and Digit Rounding al-
gorithms for the compression of a MERRA dataset. Shuffle and
Deflate (level 1) are applied. The compression ratio (CR) is de-
fined by the ratio of the compressed file size over the reference data
size (244.3 MB) obtained with Deflate (level 5) compression. Bit
Grooming results are extracted from Zender (2016a). Bold values
indicate where Digit Rounding performs better than Bit Grooming.

nsd Bit Grooming Digit Rounding

Size CR Size CR
(MB) (%) (MB) (%)

∼ 7 223.1 91.3 226.1 92.6
6 225.1 92.1 225.8 92.4
5 221.4 90.6 222.0 90.9
4 201.4 82.4 191.1 78.2
3 185.3 75.9 165.1 67.6
2 150.0 61.4 111.1 45.5
1 100.8 41.3 64.9 26.6

compressed data. Depending on the data, this accuracy can
be expressed by an absolute or a relative error bound. The
maximum absolute error is defined by emax

abs =max |̃si − si |
where si are the sample values of the original dataset and s̃i
are the sample values of the compressed dataset. An abso-
lute error bound specifies the maximum absolute error, eabs,
allowed between any sample of the original and compressed
data: emax

abs ≤ eabs. The maximum relative error is defined by

emax
rel =max

∣∣∣ s̃i−sisi

∣∣∣. A relative error bound specifies the max-
imum relative error, erel, allowed between any sample of the
original and compressed data: emax

rel ≤ erel. The absolute error
bound can be useful for data with a single dynamic range of
interest. The relative error bound can be useful for data where
both very low and very high values are pertinent.

A near-nearly exhaustive list of metrics for assessing the
performance of lossy compression of scientific datasets is
provided in Tao et al. (2019). For the sake of conciseness,
only a few of them are presented in this paper. The following
metrics were chosen for this study:

– compression ratio CR(F ) to evaluate the reduction in
size as a result of the compression. It is defined by the
ratio of the original file size over the compressed file
size:

CR(F )=
filesize(Forig)

filesize(Fcomp)

– compression speed CS(F ) and decompression speed
DS(F ) to evaluate the speed of the compression and de-
compression. They are defined by the ratio of the orig-
inal file size over the compression or decompression
time:

CS(F )=
filesize(Forig)

tcomp

DS(F )=
filesize(Forig)

tdecomp
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The compression and decompression speeds are expressed in
MB s−1. Those reported in this paper were obtained on a Dell
T1600 with an Intel Xeon E31225 4-core CPU at 3.1 GHz,
and a 4 GB memory under the RedHat 6.5 (64-bit) OS with
compression and decompression run on a single core. Paral-
lel compression has not been considered in this work.

The following metrics were chosen to assess the data
degradation of the lossy compression algorithms:

– maximum absolute error emax
abs defined previously. It is

used to evaluate the maximum error between the origi-
nal and compressed data;

– mean error e to evaluate if any bias is introduced into the
compressed data. It is defined as the mean of the point-
wise difference between the original and compressed
data:

e =
1
N

N−1∑
i=0

(si − s̃i)

– mean absolute error eabs to evaluate the mean data
degradation. It is defined as the mean of the point-
wise absolute difference between the original and com-
pressed data:

eabs =
1
N

N−1∑
i=0

|si − s̃i |

– SNR to evaluate the signal to compression error ratio.
It is defined by the ratio of the signal level over the root
mean square compression error and is expressed in deci-
bels (dB):

SNRdB = 20log10


√

1
N

∑N−1
i=0 s

2
i√

1
N

∑N−1
i=0 (si − s̃i)

2


These metrics are used in the following sections to evaluate
various lossless and lossy compression algorithms, including
Digit Rounding.

5 Performance assessment with synthetic data

5.1 Analytical datasets

Synthetic datasets s1 and s3D with known statistics were
generated in order to test the compression algorithms under
variable conditions. Dataset s1 is a noisy sinusoid of 1 di-
mension with a maximum absolute value of 118. The data
volume of this dataset is 4 MB. Dataset s3D is a noisy sinu-
soid pulse of 3 dimensions with a maximum absolute value
of 145. The data volume of this dataset is 512 MB. The Sup-
plement describes these datasets in greater detail.

5.2 Performance assessment of lossless compression
methods

The lossless compression algorithms evaluated are Deflate
and Zstandard with or without the Shuffle or Bitshuffle pre-
processing step. LZ4 is always evaluated with the Bitshuffle
preprocessing step because it was imposed in the LZ4 im-
plementation we used. We ran a lossless compression algo-
rithm using the h5repack tool from the HDF5 library, version
1.8.19, Deflate implemented in zlib 1.2.11, Zstandard version
1.3.1 with the corresponding HDF5 filter available on the
HDF web portal (http://portal.hdfgroup.org/display/support/
Filters, last access: 26 August 2019), and the implementation
of LZ4 and Bitshuffle in python package Bitshuffle-0.3.4.
The compression was performed by calling the h5repack
tool. The Supplement provides the command lines and op-
tions used.

Figures 2 and 3 provide the results obtained for the com-
pression and decompression of dataset s1 and dataset s3D re-
spectively. The vertical bars represent the results for different
compression levels: from 1 to 9 for Deflate level dfl_lvl, from
1 to 22 for Zstandard level zstd_lvl, and only one level for
LZ4. First, it can be observed that preprocessing steps Shuf-
fle or Bitshuffle have a similarly favorable impact both on the
compression ratio and on the compression/decompression
speeds. Second, the compression level parameters dfl_lvl
and zstd_lvl have little influence on the compression ra-
tio. However, the compression/decompression speeds de-
crease as compression levels increase, particularly with Zs-
tandard compression levels. Third, the compression ratios
obtained with Deflate and Zstandard are similar, but the
compression speeds of Zstandard at low compression lev-
els are far higher, and the decompression speeds of Zstan-
dard are always higher. Fourth, Bitshuffle+LZ4 provides
a slightly lower compression ratio than Shuffle+Deflate or
Shuffle+Zstandard, with a compression speeds similar to
Shuffle+Deflate or Shuffle+Zstandard at low compression
level parameters dfl_lvl or zstd_lvl. Finally, the compres-
sion/decompression speeds obtained with Zstandard and LZ4
for the compression of dataset s3D are much lower than
that achieved for the compression of dataset s1. Further in-
vestigations are required to understand why the compres-
sion/decompression speeds are lower, but it might be related
to HDF5 chunking.

To summarize, these results show that preprocessing by
Shuffle or Bitshuffle is very helpful in increasing compres-
sion efficiency. They also show that Zstandard can provide
higher compression and decompression speeds than Deflate
at low compression levels. However, on the s3D dataset,
we observed that Zstandard compression and decompression
speeds are lower than those obtained with Deflate. There-
fore, Deflate and Zstandard are both options to consider for
the lossless compression of scientific datasets as long as they
follow the Shuffle or Bitshuffle preprocessing step.

Geosci. Model Dev., 12, 4099–4113, 2019 www.geosci-model-dev.net/12/4099/2019/
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Figure 2. Results obtained for the lossless compression of the s1 dataset with Deflate (dflt), Zstandard (zstd), Shuffle and Deflate (shuf+dflt),
Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle and LZ4 (bshuf+lz4). Compression ratios (a), com-
pression speeds (b), and decompression speeds (c). Vertical bars represent the results for different compression levels: from 1 to 9 for Deflate,
from 1 to 22 for Zstandard, only one level for LZ4.

Figure 3. Results obtained for the lossless compression of the s3D dataset with Deflate (dflt), Zstandard (zstd), Shuffle and Deflate
(shuf+dflt), Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle and LZ4 (bshuf+lz4). Compression ra-
tios (a), compression speeds (b), and decompression speeds (c).
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5.3 Performance assessment of lossy compression
methods

The lossy compression algorithms evaluated are error-
bounded compression algorithms. They can constrain either
the maximum absolute error or the maximum relative error,
or both. The compression algorithms evaluated are Sz, Dec-
imal Rounding, Bit Grooming and the Digit Rounding algo-
rithm introduced in this paper. The Sz compression algorithm
works in both error-bounded modes. Decimal Rounding al-
lows a specific number of decimal digits to be preserved. In
this sense, it bounds the maximum absolute error. Bit Groom-
ing allows a specific number of significant digits to be pre-
served. In this sense, it bounds the maximum relative error.
Like the Bit Grooming algorithm, Digit Rounding preserves
a specific number of significant digits and bounds the maxi-
mum relative error.

We ran Sz version 2.1.1 using the h5repack tool and Sz
HDF5 filter plugin, applying the Deflate lossless compres-
sion algorithm integrated in the Sz software. We ran the Dec-
imal Rounding and Bit Grooming algorithms using NCO ver-
sion 4.7.9, applying Shuffle and Deflate compression in the
call to the NCO tool. Last, we ran the Digit Rounding algo-
rithm using the h5repack tool and custom implantation of the
algorithm in an HDF5 plugin filter. The Supplement provides
the command lines and options used.

5.3.1 Performance comparison in absolute
error-bounded compression mode

This section compares the performance of the absolute
error-bounded compression algorithms: Sz and Decimal
Rounding. The results reported were obtained by apply-
ing Sz configured with the options SZ_BEST_SPEED and
Gzip_BEST_SPEED. Shuffle and Deflate with dflt_lvl= 1
were applied after Decimal Rounding.

Table 5 compares the results obtained in absolute error-
bounded compression mode for eabs = 0.5. This corresponds
to dsd= 0 significant decimal digits preserved, or in other
words, a rounding to the nearest integer. Both Sz and Dec-
imal Rounding algorithms respect the specified maximum
absolute error value. Moreover, none introduces a statistical
bias: the mean absolute errors of both algorithms – not shown
in Table 5 – are very close to zero. The errors introduced by
these two algorithms are similar. However, it can be seen that
Decimal Rounding provides a higher compression ratio than
Sz for dataset s1. On the other hand, Sz provides a higher
compression ratio for dataset s3D. Sz may perform better on
dataset s3D because it is smoother than dataset s1. Indeed,
Sz integrates a prediction step. This prediction might often
fail because dataset s1 is very noisy. This may explain the
lower compression ratio for s1 dataset. Decimal Rounding,
however, does not make any predictions, which may explain
why it achieves a better compression than Sz for dataset s1.
The lower compression/decompression speeds obtained with

Sz on the dataset s3D are not well understood and might be
related to HDF5 chunking as previously mentioned.

Figure 4 compares Sz and Bit Grooming algorithms in
terms of SNR versus compression ratio. This figure was ob-
tained with the following parameters:

– For the Sz algorithm, the absErrBound parameter was
successively set to 5× 10−5, 5× 10−4, 5× 10−3, 5×
10−2, 5× 10−1, 5;

– For the Decimal Rounding algorithm, the dsd parameter
was successively set to 4, 3, 2, 1, 0, −1.

For dataset s1, Decimal Rounding has a higher SNR than Sz
for a given compression ratio. On the contrary, for dataset
s3D, Sz has a higher SNR than Decimal Rounding for a
given compression ratio. Both Sz and Bit Grooming algo-
rithms seem valuable for error-bounded compression.

5.3.2 Performance comparison in relative
error-bounded compression mode

This section compares the performance of the relative
error-bounded compression algorithms: Sz, Bit Groom-
ing, and Digit Rounding. The results reported were
obtained by applying Sz configured with the options
SZ_DEFAULT_COMPRESSION and Gzip_BEST_SPEED.
Shuffle and Deflate with dflt_lvl=1 were applied after the Bit
Grooming and Decimal Rounding algorithms.

We first focus on the results obtained with dataset s1.
The number of significant digits – nsd parameter – in the
Bit Grooming and Digit Rounding algorithms was set to 3.
As the maximum absolute value in the s1 dataset is 118,
the maximum absolute error should be lower than 0.5. In
order to be able to compare Sz configured with a relative
error bound with those algorithms, we configured the rela-
tive error bound to obtain a maximum absolute error of 0.5:
the pw_relBoundRatio parameter in Sz was set to 0.00424.
The results are provided in Table 6. It can be observed that
all three algorithms respect the maximum absolute error of
0.5, which corresponds for dataset s1 to a relative error of
0.00424. On this dataset, Sz provides higher compression
ratio and compression speed than the other two algorithms.
Bit Grooming is too conservative. It preserves more mantissa
bits than strictly necessary to achieve the required precision.
This behavior is illustrated in Table 1 with the value of π .
In contrast, Digit Rounding adapts the quantization step to
each value of the input dataset. Doing so, it can achieve the
required precision while preserving less mantissa bits than
Bit Grooming does. This results both in a higher compres-
sion ratio but also in higher errors than Bit Grooming. Re-
sults obtained for Bit Grooming with nsd= 2 are also pro-
vided for completeness. With this parameter, Bit Grooming
provides slightly higher compression ratio and compression
speed than Digit Rounding does.
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Table 5. Compression results of the absolute error-bounded compression algorithms Sz and Decimal Rounding on datasets s1 and s3D.

Dataset Compression method CR CS (MB s−1) emax
abs eabs SNR (dB)

s1 Sz (absErrBound= 0.5, Gzip_BEST_SPEED) 5.39 133 0.5 0.2499 30.84
s1 Decimal Rounding (dsd= 0, dflt_lvl= 1) 7.50 100 0.5 0.2501 30.83
s3D Sz (absErrBound= 0.5, Gzip_BEST_SPEED) 12.97 29 0.5 0.2500 45.97
s3D Decimal Rounding (dsd= 0, dflt_lvl=1) 5.56 80 0.5 0.2500 45.97

Figure 4. Comparison of the compression results (SNR vs. compression ratio) of the Sz and Decimal Rounding algorithms in absolute
error-bounded compression mode, on the s1 dataset (a) and s3D dataset (b).

Figure 5. Comparison of the compression results (SNR vs. compression ratio) of the Sz, Bit Grooming and Digit Rounding algorithms in
relative error-bounded compression mode, on the s1 dataset (a) and s3D dataset (b).

Figure 5a compares Sz, Bit Grooming, and Digit Round-
ing algorithms in terms of SNR versus compression ratio.
This figure has been obtained with the following parameters:

– For the Sz algorithm, the pw_relBoundRatio parameter
was successively set to 4.24×10−5, 4.24×10−4, 4.24×
10−3;

– For the Bit Grooming algorithm, the nsd parameter was
successively set to 6, 5, 4, 3, 2, 1;

– For the Digit Rounding algorithm, the nsd parameter
was successively set to 6, 5, 4, 3, 2, 1.

All three algorithms provide similar SNR versus compres-
sion ratio results, with a slight advantage for the Bit Groom-
ing algorithm. Figure 6a compares the compression ratio ob-
tained as a function of parameter nsd, which is the user-
specified number of significant digits. Even though nsd

is not a parameter of the Sz algorithm, we related the
pw_relBoundRatio to the nsd parameters for dataset s1 (i.e.
pw_relBoundRatio = 4.24× 10−nsd) and plotted the com-
pression ratio obtained with the Sz algorithm on the same
figure. It can be seen that, whatever the nsd specified by the
user, the compression ratios obtained with Digit Rounding
are higher than the compression ratio obtained with the Bit
Grooming algorithm. It can also be seen that the compression
ratios obtained with the Sz algorithm are even higher.

We now focus on the results obtained with dataset s3D.
The number of significant digits – nsd parameter – in the
Bit Grooming and Digit Rounding algorithms was set to 3.
As the maximum absolute value in the s3D dataset is 145,
the pw_relBoundRatio parameter in Sz was set to 0.00345.
Results are provided in Table 7. It can be observed that all
three algorithms comply with the relative error bound spec-
ified. However, as previously mentioned, the Bit Grooming
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Table 6. Compression results of the relative error-bounded compression algorithms Sz, Bit Grooming, and Digit Rounding on dataset s1.

Compression method CR CS (MB s−1) emax
abs eabs SNR (dB)

Sz (pw_relBoundRatio= 0.00424, Gzip_BEST_SPEED) 5.08 100 0.484 0.199 32.78
Bit Grooming (nsd= 3, dflt_lvl= 1) 3.09 57 0.0312 0.0156 54.93
Bit Grooming (nsd= 2, dflt_lvl= 1) 4.38 57 0.250 0.125 36.54
Digit Rounding (nsd= 3, dflt_lvl= 1) 4.02 40 0.5 0.195 34.51

Figure 6. Compression ratio as a function of the user-specified number of significant digits (nsd) for the Sz, Bit Grooming and Digit Rounding
algorithms, on the s1 dataset (a) and s3D dataset (b).

algorithm is too conservative. This is why results obtained
with nsd= 2 are also provided. On this dataset, Sz provides
higher compression ratio than the other two algorithms but
lower compression speed than Bit Grooming. At nsd = 3,
Digit Rounding provides slightly higher compression ratio
than Bit Grooming but with lower compression speed.

Figure 5b compares Sz, Bit Grooming, and Digit Round-
ing algorithms in terms of SNR versus compression ratio.
This figure has been obtained with the following parameters:

– For the Sz algorithm, the pw_relBoundRatio parameter
was successively set to 3.45×10−5, 3.45×10−4, 3.45×
10−3;

– For the Bit Grooming algorithm, the nsd parameter was
successively set to 6, 5, 4, 3, 2, 1;

– For the Digit Rounding algorithm, the nsd parameter
was successively set to 6, 5, 4, 3, 2, 1.

The Bit Grooming and Digit Rounding algorithms provide
similar compression ratios, but even higher compression ra-
tios are obtained with Sz. Figure 6b compares the compres-
sion ratio obtained as a function of the nsd parameter, which
is the user-specified number of significant digits. As for
dataset s1, we related pw_relBoundRatio to the nsd parame-
ters for dataset s3D (i.e. pw_relBoundRatio= 3.45×10−nsd)
and plotted the compression ratio obtained with the Sz algo-
rithm on the same figure. Whatever the nsd specified by the
user, the compression ratios obtained with the Digit Round-
ing algorithm are higher than the compression ratio obtained
with the Bit Grooming algorithm. The compression ratios ob-
tained with Sz are even higher.

Those results show that the Digit Rounding algorithm can
be competitive with the Bit Grooming and Sz algorithms in
relative error-bounded compression mode. It is thus applied
to real scientific datasets in the next section.

6 Application to scientific datasets

6.1 Application to a CFOSAT dataset

Chinese-French Oceanography Satellite (CFOSAT) is a
cooperative program between the French and Chinese
space agencies (CNES and CNSA respectively). CFOSAT
is designed to characterize the ocean surfaces to better
model and predict ocean states, and improve knowledge of
ocean/atmosphere exchanges. CFOSAT products will help
marine and weather forecasting and will also be used to mon-
itor the climate. The CFOSAT satellite will carry two scien-
tific payloads – SCAT, a wind scatterometer; and SWIM, a
wave scatterometer – for the joint characterization of ocean
surface winds and waves. The SWIM (Surface Wave Inves-
tigation and Monitoring) instrument delivered by CNES is
dedicated to measuring the directional wave spectrum (den-
sity spectrum of wave slopes as a function of direction and
wavenumber of the waves). The CFOSAT L1A product con-
tains calibrated and geocoded waveforms. By the end of the
mission in 2023/2024, CFOSAT will have generated about
350 TB of data. Moreover, during routine phase, the users
should have access to the data less 3 h after their acquisition.
The I/O and compression performance are thus critical.

Currently, the baseline for compression of the CFOSAT
L1A product involves a clipping method as a data reduction
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Table 7. Compression results of Sz, Bit Grooming, and Digit Rounding in relative error-bounded compression mode on dataset s3D.

Compression method CR CS (MB s−1) emax
abs eabs SNR (dB)

Sz (pw_relBoundRatio= 0.00345, Gzip_BEST_SPEED) 4.32 26 0.487 0.0737 54.56
Bit Grooming (nsd= 3, dflt_lvl= 1) 2.35 46 0.0625 0.0079 73.96
Bit Grooming (nsd= 2, dflt_lvl= 1) 3.04 51 0.5 0.0629 55.89
Digit Rounding (nsd= 3, dflt_lvl= 1) 2.60 18 0.5 0.0239 58.87

step, with Shuffle preprocessing and Deflate lossless coding
with a compression level dfl_lvl of 3. Compression with a
clipping method is like compression in an absolute error-
bounded mode. It defines the least significant digit (lsd) and
“clips” the data to keep only lsd decimal digits. The lsd is
defined specifically for each dataset variable. The full list is
provided in the Supplement with all the command lines and
parameters used for running the compression methods de-
scribed in this section.

We studied the following compression methods:

– CFOSAT clipping followed by Shuffle and Deflate
(dflt_lvl= 3): the baseline for the compression of
CFOSAT datasets;

– CFOSAT clipping followed by Shuffle and Zstandard
(zstd_lvl= 2) for higher compression speeds;

– Sz followed by Deflate in the absolute error bounded
mode;

– Decimal Rounding followed by Shuffle and Deflate
(dflt_lvl= 1);

– Bit Grooming (nsd= 8) followed by Shuffle and Deflate
(dflt_lvl= 1);

– Digit Rounding (nsd= 8) followed by Shuffle and De-
flate (dflt_lvl= 1).

We first focused on the ground_range_5 variable of the
CFOSAT L1A product. This variable is an array of 18451×
3215 values in double precision. The data volume is
452.58 MB (uncompressed). The CFOSAT clipping method
defines an lsd of 3 for this variable. In absolute error-bounded
mode, Decimal Rounding is configured to keep the same
number of decimal digits as CFOSAT clipping: dsd= 3; Sz
is configured with absErrBound= 5× 104. In relative error-
bounded mode, Bit Grooming and Digit Rounding are con-
figured with nsd= 8. The compression results are provided
in Table 8. Compared to the CFOSAT baseline compression,
Zstandard compression is more than twice faster while offer-
ing a similar compression ratio. On this dataset, the use of Sz
instead of the CFOSAT Clipping method increases the com-
pression ratio by a factor of 11. Sz prediction step seems to
be very efficient on this dataset. Decimal Rounding increases
the compression ratio by a factor of 2.5 “only”, but pro-
vides the fastest decompression. In the relative error-bounded

mode, Digit Rounding provides a higher compression ra-
tio than Bit Grooming but lower compression/decompression
speeds.

The results for the compression of the full CFOSAT L1A
product of 7.34 GB (uncompressed) are provided in Table 9.
The maximum absolute error and the mean absolute error
are not provided because this dataset contains several vari-
ables compressed with different parameters. Compared to
the CFOSAT baseline compression, Zstandard increases the
compression speed by about 40 % while offering a similar
compression ratio. It was not possible to apply Sz compres-
sion on the full dataset since Sz configuration file has to be
modified to adapt the absErrBound to the lsd defined for each
dataset variable. The way around this entails processing each
variable one after the other. Sz provides a compression ratio
almost 3 times higher than the baseline with faster compres-
sion and decompression. Decimal Rounding is configured on
a per-variable basis to keep the precision required by the sci-
entists on each variable. It increases the compression ratio
by a factor of 1.8 with twice faster compression and decom-
pression compared to the baseline. The compression ratios
achieved with Bit Grooming or Digit Rounding in the relative
error-bounded mode are lower. This is not the mode targeted
for the compression of CFOSAT datasets. The usability of Sz
being reduced by the fact that the error bound cannot be eas-
ily configured to achieve the precision required variable per
variable, our recommendation is to use the Decimal Round-
ing algorithm. It achieves faster and more effective compres-
sion than CFOSAT Clipping method and bounds the absolute
errors.

6.2 Application to SWOT datasets

The Surface Water and Ocean Topography Mission (SWOT)
is a partnership between NASA and CNES, and continues
the long history of altimetry missions with an innovative
instrument known as KaRin, which is a Ka band synthetic
aperture radar. The launch is foreseen for 2021. SWOT ad-
dresses both oceanographic and hydrological communities,
accurately measuring the water level of oceans, rivers, and
lakes.

SWOT has two processing modes, so two different types
of products are generated: high-resolution products dedi-
cated to hydrology, and low-resolution products mostly ded-
icated to oceanography. The Pixel Cloud product (called
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Table 8. Compression results for the ground_range_5 variable in the CFOSAT L1A product.

Compression method CR CS (MB s−1) DS (MB s−1) emax
abs eabs

CFOSAT Clipping + Shuffle + Deflate (3) 2.34 38∗ 123 1.00× 10−3 5.00× 10−4

CFOSAT Clipping + Zstd (2) 2.20 108∗ 84 1.00× 10−3 5.00× 10−4

Sz (absErrBound= 10−3, Gzip_BEST_SPEED) 26.53 60 42 1.00× 10−3 4.99× 10−4

Decimal Rounding (dsd= 3) + Shuffle + Deflate (1) 5.85 74 187 4.88× 10−4 2.36× 10−4

Bit Grooming (nsd= 8) + Shuffle + Deflate (1) 4.78 67 190 2.44× 10−4 1.22× 10−4

Digit Rounding (nsd= 8) + Shuffle + Deflate (1) 5.83 37 38 4.88× 10−4 2.44× 10−4

∗ The time taken for the CFOSAT Clipping method is not taken into account in the compression speed computation.

Table 9. Compression results for the CFOSAT L1A product.

Compression method CR CS (MB s−1) DS (MB s−1)

CFOSAT Clipping + Shuffle + Deflate (3) 5.21 51∗ 68
CFOSAT Clipping + Shuffle + Zstd (2) 5.38 72∗ 78
Sz (absErrBound, Gzip_BEST_SPEED) 15.45 88 89
Decimal Rounding + Shuffle + Deflate (1) 9.53 101 268
Bit Grooming (nsd= 8) + Shuffle + Deflate (1) 4.16 75 262
Digit Rounding (nsd= 8) + Shuffle + Deflate (1) 4.32 37 85

∗ The time taken for the CFOSAT Clipping method is not taken into account in the compression speed computation.

L2_HR_PIXC) contains data from the KaRin instrument’s
high-resolution (HR) mode. It contains information on the
pixels that are detected as being over water. This product is
generated when the HR mask is turned on. The Pixel Cloud
product is organized into sub-orbit tiles for each swath and
each pass, and this is an intermediate product between the L1
Single Look Complex products and the L2 lake/river ones.
The product granularity is a tile 64 km long in the along-
track direction, and it covers either the left or right swath
(∼ 60 km wide). The SWOT mission will generate about
20 PB of data during the mission lifetime. Compression al-
gorithms and performance are thus very critical. The mis-
sion center is currently defining files format and structure,
and thus in this section we evaluated different compression
options.

The compression of two different datasets was evaluated:

– A simplified simulated SWOT L2_HR_PIXC pixel
cloud product of 460 MB (uncompressed);

– A realistic and representative SWOT L2 pixel cloud
dataset of 199 MB (uncompressed).

The current baseline for the compression of the simplified
simulated SWOT L2 pixel cloud product involves Shuffle
preprocessing and Deflate lossless coding with a compres-
sion level dfl_lvl of 4. However, the compression method for
the official SWOT L2 pixel cloud product has not yet been
defined. A required precision is defined by the scientists as
a number of significant digits (nsd) for each dataset vari-
able. The full list is provided in the Supplement. We studied

the following lossless or relative error bounded compression
methods:

– Shuffle and Deflate (dflt_lvl = 4): the current baseline
for the compression of SWOT datasets;

– Shuffle and Zstandard (zstd_lvl = 2) lossless alterna-
tive;

– Sz with Deflate in the relative error bounded mode;

– Bit Grooming followed by Shuffle and Deflate
(dflt_lvl = 1);

– Digit Rounding followed by Shuffle and Deflate
(dflt_lvl = 1).

We first focused on the height variable of the SWOT
L2_HR_PIXC pixel cloud product. This variable is a list
of 1 421 888 values in double precision. The data volume is
10.85 MB (uncompressed). A precision of 6 significant dig-
its is required for this variable (nsd= 6). Sz is configured in
the relative error bounded mode with pw_relBoundRatio=
5× 10−6. Bit Grooming and Digit Rounding are configured
with nsd= 6. The results are provided in Table 10. Compared
to the SWOT baseline compression, Zstandard compression
is more than 10 times faster while offering a similar com-
pression ratio. On this dataset, Digit Rounding provides the
highest compression ratio with compression/decompression
speeds similar to the one obtained with Bit Grooming. The
lowest errors are obtained with Bit Grooming but with a com-
pression ratio slightly lower than Digit Rounding. The com-
pression ratio obtained with Sz is even lower.
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Table 10. Compression results for the height variable in the simplified simulated SWOT L2_HR_PIXC pixel cloud product.

Compression method CR CS (MB s−1) DS (MB s−1) emax
abs eabs

Shuffle + Deflate (4) 1.12 24 212 0 0
Shuffle + Zstd (2) 1.12 271 181 0 0
Sz (pw_relBoundRatio= 5× 10−6, Gzip_BEST_SPEED) 2.06 35 155 3.16× 10−5 1.19× 10−7

Bit Grooming (nsd= 6) + Shuffle + Deflate (1) 2.34 33 217 7.58× 10−6 2.53× 10−7

Digit Rounding (nsd= 6) + Shuffle + Deflate (1) 2.38 35 217 3.05× 10−5 7.95× 10−7

Table 11. Compression results for the pixel_area variable in the representative SWOT L2 pixel cloud product.

Compression method CR CS (MB s−1) DS (MB s−1) emax
abs eabs

Shuffle + Deflate (4) 1.50 32 248 0 0
Shuffle + Zstd (2) 1.50 237 165 0 0
Sz (pw_relBoundRatio = 5× 10−9, Gzip_BEST_SPEED) 3.24 0.3 165 2.51× 10−6 4.56× 10−7

Bit Grooming (nsd = 11) + Shuffle + Deflate (1) 2.11 43 245 1.86× 10−9 3.16× 10−10

Digit Rounding (nsd = 11) + Shuffle + Deflate (1) 2.40 40 240 3.73× 10−9 1.86× 10−9

Table 12. Compression results for the simplified simulated SWOT L2_HR_PIXC pixel cloud product.

Compression method CR CS (MB s−1) DS (MB s−1)

Shuffle + Deflate (4) 14.37 107 92
Shuffle + Zstd (2) 14.36 589 97
Bit Grooming + Shuffle + Deflate (1) 17.44 141 336
Digit Rounding + Shuffle + Deflate (1) 18.92 100 393

Table 13. Compression results for the representative SWOT L2 pixel cloud product.

Compression method CR CS (MB s−1) DS (MB s−1)

Shuffle + Deflate (4) 1.99 35 258
Shuffle + Zstd (2) 1.99 139 90
Bit Grooming + Shuffle + Deflate (1) 2.55 52 276
Digit Rounding + Shuffle + Deflate (1) 2.65 42 228

Next we focused on the pixel_area variable of the repre-
sentative SWOT L2 pixel cloud product. This variable is a list
of 1 300 111 values in double precision. The data volume is
9.92 MB (uncompressed). A precision of 11 significant dig-
its is required for this variable (nsd= 11). Sz is configured in
the relative error bounded mode with pw_relBoundRatio=
5×10−9 only because it cannot achieve higher precision. Bit
Grooming and Digit Rounding are configured with nsd= 11.
The results are provided in Table 11. Compared to the SWOT
baseline compression, Zstandard compression is more than 7
times faster while offering a similar compression ratio. Sz
provides the highest compression ratio but does not allow
achieving the required precision of 11 digits. Moreover, in
this configuration Sz compression is very slow. As for the
height variable, Digit Rounding provides the highest com-
pression ratio with compression/decompression speeds simi-
lar to the one obtained with Bit Grooming. The lowest errors

are obtained with Bit Grooming but with a compression ratio
lower than Digit Rounding.

Table 12 provides the results of the compression of the full
simulated SWOT L2_HR_PIXC pixel cloud product. The
maximum absolute error and the mean absolute error are not
provided because this dataset contains several variables com-
pressed with different parameters. Compared to the SWOT
baseline compression, Zstandard increases the compression
speed by over 5 times, while offering a similar compression
ratio. Sz compression was not applied because it does not al-
low achieving the high precision required on some variables.
Bit Grooming and Digit Rounding were configured on a per-
variable basis to keep the precision required by the scientists
on each variable. Compared to the baseline, Bit Grooming
and Digit Rounding increase the compression respectively
by 20 % and 30 % with similar compression speeds and faster
decompression.
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The results for the compression of the representative
SWOT L2 pixel cloud product are provided in Table 13.
Compared to the baseline, Zstandard compression is nearly
4 times faster while offering a similar compression ratio.
Bit Grooming increases the compression ratio by 29 % with
higher compression speed. And Digit Rounding increases the
compression ratio by 34 % with slightly lower compression
speed than Bit Grooming. Bit Grooming and Digit Round-
ing provide the fastest decompression. Our recommendation
for the compression of SWOT datasets is thus to use the
Digit Rounding algorithm to achieve high compression, at
the price of a lower compression speed than the lossless so-
lutions, considering that for SWOT the driver is product size,
and taking into account the ratio between compression time
and processing time.

7 Conclusions

This study evaluated lossless and lossy compression algo-
rithms both on synthetic datasets and on realistic simulated
datasets of future science satellites. The compression meth-
ods were applied using netCDF-4 and HDF5 tools. It has
been shown that the impact of the compression level options
of Zstandard or Deflate on the compression ratio achieved
is not significant compared to the impact of the Shuffle or
Bitshuffle preprocessing. However, high compression levels
can significantly reduce the compression speed. Deflate and
Zstandard with low compression levels are both reasonable
options to consider for the compression of scientific datasets,
but must always follow a Shuffle or Bitshuffle preprocess-
ing step. It has been shown that Zstandard can speed-up the
compression of CFOSAT and SWOT datasets compared to
the baseline solution based on Deflate.

The lossy compression of scientific datasets can be
achieved in two different error-bounded modes: absolute and
relative error-bounded. Four algorithms have been studied:
Sz, Decimal Rounding, Bit Grooming and Digit Rounding.
One useful feature of the last three is that the accuracy of
the compressed data can easily be interpreted: rather than
defining an absolute or a relative error bound, they define the
number of significant decimal digits or the number of sig-
nificant digits. In absolute error-bounded mode, Sz provides
higher compression ratios than Decimal Rounding on most
datasets. However for the compression of netCDF/HDF5
datasets composed of several variables, its usability is re-
duced by the fact that only one absolute error bound can
be set for all the variables. It cannot be easily configured to
achieve the precision required variable per variable. This is
why we rather recommend the Decimal Rounding algorithm
to achieve fast and effective compression of the CFOSAT
dataset. In relative error-bounded mode, the Digit Rounding
algorithm introduced in this work provides higher compres-
sion ratios than the Bit Grooming algorithm from which it
derives, but with lower compression speed. Sz can provide

even higher compression ratios but fails to achieve the high
precision required for some variables. This is why we rather
recommend the Digit Rounding algorithm to achieve rela-
tive error bounded compression of SWOT datasets with a
compression ratio 30 % higher than the baseline solution for
SWOT compression.

Code and data availability. The Digit Rounding soft-
ware source code is available from CNES GitHub at
https://github.com/CNES/Digit_Rounding (last access: 26 August
2019). The datasets are available upon request to Xavier Delau-
nay (xavier.delaunay@thalesgroup.com) or to Flavien Gouillon
(flavien.gouillon@cnes.fr). The Supplement details the datasets
and provides the command lines used for running the compression
tools.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-12-4099-2019-supplement.
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