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Abstract. A reflectivity forward operator and its associated
tangent linear and adjoint operators (together named Radar-
Var) were developed for variational data assimilation (DA).
RadarVar can analyze both rainwater and ice-phase species
(snow and graupel) by directly assimilating radar reflectiv-
ity observations. The results of three-dimensional variational
(3D-Var) DA experiments with a 3 km grid mesh setting of
the Weather Research and Forecasting (WRF) model showed
that RadarVar was effective at producing an analysis of re-
flectivity pattern and intensity similar to the observed data.
Two to three outer loops with 50–100 iterations in each loop
were needed to obtain a converged 3-D analysis of reflectiv-
ity, rainwater, snow, and graupel, including the melting lay-
ers with mixed-phase hydrometeors. It is shown that the de-
ficiencies in the analysis using this operator, caused by the
poor quality of the background fields and the use of the static
background error covariance, can be partially resolved by us-
ing radar-retrieved hydrometeors in a preprocessing step and
tuning the spatial correlation length scales of the background
errors. The direct radar reflectivity assimilation using Radar-
Var also improved the short-term (2–5 h) precipitation fore-
casts compared to those of the experiment without DA.

1 Introduction

Over the past several decades, radar reflectivity observa-
tions have been used in many data assimilation (DA) stud-
ies (Borderies et al., 2018; Caumont et al., 2010; Gao and

Stensrud, 2012; Hu et al., 2006; Jung et al., 2010, 2008a;
Liu et al., 2019; Putnam et al., 2014; Snook et al., 2012,
2015; Sun and Crook, 1997; Sun and Wang, 2013; Tong and
Xue, 2005; Wang et al., 2013b; Wang and Wang, 2017; Wat-
trelot et al., 2014; Xiao et al., 2007; Xue et al., 2006) and
they have demonstrated that assimilating this radar reflec-
tivity improves the initial conditions of the convective scale
and benefits the subsequent forecasts. To assimilate the re-
flectivity, it is necessary to transform the model’s prognostic
variables (e.g., rainwater, snow, and graupel) to the observed
radar reflectivity. To perform this transformation, early stud-
ies (e.g., Sun and Crook, 1997; Xiao et al., 2007) used the
Marshall–Palmer distribution of raindrop size (Z–R relation-
ship). However, this relationship is only valid in precipitation
areas without ice-phase species; thus, its applications (e.g.,
Schwitalla and Wulfmeyer, 2018) are often limited to layers
lower than 4 km or 8 km above ground level (a.g.l.). To over-
come this deficiency, more comprehensive operators that in-
volve snow and graupel have been developed (Gao and Sten-
srud, 2012; Tong and Xue, 2005). Several studies (e.g., Gao
and Stensrud, 2012; Wang and Wang, 2017) have demon-
strated that involving these ice species in the reflectivity op-
erator improves the analysis of hydrometeors in terms of their
spatial distribution, especially in the vertical direction.

Although these operators have been successfully applied
in many convective-scale DA studies, they were developed
for a specific band of radar (e.g., S-band radar; Gao and
Stensrud, 2012; Sun and Crook, 1997) and specific micro-
physics characteristics (e.g., with a fixed intercept parame-
ter; Sun and Crook, 1997). However, mixed-phase species
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such as wet snow and wet graupel have not been considered
in these operators. Recently, the contributions from mixed-
phase species have been studied (Jung et al., 2008a, here-
after, J08; Posselt et al., 2015). To compute the mixed-phase
species’ contributions, J08 proposed an operator that was
based on the expressions given by Zhang et al. (2001). Their
expressions were derived according to the scattering am-
plitudes that were estimated through the T-matrix method
and the Rayleigh scattering approximation (J08). For com-
putational efficiency, these expressions were rewritten in the
polynomial form that was only valid for S-band radar in
which the Rayleigh assumption was satisfied. Later, a more
general and exact operator that fully used the T-matrix scat-
tering method was proposed (Jung et al., 2010). This oper-
ator was given as the integral of the complex backscatter-
ing amplitudes over the size distribution of the precipita-
tion particles (i.e., rainwater, snow, and graupel). In addition
to these operators, several complex reflectivity operators in
the integral form have also been proposed (Borderies et al.,
2018; Caumont et al., 2006; Pfeifer et al., 2008; Ryzhkov
et al., 2011; Wattrelot et al., 2014). Some were designed
for a specific band of radar (e.g., W band; Borderies et al.,
2018), whereas some were designed for the bin microphysics
scheme (e.g., Ryzhkov et al., 2011).

Reflectivity operators have been developed both for the
variational method (Caumont et al., 2010; Gao and Stensrud,
2012; Hu et al., 2006; Sun and Crook, 1997; Sun and Wang,
2013; Wang et al., 2013b; Wattrelot et al., 2014; Xiao et al.,
2007) and for the ensemble Kalman filter method (EnKF;
Dawson et al., 2010; Jung et al., 2010, 2008a, b; Putnam et
al., 2014; Snook et al., 2011, 2015; Tong and Xue, 2005; Xue
et al., 2006). The variational method requires the tangent lin-
ear (TL) and adjoint (AD) operators, which are not required
by the EnKF (Evensen, 2003). Therefore, complex operators
such as those proposed by J08 are often employed in EnKF
DA applications. For the variational method, a common ap-
proach to avoid using the TL/AD operators is to assimilate
the reflectivity-retrieved hydrometeor profiles (Caumont et
al., 2010; Wang et al., 2013a; Wattrelot et al., 2014); an alter-
native is to use the reflectivity as an additional control vari-
able with the ensemble–variational DA approach (Wang and
Wang, 2017).

Despite the difficulty, some efforts have been undertaken
for reflectivity assimilation with the TL/AD operators (Gao
and Stensrud, 2012; Kawabata et al., 2018; Liu et al., 2019;
Xiao et al., 2007), and reasonable results have been ob-
tained in terms of hydrometeor analysis and precipitation
forecasts. However, none of these studies employed oper-
ators as complex as those proposed by J08. Kawabata et
al. (2018) adopted the expressions of Zhang et al. (2001) and
developed the TL/AD operator for C-band radar but without
taking into account the contributions from ice-phase species.

The main purpose of this study is to develop a TL/AD op-
erator based on Jung et al. (2008a) with the contributions
of ice-phase precipitation and apply it in a variational DA

framework. For convenience, the operator implemented in
this study is called RadarVar to represent that it was devel-
oped for variational DA and contains ice-phase species. The
original J08 operator is called J08orig. The reminder of this
paper is organized as follows. In Sect. 2, the J08 operator
is reviewed, and its TL and AD operators are derived. The
experimental design is given in Sect. 3, and the new oper-
ators are verified in Sect. 4. The performance of RadarVar
is discussed in Sect. 5, and the conclusions are presented in
Sect. 6.

2 Reflectivity operator

2.1 Review of the J08 operator

The radar-observed reflectivity, Z, is given in logarithmic
form as

Z = 10log10Ze, (1)

where Ze is the equivalent reflectivity factor, which is the
sum of the contributions from pure rainwater (Zr), dry snow
(Zds), dry graupel (Zdg), wet snow (Zws), and wet graupel
(Zwg) as follows:

Ze = Zr+Zds+Zdg+Zws+Zwg. (2)

To compute Eq. (2), the mixing ratios of mixed-phase species
(wet snow and wet graupel) are required. However, many
widely used microphysics schemes, such as the Lin, WSM6,
and Morrison schemes, do not predict or diagnose the mixed-
phase species; thus, the amount of rainwater in wet snow
or graupel cannot be directly extracted from the model out-
put. To solve this issue, J08 modeled the rain–snow (rain–
graupel) mixture using a fraction that is given by

F = [min(qr/qx,qx/qr)]
0.3Fmax, (3)

where Fmax is the maximum fraction, which is 0.5 (0.3) for
rain–graupel (rain–snow) mixtures; qr is the mixing ratio of
rainwater; and qx is the general form of the mixing ratio of
ice-phase species. The subscript “x” can be either “s” for
snow or “g” for graupel. With this fraction, the mixing ratios
of pure rainwater, dry snow, dry graupel, and mixed-phase
species are given by

qpr = (1−Fws−Fwg)qr

qds = (1−Fws)qs

qdg = (1−Fwg)qg

qws = Fws(qs+ qr)

qwg = Fwg(qg+ qr), (4)

where the subscripts “ws” and “wg” are added to F to repre-
sent the fractions of wet snow and wet graupel, respectively,

Geosci. Model Dev., 12, 4031–4051, 2019 www.geosci-model-dev.net/12/4031/2019/



S. Wang and Z. Liu: RadarVar v1.0 4033

and the subscripts “pr”, “ds”, and “dg” represent pure wa-
ter, dry snow, and dry graupel, respectively. The mixed-phase
density, ρwx , is not a constant and is parameterized by

ρwx = (1− f 2
wx)ρx + f

2
wxρr, (5)

with

fwx =
qr

qr+ qx
. (6)

The subscript “x” in ρwx , ρx , and fwx represents either snow
(s) or graupel (g), and fwx is called the water fraction.

2.1.1 Contribution from rainwater

In accordance with J08, all of the contributions are com-
puted by integrations over the drop size distribution (DSD)
weighted by the scatter cross section determined by the den-
sity, shape, and DSD. The DSD is modeled by an exponen-
tial distribution. After performing the integration, the contri-
bution from pure rainwater, Zr, is written in a simple form
(Zhang et al., 2001; Posselt et al., 2015; Kawabata et al.,
2018) as follows:

Zr =
4λ4α2

raN0r

π4|Kw|
2 3
−(2βra+1)
r 0(2βra+ 1), (7)

where λ is the wavelength of the radar, which is 107 mm for
S-band radar, andN0r is the intercept parameter of rainwater,
which is 8× 106 m−4 in this study. N0r values are typically
fixed (or constant) in single-moment microphysics schemes;
for a two-moment scheme, this value should be determined
using the predicted number concentration. |Kw|

2 is the di-
electric factor for rainwater and is equal to 0.93, and αra
and βra are 4.28×10−4 and 3.04, respectively. The complete
gamma function is written as 0(. . . ). The slope parameter of
rain, 3r, is

3r = (
πρrN0r

ρaqpr
)

1
4 , (8)

where ρr = 1000 kg m−3 is the rain density, qpr is given by
Eq. (4), and ρa is the density of air. By substituting Eq. (8)
and the constant parameters into Eq. (7), we can rewrite
Eq. (7) as a function of qpr as follows:

Zr(qpr)= Pr(qpr)
1.77, (9)

where

Pr =
4λ4α2

ra

π4|Kw|
2 (
πρr

ρa
)−

2βra+1
4 (N0r)

1− 2βra+1
4 0(2βra+ 1). (10)

The value of Pr is approximately 4.8× 109 with an air den-
sity of 1.0 kg m−3. This value has the same magnitude as
those proposed by Sun and Crook (1997) and Gao and Sten-
srud (2012).

2.1.2 Contribution from dry snow/graupel

The contributions from both dry and mixed-phase ice species
after integration have the same form but differ in their coef-
ficients. For dry ice species, the contribution is given by

Zdx =
40(7)λ4N0x

π4|Kw|
2 3−7

dx (Aα
2
dxa+Bα

2
dxb+ 2Cαdxaαdxb), (11)

where the subscript x represents either snow (s) or graupel
(g). The intercept parameters of these species are denoted
by N0x , the values of which are 3× 106 and 4× 105 m−4

for snow and graupel, respectively. Both values are consis-
tent with the default values of Advanced Regional Prediction
System (ARPS) EnKF where the J08 operator was imple-
mented. The slope parameter in Eq. (11) for either dry snow
or dry graupel is written as

3dx = (
πρxN0x

ρaqdx
)

1
4 , (12)

where ρx is either the density of snow (100 kg m−3) or grau-
pel (400 kg m−3). The parameters A, B, and C in Eq. (11)
are functions of the mean (φ̄) and the standard deviation (σ )
of the canting angle and are given by

A=
1
8
(3+ 4cos2φ̄e−2σ 2

+ cos4φ̄e−8σ 2
)

B =
1
8
(3− 4cos2φ̄e−2σ 2

+ cos4φ̄e−8σ 2
)

C =
1
8
(1− cos4φ̄e−8σ 2

). (13)

According to J08, φ̄ is zero for all hydrometeors, and σ dif-
fers for snow (20◦) and hail (60◦). Here, we assume that
σ for graupel is also 60◦. The horizontal reflectivity that is
regarded in this study is not sensitive to the canting angle
(will be demonstrated in Sect. 2.4), although the differential
reflectivity is sensitive to canting angle (Aydin and Seliga,
1984). In Eq. (11),A, B, and C are multiplied by coefficients
(αdxa and αdxb) that describe the backscattering amplitudes.
For dry ice-phase species, these coefficients are precalculated
constants and are listed in Table 1. The coefficients of graupel
are calculated using the backscattering amplitudes (for parti-
cle size< 10 mm) in the pyCAPS-PRS v1.1 software (Daw-
son et al., 2014; Johnson et al., 2016; Jung et al., 2010; Jung
et al., 2008a) provided by the Center for Analysis and Predic-
tion of Storms (CAPS), and fitted to the polynomial function
of fwg. αdga and αdgb are the coefficients when fwg is zero,
which indicates no rainwater.

For brevity, Eq. (11) is rewritten as a function of qdx for
dry snow and dry graupel and is given by

Zdx(qdx)= Pdxq
1.75
dx , (14)
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Table 1. Values of αdsa, αdsb, αdga, and αdgb.

αdsa αdsb αdga αdgb

0.194× 10−4 0.191× 10−4 0.105× 10−3 0.092× 10−3

where

Pdx =
40(7)λ4N−0.75

0x

π4|Kw|
2 (

πρx

ρa
)−1.75

(Aα2
dxa+Bα

2
dxb+ 2Cαdxaαdxb). (15)

2.1.3 Contribution from wet snow/graupel

The equation for the contribution from mixed-phase species
has the same form as Eq. (11), except that the subscript “d”
is replaced by “w” to represent wet species. The slope pa-
rameter for mixed-phase species also has the same form as
Eq. (12), except that the subscript “d” is replaced by “w”,
and ρwx is substituted for ρx . For wet species, σ in A, B, and
C is a function of fw and qwg. Additional details are given in
Sect. 3c of J08. The coefficients that are multiplied by A, B,
and C are functions of fw and are written as

αwxa = εx

n∑
k=0

Pwxakf
k
wx

αwxb = εx

n∑
k=0

Pwxbkf
k
wx, (16)

where “x” is “s” (g) for snow (graupel), εx is 10−4 (10−3) for
snow (graupel), Pwxak and Pwxbk are precalculated constants
for S-band radar, the value of n is 6, and the superscript k de-
notes the index of these constants. All these values are based
on J08, except for those of graupel, which are computed us-
ing the same method mentioned in Sect. 2.1.2. The values of
Pwxak and Pwxbk are listed in Table 2.

To simplify the derivation of the TL/AD operators, we
rewrite Eq. (11) as a function of the mixed-phase mixing ra-
tio (qwx) and the water fraction (fw) as follows:

Zwx(qwx,fwx)= Pwxq
1.75
wx ε

2
x

2n∑
k=0

Pxkf
k
wx, (17)

where the coefficients Pwx and Pxk are given by

Pwx =
40(7)λ4N−0.75

0x

π4|Kw|
2 (

πρwx

ρa
)−1.75, (18)

and

Pxk = APAxk +BPBxk + 2CPCxk, (19)

respectively. PAxk , PBxk , and PCxk in Eq. (19) are given by

PAxk =

{ ∑k
i=0PwxaiPwxa(k−i)(k ≤ n)∑n

i=k−nPwxaiPwxa(k−i), (k > n)

PBxk =

{ ∑k
i=0PwxbiPwxb(k−i), (k ≤ n)∑n
i=k−nPwxbiPwxb(k−i)(k > n)

PCxk =

{ ∑k
i=0PwxaiPwxb(k−i), (k ≤ n)∑n

i=k−nPwxaiPwxb(k−i), (k > n),
(20)

where Pwxai and Pwxbi are precalculated constants in
Eq. (16) and are listed in Table 2. The subscript “x” in these
constant coefficients represents either snow (s) or graupel
(g). The derivations of Eqs. (17) to (20) are given in the Ap-
pendix.

2.2 Tangent linear operator

Because RadarVar is highly nonlinear and complex, perform-
ing the derivation for every nonconstant variable in this op-
erator is difficult. In addition, some components of Radar-
Var (e.g., the fraction F in Eq. 3) are discontinuous and
may cause serious convergence problems in the minimiza-
tion (Janisková and Lopez, 2013; Janisková et al., 1999).
Although this issue can be addressed by performing regu-
larization for the discontinuous components in RadarVar, it
is beyond the scope of this study. Here, we assumed that
five variables in RadarVar are not changed in the minimiza-
tion: (i) the air density, (ii) the fraction F , (iii) the intercept
parameter, (iv) the standard deviation of the canting angle
σ , and (v) the density of the mixed-phase species. The air
density is held constant for simplification and to focus on
the impact of the changes in the hydrometeors. The fraction
F is assumed to remain unchanged because of its second-
order discontinuity at the point that qx is equal to qr. The
intercept parameter is constant because RadarVar was cur-
rently designed for single-moment microphysics schemes.
Although multi-moment microphysics schemes are more re-
alistic because they predict the number density of hydrome-
teors, single-moment microphysics schemes are still widely
used to compute reflectivity and the polarization variables
(e.g., Posselt et al., 2015). For simplification, the standard
deviation of the canting angle and the density of the mixed-
phase species remain unchanged in the minimization. These
assumptions are discussed in Sect. 4.

2.2.1 Linearization for rain

Considering the assumptions presented above, Pr in Eq. (9)
becomes a constant in the minimization. Therefore, the lin-
earized form of Eq. (9) for qpr is given by

δZr(qpr)=
∂Zr(qpr)

∂qpr

∂qpr

∂qr
δqr

= 1.77Pr(qpr)
0.77(1−Fws−Fwg)δqr. (21)
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Table 2. Values of Pwxak and Pwxbk in Eq. (16).

k 0 1 2 3 4 5 6

Pwsak 0.194 7.094 2.135 −5.225 0 0 0
Pwsbk 0.191 6.916 −2.841 −1.160 0 0 0
Pwgak 0.105 1.821 −3.765 −0.797 16.28 −21.97 8.744
Pwgbk 0.092 1.929 −9.794 29.24 −48.19 39.34 −12.20

2.2.2 Linearization for dry and wet snow/graupel

For dry snow and graupel, the linearized form of Eq. (14) is
given by

δZdx(qdx)=
∂Zdx

∂qdx

∂qdx

∂qx
δqx

= 1.75Pdxq
0.75
dx (1−Fwx)δqx . (22)

The linearization of Eq. (17) can be categorized into two
parts, which represent the variations inZx caused by changes
in qwx and fwx , respectively. The linear equation of Eq. (17)
is written as

δZwx(qwx,fwx)=
∂Zwx

∂qwx
(
∂qwx

∂qx
δqx

+
∂qwx

∂qr
δqr)+

∂Zwx

∂fwx
(
∂fwx

∂qx
δqx +

∂fwx

∂qr
δqr)

= (
∂Zwx

∂qwx

∂qwx

∂qr
+
∂Zwx

∂fwx

∂fwx

∂qr
)δqr

+ (
∂Zwx

∂qwx

∂qwx

∂qx
+
∂Zwx

∂fwx

∂fwx

∂qr
)δqx

= {1.75Pwxq
0.75
wx Fwx(ε

2
x

2n∑
k=0

Pxkf
k
wx)

+Pwxq
1.75
wx [ε

2
x

2n∑
k=0

Pxkkf
k
wx(

1
qr
−

1
qr+ qx

)]}δqr

+{1.75Pwxq
0.75
wx Fwx(ε

2
x

2n∑
k=0

Pxkf
k
wx)

+Pwxq
1.75
wx [ε

2
x

2n∑
k=0

Pxkkf
k
wx(−

1
qr+ qx

)]}δqx, (23)

where the subscript “x” represents either snow (s) or grau-
pel (g). Using s (g) to replace the subscript “x” in Eq. (23),
we can obtain the tangent linear operator of the contribution
from wet snow (wet graupel).

The linearization of Eq. (1) is given by

δZ = 10
1

Ze ln10
δZe, (24)

where δZe is the sum of δZr, δZds, δZdg, δZws, and δZwg.
Note that Ze cannot be zero. Moreover, a too-small Ze may
result in an extremely large gradient during the minimization,
which is undesirable. Therefore, the accepted minimum Ze
is set to 1.0 in the current RadarVar. When the background
value is smaller than this minimum value, DA system will
discard the corresponding observation to prevent a large gra-
dient. This minimum value can be smaller to ingest more ob-
servation and will be tuned in future work.

2.3 Adjoint operator

The adjoint operator is the transpose of the tangent linear
operator. Because the tangent linear operator is applied to the
model variables qr, qs, and qg, the adjoint operator is written
for these variables. First, the adjoint operator is written for
Eq. (24). This operator has the following form:

δZA
e = 10

1
Ze ln10

δZ, (25)

where the superscript “A” means adjoint.
For rainwater in Eq. (21), the adjoint operator is given by

δqA
r = δq

A
r + 1.77Pr(qpr)

0.77(1−Fws−Fwg)δZ
A
e . (26)

The parameter qA
r on the right-hand side of Eq. (26) is the

accumulated qA
r before computing Eq. (26). This rule is also

valid for qx .
The adjoint operator of Eq. (22) is given by

δqA
x = δq

A
x + 1.75Pdxq

0.75
dx (1−Fwx)δZ

A
e . (27)

Because Eq. (23) is the derivation with respect to both qr
and qx , the adjoint operator of Eq. (23) contains two parts:
one for rainwater and the other for ice species. For rainwater
involved in Eq. (23), the adjoint operator is given by

δqA
r =δq

A
r + 1.75Pwxq

0.75
wx Fwx(ε

2
x

2n∑
k=0

Pxkf
k
wx)δZ

A
e

+Pwxq
1.75
wx [ε

2
x

2n∑
k=0

Pxkkf
k
wx(

1
qr
−

1
qr+ qx

)]δZA
e . (28)

For ice species in Eq. (23), the adjoint operator is given by

δqA
x =δq

A
x + 1.75Pwxq

0.75
wx Fwx(ε

2
x

2n∑
k=0

Pxkf
k
wx)δZ

A
e

+Pwxq
1.75
wx [ε

2
x

2n∑
k=0

Pxkkf
k
wx(−

1
qr+ qx

)]δZA
e . (29)
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Figure 1. (a) The reflectivity as (a) a function of qr (red), qs (green),
and qg (blue) for pure water and dry snow/graupel and (b) a function
of qr–qs (colors) and qr–qg (contours) for wet snow/graupel.

2.4 Sensitivity of RadarVar to changes in hydrometeors

Since RadarVar is highly nonlinear, understanding its re-
sponse to changes in qr, qs, and qg assists in the analysis
of DA results using this operator. The response functions for
Eqs. (9), (14), and (17) are plotted in Fig. 1. Figure 1b is a
two-dimensional plot because Eq. (17) involves two kinds of
hydrometeors. Figure 1a shows that the reflectivity changes
more rapidly for all three hydrometeors when the mixing ra-
tios are less than 0.5 g kg−1. As the mixing ratios increase to
2.0 g kg−1 or greater, the relationship between the reflectivity
and the mixing ratio is approximately linear. This feature in-
dicates that the reflectivity is more sensitive at small mixing
ratios, and it also implies that the tangent linear approxima-
tion may give larger errors when the background reflectivity
is small.

In addition, the reflectivity contribution from wet snow in-
creases more substantially than that from dry snow when qs

Figure 2. The simulation domain with radar sites marked by radar
icons and names. The areas of precipitation greater than 5 mm h−1

are plotted for 00:00 Z (red), 02:00 Z (green), and 04:00 Z (blue) on
2 June 2018.

or qr are in the range of 0–0.5 g kg−1. Figure 1b shows that
the reflectivity reaches 35 dBZ when both qs and qr are ap-
proximately 0.2 g kg−1, while this reflectivity value requires
qs of ∼ 1.2 g kg−1 for dry snow. This result is expected be-
cause many observation studies (e.g., Zhang et al., 2008)
have shown that wet snow causes a bright band (large re-
flectivity) in the melting layer. This result also implies that
the approximation error in the melting layer could be large.

3 Data and experimental design

3.1 Case review

This study focuses on a precipitation case that occurred in
the northern US. The precipitation initiated at approximately
21:00 Z on 1 June 2018, when convective cells formed near
the border between South Dakota and Nebraska. By 00:00 Z
on 2 June 2018, these cells had developed into a linear con-
vective system that was approximately 300 km long in the
northeast–southwest direction and stretched from south of
South Dakota to northern Nebraska, as shown in Fig. 2.
Note that there is also a weaker precipitation system near
the north boundary of the domain. The top of the convec-
tive system at this time, identified by reflectivity greater
than 5 dBZ, reached 16 km a.g.l. This convective line devel-
oped further and moved to southeast Nebraska from 00:00
to 04:00 Z. During this period, a bow echo was observed on
the radar mosaic provided by the National Centers for En-
vironmental Information (NCEI). By 08:00 Z, the convective
line had moved to the northern border of Kansas, followed
by a large area of stratiform clouds that covered eastern Ne-
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Figure 3. (a–c) The standard deviations of the background errors at different vertical levels, (d–f) the horizontal correlation length scale as a
function of EOF mode, and (g–i) the vertical correlation coefficients for qr, qs, and qg.

braska. The precipitation caused by this convective system
lasted for nearly 20 h and ended at approximately 18:00 Z on
2 June 2018.

3.2 Settings of the forecast model

Version 3.9.1 of the Weather Research and Forecasting
(WRF; Skamarock et al., 2018) model was employed. All of
the experiments were performed on a 450×450×42 domain
centered at 41◦ N, 96◦W, in eastern Nebraska (Fig. 2). The
horizontal grid spacing was 3 km. The terrain-following ver-
tical grid was employed with the model top at 50 hPa. All of
the experiments used the same physical parameterizations:
no cumulus parameterization, the Thompson microphysics
scheme (Thompson et al., 2004), the Rapid Radiative Trans-
fer Model for general circulation models (RRTMG) long-
wave and shortwave radiation scheme (Iacono et al., 2008;
Mlawer et al., 1997), and the Unified Noah land-surface
model (Chen and Dudhia, 2001). Note that in the current

RadarVar implementation, the intercept parameters are fixed,
while they spatiotemporally vary in the Thompson scheme.
This inconsistency may increase the adjustment time for
model initialization. However, this issue is secondary in the
present work because no improvement in terms of forecast
skill which will be introduced was found in our early tests
using a single-moment microphysics scheme with the den-
sity and intercept parameters being identical to RadarVar.
The primary DA issue in this study is the poor background
quality (due to no hydrometeor in Global Forecast System
(GFS) analysis or the precipitation displacement). The incon-
sistency between the operator and microphysics scheme will
be considered in the future. The initial conditions and the lat-
eral boundary conditions were generated with the GFS data
at 00:00 Z on 2 June 2018.
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3.3 Generation of the background error covariance

RadarVar was implemented in the WRF data assimilation
(WRFDA) (Barker et al., 2012) system. To perform the vari-
ational DA with this newly developed radar operator, it is
necessary to generate the background error covariance ma-
trix with qr, qs, and qg as part of the control variables. The
generalized software package for the background error co-
variance statistics (GEN_BE) developed by Descombes et
al. (2015) was used. The GEN_BE package can generate
the univariate background error statistics for 11 variables,
including these three hydrometeors. The background error
statistics were computed using the National Meteorological
Center (NMC) method (Parrish and Derber, 1992), which
uses pairs of the differences between the 12 and 24 h fore-
casts. In total, 27 d forecasts from 20 May to 15 June 2018
were employed to generate the background error covariance.

The background error statistics for qr, qs, and qg are shown
in Fig. 3. The vertical distributions of the background error’s
standard deviation (Fig. 3a, b, c) are consistent with those
of the corresponding hydrometeor profiles: the error of the
rainwater mainly appears in the lower levels, while those of
snow and graupel mainly exist in the upper levels. The grau-
pel may fall from the upper levels into the lower levels, so the
graupel error has a broad vertical distribution. The horizontal
correlation length scales of the background errors are often
less than four grids (< 12 km), and the vertical correlation of
each hydrometeor can be large at the associated precipitation
levels. These spatial correlations of the hydrometeor errors
determine the remote horizontal and vertical influences of the
observed reflectivity.

3.4 Observation data and verification data

Radar data at 00:00 and 01:00 Z on 2 June 2018 were se-
lected to evaluate the radar operator in a variational analysis
framework because the convection was sufficiently deep to
contain ice-phase species. To fully cover the convective sys-
tem at 00:00 Z, data from KABR, KFSD, KLNX, KOAX,
KUDX, and KUEX were used, and KLNX was the closest
radar from the convective line (Fig. 2). These radars were
located in Nebraska and South Dakota. The radar data were
stored in level-II format and converted to WRFDA format
using a modified 88D2ARPS package, which is widely used
in radar DA studies (Putnam et al., 2014; Snook et al., 2011,
2012). During this conversion, the radar data were also hor-
izontally remapped to the model grids but remained at the
radar elevations in the vertical direction; in other words, the
horizontal resolution of the radar data after the conversion
was consistent with that of the model. To be consistent with
the work using the J08 operator (Jung et al., 2008b), the ob-
servation error of the reflectivity was set to 2.0 dBZ. Our
early tests using different observation errors indicated that
the errors of the analysis reflectivity were comparable when
using reflectivity errors ranging from 0.5 to 2.0 dBZ. For

Figure 4. Scatter plot of the reflectivity for J08orig (x axis) versus
RadarVar (y axis). The bias, standard deviation (SD), and number
of samples are listed in the plot.

computational efficiency, we selected the remapped data ev-
ery two grids in both the x and y directions for the DA.

The NCEP gridded stage IV (ST4) dataset (Lin and
Mitchell, 2005) was used for the precipitation forecast ver-
ification. ST4 data with a horizontal resolution of 4 km were
interpolated into the 3 km model grid mesh to evaluate the
precipitation prediction. At each model grid, the interpolated
value was the weighted average of the ST4 data within 10 km
of the grid; these data were weighted by the square of the in-
verse of the distance between the model grid and the ST4
data location.

3.5 Experimental design

As the first attempt to implement and apply RadarVar in
WRFDA, this study focused on the quality of the analysis us-
ing the univariate three-dimensional variational (3D-Var) DA
method in terms of the root mean square difference (RMSD)
against the observed reflectivity and the similarity between
the observed reflectivity distributions and the analysis. The
forecast performance is the secondary concern and will be
explored more thoroughly in a future study with multivariate
analysis using more advanced DA techniques.

All of the DA experiments analyzed only rainwater, snow,
and graupel by assimilating only the radar reflectivity ob-
servations. The first DA experiment, called Exp_ref, is con-
sidered the benchmark experiment; it mostly used the de-
fault configurations of WRFDA-3D-Var, except the number
of outer loops was set to six, and the number of maximum
iterations in each outer loop was set to 150. More outer loops
were necessary due to inaccurate background hydrometeors
and the high nonlinearity of the radar operator. To determine
the tradeoff between the analysis quality and computational
cost, two variants of Exp_ref were conducted with 50 and
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Figure 5. (a) Vertical distributions of the maximum absolute values of the perturbed qr (red), qs (green), and qg (blue). Reflectivity scatter
plots of all_prt (x axis) versus (b) F_unprt (y axis), (c) rhom_unprt (y axis), and (d) SD_unprt (y axis) at model levels 1–12 (black, lower
than 3 km a.g.l.), 12–20 (red, between 3 and 7 km a.g.l.), and 21–30 (green, above 7 km a.g.l.).

100 inner iterations. In each experiment, the radar DA anal-
yses were performed at 00:00 and 01:00 Z. The background
for the 00:00 Z analysis was interpolated from the GFS anal-
ysis with zeros for the hydrometeor fields, and the back-
ground for the 01:00 Z analysis was the 1 h WRF forecast
from the 00:00 Z analysis with more realistic hydrometeor
fields.

Note that TL/AD of RadarVar will not be able to create re-
flectivity increments with the zero-hydrometeor background
(serves as the base state of TL/AD in the first outer loop),
which is the case for the 00:00 Z analysis. An approach to
address this issue is to reset the zero background values of
qr, qs, and qg to small values that can range from 10−9 to
10−6 kg kg−1 (e.g., Wang and Wang, 2017). However, this
approach will result in the fraction F being a constant, while
it is expected that F will peak near the middle of the melting
layer. Therefore, we introduced a hydrometeor preprocess-
ing step before performing the analysis, which constructs a
new background with the weighted sum of the radar-retrieved
hydrometeor mixing ratios and their background counter-
parts. The hydrometeor retrieval followed the procedure that

is available in WRFDA, which is based on Gao and Sten-
srud (2012). The weight coefficients are arbitrarily set to 0.1
for the retrieval part and to 0.9 for the background. The small
weight for the retrieval part was used to minimize the impact
of the retrieval, mainly to ensure a nonzero background. In
addition, current RadarVar cannot work with the weight co-
efficient of the retrieval part being smaller than 6×10−4 if the
background contains no hydrometeor. A larger weight coef-
ficient of the retrieval part (e.g., 0.5) reduces the difference
between the background and the observation, which weakens
the impact of direct DA using RadarVar and is contradictory
to the purpose of this study. The hydrometeor preprocessing
was performed at both 00:00 and 01:00 Z in Exp_ref as a ref-
erence.

To examine the analysis performance with a bad back-
ground, the Exp_ref analysis at 00:00 Z was also run with
a very small retrieval weight of 6×10−4. In addition, the im-
pact of the hydrometeor preprocessing on a relatively “good”
background (01:00 Z) was examined by comparing it with an
experiment without hydrometeor preprocessing.
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Table 3. Perturbation samples for the verification of the tangent linear operator.

qr (kg kg−1) qs (kg kg−1) qg (kg kg−1) Ratio

Sample 1 min: −4.1× 10−4, max: 4.7× 10−4 min: −4.2× 10−4, max: 4.4× 10−4 min: −3.7× 10−4, max: 3.1× 10−4 1.00114799
Sample 2 min: −1.6× 10−6, max: 1.8× 10−6 min: −1.6× 10−6, max: 1.7× 10−6 min: −1.4× 10−6, max: 1.2× 10−6 1.00004709

Figure 6. Scatter plots of the observed (x axis) versus (a, c) background and (b, d) analysis reflectivity at (a, b) 00:00 Z and (c, d) 01:00 Z in
Exp_ref. The mean bias and SD between the observations and the background (or analysis) are listed in each plot.

In several previous studies (Ban et al., 2017; Choi et al.,
2017; e.g., Shen and Min, 2015), the horizontal correlation
length scale factor of the background error had a large im-
pact on the analysis. Therefore, two additional experiments,
Exp_ls0.5 and Exp_ls0.125, were performed at 00:00 Z with
the length scale factors of 0.5 and 0.125, respectively.

Short-term forecasts from some of these analyses and from
the GFS analysis (referred to as the “noDA” experiment)
were also carried out and evaluated.

4 Radar operator validation

Before evaluating the performance of RadarVar in WRFDA-
3D-Var, we first examined the consistency between J08orig
and RadarVar. Because RadarVar follows the J08 operator,
the operator implemented in ARPS EnKF (Jung et al., 2008a)
was used to serve as the J08orig operator. To be comparable

to J08orig operator, the coefficients of graupel listed in Ta-
bles 1 and 2, as well as the intercept parameter and hydrom-
eteor density, are replaced by those listed in J08, which were
designed for hail. These hail-associated coefficients are used
only in Sect. 4 for comparison. The noDA 4 h forecast initial-
ized at 00:00 Z was used as the input of the radar operators.
The results, which are shown in Fig. 4, indicate that the dif-
ference between J08orig and RadarVar is small and accept-
able. The small difference is likely caused by the subtle pro-
gramming differences between the two software packages.

To verify whether RadarVar is sensitive to the unchanged
variables during the minimization (see Sect. 2b), four tests
were conducted. The same noDA 4 h forecast was used. In
these tests, qr, qs, and qg were randomly perturbed with stan-
dard deviations proportional to their input values; in other
words, a large background mixing ratio caused a large pertur-
bation. The tests called F_unprt, rhom_unprt, and SD_unprt
represent that the fraction F , the mixed form density, and
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Figure 7. The (a, e, i, c, g, k) observed (KLNX) and (b, f, j, d, h, l) analysis reflectivities at (a–d) 2 km, (e–h) 4 km, and (i–l) 6 km a.g.l. at
(a, e, i, b, f, j) 00:00 Z and (c, g, k, d, h, l) 01:00 Z in Exp_ref.

the standard deviation of canting angle, respectively, were
unperturbed (i.e., fixed input calculated from the forecast in-
put). The test called all_prt denotes that all of the variables
in RadarVar were calculated using perturbed mixing ratios.
The standard deviation of the perturbation was set to 10 % of
the background value; thus, the maximum perturbation could
be large, as shown in Fig. 5a. Figure 5 shows that the re-
flectivities computed in F_unprt, rhom_unprt, and SD_unprt
do not differ significantly from those computed in all_prt.
This result indicates that keeping these variables unchanged
during the minimization is an acceptable approximation. The
most noticeable difference occurs in the middle layer, which
is marked in red circles that plot off the diagonal line by sev-
eral dBZ (Fig. 5c), but there are few of these samples.

The tangent linear operator of RadarVar was verified
through a ratio, which is given by

|H(x+ εδx)−H(x)|
ε |H(δx)|

= 1+O(ε), (30)

where H and H represent the nonlinear operator and the
corresponding TL version, respectively, x is the vector of
the model state variables (qr, qs, qg), whose perturbation is

denoted by δx, and ε is the perturbation magnitude and is
greater than zero; δx used the perturbations generated for
all_prt. Table 3 shows that the tangent linear operator is suf-
ficiently accurate with a ratio close to 1.0.

A correct adjoint operator must satisfy the relationship that
is given by

(Hδx)THδx= δxTHT(Hδx). (31)

The meanings of all of the symbols in this equation are con-
sistent with those in Eq. (30), and HT is the adjoint operator.
All of the perturbations used for the tangent linear test were
adopted in the adjoint test. In the double precision test, there
were 14 identical digits on both sides of Eq. (31); in the sin-
gle precision test, there were seven identical digits.
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Figure 8. The (a, b, c) 00:00 Z and (d, e, f) 01:00 Z analyses of qr (red), qs (green), and qg (blue) at model levels 5 (left column), 15 (middle
column), and 20 (right column) for outer loop 6 in Exp_ref. Model levels 5, 15, and 20 approximately correspond to 0.7, 4.0, and 8.0 km a.g.l.,
respectively.

5 Results

5.1 Analyses in the observation space and the model
space

The Exp_ref analyses (six outer loops, 150 inner iterations,
and 0.1 weight for the retrieval part) are first examined in
terms of the radar reflectivity and the mixing ratios of rain,
snow, and graupel. As expected, the analyzed reflectivity
agrees much more closely with the observed reflectivity than
the background reflectivity for both analysis times (00:00 and
01:00 Z) (Fig. 6). In addition, considering that the 00:00 Z
background bias is much larger than that at 01:00 Z, the
comparable analysis error for both times indicates that the
analysis is generally relatively insensitive to the initial back-
ground. However, a small number of points in the analysis
have zero reflectivity, while the corresponding observations
can be greater than 10 dBZ (Fig. 6b, d). Further examination
indicates that these failed points are related to the locations
with very small background values of qr, qs, and qg, where
the nonlinearity of the radar operator and the deficiency of
the TL/AD operator are more pronounced.

Figure 7 shows the horizontal distributions of the observed
and analyzed reflectivities at 2 km, 4 km (melting layer), and
6 km a.g.l. In general, they match well in observed areas with
a weaker analysis at 00:00 Z, which is likely caused by the
bad background. Spurious echoes appear over unobserved ar-
eas in the analyses at both 00:00 and 01:00 Z and most likely
resulted from the spatial correlations in the background error
covariance; these correlations allow the propagation of infor-
mation from observed areas to unobserved areas both hori-
zontally and vertically. This result implies that the statistical
correlation length scales obtained from a 1-month forecast
sample may be too large for this squall line case. The re-
sults of tuning the horizontal correlation length scales will be
given in Sect. 5.4. Another cause of these spurious echoes is
that non-precipitation echoes were not assigned in the obser-
vation data in this study such that DA has no impact outside
the observed convective area. An approach to suppress the
spurious echoes is to determine the non-precipitation points,
assign a specific value like 0 dBZ to these points, and assim-
ilate these non-precipitation echoes. The non-precipitation
echoes will be considered in the future.
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Figure 9. The cost function and normalized gradient norm as functions of the iteration step during the minimization at (a, c) 00:00 Z and (b,
d) 01:00 Z in Exp_ref.

The 00:00 and 01:00 Z analyses of qr, qs, and qg at three
model levels are shown in Fig. 8. The direct assimilation of
the reflectivity data using RadarVar successfully retrieved the
lower level rain, the upper level snow or graupel, and mixed
rain/snow and/or rain/graupel in the melting layer (model
level 15). Note that the analysis increment can be created
only at levels where the SD of the background error is larger
than zero (see Fig. 3).

5.2 Convergence of the minimization

Figure 9 shows the cost function and the norm of its gradi-
ent as a function of the number of inner iterations for the first,
third, and sixth outer loops. For the 00:00 Z Exp_ref analysis,
both the cost function and the gradient norm decrease rapidly
in the first outer loop due to the large adjustment from the bad
initial background. Using the improved guess after two outer
loops, the third outer loop starts from an∼ 85 % smaller cost
function, which is then reduced more gradually with increas-
ing iterations. Performing more outer loops does not further
reduce the cost function substantially, and outer loop 6 even
has a slightly larger cost function than that of outer loop 3.
Similar behavior can also be observed in the 01:00 Z analy-
sis, but performing more than three outer loops can further
reduce the cost function to a small extent. This indicates that
performing six outer loops may not be necessary and that two
or three outer loops may be sufficient.

To more quantitatively measure the impacts of the number
of outer loops and inner iterations, the correlation coefficients
between the Exp_ref analysis (i.e., six outer loops and 150 it-
erations in each loop) and the analyses with one to five outer
loops and 50/100/150 inner iterations in each loop are calcu-
lated and shown in Fig. 10. In the 00:00 Z analysis, the cor-
relation coefficients of qr and qg are already greater than 0.9
after the first outer loop, and using 50 or 100 inner iterations
also results in good agreement with the Exp_ref analysis for
qr and qg. However, this is not the case for qs, which is likely
an indication of a bad qs background (0.1 of the retrieved
values). Given that the correlation coefficients of reflectivity
reach 0.9 after the second outer loop, the low correlation co-
efficients of qs also imply that it is difficult to distinguish the
contributions from ice-phase species. Even with a more real-
istic background at 01:00 Z, the issue of the qs analysis with
less iterations and outer loops (Fig. 10b) still exists, but the
higher correlation coefficient of the run with 150 iterations
after four outer loops, compared to the counterparts in the
00:00 Z analysis, indicates the importance of the background
quality. Note that the hydrometeor’s phase information could
be better determined by assimilating polarization measure-
ments from dual-polarization radar, which will be explored
in a future study.
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Figure 10. The correlation coefficients of qr (red), qs (green), qg (blue), and reflectivity (gray) between the Exp_ref analysis (with six outer
loops and 150 inner iterations each loop) and that with different numbers of outer loops and inner iterations at (a) 00:00 Z and (b) 01:00 Z.

Figure 11. Same as Fig. 6 but for the experiments without hydrometeor preprocessing at (a, b) 00:00 and (c, d) 01:00 Z.

5.3 Importance of hydrometeor preprocessing

To further investigate the sensitivity of the analysis to the
background quality, additional analyses without the hy-
drometeor preprocessing step were performed at 00:00 and
01:00 Z. At 00:00 Z, the nonzero background was con-
structed by using a very small weight (7× 10−4) for the re-

trievals. At 01:00 Z, the background is simply taken from
the 1 h WRF forecast. Compared to Fig. 6b, the analysis at
00:00 Z (Fig. 11b) has many more failed points (i.e., those
with zero analyzed reflectivity) due to the excessively small
background hydrometeor values. In contrast, the 01:00 Z
analysis (Fig. 11d) without preprocessing has a comparable
error bias and SD to those with the preprocessing (Fig. 6d).
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Figure 12. (a, c) The analysis reflectivity at 4 km a.g.l. and (b, d) the analyses of qr (red), qs (green), and qg (blue) at model level 15 at 00:00
and 01:00 Z for the experiments without hydrometeor preprocessing.

These results indicate that the preprocessing step is mostly
needed to address the bad background.

Figure 12a shows that the analyzed reflectivity in the melt-
ing layer has a reasonable fit to the observations even though
it started from very small values of the background reflectiv-
ity. The analysis in the model space (Fig. 12b) is also sim-
ilar to that with the preprocessing (Fig. 8b). However, the
reflectivity coverage (> 35 dBZ) in Fig. 12a is smaller than
those in the observation and Exp_ref, which corresponds to
the horizontally distributed points on the bottom of Fig. 11b.
In contrast, the 01Z analysis without the preprocessing step
(Fig. 12c, d) closely resembles that with the preprocessing
(Figs. 7h and 8e) in terms of the radar reflectivity and hy-
drometeor mixing ratios, especially over the strong convec-
tive line (dashed black line in Fig. 12d). However, remov-
ing this preprocessing step results in a large spurious echo
(marked by “A” in Fig. 12c) that is smaller in Fig. 7h. This
implies that the preprocessing step will still be helpful for
some “bad” locations (e.g., mismatched convective cells be-

tween the model background and observation) for a generally
“good” background.

5.4 Impact of the spatial correlation scale

Figure 13 shows the 00:00 Z analysis reflectivity at
4 km a.g.l. with the horizontal correlation length scales of the
background errors reduced by factors of 2 and 4. The spuri-
ous echoes weaken as the length scale decreases, especially
for the spurious echoes marked by “A”. In addition, reduc-
ing the length scale improves the intensity analysis at certain
locations (e.g., the convective cell marked by “B”; also see
Fig. 7e, f). Note that the background error statistics used for
these 3D-Var analyses were obtained from forecast samples
over a month-long period and are likely not optimal for this
particular squall line case. A better solution would be the use
of the flow-dependent background error covariance, which
will be investigated in the future using more advanced DA
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Figure 13. Same as Fig. 7 but for (a) the observations and the analyses from (b) Exp_ref, (c) Exp_ls0.5, and (d) Exp_ls0.125.

methods, such as 4D-Var and hybrid-3D/4DEnVar that are
available in WRFDA.

5.5 Impact on the precipitation forecast

The performance of the precipitation forecasts was quanti-
tatively evaluated using the stage IV dataset with the frac-
tions skill score (FSS; Roberts and Lean, 2008). Hourly pre-
cipitation forecasts between 02:00 and 05:00 Z were evalu-
ated because assimilating only the reflectivity is expected to
have an impact mostly on the short-term forecast. Similar
to Schwartz et al. (2014), the aggregated FSS over the pe-
riod from 02:00 to 05:00 Z is shown in Fig. 14 for the fore-
casts initialized at 00:00 and 01:00 Z and for different rainfall
thresholds. For the forecast from 00:00 Z (Fig. 15a), Exp_ref
obtained greater FSSs than those of noDA for thresholds
greater than 5 mm h−1 with a radius of influence smaller than
40 km. With a larger radius, this difference remains for the
lighter rain (< 20 mm h−1) but disappears for the heavy rain
(≥ 20 mm h−1). Similar behavior can be observed for the
forecast at 01:00 Z (Fig. 15b) but with a more positive im-

pact from the radar DA for heavier rainfall and for a radius
of influence smaller than 50 km. Further examination (not
shown) indicated that the improvement in the moderate rain
(> 5 mm h−1) prediction was associated with the larger snow
area in the analysis, so the light rain missed by noDA was
better captured in Exp_ref. This examination also showed
that the higher FSSs obtained by Exp_ref for the heavier rain-
fall were mostly associated with the smaller displacement er-
ror.

6 Conclusions

This study developed tangent linear and adjoint operators
based on the J08 reflectivity operator and implemented them
in WRFDA. This new operator can compute the reflectiv-
ity contributed by ice-phase species and is called RadarVar.
RadarVar is effective at analyzing rainwater, snow, and grau-
pel by directly assimilating US WSR-88D S-band radar re-
flectivity with WRFDA’s 3D-Var. The analysis accuracy is
somewhat sensitive to the numbers of outer loops and in-
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Figure 14. The FSSs of the hourly precipitation forecasts aggregated over the period from 02:00 to 05:00 Z as functions of the radius of
influence for forecasts launched from the (a) 00:00 and (b) 01:00 Z analyses for Exp_ref (solid lines) and noDA (dashed lines). The hourly
precipitation thresholds are denoted by green (1 mm h−1), blue (5 mm h−1), orange (10 mm h−1), and red (20 mm h−1) lines. The straight
dashed line represents the skillful FSS at 1 mm h−1.

ner iterations. The results indicated that two to three outer
loops with 50–100 iterations in each loop are needed to ob-
tain a sufficiently accurate analysis. Two problems of Radar-
Var were found in our test. One issue is the analysis failures
at locations with observed radar echoes but with zero or ex-
cessively small model background values of the hydromete-
ors. This issue can be partially resolved using a preprocessing
step with radar-retrieved hydrometeors to improve the “bad”
background before the analysis. Another issue is the spuri-
ous radar echoes (i.e., precipitation) in the analysis caused by
the spatial correlations in the background error covariance.
These can be reduced by decreasing the correlation length
scales. In addition, the short-term (2–5 h) precipitation fore-
cast is improved by the direct reflectivity DA even though the
inexpensive univariate 3D-Var technique is used in this first
attempt of applying RadarVar.

A more thorough evaluation of reflectivity DA with Radar-
Var will be examined in a future study using a more ad-
vanced hybrid ensemble–variational DA technique, which
allows flow-dependent background errors with multivariate
correlations and is expected to further reduce the aforemen-
tioned deficiencies. Moreover, RadarVar will be extended to
include the computation of polarimetric quantities to better
determine the phases of the hydrometeors, especially in the
melting layers.

Code and data availability. The RadarVar v1.0 operator is in-
tegrated into the community WRFDA software and will be
publicly available in a future release. The code of RadarVar
v1.0 and the scripts for running experiments in this study can be
obtained at https://github.com/children1985/WRFDA_gmdd
(Wang, 2019). The GFS data are available at https:
//www.ncdc.noaa.gov/data-access/model-data/model-datasets/
global-forcast-system-gfs (National centers for environmental
information, 2019a) and the radar data can be downloaded
at https://www.ncdc.noaa.gov/nexradinv/ (National centers for
environmental information, 2019b).
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Appendix A

This section provides details about the reorganization of all
of the terms in the brackets in Eq. (11) in terms of the fwx
power. For convenience, the expressions in these brackets are
represented by G(fwx).

Applying Eq. (16) to the brackets in Eq. (11) results in

G(fwx)=ε
2
x[A(

n∑
k=0

Pwxakf
k
wx)

2
+B(

n∑
k=0

Pwxbkf
k
wx)

2

+ 2C(
n∑
k=0

Pwxakf
k
wx)(

n∑
k=0

Pwxbkf
k
wx)]. (A1)

Expanding all of the terms of Eq. (A1) results in

G(fwx)=ε
2
x{A

n∑
i=0
[Pwxai(

n∑
j=0

Pwxajf
i+j
wx )]

+B

n∑
i=0
[Pwxbi(

n∑
j=0

Pwxbjf
i+j
wx )]

+ 2C
n∑
i=0
[Pwxai(

n∑
j=0

Pwxbjf
i+j
wx )]}. (A2)

Reorganizing the third term (omitting 2C) of Eq. (A2) in
terms of the fwx power (i+ j ) results in

n∑
i=0
[Pwxai(

n∑
j=0

Pwxbjf
i+j
wx )] = Pwxa0Pwxb0f

0
wx

+Pwxa0Pwxb1f
1
wx +Pwxa1Pwxb0f

1
wx

· · ·

+Pwxa0Pwxbnf
n
wx +Pwxa1Pwxb(n−1)f

n
wx

+ ·· ·+PwxanPwxb0f
n
wx

+Pwxa1Pwxbnf
n+1
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n+1
wx

+ ·· ·+PwxanPwxb1f
n+1
wx

· · ·

+Pwxa(n−1)Pwxbnf
2n−1
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2n−1
wx

+PwxanPwxbnf
2n
wx

=

n∑
k=0
[f kwx

k∑
i=0

PwxaiPwxb(k−i)]

+

2n∑
k=n+1

[f kwx

n∑
i=k−n

PwxaiPwxb(k−i)]. (A3)

The sum functions in the square brackets on the right-
hand side of Eq. (A3) correspond to the third expression of
Eq. (20). Using the third expression of Eq. (20), the third

term of Eq. (A2) is rewritten as follows:

2C
n∑
i=0
[Pwxai(

n∑
j=0

Pwxbjf
i+j
wx )]

= 2C{
n∑
k=0
[f kwx
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+
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[f kwx

n∑
i=k−n

PwxaiPwxb(k− i)]}

= 2C
2n∑
k=0

PCxkf
k
wx, (A4)

where PCxk has the same meaning as in Eq. (20). Similarly,
we can rewrite the other two terms in Eq. (A2) as follows:

A
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i=0
[Pwxai(

n∑
j=0

Pwxajf
i+j
wx )] =
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k
wx . (A5)

Because these three expressions (Eqs. A4 and A5) contain
the same sum function with respect to k from 0 to 2n,
Eq. (A2) can be rewritten as follows:
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G(fwx)= ε
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