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Abstract. Herein, we present a description of the Mecha-
nism of Intermediate complexity for Modelling Iron (MIMI
v1.0). This iron processing module was developed for use
within Earth system models and has been updated within a
modal aerosol framework from the original implementation
in a bulk aerosol model. MIMI simulates the emission and at-
mospheric processing of two main sources of iron in aerosol
prior to deposition: mineral dust and combustion processes.
Atmospheric dissolution of insoluble to soluble iron is pa-
rameterized by an acidic interstitial aerosol reaction and a
separate in-cloud aerosol reaction scheme based on observa-
tions of enhanced aerosol iron solubility in the presence of
oxalate. Updates include a more comprehensive treatment of
combustion iron emissions, improvements to the iron disso-
lution scheme, and an improved physical dust mobilization
scheme. An extensive dataset consisting predominantly of
cruise-based observations was compiled to compare to the
model. The annual mean modelled concentration of surface-
level total iron compared well with observations but less so
in the soluble fraction (iron solubility) for which observa-
tions are much more variable in space and time. Comparing
model and observational data is sensitive to the definition of
the average as well as the temporal and spatial range over
which it is calculated. Through statistical analysis and ex-
amples, we show that a median or log-normal distribution

is preferred when comparing with soluble iron observations.
The iron solubility calculated at each model time step ver-
sus that calculated based on a ratio of the monthly mean
values, which is routinely presented in aerosol studies and
used in ocean biogeochemistry models, is on average glob-
ally one-third (34 %) higher. We redefined ocean deposition
regions based on dominant iron emission sources and found
that the daily variability in soluble iron simulated by MIMI
was larger than that of previous model simulations. MIMI
simulated a general increase in soluble iron deposition to
Southern Hemisphere oceans by a factor of 2 to 4 compared
with the previous version, which has implications for our un-
derstanding of the ocean biogeochemistry of these predomi-
nantly iron-limited ocean regions.

1 Introduction

Iron is an essential micronutrient for ocean primary produc-
tivity (Martin et al., 1991; Martin, 1990). Iron deficiency in
oceans leads to high-nutrient low-chlorophyll (HNLC) con-
ditions under which the photosynthetic productivity of phy-
toplankton is iron limited (Boyd et al., 2007; Jickells et al.,
2005), and in other regions iron may be an important nu-
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trient for nitrogen fixation by diazotrophs (Capone et al.,
1997; Moore et al., 2013, 2006). Atmospheric deposition of
bioavailable iron (i.e. the fraction of the total iron deposited
that is readily available for ocean biota uptake) contained in
aerosol is an important source of new iron for the remote
open ocean (Duce and Tindale, 1991; Fung et al., 2000);
therefore, iron impacts the ability of oceans to act as a sink
of atmospheric carbon dioxide (Jickells et al., 2014; Moore
et al., 2013).

Several definitions for bioavailable iron have been pro-
posed. The solubility of iron is considered to be a key factor
modulating its bioavailability (Baker et al., 2006a, b); there-
fore, we consider bioavailable iron to be dissolved (labile)
iron in either a (II) or (III) oxidation state, and we define
this as the soluble iron concentration throughout the paper.
However, since most aerosol iron is insoluble at emission
the processing of insoluble iron to a soluble form must oc-
cur during atmospheric transport. The acidic processing of
iron contained in aerosol is one pathway through which sol-
uble iron can be liberated from an insoluble form with de-
creasing pH (Duce and Tindale, 1991; Solmon et al., 2009;
Zhu et al., 1997). Organic ligands, in particular oxalate, also
increase iron solubility by weakening or cleaving the Fe–
O bonds found in iron oxide minerals via complexation (Li
et al., 2018; Panias et al., 1996), and in nature this reaction
proceeds most rapidly in a slightly acidic aqueous medium,
such as cloud droplets (Cornell and Schindler, 1987; Paris
et al., 2011; Xu and Gao, 2008). Organic ligand processing
has been estimated to increase soluble iron concentrations
by up to 75 % more than is achievable with acid processing
alone (Ito, 2015; Johnson and Meskhidze, 2013; Myrioke-
falitakis et al., 2015; Scanza et al., 2018). However, there
is no single mechanism that describes the observed inverse
relationship of higher iron solubilities with decreasing iron
concentrations (Sholkovitz et al., 2012). Rather, Mahowald
et al. (2018) used a 1-D plume model to demonstrate that
the observed trend can be explained by either the differences
in iron solubility at emission or the atmospheric dissolution
of insoluble iron. Thus, there is no observational constraint
to indicate which is more likely unless spatial distribution is
also considered.

The recent increase in efforts to model iron solubility (Ito,
2015; Ito and Xu, 2014; Johnson and Meskhidze, 2013; Luo
et al., 2008; Meskhidze et al., 2005; Myriokefalitakis et al.,
2015; Scanza et al., 2018) reflects its importance for un-
derstanding biogeochemical cycles (Andreae and Crutzen,
1997; Arimoto, 2001; Jickells et al., 2005; Mahowald, 2011)
and how human activity may be perturbing them (Mahowald
et al., 2009, 2017). However, the multifaceted nature of how
iron interacts within the Earth system results in many un-
certainties regarding how to best represent the atmospheric
iron cycle within models, which are themselves of varying
complexity (Myriokefalitakis et al., 2018). To incorporate the
processes currently thought to be the most significant (Jour-
net et al., 2008; Meskhidze et al., 2005; Paris et al., 2011;

Shi et al., 2012) and improve model-to-observation com-
parisons of the soluble iron fraction, particularly in remote
ocean regions (Baker et al., 2006b; Ito, 2015; Mahowald et
al., 2018; Matsui et al., 2018; Sholkovitz et al., 2012), model
development has been focused on refining the atmospheric
iron emission sources and subsequent atmospheric process-
ing (Ito, 2015; Ito and Xu, 2014; Johnson and Meskhidze,
2013; Luo et al., 2008; Meskhidze et al., 2005; Myriokefali-
takis et al., 2015; Scanza et al., 2018).

A recent multi-model evaluation of four global atmo-
spheric iron cycle models (Myriokefalitakis et al., 2018)
showed that total iron deposition is overrepresented close to
major dust source regions and underrepresented in remote
regions compared with observations from all four models.
This is consistent with previous model intercomparison stud-
ies that demonstrated the difficulty of simultaneously simu-
lating both atmospheric concentrations and deposition fluxes
of desert dust (Huneeus et al., 2011). Importantly, none of the
atmospheric iron processing models can capture the high (>
10 %) solubilities measured over the Southern Ocean; this
is potentially because the model processes associated with
transport and ageing of aerosol iron require further develop-
ment (Ito et al., 2019). Conclusions from Myriokefalitakis
et al. suggest that future model improvements should focus
on a more realistic aerosol size distribution and the repre-
sentation of mineral-to-combustion sources of iron. Most of
the development of the Mechanism of Intermediate complex-
ity for Modelling Iron (MIMI), as described herein, focused
on these points. First, we transitioned from a bulk aerosol
scheme to a two-moment modal aerosol scheme (Liu et al.,
2012), and second, we re-evaluated pyrogenic iron emissions
from anthropogenic combustion and fires. The modal aerosol
scheme was used to calculate both aerosol mass and number
at each time step within an updated global aerosol micro-
physics model, and both the fire and anthropogenic combus-
tion emissions from Luo et al. (2008), which are likely to be
underestimated (Conway et al., 2019; Ito et al., 2019; Matsui
et al., 2018), were improved upon.

Ocean observations of iron and its soluble fraction are
limited both spatially and temporally owing to the signifi-
cant costs and logistical constraints associated with accumu-
lating data from scientific cruises. Thus, there is an inher-
ent disparity in attempting to compare climatological means
calculated from temporally chronological model results with
observational means calculated from temporally limited and
sporadic observations (e.g. Mahowald et al., 2008, 2009).
This is important because natural aerosol emissions are vari-
able on seasonal, annual, and decadal timescales in terms
of both primary natural iron emission sources (mineral dust
and wildfires) and the source of aerosol acidity. For example,
sulfuric acid from the oxidation of dimethyl sulfide and fire
SO2 (Bates et al., 1992; Chin and Jacob, 1996) has been ob-
served to aid iron dissolution when far from anthropogenic
acid sources (Zhuang et al., 1992). The limitations associ-
ated with the collection of continuous annual or inter-annual
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ship-based data across multiple remote ocean regions are im-
mutable at present, which hinders the required derivation of
the basic statistical properties of such highly variable data
(Smith et al., 2017). Attention could therefore be given to the
methodologies with which such model–observation compar-
isons are undertaken instead.

The paper is presented in four parts. The first part (Sect. 2)
introduces updates made to the Bulk Aerosol Module (BAM)
iron scheme of Scanza et al. (2018) and its implementa-
tion within the Modal Aerosol Module (MAM), with four
modes (MAM4), within the Community Earth System Model
(CESM). In the second part (Sect. 3), we compare iron con-
centrations and the fractional solubility of iron with the ob-
servational data. Then the third part (Sect. 4) compares our
updated version of the model with its predecessor. Finally, we
suggest further developments for atmospheric iron modelling
and for comparing model results with sporadic observations
(Sect. 5).

2 Aerosol model

The present study improves upon the previous atmospheric
iron cycle module developed for the Community Atmosphere
Model (CAM) version 4 (CAM4) embedded in the CESM;
we will refer to this version as BAM-Fe (Scanza et al., 2015,
2018) herein. We incorporated the iron module within the
MAM framework (Liu et al., 2012, 2016) currently in the De-
partment of Energy’s Energy Exascale Earth System Model
(E3SM; Golaz et al., 2019) and the CAM versions 5 and 6
(CESM-CAM5–6; Neale et al., 2010); we refer to this new
version of the iron model by its name (MIMI) herein. Table 1
serves as a reference and summarizes the modifications made
for MIMI, which are discussed throughout the paper.

We use MAM4 with four simulated log-normal aerosol
size modes: three modes (Aitken, accumulation, and coarse)
containing iron and a fourth primary carbonaceous mode.
Table 2 details the new pyrogenic iron (i.e. from fires and
anthropogenic combustion) modal aerosol properties, while
those of mineral dust iron follow existing dust aerosol prop-
erties (Liu et al., 2012). Generally, the modelled density
of iron is similar to size-resolved ambient aerosol densi-
ties measured in eastern China (Hu et al., 2012), which
has significant dust and combustion aerosol sources. MIMI
was initially implemented and tested within a development
branch of CAM 5.3, as per Wu et al. (2017, 2018), using
Cheyenne (Computational and Information Systems Labora-
tory, 2017) and closely resembles CESM version 1.2.2. We
used a 2.5◦×1.9◦ horizonal (longitude by latitude) resolution
and 56 vertical layers up to 2 hPa. Stratiform microphysics
followed a two-moment cloud microphysics scheme (Gettel-
man et al., 2010; Morrison and Gettelman, 2008). The other
major aerosol species black carbon (BC), organic carbon, sea
salt, and sulfate (SO4) were also simulated but are not explic-
itly examined here because we are focused on iron aerosol

modelling. However, atmospheric iron processing in MIMI
requires both sulfate and (secondary) organic aerosols to be
simulated as they act as proxies for the reactant species of
[H+] and oxalate, respectively. In CAM5 sulfate aerosol is
present in all three hydrophilic aerosol modes, while sec-
ondary organic aerosol is only present in the fine Aitken
and accumulation modes (Liu et al., 2012, 2016). Aerosol
microphysics was applied in the same way to the new iron
aerosol tracers as the base aerosol species (Liu et al., 2012,
2016). Fire emissions were vertically distributed between
six injection height ranges: 0–0.1, 0.1–0.5, 0.5–1.0, 1.0–2.0,
2.0–3.0, and 3.0–6.0 km, as per AeroCom recommendations
(Dentener et al., 2006). Fire emissions were uniformly dis-
tributed in model levels between height limits. Unless other-
wise stated, aerosol and precursor gas mass emissions were
from the Climate Model Intercomparison Program (CMIP5)
inventory (Lamarque et al., 2010). Major gas-phase oxidants
(O3, OH, NO3, and HO2) were supplied offline and were also
from Lamarque et al. (2010). Meteorology (U , V , and T ) was
nudged to Modern-Era Retrospective analysis for Research
and Applications (MERRA) data for 2006–2011. Unless oth-
erwise stated, the last 5 years were used for analysis.

The model used in this study performed well when com-
pared to observations from a variety of different environ-
ments and produced aerosol concentrations that were close to
those of the multi-model mean of similarly complex aerosol
models (Fanourgakis et al., 2019).

2.1 Dust aerosol modelling

Mineral dust aerosol was modelled via the Dust Entrainment
and Deposition model (DEAD; Zender et al., 2003), which
was previously updated to include the brittle fragmentation
theory of vertical dust flux (Kok, 2011) on mineral size frac-
tions (Albani et al., 2014; Scanza et al., 2015). We further
improved the emissions of dust in MAM to follow a physi-
cally based vertical flux theory (Kok et al., 2014a), which has
been shown to significantly improve dust emissions (Kok et
al., 2014b). Note that this method allowed for the removal
of the soil erodibility map approach previously employed by
the DEAD scheme (Table 1) and still provided more accu-
rate simulations of regional dust emissions and concentra-
tions (Kok et al., 2014b). Dust aerosol optical depth (AOD)
was calculated using mineralogy-based radiation interactions
as described by Scanza et al. (2015). Dust emissions were
tuned such that a global annual mean dust AOD of ∼ 0.03
was attained, as recommended by Ridley et al. (2016) and
matching values in Scanza et al. (2015) for a similar model
configuration.

Dust mineralogy in MIMI is designed to be comprised
of eight separate transported tracers: illite, kaolinite, mont-
morillonite, hematite, quartz, calcite, feldspar, and gypsum
(Scanza et al., 2015). Mineral soil distributions were supplied
offline (Claquin et al., 1999) with the emission of each dust
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Table 1. Short summary of major differences between BAM-Fe and MIMI.

BAM-Fe (CAM4) MIMI (CAM5)

Externally mixed bulk aerosol tracers with four size
bins (0.1–1.0, 1.0–2.5, 2.5–5.0, 5.0–10.0 µm)

Internally mixed two-moment aerosol tracers with three
aerosol iron size modes (Aitken, accumulation, coarse)

Static soil erodibility from offline maps: DEAD (Zender
et al., 2003) scheme

Time-varying soil erodibility calculated online: Kok et
al. (2014a) scheme

Eight dust minerals, five of which are iron bearing No change

Static Luo et al. (2008) combustion iron emissions Static Luo et al. (2008) combustion iron emissions ×5

Static Luo et al. (2008) fire iron emissions Time-varying Fe : BC fire iron emission ratio

Surface fire iron emissions Vertically distributed fire iron emissions

Static aerosol pH across aerosol size bins Aerosol pH size dependent

Assumed oxalate concentration based on primary or-
ganic carbon

Assumed oxalate concentration based on secondary or-
ganic carbon

In-cloud aerosol concentrations based on simulated
cloud fraction

Separate in-cloud and interstitial aerosol tracers

Table 2. Combustion iron aerosol size and number properties.

Mode Number mode Geometric standard Volume mean particle Density, ρ
diameter, Dgn (µm) deviation (σ ) diameter, Demit (µm)1 (kg m−3)

Aitken 0.03a 1.8a 0.0504 1500c

Accumulation 0.08a 1.8a 0.134 1500c

Coarse 1.00b 2.0b 2.06 2600c

1 Demit =Dgn × exp(1.5× (ln(σ ))2). a Liu et al. (2012). b Dentener et al. (2006) and Liu et al. (2012). c Wang et al. (2015).

mineral species further refined following the brittle fragmen-
tation theory (Scanza et al., 2015).

2.2 Iron aerosol modelling

The simulated life cycle of iron can be grouped into
three main stages: (1) iron emission to the atmosphere,
(2) physical–chemical iron processing during transport, and
(3) final iron deposition and thus loss from the atmosphere. In
the following sections, we describe the emissions and subse-
quent atmospheric dissolution of iron (stages 1 and 2), while
the effects of this on the magnitude of oceanic soluble iron
deposition (stage 3) in MIMI are examined and compared to
BAM-Fe in Sect. 4.

Iron optical properties are currently considered to reflect
those of hematite because this mineral contains 97 % of the
iron aerosol mass fraction (see Sect. 2.3.1).

2.3 Iron aerosol emissions

MIMI contains three major iron emission sources: mineral
dust, fires (defined here as the sum of wildfires and human-
mediated biomass burning), and anthropogenic combustion
(defined here as the sum of industrial and domestic biofuel

burning). In the BAM-Fe version of the model, fire and an-
thropogenic combustion emissions were combined into a sin-
gle static monthly mean value. In MIMI, fire emissions of
iron were updated to be distinct from other pyrogenic iron
sources and were parameterized to track the BC emissions
from fires using an Fe : BC ratio. Fire BC emissions were
simulated to be time varying on a monthly scale, resulting in
a much more pronounced seasonality to fire iron emissions
(e.g. Giglio et al., 2013) compared to BAM-Fe wherein sea-
sonality was not imposed.

For all iron species in each mode, the aerosol number
emissions (Feemit,num) were calculated from the mass emis-
sions within the same mode (Feemit,mass) using the properties
in Table 2 and following Liu et al. (2012):

Feemit,num =
Feemit,mass(

π
6

)
× ρ×D3

emit
. (1)

2.3.1 Iron emissions within mineral dust aerosol

Based on previous research by Journet et al. (2008) and Ito
and Xu (2014), the iron fraction in each mineral species
was prescribed at emission as follows: 57.5 % in hematite,
11 % in smectite, 4 % in illite, 0.24 % in kaolinite, 0.34 %
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in feldspar, and 0 % in the remaining three mineral species
(Table 3), which has been shown to improve the accuracy of
the modelled total iron fraction estimated from mineral dust
(Scanza et al., 2018; Zhang et al., 2015). The mass of each of
the eight mineral dust species advected at each model time
step was the residual mineral mass (i.e. after the removal of
the iron mass) such that the sum of all eight minerals and
the total iron from mineral dust equalled unity and hence the
original total singular dust mass emitted from the land sur-
face.

Iron emissions from the five iron-bearing mineral dust
species (three dust minerals contain no iron) were then par-
titioned into the four advected mineral-dust-bearing iron
aerosol tracers (Table 3); iron tracers were defined as be-
ing (in)soluble and by the speed of the atmospheric reaction
rate acting on them: slow or medium (Scanza et al., 2018).
Note that slow- and medium-soluble iron is only produced
by non-reversible atmospheric processing within the model;
therefore, computational costs can be reduced by not creat-
ing a separate iron tracer representing the fraction which is
already soluble at emission (i.e. “fast” reacting) but instead
adding an initial medium-soluble iron processed emission
burden which is equivalent to the assumed fast-reacting iron
fraction.

2.3.2 Iron aerosol emissions from fires

Following Luo et al. (2008), we used observed Fe : BC mass
ratios to estimate fine- and coarse-mode iron emissions from
fires. An additional difference between BAM (CAM4) and
MAM (CAM5) is the emission dataset used to estimate
global fire emissions of aerosol and trace gases. The BAM
model uses adjusted AeroCom fire emissions (Dentener et
al., 2006; Scanza et al., 2018), while MAM uses CMIP5 fire
emissions (Lamarque et al., 2010). Base fire BC emissions
within the CMIP5 database are 2.55 Tg a−1 BC; however, the
scaling of emissions from fires has been shown to be nec-
essary to improve model-to-observed (aerosol optical depth
and particulate matter) BC ratios (Reddington et al., 2016;
Ward et al., 2012). Therefore, we globally scaled the fire iron
emissions by a uniform factor of 2, which is comparable with
the overall lower scaling factor from a review of the literature
by Reddington et al. (2016; Table 2). Fine-mode iron emis-
sions from fires were then segregated to assign 10 % of the
fine-sized mass to the Aitken mode, with the remaining 90 %
assigned to the accumulation mode.

Luo et al. (2008) used a single Amazonian observa-
tional dataset in their study to determine the flux of iron
aerosol from fires (Fe : BC). We extended this to incorpo-
rate other Amazonian fire (Fe : BC) data and, importantly,
non-Amazonian biome fire (Fe : BC) data, which are likely
to have different combustion properties and hence iron emis-
sions (e.g. Akagi et al., 2011). From Table 4, we suggest that
after adding 11 more data inventory values, Luo et al. likely
underrepresented the global fine-mode Fe : BC ratio at 0.02.

We instead used the global mean Fe : BC ratio from the ad-
ditional data of 0.06. Conversely, Luo et al. likely overrepre-
sented the coarse-mode Fe : BC ratio at 1.4. By including ad-
ditional observational information from Artaxo et al. (2013)
we reduced this to 1.0. Using size-segregated wet season
(i.e. representing a locally transported emission source) ob-
servation data from Artaxo et al. (2013), we estimated that
the amount of BC mass in the coarse mode was 37 % of
fine-mode mass. Overall this doubles the fractional contribu-
tion of fine-mode (BAM: 0.1–1 µm size bin, MAM: sum of
Aitken and accumulation modes) iron emissions from fires
(BAM-Fe: fine is 7 % of total mass, MIMI: fine is 14 % of
total mass).

Using the soluble Fe : BC ratio of 0.02 reported in Luo et
al. (2008) resulted in 33 % solubility of fine-mode iron from
fires at emission, which is lower than the 46 % reported in
Oakes et al. (2012) and higher than the 12 % reported in
Ito (2013). As few data exist in the literature pertaining to
coarse-mode BC, or more importantly its ratio to iron, we re-
tained the 4 % solubility of iron in the coarse mode at emis-
sion, as suggested by Luo et al.

Total iron emissions from fires in MIMI were
2.2 Tg Fe a−1 (Aitken: 0.02 Tg a−1, accumulation:
0.28 Tg a−1, coarse: 1.9 Tg a−1), representing an ap-
proximate increase in iron emissions from fires of around
25 % compared with those from BAM-Fe, with most of
the mass (86 %) still in the coarse mode. The lower 25 %
increase between BAM-Fe and MIMI iron emissions, com-
pared to the doubling of the fire iron emissions themselves
within MIMI, is due to different underlying fire emission
inventories used in each model. Aerosol number concentra-
tions were then calculated using Eq. (1) and the physical
properties listed in Table 2. We adopted the methodology
of Wang et al. (2015) by assuming that the density of iron
aerosol from fires (and anthropogenic combustion) in the
Aitken and accumulation modes matches that of BC, while
in the coarse mode it matches that of mineral dust. The
vertical distribution of iron emissions from fires was also
updated in MIMI (BAM-Fe emitted all iron from fires at the
surface) to account for pyro-convection, which lofts aerosol
to higher altitudes at the point of emission within the model
(Rémy et al., 2017; Sofiev et al., 2012; Wagner et al., 2018).

2.3.3 Iron emissions from anthropogenic combustion
sources

Separate lines of evidence (Conway et al., 2019; Ito et al.,
2019; Matsui et al., 2018) have shown that anthropogenic in-
dustrial iron emissions are highly likely to be larger than pre-
viously estimated (e.g. Ito, 2015; Luo et al., 2008; Myrioke-
falitakis et al., 2018). Therefore, anthropogenic combustion
emissions of iron in MIMI were the same as those in BAM-
Fe, as first reported by Luo et al. (2008), uniformly multi-
plied by a factor of 5 to bring them into closer agreement
with observations of industrial magnetite emissions in line
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Table 3. Mass fraction of iron in each simulated iron-bearing dust mineral species and allocation to each mineral iron tracer at emission.
At emission medium-soluble iron is equivalent to the fast-soluble iron fraction (i.e. the fraction which is already assumed to be soluble at
emission). Residual mineral dust mass is then advected as its respective tracer.

Mineral dust mass percent allocated to each dust iron tracer at emission

Mineral Medium-soluble Medium-insoluble Slow-soluble Slow-insoluble Total

Hematite 0.0 % 0.0 % 0.0 % 57.5 % 57.5 %
Smectite 0.55 % 10.45 % 0.0 % 0.0 % 11.0 %
Illite 0.11 % 3.89 % 0.0 % 0.0 % 4.0 %
Kaolinite 0.01 % 0.0 % 0.0 % 0.23 % 0.24 %
Feldspar 0.01 % 0.0 % 0.0 % 0.33 % 0.34 %

Table 4. Measured iron (Fe) and black carbon (BC) values (various
units; as only the Fe : BC ratio is required they are not included)
and the Fe : BC ratio; calculated with three decimal places, ratio re-
ported to one significant figure to reflect high uncertainty. Modelled
fire emission ratio for Fe : BC then calculated from observed ratios.

Biome Reference Fe BC Fe : BC

Cerrado Yamasoe et al. (2000) 0.08 12.6 0.006
Yamasoe et al. (2000) 0.05 6.5 0.008
Ward and Hardy (1991) 0.9 3.3 0.273

Mean Fe : BC ratio= 0.1

Temperate Ward and Hardy (1991) 0.1 5.0 0.020
Mean Fe : BC ratio= 0.02

Tropical Luo et al. (2008) – – 0.020
Artaxo et al. (2013) 179 2801 0.639
Artaxo et al. (2013) 27 405 0.067
Artaxo et al. (2013) 20 98 0.204
Artaxo et al. (2013) 12 235 0.051
Ward and Hardy (1991) 0.9 10 0.090
Yamasoe et al. (2000) 0.03 7.3 0.004
Yamasoe et al. (2000) 0.05 3.9 0.013

Mean Fe : BC ratio= 0.06

Global Mean Fe : BC ratio= 0.06

with Matsui et al. (2018). Resulting fine-mode anthropogenic
combustion emissions were 0.50 Tg Fe a−1 and coarse-mode
emissions were 2.8 Tg Fe a−1. Similar to fire emissions, 10 %
of fine-sized emissions were partitioned into the Aitken mode
at emission; the remaining 90 % of fine-sized emissions were
emitted into the accumulation mode, and 100 % of coarse-
sized emissions were emitted to the coarse mode. We retain
the Luo et al. (2008) estimate of 4 % combustion iron solubil-
ity at emission (Chuang et al., 2005). Calculations of aerosol
number concentrations of combustion iron followed the same
procedure as described for fire emissions in Sect. 2.3.2.

2.4 Atmospheric iron aerosol processing

2.4.1 Acid and organic ligand processing

Once airborne, iron undergoes a series of physical and chem-
ical processing steps within the atmosphere, each working
to alter the soluble iron fraction (i.e. its solubility). The
MIMI atmospheric iron dissolution scheme is presented in
Table 5, with a full description reported previously by Scanza
et al. (2018). Within each of the three iron-bearing aerosol
size modes, six tracers of iron were advected within the
model: medium-insoluble and medium-soluble mineral dust
iron (containing both readily released and medium-reactive
mineral dust iron; Scanza et al., 2018), slow-insoluble and
slow-soluble mineral dust iron, and insoluble and soluble py-
rogenic (sum of fires and anthropogenic combustion) iron,
which was assumed to be medium-reactive (Scanza et al.,
2018). Both proton- and organic-ligand-promoted iron dis-
solution mechanisms were modelled. The proton-promoted
dissolution scheme was dependent upon an estimated [H+],
calculated from the ratio of sulfate to calcite, and the simu-
lated temperature. Organic ligand dissolution was dependent
upon the simulated secondary organic carbon concentration
as oxalate (the main reactant) itself was not modelled. Both
the sulfate and secondary organic carbon aerosol (Fig. S1
in the Supplement), which the iron processing requires, are
fundamental components of aerosol models (e.g. Kanakidou
et al., 2005; Mann et al., 2014). In CAM sulfate is mainly
formed via the oxidation of SO2(aq) with a smaller contribu-
tion from H2SO4 condensation on aerosol, while secondary
organic aerosol is formed via the partitioning of semi-volatile
organic gases (Liu et al., 2012). Neither gas-to-particle pro-
duction processes are structurally modified from the descrip-
tion of CAM5 by Liu et al. (2012, 2016) by the incorpo-
ration of MIMI. A structural model improvement was that
MAM (CAM5) advected separate tracers for the interstitial
and cloud-borne aerosol phases, so the proton- and organic-
ligand-promoted dissolution reactions were applied to each
aerosol phase, respectively.

Dust aerosol moving through areas containing acidic
gases, with a pH 1–2, increases the solubility of the iron
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Table 5. Summary of atmospheric processing reaction equations from Scanza et al. (2018). Here l represents either medium- or slow-reacting
iron aerosol (combustion iron is modelled as medium). The pH calculation is updated to be calculated within each mode, and oxalate (C2O2−

4 )
concentrations are calculated based only on the secondary organic aerosol (SOA) concentrations.

Reaction equation Reaction rate constituents

Acid
processing
of aerosol

d
dt
[
Fesoluble

]
= RFei,acid×

[
Feinsoluble

]
(2)

d
dt
[
Feinsoluble

]
=−

(
d
dt
[
Fesoluble

])
(3)

RFel,acid =Kl (T )× a
(
H+

)ml
× f (∇Gr)×Al ×MWl

Kl(T ) is the temperature-dependent rate coefficient
(moles m−2 s−1)

Kmed(T )= 1.3× 10−11
× e

6.7×103
×( 1.0

298.0−
1.0

temp (K) )

Kslow(T )= 1.8× 10−11
× e

9.2×103
×

(
1.0

298.0−
1.0

temp (K)

)

a(H+) is the proton concentration, with an empirical re-
action order ml
mmed = 0.39; mslow = 0.50

If [SO4]> [calcite] then pH= 1 in Aitken and accumula-
tion modes or 2 in coarse;
otherwise, pH= 7.5

f (∇Gr) accounts for dissolution rate change with varia-
tion from equilibrium (equals 1 for simplicity; Luo et al.,
2008)

Al is the specific surface area (m2 g−1)
MWl is the molecular weight (g mol−1)
Amed = 90.0 m2 g−1; Aslow = 100.0 m2 g−1

Organic
ligand
processing

d
dt
[
Fesoluble

]
= RFei,oxal×

[
Feinsoluble

]
(4)

d
dt
[
Feinsoluble

]
=−

(
d
dt
[
Fesoluble

])
(5)

RFel,oxal = al ×
[
C2O2−

4

]
+ bl

If l=medium (or combustion) iron:
a = 2.3× 10−7 µM−1 s−1; b = 4.8× 10−7 s−1

If l= slow iron:
a = 9.5× 10−9 µM−1 s−1; b = 3.0× 10−8 s−1

For longitude (i), latitude (j ), and level (k):[
C2O2−

4

]
i,j,k
= 150×

[
SOAi,j,k

]
max[SOA]

contained within it (Ingall et al., 2018; Longo et al., 2016;
Meskhidze et al., 2003; Solmon et al., 2009), and mineral-
ogy is a key factor determining the rate of dissolution at a
given pH (Journet et al., 2008; Scanza et al., 2018). Mod-
elled aerosol pH in MIMI was parameterized to depend only
on the ratio of the calcium to sulfate aerosol concentration
(Scanza et al., 2018). At each time step, if [SO4]> [calcite],
then the aerosol was assumed to be acidic with a low pH,
while if [SO4]< [calcite], then aerosol was assumed to be
well buffered (Böke et al., 1999) and the pH= 7.5. In MIMI,
we updated the pH calculation from BAM-Fe in two ways:
(1) in BAM-Fe, pH was calculated as the mean across all
four size bins (0.1–10 µm), while in MIMI, pH was cal-
culated separately for each interstitial aerosol size mode.
(2) Aerosol measurements of pH have shown that intersti-

tial aerosol is likely to be more acidic than was assumed
in BAM-Fe (Longo et al., 2016; Weber et al., 2016), even
when taking into account declining sulfate levels (Weber et
al., 2016); therefore, we have lowered the aerosol pH to 1
(from 2) in both the Aitken and accumulation modes wherein
sulfate aerosol dominates. However, in the coarse mode,
wherein dust dominates, we retained the lower pH bound-
ary of 2. Furthermore, MAM aerosol was simulated as an in-
ternally mixed aerosol; therefore, the SO4 : Ca ratio included
the mixing of these aerosol components within each mode.
See Sect. 4.2 for a comparison of acid processing in MIMI
with the literature and the previous model (BAM-Fe).

All aerosol species in the host CAM5 framework are car-
ried in either an interstitial (i.e. not associated with water) or
cloud-borne (i.e. associated with water) phase. The organic

www.geosci-model-dev.net/12/3835/2019/ Geosci. Model Dev., 12, 3835–3862, 2019



3842 D. S. Hamilton et al.: Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0)

ligand reaction only proceeds within MIMI if the condition
that cloud is present in the grid cell is first met. If cloud is
present then only the iron aerosol which is associated with
water undergoes organic ligand processing (i.e. the intersti-
tial aerosol component remains unchanged). Any future de-
velopment of MIMI within an aerosol model which does not
advect a separate tracer for the cloud-borne phase of aerosol
would therefore need to adjust the reaction to take account
of this. An assumed oxalate concentration in MIMI was esti-
mated based on the modelled organic carbon concentration
and could not exceed a maximum concentration threshold
of 15 µmol L−1 (Scanza et al., 2018). In BAM-Fe, oxalate
was derived from the sum of both the primary and secondary
organic carbon aerosol concentrations, while in MIMI this
was updated to be dependent only upon the secondary or-
ganic carbon source because oxalate is itself a product of the
oxidation of volatile organic carbon gases (Myriokefalitakis
et al., 2011). An additional term was added to the reaction
mechanism to account for the small amount of organic ligand
processing proceeding by species other than oxalate (Scanza
et al., 2018). See Sect. 4.2 for a comparison of in-cloud or-
ganic dissolution in MIMI with the literature and the previous
model (BAM-Fe).

2.4.2 Computational costs

Earth system models are generally characterized by having a
heavy computational burden in simulating atmospheric pro-
cesses. The inclusion of MIMI requires eight dust mineral
tracers (a net addition of seven) and six iron tracers. The total
number of new aerosol tracers is 39 (13 in each of the three
aerosol modes) if dust mineralogy is not already present or 18
new aerosol tracers if it is (e.g. NASA GISS model; Perlwitz
et al., 2015a, b). The additional computational cost of MIMI
within CESM-CAM5 is approximately a doubling of the re-
quired core hours; around half of that is associated with dust
mineralogy speciation and the other half with iron speciation
and processing (Table 6). Note that additional computational
tuning, or changes in configuration, could modify these com-
putational change estimates. For example, with dust mineral-
ogy (MAM4DU8) there is an approximate tenfold increase in
required core hours due to model structural differences when
transitioning from CAM5 to CAM6.

2.5 Observation and model iron calculations

2.5.1 Spatially aggregating limited observations

The observations of total iron concentrations and the frac-
tional solubility of iron used in this study are joint totals
(1524 records) of those reported in Mahowald et al. (2009)
and Myriokefalitakis et al. (2018). However, many of these
observations represent averages of only one or a few days
of iron and soluble iron measurements and can thus be diffi-
cult to compare against annual, or longer, mean time periods

calculated within the model. Furthermore, building empirical
distributions of iron properties from observations requires a
larger sample size than currently available in many regions.
We therefore tested how aggregating the observations spa-
tially, sometimes termed “super-obbing”, altered our model
evaluation. Our objective was to capture the small regional-
scale properties of iron and not those at a point source; there-
fore, we assume that the benefits gained by aggregating in
this way, which include helping to produce a statistically use-
ful number of observations, outweigh any potential biases.

2.5.2 Variations in model temporal averaging

The model was run at a 30 min time resolution. At each
30 min time step, soluble iron, total iron, and the ratio of
soluble to total iron (iron solubility) were computed. The
model output was Si , (daily mean soluble iron concentration
on day i), Ti (daily mean total iron concentration on day i),
and Ri (daily mean iron solubility on day i). Note that Ri
is the daily mean of the calculated 30 min solubilities and
hence is not equal to Si/Ti . We define online solubility as the
average of ratios calculated as follows:(

n∑
i=1

Ri

)
/n, (6)

where n represents the total number of records over which
the average was calculated. Online solubility is reported
throughout this study. In Sect. 3.4, we then compare the av-
erage of ratios to the ratio of averages (defined as offline sol-
ubility), calculated as follows:(

n∑
i=1
Si

)
/n(

n∑
i=1
Ti

)
/n

=
S

T
, (7)

where S and T are the grid cell averages of soluble and to-
tal iron concentrations, respectively, over the total time pe-
riod considered in this study (2007 to 2011). While Eq. (7) is
common within the literature, this methodology can produce
larger variability in iron solubility across grid cells because
it is based on both soluble and total iron annual mean con-
centrations. In the online method, variability is reduced as
extreme values in soluble and total iron concentrations gen-
erally do not occur at the same time. We can define the oc-
currence of extreme values, with respect to the time frame
considered, by analysing a relative Z-score metric calculated
as follows:

ZFe,t =

(
Fet−Fet

)
σFet

or

ZFe,s =

(
Fes−Fes

)
σFes

, (8)
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Table 6. Simulation time (in seconds per simulated year) for the CESM-MAM4 model. The CAM5 base model, with the addition of dust
mineralogy and with the addition of dust mineralogy and iron processing (i.e. MIMI v1.0), is shown. The cost of running the new higher-
resolution CAM6 model with dust mineralogy is also shown for comparison. All CAM5 simulations were executed on 10 nodes with 36
cores per node for 2 years (2006–2007) with consistent output fields. CAM6 simulations are executed on 30 nodes with 36 cores per node.

CAM5 CAM6

MAM4 MAM4DU8 MAM4DU8FE6 MAM4DU8
(base model) (dust mineralogy) (MIMIv1.0) (dust mineralogy)

Number of advected aerosol species 24 45 63 46
Grid cell resolution (lon× lat) 144× 96 144× 96 144× 96 288× 192
Wall clock s a−1(simulation) 3954 5856 7836 20167
Core hours 396 586 784 6051

where Fe is either total (Fet) or soluble (Fes) iron. The rela-
tive normalized Z score can then be calculated as follows:

n∑
i=1
(zt,i − zs,i)/zt,i, (9)

where Zt,i and Zs,i are the Z scores of total and soluble iron
concentrations, respectively, at each grid cell for each time
step i. The Z-score metric provides a relative direction and
distance of an instantaneous value with respect to its mean.
The Z score is reported in multiples of the standard devia-
tion (Eq. 8); therefore, a Z score of zero indicates that the
data point value is identical to the mean value. To assess
the relative difference in the variability at a given time be-
tween the modelled total and soluble iron concentration and
its mean, we calculated the difference in Z scores between
total and soluble iron concentrations and normalized it using
the Z score of total iron concentration (Eq. 9). Note that the
Z score of the soluble iron concentration could also be used
to normalize the difference. This method allows for the ex-
amination of how the occurrence of extreme concentration
values in total and soluble iron influences the method of sol-
ubility calculation (Eq. 6 vs. Eq. 7).

2.6 Iron ocean deposition source apportionment

An ocean deposition source apportionment sub-study was
designed to classify ocean deposition regions according
to the dominant atmospheric soluble iron source, rather
than ocean basins defined from a more traditional physical
oceanographic viewpoint (e.g. Gregg et al., 2003). By incor-
porating recent model estimates for dust and the importance
of pyrogenic iron emissions (Luo et al., 2008; Matsui et al.,
2018) the seven large-scale source regions defined in Ma-
howald et al. (2008) were modified slightly to separate the
major dust iron source regions from fire and anthropogenic
combustion iron source regions. This resulted in a total of 10
iron emission source regions (Fig. 1; see also Table S1 for
details).

Simulations in the source apportionment study used BAM-
Fe, as described in Scanza et al. (2018), with slight modifica-
tion. Briefly, anthropogenic combustion iron emissions were
increased by a uniform factor of 5, and iron from fires fol-
lowed the updated Fe : BC ratio (Table 4) and seasonal vari-
ability in the fire BC emissions, all as per MIMI. Aerosols
were externally mixed in BAM, and therefore altering the
regional aerosol loading did not affect aerosol transport or
deposition in the more significant way it could in MAM, in
which aerosols are internally mixed. This information was
then used in Sect. 4.3 to compare differences in the daily
mean deposition of soluble iron between the BAM-Fe and
MIMI models within each defined ocean region.

3 Modelled dust and iron aerosol concentrations
compared to observations

In terms of Earth system modelling and the biogeochem-
istry that connects the land–atmosphere–ocean components,
we are ultimately motivated to improve the magnitude of
the atmosphere-to-ocean iron deposition flux and its frac-
tional solubility (from which the soluble iron flux can be de-
rived). We compare the model results with a series of obser-
vations and herein highlight some of the problems discovered
when directly comparing with a sporadic (in both space and
time) observation dataset, as is currently common practice
(Myriokefalitakis et al., 2018).

3.1 Global dust comparisons

Comparison of dust AOD with regional dust AOD ob-
servations (Fig. 2) from the AERONET observational
datasets (Holben et al., 1998), as subsampled in Albani et
al. (2014), shows good agreement globally (correlation: r2

=

0.64). This results in MAM annual global mean emissions
of 3250± 77 Tg dust a−1 (Aitken 16 Tg a−1, accumulation
36 Tg a−1, coarse 3198 Tg a−1), which is at the higher end
of literature estimates of∼ 500–4000 Tg dust a−1 (Bullard et
al., 2016; Huneeus et al., 2011; Kok et al., 2017). Dust emis-
sions in MAM are 84± 4 % higher than our previous mean
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Figure 1. Major iron aerosol emission source regions.

of 1768 Tg dust a−1 in BAM (Scanza et al., 2018) because
dust lifetime has proportionally decreased (Table S2), which
affects coarse-mode dust aerosol (wherein 98 %–99 % of to-
tal dust mass is emitted) more than fine-mode dust aerosol.
Globally, both dust concentrations (correlation: r2

= 0.89)
and deposition (correlation: r2

= 0.83) are simulated well
compared to observations within MIMI. A higher correlation
of modelled dust concentrations with observations is calcu-
lated in the Northern Hemisphere (NH; r2

= 0.89) compared
to the Southern Hemisphere (SH; r2

= 0.67), but the gradi-
ent of the line of best fit is further from 1 : 1 (NH: 1.22 vs.
SH: 1.07). Conversely, for dust deposition a lower correlation
with observations is simulated in the NH (r2

= 0.75) com-
pared to the SH (r2

= 0.60) but with a gradient of the line
of best fit closer to 1 : 1 (NH: 1.07 vs. SH: 0.72). Overall,
the results presented in this study suggest an improvement
on previous dust modelling complications related to under-
estimating dust deposition when tuned to dust concentration
(Huneeus et al., 2011).

3.2 High-latitude dust and iron aerosol

Including the parametrization of Kok et al. (2014a) removes
the requirement of a soil erodibility map (Table 1). In ad-
dition, in previous versions of the model, high-latitude dust
sources were zeroed because there were no observations at
that time to support high-latitude sources of dust (Albani
et al., 2014). However, more recent observations have sug-
gested that high-latitude dust sources do exist (Bullard et al.,
2016; Crusius et al., 2011; Tobo et al., 2019), often related
to glacial processes (Bullard, 2017) with a higher fraction
of bioavailable iron relative to lower-latitude dust sources
(Shoenfelt et al., 2017). Thus, for the new version of the
model we have allowed for the inclusion of high-latitude dust
sources (Fig. 3). In general, aerosol dust and iron concentra-
tions peak closest to the coastlines and during summer. Emis-
sions of dust from > 50◦ N are ∼ 1.3± 0.2 % of the global
dust total, which is half of the estimates derived from field

and satellite data at 2 %–3 % of the global total (Bullard,
2017; Bullard et al., 2016). However, the resulting magnitude
and seasonality of dust concentrations have been shown in a
recent study to be consistent with observed measurements
from Svalbard (Tobo et al., 2019).

3.3 Global iron aerosol concentration and fractional
solubility

There are several propositions explaining sources of soluble
iron and the inverse relationship between total iron amount
and iron solubility (Sholkovitz et al., 2012). While total iron
mass concentrations are dominated by desert dust sources,
soluble iron can be a product of mineral dust processed in
the atmosphere or emitted from pyrogenic sources (Chuang
et al., 2005; Guieu et al., 2005; Ito et al., 2019; Luo et al.,
2008; Meskhidze et al., 2003; Schroth et al., 2009). Previ-
ous studies have shown that either of these can explain the
inverse relationship and that the spatial distribution of data
is required to provide more information (Mahowald et al.,
2018). Therefore, we explored how to best use the spatial
data to compare with the model results. The 5-year (2007
to 2011) mean iron concentration from MIMI is compared
to an extensive dataset of observations of total iron and its
fractional solubility (Fig. 4). The model captures the global
mean observational total iron concentration well; however,
relatively low regional correlations (r2 < 0.4) occur in the
south Indian (r2

= 0.0), South Atlantic (r2
= 0.34), North

American (r2
= 0.35), and high-latitude (r2

= 0.06) ocean
regions, suggesting that future model improvements can be
focused here.

In the absence of iron atmospheric process modelling,
ocean biogeochemistry models with an iron component (e.g.
Aumont et al., 2015; Moore et al., 2004) have estimated
iron solubility from offline dust modelling by means of an
assumption that it contains 3.5 % iron by weight, of which
2 % is soluble. Iron solubility is highly temporally and spa-
tially variable, however, and in the absence of spatial atmo-
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Figure 2. Dust aerosol optical depth, surface concentrations, and
deposition in modal aerosol model and observations (Albani et al.,
2014; Holben et al., 1998). Correlation (r2), gradient (m), and inter-
cept (c) shown for global (G), Northern Hemisphere (N), and South-
ern Hemisphere (S) regions.

spheric emission information, pyrogenic iron sources, and at-
mospheric processing of iron, an estimate of 2 % solubility
leads to underestimates of observed iron solubility in nearly
all HNLC ocean regions (Fig. 4).

Aggregating observations onto a lower-resolution grid
(sometimes termed super-obbing) compared with the model
can help reduce the representation error when comparing

Figure 3. High-latitude (> 60◦ N) dust (sum of eight mineral
species and four dust–iron species) and iron (sum of four dust–iron
species) mass concentrations (µg m−3) at the surface model level.

with such limited observations (Schutgens et al., 2017).
Fig. 5 uses an observational resolution one-third that of
the model, and the model-to-observation comparison of the
mean state is thus improved. Persistent observation-based
features of the local environment become more obvious,
while less frequent ones conversely diminish. At this obser-
vational resolution, the low total iron concentrations in the
North Atlantic ∼ 30◦ N, as seen in Fig. 4, are perhaps not
a common feature, and the model much more precisely rep-
resents the climatological state here than Fig. 4 might sug-
gest. However, examining the North Pacific reveals that the
model imprecisely represents the mean state here. Potential
missing iron sources in remote regions, such as the North
Pacific, include the following: (1) shipping emissions (Ito,
2013), which have a high soluble iron content from oil com-
bustion (Schroth et al., 2009); (2) volcanic emissions, which
provide a localized “fertilizer” to the surface ocean owing to
the macronutrients and trace metal nutrients contained within
them (Achterberg et al., 2013; Langmann et al., 2010; Rogan
et al., 2016); and (3) low Asian and South American aerosol
concentrations, either through underrepresenting combustion
emission sources (Matsui et al., 2018) or in the transport and
deposition of aerosol within these regions (Wu et al., 2018).
These are discussed in more detail in Sect. 5.1 and 5.2.

In terms of iron solubility (soluble iron concentra-
tion / total iron concentration), the model is not capturing
the observational mean state in many regions (Fig. 5). A
detailed examination of the observation point at 18◦ N and
330◦ E (anomalous green point surrounded by blue points
in the North African outflow plume in Fig. 4) and the nine
model grid cells co-located with it in Fig. 6 shows how a
single high observation (155 % percent solubility) is causing
a representation issue (see also Sect. 4.3 regarding soluble
iron deposition). Both model and observation histogram dis-
tributions are similar, as are the median (model: 1.8, obser-
vation: 0.9) and geometric mean (model: 2.1, observation:
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Figure 4. Daily mean model total iron concentration and solubility from 2007 to 2011. Observations (circles) overlaid (at resolution of the
model grid) as a mean from 1524 individual records in Mahowald et al. (2009) and in Myriokefalitakis et al. (2018). Also shown are scatter
plots of the model mean and standard deviation compared to each available observation and identified by oceanic region. Correlation (r2),
gradient (m), and intercept (c) for total iron with observations shown for each region.

Figure 5. Daily mean model total iron concentration and solubility
from 2007 to 2011. Observations (circles) overlaid (at a resolution
one-third of the model grid) as a mean from 1524 individual records
in Mahowald et al. (2009) and in Myriokefalitakis et al. (2018).

1.3) values. However, the arithmetic means are not similar
(model: 2.5, observation: 9.6) and while a high observation
value of 155 % is likely to be an outlier and should be at
most 100 %, it still informs us about what is possible, and
simply discounting it (even at an adjusted 100 %) would re-
quire strong justification. It is therefore advisable to instead
alter the estimator of the average. Comparing model to ob-
servation differences calculated using the median or geomet-
ric mean reveals that they are similar in magnitude, as one
would expect for log-normally distributed data (Fig. 6 in-
sert). Although the median is robust with respect to outliers,
the model results may not exhibit a uniform Gaussian distri-
bution (Fig. 6 insert; solid compared to dashed lines), and of-
ten the number of available observations is also low (Fig. 7),
suggesting that its use also requires careful consideration.
An equivalent methodology to the geometric mean in Fig. 7
would be to first log transform the data before calculating
the arithmetic mean. Arguments pertaining to the appropri-
ate methodology for comparing model results to temporally
limited observations extend beyond the iron aerosol exami-
nation in this study to all aerosol comparisons with limited
observations.

3.4 Calculating iron solubility

It is interesting to note the effect that the order of operations
(taking the average of ratios compared to the ratio of aver-
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Figure 6. Histogram of observations (n= 21) and daily model results (2007 to 2011) of iron solubility between 16 to 20◦ N and 27 to 32◦W
(one observation point and nine co-located model grid cells in Fig. 5). Mean (dashed lines), geometric mean (dot-dash lines), and median
(full line) values shown the above respective dataset colour line. Note that the single observation value of 155 % is off the scale and placed
as such with the value given above. Insert: log plot for the same data (solid lines) with projected log-normal distribution from the mean and
standard deviation of the data (dashed lines).

ages) has when calculating iron solubility (Fig. 8). Through-
out this study, the percent of iron solubility was calculated at
each model time step (30 min) and then the daily mean output
was analysed (online; Eq. 6) at an annual or 5-year mean time
resolution. It is also acceptable to use the simulated soluble
and total iron concentrations to generate the annual or 5-year
mean iron solubility in a post-processing step (offline; Eq. 7).
The resulting differences between methods are not insignifi-
cant (Fig. 8); however, the offline method creates a distribu-
tion in which low iron solubility is generally lower and the
highest (> 18 %) iron solubilities are generally higher. Over-
all, the global annual mean iron solubility calculated online is
one-third (34 %; NH= 40 %, SH= 29 %) higher than when
calculated offline.

The average relative Z score (Eqs. 8 and 9) is around zero
for most model grid cells (Fig. 9), indicating that they mostly
followed similar temporal and relative magnitude trends.
However, even if the average relative Z scores are around
zero and the ratio of relative standard deviations is around
one, the ratio of online- to offline-calculated iron solubility is
most likely> 1. Temporal differences in the soluble and total
iron concentration might therefore be controlling the overall
solubility at each model grid cell. We also find that the ratio
of online and offline solubility is > 1 for most of the cases
when the ratio of the relative standard deviations of soluble
and total iron is < 1 (Fig. S2), indicating that the differences
in both methods of iron solubility calculation are sensitive to

the differences in the relative size of the tails of the distri-
bution. That is, if soluble iron has narrower tails compared
to total iron at any grid cell, it is highly likely that a higher
solubility will be obtained in the online method compared
to offline. The extreme ratio of the tails of soluble and total
iron is only found in specific regions with the highest tem-
poral variability in emissions and modelled solubilization of
insoluble iron (Fig. S2).

Field measurements have generally suggested an inverse
relationship between total and soluble iron concentrations
(Myriokefalitakis et al., 2018). This means that high total
iron concentrations are generally accompanied by low solu-
ble iron concentrations and vice versa. By assuming that the
field measurements faithfully represented the actual average
values of soluble and total iron concentration at those loca-
tions, we implicitly assume that all the measurements have a
Z score of zero. In Fig. 9 we show that this is not the case
with the modelled results, and the two variables can be rel-
atively farther from their respective means even when aver-
aged over the modelled time period.

The sensitivity of a result to the order of operations ex-
tends beyond iron solubility to any variable that is calculated
in a similar manner, and current multi-model intercompar-
ison project (MIP) protocols do not explicitly account for
this. However, the effects of outliers, in both online and of-
fline methods, can be reduced by employing the geometric
mean and has been used in some MIPs (e.g. Mann et al.,
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Figure 7. Daily arithmetic mean, geometric mean, and median
model solubility (2007 to 2011). Observations are overlaid (at res-
olution one-third of the model grid) as the arithmetic mean, geo-
metric mean, or median with respect to the model averaging. The
number of observations is denoted by symbols: lowest confidence
(one observation, diamond); intermediate confidence (two to four
observations, triangle); highest confidence (five or more observa-
tions, circle).

2014). It will also be important to consider differences in the
solubility of iron induced by the choice of the order of op-
erations as ocean biogeochemical models move away from
using offline results from global climate or chemistry trans-
port models to online results within Earth system models,
which are designed to couple the two components at each
time step. For short-term interactions between deposited iron
and ocean biota, shorter-term averaging may be more impor-
tant (e.g. Guieu et al., 2014), but for the long-term accumula-
tion of iron that is (re)cycling in the oceans, the longer-term
average may be more appropriate (Moore et al., 2013). One
should be aware, however, that iron is readily removed from
the ocean mixed layer, and thus the lifetime of iron may well
be short enough for the online calculation to be more appro-
priate much of the time (Guieu et al., 2014).

4 MIMI vs. BAM-Fe

In this section, we discuss how the new modal aerosol-mode
version of MIMI compares to its predecessor bulk aerosol
model version (BAM-Fe) throughout all three stages of the
atmospheric iron life cycle.

4.1 Iron emission comparison

Globally averaged emissions of dust (3200 Tg a−1) and its
iron component (126 Tg a−1) are within the current multi-
model range (Table 7). The simulated annual mean iron in
dust percentage is 4.1 %, with the highest percent occurring
in the coarse mode at 6.5 % and the lowest percent occurring
in the Aitken mode at 1.1 %. Accounting for dust mineralogy
therefore increases the global mean iron percent by weight
above the currently well-used global mean estimate of 3.5 %
(e.g. Jickells et al., 2005; Shi et al., 2012).

Compared to BAM-Fe, MIMI dust emissions are ∼ 80 %
higher and the iron it contains is ∼ 120 % higher (Table 7).
Although both the BAM-Fe and MIMI models are globally
tuned to a similar dust AOD (∼ 0.03) and based within the
same host model (CESM), changing from a bulk aerosol
scheme (e.g. Albani et al., 2014; Scanza et al., 2015) to a
modal aerosol scheme reduces the aerosol lifetime signifi-
cantly (Liu et al., 2012 and Table S2). The spatial distribu-
tion of dust emissions is also different following the move to
the Kok et al. (2014a, b) parameterization (Table 1), result-
ing in the spatial distribution of dust AOD also being altered
(Fig. S3). Total pyrogenic iron emissions (sum of fires and
anthropogenic combustion activity) in MIMI are higher than
previous estimates by a factor of between 2 and 3 (Table 7),
reflecting the growing evidence that they have been previ-
ously underestimated (Conway et al., 2019; Ito et al., 2019;
Matsui et al., 2018).

4.2 Iron atmospheric processing comparison

There is a much lower aerosol pH in the fine aerosol modes
(Aitken and accumulation) in MIMI compared to that in
BAM-Fe (Fig. 10). This is due to a combination of resolv-
ing pH in each aerosol size mode in MIMI and the subse-
quent lowering of the pH value (1) being applied in the two
fine aerosol modes (Aitken and accumulation). Conversely,
dust dominating the coarse aerosol mode provides more of
an opportunity for [calcite]> [SO4] in this aerosol size frac-
tion, resulting in most continental areas having a high coarse-
mode aerosol pH in MIMI compared with the higher pH
being much more localized to the major desert regions in
BAM-Fe. Acidic processing of iron in MIMI therefore pro-
ceeds faster globally in the fine-sized aerosol modes (Aitken
and accumulation) compared to the BAM-Fe fine-sized bin
(0.1–1 µm), but it is generally slower over continental regions
in the coarse mode than in BAM-Fe coarse-sized bins (1–
10 µm).
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Figure 8. Mean solubility of iron when solubility is calculated at each 30 min model time step (“online”) and when it is calculated from the
post-processing of daily mean soluble and total iron concentration (“offline”).

Table 7. Dust, fire, and anthropogenic combustion emissions of iron and relevant co-emitted aerosol emissions (to two significant figures).
Multi-model emission range from the four global atmospheric iron models (including BAM-Fe) reported in Myriokefalitakis et al. (2018).
Fine (sum of Aitken and accumulation modes) and coarse (coarse mode) mass emissions also given for dust, fire iron, and combustion iron.

Annual mean emissions; Tg a−1

BAM-Fe MIMI Luo et al. (2008) Multi-model

Dust 1800 3200 1600 1200–5100
Fine, coarse 20, 1700 50, 3200

Dust iron 57 130 55 38–130
Pyrogenic iron (fire and comb.) 1.9 5.5 1.7 1.8–2.7

Fire BC 4.1 2.6 3.6
Total fire iron 1.2 2.2 1.1
Fine, coarse 0.08, 1.1 0.30, 1.90 0.07, 1.00

Combustion BC 4.6 5.0 5.0
Total comb. iron 0.66 3.3 0.66
Fine, coarse 0.10, 0.56 0.50, 2.80 0.10, 0.56

Comparison of Fig. 10 to modelled pH estimates by
Myriokefalitakis et al. (2015) shows generally good agree-
ment in the NH, but in the SH MIMI simulates less acidic
coarse-mode aerosol over continental regions and more
acidic aerosol over marine regions. As iron models are un-
able to capture the high observed iron solubility (> 10 %)
over SH marine regions (Myriokefalitakis et al., 2018) and
in the absence of remote pH aerosol observations, we sug-
gest that our basic parameterization captures an aerosol pH
which is suitable for use in Earth system models

Model physics, and hence simulated cloud cover, are sig-
nificantly different between CAM4 and CAM5. Figure 11a
shows the relative model difference in the oxalate distribution
between MIMI, which also includes an increase in the tuning
factor by an order of magnitude (from 15 to 150; Table 5),
and BAM-Fe by normalizing by the simulated cloud fraction
in each model. The effect of oxalate on iron dissolution is
therefore larger in MIMI over extratropical ocean regions,
where iron models underrepresent solubility (Myriokefali-

takis et al., 2018), and land regions which are dense in trop-
ical vegetation or industry (both centres of large aerosol pre-
cursor gas emissions). Compared to observations (Myrioke-
falitakis et al., 2011; Table S3) modelled oxalate concentra-
tions are well represented at high observed concentrations
but are biased low when observed concentrations are low
(Fig. 11b). The low model bias is stronger within remote ob-
servational regions (marine vs. urban observation sites), sug-
gesting that the removal of secondary organic aerosol may
be too strong within the model and/or that there is a missing
marine aerosol precursor gas emission source (Facchini et al.,
2008; O’Dowd and de Leeuw, 2007) in this model which sig-
nificantly lowers simulated secondary organic aerosol, and
thus oxalate, concentrations.

Comparison of mineral dust and pyrogenic sources of
modelled soluble iron (sum of emissions and atmospheric
dissolution; Fig. 12) with the four iron models (including
BAM-Fe) reported by Myriokefalitakis et al. (2018) shows
that the spatial distribution in MIMI is broadly similar for
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Figure 9. Relationship of online- to offline-derived iron solubility
to the relative Z score for total (ZFet) and soluble (ZFes) iron and
the relative standard deviation (σFe/Fe) at each grid cell for the
year 2007.

Figure 10. Surface-level annual mean interstitial aerosol pH. If
[SO4]> [calcite] then pH= 1 in Aitken and accumulation modes
or 2 in coarse; otherwise, pH= 7.5 (Table 5).

most regions of the world. A notable difference exists in
the North Pacific region, where the soluble iron source in
MIMI is lower than all other iron models, similar to total
iron concentrations when compared to observations (Figs. 4
and 5). Future development of MIMI should thus be focused
on the North Pacific, including the addition of shipping sol-
uble iron emissions, which are relatively concentrated in this
region (Ito, 2013). An improvement for MIMI can be seen
over the Atlantic region directly downwind of Saharan solu-
ble iron sources. In general, iron models are overrepresenting
iron solubility close to dust sources compared to observa-
tions (Myriokefalitakis et al., 2018), and in order for BAM-
Fe to reach better agreement with observed iron solubility in

this region dust emissions of soluble iron had to be scaled
downwards (Conway et al., 2019). We suggest that this im-
provement is linked to the improved modal representation of
aerosol pH in MIMI (Fig. 10).

4.3 Iron ocean deposition flux comparison

Similar to the previous study by Scanza et al. (2018), we re-
port the amount of total and soluble iron deposited in each
of the major ocean basins (Table 8) as defined by Gregg et
al. (2003). We find that in MIMI the amount of total iron
deposited to all ocean basins is approximately double that
estimated in BAM-Fe (26 vs. 12 Tg Fe a−1, respectively),
while soluble iron deposition is similar (∼ 0.5 Tg Fe a−1 in
both models). The larger mineral dust emission flux in MIMI
(3200 Tg dust a−1 compared to BAM-Fe dust emissions of
1800 Tg dust a−1) is driving most of the increases in total
iron deposition because it is the primary iron source (Ta-
ble 7). In general, the magnitude of soluble iron deposition
to the oceans is more evenly distributed across hemispheres
in MIMI owing to a major reduction (approximately one-
half) in the equatorial north–central Atlantic basin deposi-
tion flux and increases to SH ocean deposition fluxes of a
factor of 2 to 4. In MAM4 dust is treated as internally mixed
aerosol with sea salt, leading to higher rates of wet deposi-
tion than when dust is externally mixed aerosol (Liu et al.,
2012) as it is in CAM4. The internally mixed treatment of
dust aerosol in MAM4 is thus an important factor leading to
the lower simulated dust lifetime when compared to BAM-Fe
(Table S2). Over the north–central Atlantic region, the com-
bination of a lower soluble iron source (Fig. 12 compared to
Fig. S4b by Myriokefalitakis et al., 2018), dust atmospheric
lifetime (Table S2), lower aerosol pH (Fig. 10), and lower
relative organic ligand processing (Fig. 11) will all work to-
wards reducing the magnitude of atmospheric soluble iron
deposition flux in MAM4 compared to BAM-Fe. There are
significant increases in anthropogenic combustion iron de-
position in all equatorial and NH ocean basins driven by
the fivefold increase in combustion emissions implemented
in MIMI. The percent contribution from pyrogenic iron to
total iron deposition between MIMI and BAM-Fe is, how-
ever, more similar for all northern and equatorial oceanic
regions than southern oceanic regions. Beyond the correc-
tion to anthropogenic combustion emissions, which are NH
dominated, this could be due to differences in the emissions
of both dust and fire aerosol, structural differences between
models relating to the aerosol size and composition, which
alters aerosol deposition rates, or a lower soluble iron source
(Fig. 12); it is most likely to be a combination of all three.

The fraction of fire aerosol which is injected above the
boundary layer is crucial for determining its capacity for
long-range transport (e.g. Turquety et al., 2007). Vertically
distributing fire iron emissions in MIMI, as compared to
emitting all iron from fires at the surface as in BAM-Fe,
increases the long-range transport of iron aerosol to remote
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Figure 11. (a) Relative difference in organic ligand reaction on in-cloud iron aerosol dissolution between MIMI and BAM-Fe. Due to
significant differences in simulated cloud cover between CAM4 and CAM5 oxalate concentrations [OXL] are multiplied by the model-
simulated cloud fraction in this figure. (b) Surface-level oxalate (OXL) concentration in the model and observations. Model values are
monthly mean (2007–2011) and annual standard deviation. Observation values are from Table S3 in Myriokefalitakis et al. (2011) and
reported with uncertainty where given.

Table 8. Global and regional ocean basin deposition (Gg a−1) of total and soluble iron in BAM-Fe (Scanza et al., 2018) and MIMI (this study).
Deposition was multiplied by the ocean fraction of model grid cells and is reported at two significant figures. The percent contribution from
pyrogenic (sum of fires and anthropogenic combustion) iron sources to deposition is also given. Ocean basins are those defined by Gregg et
al. (2003) and previously used by Scanza et al. (2018).

Dust and comb. deposition; Gg a−1 Percent iron from pyrogenic sources; %

Total iron Soluble iron Total iron Soluble iron

BAM-Fe MIMI BAM-Fe MIMI BAM-Fe MIMI BAM-Fe MIMI

Global 12 000 26 000 500 530 3.3 5.0 7.6 23
N. Atlantic 1800 5300 46 86 1.9 2.9 4.8 11
N. Pacific 730 1200 35 36 10 19 15 43
NC. Atlantic 2900 5700 92 89 0.30 0.52 0.9 3.7
NC. Pacific 230 300 16 12 7.9 24 10 56
N. Indian 2700 7000 62 101 1.2 2.1 3.9 10
Eq. Atlantic 2600 2600 190 95 2.8 9.9 5.5 34
Eq. Pacific 59 91 6.2 6.7 21 37 25 68
Eq. Indian 830 1200 35 39 5.9 12 11 38
S. Atlantic 65 790 4.1 16 30 4.8 50 25
S. Pacific 21 250 1.4 6.4 41 7.8 50 30
S. Indian 42 200 3.0 6.9 51 16 58 46
Antarctic 270 1300 12 37 20 12 48 44

ocean regions (Fig. 13). In general, vertically distributing fire
emissions results in small increases in soluble iron deposition
(between 0 % and 20 %) in SH ocean regions and a larger
increase (between 20 % and 40 %) in NH oceans, with con-
verse lower land deposition close to the major regions of fire
activity. The exception is in the sub-Arctic North Pacific, an
HNLC region, where iron deposition from fires significantly
increased until it was more than double that when surface fire
emissions are used.

The dry deposition flux is sensitive to aerosol properties,
surface roughness, and modelled turbulence. Although in-
creasing the vertical resolution has been shown to increase

surface PM10 concentration (Menut et al., 2013) and better
simulate the dust vertical profile (Teixeira et al., 2016), it is
not yet clear if this would correspondingly increase the dry
deposition flux.

Source region comparison

The eight regions in Fig. 14 are chosen based on 10 (one for
each region in Fig. 1) simulations undertaken using the mod-
ified version of BAM-Fe described in Sect. 2.6. The emis-
sion region (Fig. 1) with the highest fractional contribution to
the total soluble deposition flux in each grid cell was exam-
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Figure 12. Annual mean dust and pyrogenic (sum of fires and an-
thropogenic combustion) soluble iron source (i.e. sum of emissions
and atmospheric processing).

Figure 13. The ratio of soluble iron deposition from fires when
emissions are emitted with a vertical distribution to fires when emis-
sions are only at the surface (i.e. vertical / surface). Single year
(2007) comparison only.

ined, and from this the boundaries of each region in Fig. 14
were delineated. The resulting eight ocean iron deposition
regions are split equally into four in the NH and four in the
SH. Note, however, that the NH–SH divide sits at 15◦ S and
not the Equator, which is due to transport differences in each
hemisphere and the position of the Intertropical Convergence
Zone. Of the four regions that can be defined as major dust
deposition receptors (Fig. 14; bottom panel bar chart), the
north Indian Ocean (no. 1), North Atlantic and central Pacific
(no. 4), and South American dust (no. 7) regions have a sin-
gle dominant source each, while the North Pacific (no. 3) re-
gion is more variable. These dust-dominated iron deposition
regions are similarly reproduced by other global iron mod-
els (Ito et al., 2019; Myriokefalitakis et al., 2018). The re-
gions of the mixed Southern Hemisphere oceans (no. 5) and
Australian and South Pacific (no. 6) receive similar amounts
of mineral dust and pyrogenic iron, suggesting that the iron
sources are spatially closer and thus share much more similar
transport pathways than the South East Asian ocean (no. 2)
and South American pyrogenic (no. 8) regions, which have a
much more distinct pyrogenic iron source signal. Deposition

Figure 14. (a) Eight soluble iron ocean deposition regions de-
fined by dominant source region apportionment. Region 1: north
Indian Ocean (NIND). Region 2: South East Asian ocean (SEAS).
Region 3: North Pacific (NPAC). Region 4: North Atlantic and
central Pacific (NACP). Region 5: Southern Hemisphere oceans
(SHOC). Region 6: Australian and southern Pacific (AUSP). Re-
gion 7: South American dust (SADU). Region 8: South American
pyrogenic (SAPY). (b) Contribution of each emission source region
(Fig. 1) to the total iron deposition across the region. Contributions
of dust and pyrogenic (sum of fires and anthropogenic combustion)
iron from the source region are also shown. Regions contributing
< 5 % are filtered out.

regions are more clearly defined when using this methodol-
ogy compared to those from a more traditional classification
of ocean basins based on physio-geographical oceanography
(Fig. S4). This information can be used to assess which ocean
regions are most likely to be affected by anthropogenic per-
turbations to the magnitude of iron sources within different
regions, whether through land use, land cover change, or in-
dustrialization.

The variability in the daily soluble iron deposition flux to
each of the eight ocean regions, as seen in Fig. 14, is much
larger in MIMI than it is in BAM-Fe (Fig. 15), reaching over
10 orders of magnitude between the minimum and maximum
flux in many regions. This is due in part to the increased
variability in fire emissions, which was improved in MIMI
to track the BC emitted from fires, and switching from the
offline soil erodibility map used in BAM-Fe to the Kok et
al. (2014a) physically based emission parametrization used
in MIMI. Anthropogenic combustion emissions are tempo-
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rally static in both model frameworks and therefore do not
affect the variability in this study as much as fires and min-
eral dust but will in the future if this is changed to repre-
sent a seasonal emission cycle. We can see that each of the
dust and fire updates in MIMI have a large impact by com-
paring the Patagonian dust-dominated South American dust
(SADU) region and the fire-dominated South American py-
rogenic (SAPY) region. Most of the dust deposited (30 %
to 90 %) in the ocean occurs during large dust events that
are on just 5 % of the days (Mahowald et al., 2009), result-
ing in large differences between median and mean deposition
amounts in all regions, as seen in Fig. 15. It is important to
note that the mean is always above the interquartile range,
further supporting our previous arguments pertaining to the
modelled mean not being an ideal estimate of the average as
it does not represent the log-normal distribution of aerosol.
Comparing the mean-to-median ratio suggests that extreme
dust events are also more pronounced in MIMI (CAM5) than
in BAM-Fe (CAM4).

5 Future directions

The purpose of model-to-observation comparisons is to iden-
tify situations (regions, times, model settings, or combina-
tions thereof) in which the model output is inconsistent with
observed realities, with the goal being to further refine the
model in the future. Each individual observation represents a
snapshot of the atmospheric state at a specific point in space
and time, and when an observation falls outside the distri-
bution of model output values from the same location and
time, we can view this as evidence of a model misspecifica-
tion. For the example of iron modelling, constraining current
model–observation discrepancies would benefit from further
exploring the model sensitivity of simulated iron and its sol-
ubility to uncertainties in five major parameter sets: dust iron
emissions, pyrogenic iron emissions, atmospheric iron dis-
solution chemistry, dry deposition rates, and wet deposition
rates. In general, improving the modelled representation of
secondary organic aerosol (including oxalate) and aerosol
pH, particularly for remote regions, is an important task for
aerosol modelling and one which would have co-benefits for
iron aerosol modelling. Comparisons of the soluble fraction
of other aerosol species with observations could also be used
to guide model development.

Here we discuss some of the model parameters which are
likely important for improving modelled iron emissions and
deposition in MIMI, and thus iron process models in general,
in the future.

5.1 Improving iron aerosol emissions

Downwind of significant mineral dust sources iron mod-
els generally overestimate the observed amount of total iron
(Myriokefalitakis et al., 2018), and soluble iron comparisons

Figure 15. Violin plots of 5 years of log10 daily soluble iron deposi-
tion (µg m−2 d−1) within each grid cell for the eight ocean regions
defined in Fig. 14. Only grid cells in which ocean fraction> 0.5 are
included in the analysis. Violin colour matches Fig. 1 region colour:
north Indian Ocean (NIND); South East Asian ocean (SEAS); North
Pacific (NPAC); North Atlantic and central Pacific (NACP); South-
ern Hemisphere oceans (SHOC); Australian and southern Pacific
(AUSP); South American dust (SADU); South American pyrogenic
(SAPY). Violin outline colours: blue lines: BAM results, orange
lines: MAM results. Black cross: log10 mean daily soluble iron de-
position. Median, mean, and ratio (mean /median) values for all
5 years of daily deposition amounts across each basin are also given.

are highly sensitive to the assumed initial solubility of min-
eral dust iron at emission (Conway et al., 2019). Conversely,
in remote ocean regions, improving the representation of
combustion emissions has been shown to be a necessary step
towards more accurate representations of observed high iron
solubilities at low iron concentrations (Ito et al., 2019).

5.1.1 Mineral dust iron aerosol emissions

In Fig. 4 the high model estimates of total iron, compared
to observations, downwind of North African mineral dust
sources could be due to uncertainties in the magnitude of
hematite emissions within the model. Hematite contains by
far the largest fraction of iron of any mineral in MIMI (Ta-
ble 3), with a major source in the Sahel (Fig. S5). The Sahel
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is a borderline dust source, and emissions from this region
have been shown to be sensitive to different model dynam-
ics, even when forced with reanalysis winds, for example be-
tween CAM4 and CAM5 (Scanza et al., 2015). Other studies
have shown a large sensitivity of dust generation to the de-
tails of the soil erodibility map (e.g. Cakmur et al., 2006).
For CAM5 with the DEAD emissions scheme, Scanza et
al. (2015) showed that improvements in estimating the di-
rect radiative forcing of mineral dust could be achieved by
assuming that hematite is only emitted from clay minerals
and not silt, with an effective reduction of ∼ 30 % from the
coarse-mode emission of hematite. Although MIMI has em-
ployed an updated dust emission scheme (Table 1; Kok et al.,
2014a) the model is still sensitive to assumptions within the
offline mineralogy maps and applications of the brittle frag-
mentation theory therein. For instance, the single-scattering
albedo, which is a critical parameter in estimating the direct
radiative forcing (e.g. Di Biagio et al., 2009), becomes more
comparable to observations (Kim et al., 2011) if the same
assumption as in Scanza et al. (2015) is applied (Fig. S6).
Quantifying the uncertainty on the climate response to differ-
ent assumptions in mineralogy and dust emissions, and any
reanalysis meteorology driving them, is therefore an impor-
tant task.

5.1.2 Pyrogenic iron aerosol emissions

Matsui et al. (2018) recently showed that combustion iron
emissions have been underestimated in current models. One
possible reason for this underestimate is that the anthro-
pogenic combustion iron emissions from Luo et al. (2008)
are for 1996. Taking steel-making and coal consumption
(which are also linked to iron emissions) as a proxy for eco-
nomic development (Ghosh, 2006; Lee and Chang, 2008)
shows that growth in these sectors boomed exponentially
post-2000, particularly in Asia and India (Ghosh, 2006; Lee
and Chang, 2008). Therefore, 1996 emissions do not cap-
ture recent industrial developments, and updating the anthro-
pogenic combustion iron emission inventory for use in the
21st century is a critical next step.

During a fire, the iron contained in leaves and wood (Price,
1968) will be released to the atmosphere along with the iron
contained in the surrounding soil, whether entrained from the
ground due to pyro-convective updrafts (Wagner et al., 2018)
or through a remobilization of terrigenous particles which
have previously been deposited onto vegetation (Gaudichet
et al., 1995; Paris et al., 2010). All sources are subsequently
internally mixed within the smoke plume before any down-
wind observation occurs. Differentiating the iron contribu-
tion from biomass which is burnt to that from entrained dust
was not considered in any of the studies in Table 4 but would
be required to define the correct mineralogy and solubility of
iron from fires. If we assume that biomass contains low con-
centrations of iron relative to the surrounding soils then we
could expect a difference in observed Fe : BC ratios between

a cerrado (savannah) environment, where surrounding soils
are dry and dust is easily mobilized, compared to a tropical
environment, where soils are wet and dust is not as easily mo-
bilized. But we do not see this in Table 4, and both regions
have a similar range which spans around 2 orders of magni-
tude from low to high. However, no concrete conclusions can
be drawn from such a limited dataset, so more observations
are needed to distinguish which source (biomass or dust) is
contributing most to the iron measured downwind of fires.

The physical, chemical, and biological properties of the
underlying soil are also impacted by fires (Certini, 2005) and
it can be years after the fire has occurred until a return to the
pre-fire state is achieved. For example, the removal of veg-
etation and the surface crust by fires from dune regions will
create a new opportunity for dust mobilization (Strong et al.,
2010), and higher-intensity fires can also increase the erodi-
bility of soils and the availability of fine particles through
breaking down the soil structure (Levin et al., 2012). Fur-
thermore, under high temperatures the fire can transform the
underlying soil mineralogy, with iron decreases in clay min-
erals and increases in magnetic iron oxide minerals (Crock-
ford and Willett, 2001; Ketterings et al., 2000; Ulery and
Graham, 1993). The amount of dust emitted from post-fire
landscapes is potentially very significant, with Wagenbren-
ner et al. (2017) estimating that an extra 12–352 Tg of dust as
PM10 (40 % of which was estimated to be PM2.5) was emit-
ted to the atmosphere in 2012 from post-fire landscapes in
the western US alone. The impact of fires on total and sol-
uble iron emissions in dust from within post-burn regions is
also likely to be different but requires further study, although
it likely depends on the fire regime and the time since the fire
occurred.

The most advanced iron processing models currently con-
sider industrial, domestic, wildfire, and shipping pyrogenic
emissions (Myriokefalitakis et al., 2018). An emerging dis-
cussion is on the importance of volcanic ash and the iron it
contains for ocean biogeochemistry (Langmann, 2013). Fig-
ures 4 through 7 show that MIMI underrepresents both to-
tal iron and its solubility in the remote extratropical Pacific
where volcanic emissions may be an important missing iron
source. Future understanding of volcanic iron sources is po-
tentially important as once deposited to the ocean, particu-
larly in regions that are iron limited or seasonally iron lim-
ited, volcanic inputs have been shown to alter satellite chloro-
phyll (Hamme et al., 2010; Rogan et al., 2016) and the draw-
down of macronutrients (Lindenthal et al., 2013). The vol-
ume of metals released by a volcano is subject to many uncer-
tainties, including both the nature of the volcano and its erup-
tion type and strength, leading to estimates which can vary
by many orders of magnitude (Mather et al., 2006, 2012). To
date most studies have focused on ocean inputs from shorter-
term explosive eruptions rather than continuous inputs from
quiescent passive degassing volcanoes which are likely to be
most important only for the central Pacific region downwind
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of volcanoes located within the “ring of fire” (Olgun et al.,
2011).

5.2 Aerosol deposition

An examination of aerosol dry deposition in CAM5 by Wu
et al. (2018) showed that the deposition velocity for Aitken-
and accumulation-sized BC particles is potentially an order
of magnitude too high. It is highly likely that this will also be
the case for dust. As the largest discrepancies between mod-
els and observations are in remote ocean regions, improving
the model long-range transport of iron by investigating de-
position rates is an important constraint to be applied to the
model.

6 Conclusion

It is important to accurately model the atmospheric iron cycle
because of the impacts of iron on human health, ocean bio-
geochemistry, and climate. Atmospheric iron process mod-
elling suitable for use in global climate and Earth system
modelling is a new model development area, and as such
it is currently undergoing rapid development. Here we have
detailed the development of the Mechanism of Intermediate
complexity for Modelling Iron (MIMI v1.0) such that it now
represents iron emissions, atmospheric processing, and de-
position within a global modal aerosol microphysics frame-
work.

The solubility of iron depends on the underlying aerosol
iron properties, such as dust mineralogy and combustion fuel
type, and the degree to which dissolution from an insolu-
ble to soluble iron form has occurred in the atmosphere.
Which of these is the dominant factor for describing the
observed inverse relationship between the solubility of iron
to the total iron mass is currently unknown (Mahowald et
al., 2018). Updating the mineral dust emission scheme to a
physically based parameterization, however, has improved
model performance by increasing total iron close to mineral
dust sources, where solubility is observed to be low (Figs.
4 through 7). Updating pyrogenic iron emissions from fires
increases the long-range transport of soluble iron to remote
ocean regions, where observed solubility is higher (Figs. 4
through 7), while increasing anthropogenic combustion iron
emissions by a factor of 5 brings the total in line with more
recent evaluations of their magnitude (Conway et al., 2019;
Matsui et al., 2018). Emission updates have also increased
the variability in soluble iron deposition (Fig. 15). Improve-
ments to the atmospheric iron processing scheme in MIMI
also increase iron dissolution in more remote regions relative
to mineral dust sources, again in line with observations.

Comparisons with observations (Figs. 4 through 7) show
that in general MIMI simulates total iron concentrations well.
However, comparison of modelled iron solubility to obser-
vations reveals that while the model captures many regional

features, some are missed. It is unclear, however, whether
this problem arises from the model or observational repre-
sentation of the system owing to the insufficient number of
observations available to build a robust observational result
for such a highly variable quantity in the Earth system, even
when aggregating over small regional scales. There are sig-
nificant differences in calculating iron solubility based on
the order of the averaging operation. When calculating at
each model time step, global annual mean iron solubility is
one-third (34 %; NH= 40 %, SH= 29 %) higher than when
calculated from monthly mean values. Earth system models
are designed to integrate land–atmosphere–ocean–ice com-
ponents at each time step and could thus yield different re-
sults based on the coupling time step length employed. Fur-
thermore, the mean is shown not to be an accurate representa-
tion of the average atmospheric state due to the non-Gaussian
distribution of aerosol concentrations. In many regions, how-
ever, there are just a few (fewer than five) observations, often
only one, so while the use of the median is robust with re-
spect to extreme values, a limited observational dataset can-
not truly discriminate if extreme values are outliers or the
norm. Use of the mean also significantly overestimates the
average atmospheric soluble iron deposition to the ocean and
is always larger than the upper quartile of the distribution in
daily deposition. However, this bias may be tempered due to
ocean biogeochemistry processes likely being relevant over
timescales which are longer than those in the atmosphere. Fu-
ture work will need to consider how best to compare models
to sporadic observations, potentially making use of distribu-
tions rather than a more limited absolute average.

The main sources of soluble iron deposition vary both be-
tween and within ocean basins. The redefinition of ocean
basins based on the dominate iron deposition source, rather
than a traditional physio-geographical ocean basis, can there-
fore aid in determining where continental anthropogenic ac-
tivity will have the greatest impact on ocean biogeochem-
istry and which source region is linked to where model–
observation comparisons are poor. For example, modelling of
total iron and its solubility in the South Atlantic could be im-
proved by further improving our understanding of industrial
combustion and fires within South America. Furthermore,
soluble iron deposition to Southern Hemisphere oceans in
MIMI, whereby combustion and fire emissions have a signif-
icant impact, is between a factor of 2 to 4 higher compared
to BAM-Fe, which is the model simulating the largest atmo-
spheric fluxes to the ocean of the comparable models studied
in Myriokefalitakis et al. (2018). As integrated Earth system
models develop in the future, taking a holistic view to under-
standing how dust and fires are coupled in terms of feedbacks
on iron emissions is an important step for predicting how fu-
ture changes in climate will alter the Earth system response
to human perturbations of the natural system.
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