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Abstract. This study presents an optimization methodol-
ogy for reducing the size of an existing monitoring network
of the sensors measuring polluting substances in an urban-
like environment in order to estimate an unknown emission
source. The methodology is presented by coupling the sim-
ulated annealing (SA) algorithm with the renormalization
inversion technique and the computational fluid dynamics
(CFD) modeling approach. This study presents an applica-
tion of the renormalization data-assimilation theory for opti-
mally reducing the size of an existing monitoring network in
an urban-like environment. The performance of the obtained
reduced optimal sensor networks is analyzed by reconstruct-
ing the unknown continuous point emission using the con-
centration measurements from the sensors in that optimized
network. This approach is successfully applied and validated
with 20 trials of the Mock Urban Setting Test (MUST) tracer
field experiment in an urban-like environment. The main re-
sults consist of reducing the size of a fixed network of 40
sensors deployed in the MUST experiment. The optimal net-
works in the MUST urban region are determined, which
makes it possible to reduce the size of the original network
(40 sensors) to ∼ 1/3 (13 sensors) and 1/4 (10 sensors). Us-
ing measurements from the reduced optimal networks of 10
and 13 sensors, the averaged location errors are obtained as
19.20 and 17.42 m, respectively, which are comparable to
the 14.62 m obtained from the original 40-sensor network.
In 80 % of the trials with networks of 10 and 13 sensors,
the emission rates are estimated within a factor of 2 of the
actual release rates. These are also comparable to the perfor-
mance of the original network, whereby in 75 % of the trials

the releases were estimated within a factor of 2 of the actual
emission rates.

1 Introduction

In the case of an accidental or deliberate release of a haz-
ardous contaminant in densely populated urban or indus-
trial regions, it is important to accurately retrieve the loca-
tion and the intensity of that unknown emission source for
risk assessment, emergency response, and mitigation strate-
gies by the concerned authorities. This retrieval of an un-
known source in various source reconstruction methodolo-
gies is completely dependent on the contaminant’s concen-
trations detected by some pre-deployed sensors in the af-
fected area or a nearby region. However, the pre-deployment
of a limited number of sensors in that region required an op-
timal strategy for the establishment of an optimized moni-
toring network to achieve maximum a priori information re-
garding the state of emission. It is also required to correctly
capture the data while extracting and utilizing information
from a limited and noisy set of concentration measurements.
Establishing optimal monitoring networks for the character-
ization of unknown emission sources in complex urban or
industrial regions is a challenging problem.

The problem of monitoring network optimization is com-
plex and may consist of a first deployment of the sensors,
updating an existing network, reducing the size of an exist-
ing network, or increasing the size of an existing network.
These problems are independent and each one has its own
requirements. The degree of complexity also depends on
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(i) the network type (mobile network deployed only in an
emergency, permanent mobile network, permanent static net-
work), (ii) the scale (local, regional, etc.), and (iii) the topog-
raphy of the area of interest (flat terrain without obstacles,
complex terrain, cities, urban, industrial regions, etc.). It is
important to note that the optimization also depends on the
objective of a network design, such as the reconstruction of
an emitting source, analysis of the air quality, and/or the trig-
gering of an alert. This study is focused on reducing the size
of an existing network at a local scale in an urban-like terrain
for source reconstruction.

This study presents an optimization methodology for re-
ducing the size of an existing monitoring network in a ge-
ometrically complex urban environment. The measurements
from a reduced optimal network can be used for the source
term estimation (STE) of an unknown source in an urban re-
gion with almost the same level of source detection ability
as the original network of a larger number of samplers. The
establishment of an optimal network required sensor concen-
tration measurements, along with the availability of meteo-
rological data, an atmospheric dispersion model, the choice
of an STE procedure, and an optimization algorithm. These
types of networks can have great applications in the oil and
gas industries for the estimation of emissions of greenhouse
gases (GHGs) like methane. In order to utilize an inversion
method to estimate methane emissions, accurate measure-
ments of methane in a network of high-precision sensors
downwind of a possible source are a prerequisite. However,
these sensors may not be deployed in large numbers due to
their high cost. Alternatively, low-cost sensors (which may
not be as high precision) can rapidly be deployed specifically
for collecting the initial measurements. Using these less ac-
curate measurements and the proposed optimization method-
ology, a reduced optimal network can quickly be designed
to provide the “best” positions for the deployment of high-
precision sensors to obtain accurate methane measurements.
These high-precision measurements can be utilized in an in-
version method to estimate accurate methane emissions. A
similar and very useful application of the method proposed
here can be applied for the estimation of methane emissions
from landfills.

Ko et al. (1995) showed that the optimization of sensor
networks is an NP-hard (i.e., nondeterministic polynomial
time hardness) problem, which means that it is difficult for an
exhaustive search algorithm to solve all instances of the prob-
lem because it requires considerable time. Various optimiza-
tion algorithms have been proposed to find the best solution,
but these methods are not applicable to all cases, especially
for large problems. To solve such problems, metaheuristic
algorithms are efficient. Some studies have discussed the op-
timization of sensor distribution and number for gas emis-
sion monitoring; e.g., Ma et al. (2013), Ngae et al. (2019).
Ma et al. (2013) used a direct approach with a Gaussian
dispersion model to optimize sensor networks in homoge-
neous terrains. However, the present study utilizes an inverse

approach by solving the adjoint transport–diffusion equa-
tion with a building-resolving computational fluid dynamics
(CFD) model for an urban environment. This methodological
approach for an optimal monitoring network (i.e., coupling
of the optimization algorithm, inverse tracers transport mod-
eling, and CFD) includes the geometric and flow complexity
inherent in an urban region for the optimization process. Re-
cently, for a different application point of view, Ngae et al.
(2019) also described an optimization methodology for de-
termining an optimal sensor network in an urban-like envi-
ronment using the available meteorological conditions only.
The CFD computations also required a considerable amount
of time to compute the flow and dispersion in an urban envi-
ronment. However, in order to apply the proposed methodol-
ogy in an emergency situation for an area of interest in a com-
plex urban or industrial environment, an archive database of
CFD calculations can be established for a wide range of me-
teorological and turbulence conditions and can be utilized in
the optimization process.

In this study, a simulated annealing (SA) stochastic op-
timization algorithm (Jiang et al., 2007; Abida et al., 2008;
Abida and Bocquet, 2009; Saunier et al., 2009; Kouichi et al.,
2016; Kouichi, 2017; Ngae et al., 2019) is utilized. The SA
algorithm was designed in the context of statistical physics.
It incorporates a probabilistic approach to explore the search
space and converges iteratively to the solution. This algo-
rithm is often used and recommended to solve the prob-
lems of sensor network optimization (Abida, 2010). The net-
work optimization process consists of finding the best set of
sensors that leads to the minimum of a defined cost func-
tion. A cost function can be defined as a regularized norm
square of the distance between the measurements and fore-
casts, which is also used for the STE (Sharan et al., 2012).
In this study, two canonical problems are considered inde-
pendently. (i) The first is the optimization of the measuring
network. Optimization consists of selecting the best positions
of the sensors among a set of potential locations. This choice
is operated in a search space constituted by all the possible
networks (of a specific size) and based on a cost function that
quantitatively describes the quality of the networks. (ii) The
second is the identification of the unknown source. The STE
is studied in the framework of a parametric approach. Here
the challenge is to determine the parameters of the source (in-
tensity and position) using measurements from the sensors of
an optimally designed network.

The reduced optimal networks are validated using an STE
technique to estimate the unknown parameters of a contin-
uous point source. The STE problem for atmospheric dis-
persion events has been an important topic of much con-
sideration as reviewed in Rao (2007) and Hutchinson et al.
(2017). Often, the source term is estimated using a network
of static sensors deployed in a region. In an inverse process
for the STE, the adjoint source–receptor relationship, con-
centrations, and meteorological measurements are required.
The adjoint source–receptor relationship is defined by an in-
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verse computation of the atmospheric transport–dispersion
model (Pudykiewicz, 1998). This relationship is often af-
fected by nonlinearities in the flow field by building ef-
fects in complex scenarios arising in urban environments,
where the backward and forward dispersion concentrations
will not match. Various inversion methods can be classi-
fied in two major categories: probabilistic and determinis-
tic. The probabilistic category treats source parameters as
random variables associated with the probability distribu-
tion. This includes the Bayesian estimation theory (Bocquet,
2005; Monache et al., 2008; Yee et al., 2014), Monte Carlo
algorithms using Markov chains (MCMC) (Gamerman and
Lopes, 2006; Keats, 2009), and various stochastic sampling
algorithms (Zhang et al., 2014, 2015). Deterministic meth-
ods use cost functions to assess the difference between ob-
served and modeled concentrations and are based on an it-
erative process to minimize this difference (Seibert, 2001;
Penenko et al., 2002; Sharan et al., 2012). Among the other
approaches, advanced search algorithms like the genetic al-
gorithm (Haupt et al., 2006), the neural network algorithm
(Wang et al., 2015), and other regularization methods (Ma
et al., 2017; Zhang et al., 2017) have been used for the
STE. In this study, we utilized the renormalization inver-
sion method (Issartel, 2005) for the STE using measurements
from the optimal networks, which is deterministic in nature
and does not require any prior information on the source pa-
rameters. The renormalization inversion approach was suc-
cessfully applied and validated for the retrieval of an un-
known continuous point source in flat terrain (Sharan et al.,
2009) and also in an urban-like environment (Kumar et al.,
2015b). Initially, the renormalization inversion method was
proposed to estimate emissions from the distributed sources
(Issartel, 2005). Sharan et al. (2009) and other studies have
shown that this technique is also effective for estimating con-
tinuous point sources. For these applications, the hypothesis
of a linear relationship between the receptor and the source
was assumed. For homogeneous terrains, the adjoint func-
tions can analytically be computed based on the Gaussian so-
lution of the diffusion–transport equation to estimate a con-
tinuous point release. However, the flow field in urban or in-
dustrial environments is quite complex, and the asymmetry
of the flow and the dispersed plume in urban regions is gener-
ated mainly by the presence of buildings and other structures.
In general, Gaussian models are unable to capture the ef-
fects of complex urban geometries on adjoint sensitivities be-
tween sources and receptors, and if dense gases are involved,
the Gaussian distribution hypothesis fails. Recently, Kumar
et al. (2015b, 2016) have extended the applications of the
renormalization inversion technique to retrieve an unknown
emission source in urban environments, whereby a CFD ap-
proach was used to generate the adjoint receptor–source re-
lationship. In this process, a coupled CFD–renormalization
source reconstruction approach was described for the iden-
tification of an unknown continuous point source located at
the ground surface or at a horizontal plane corresponding to

a known or predefined altitude above the ground surface or
an elevated release in an urban area.

This study deals with a case of optimally reducing the size
of an existing monitoring network. For this purpose, a pre-
defined network of sensors deployed in an area of interest is
considered to determine an optimized network with a smaller
number of sensors but with comparable information. This
work explores two requirements of the optimal networks that
modify the spatial configuration of an existing network by
moving the sensors and also reducing the number of sensors
of an existing large network. In real situations, this method-
ology can be applied for the optimization of mobile networks
deployed in an emergency situation. The methodological ap-
proach to optimally reduce the size of an existing monitor-
ing network in an urban environment is presented by cou-
pling the SA stochastic algorithm with the renormalization
inversion technique and the CFD modeling approach. The
concentration measurements obtained from the optimally re-
duced sensor networks in 20 trials of the Mock Urban Setting
Test (MUST) field tracer experiment are utilized to validate
the methodology by estimating an unknown continuous point
source in an urban-like environment.

2 Source term estimation method: the renormalization

In the context of an inversion approach, source parameters
are often determined using concentration measurements at
the sensor locations and a source–receptor relationship. The
release is considered continuous from a point source located
at the ground or at a horizontal plane corresponding to an
altitude of a known source height. Since the optimization
methodology presented in the next section utilizes some con-
cepts from the renormalization inversion methodology (Sha-
ran et al., 2009), the renormalization theory to estimate a
continuous point release is briefly presented in the following
subsections.

2.1 Source–receptor relationship

A source–receptor relationship is an important concept in the
source reconstruction process and it can be linear or nonlin-
ear. This study deals with the linear relationship because ex-
cept for nonlinear chemical reactions, most of the other pro-
cesses occurring during the atmospheric transport of trace
substances are linear: advection, diffusion, convective mix-
ing, dry and wet deposition, and radioactive decay (Seibert
and Frank, 2004). A source–receptor relationship between
the measurements and the source function is defined based
on a solution of the adjoint transport–diffusion equation that
exploits the adjoint functions (retroplumes) corresponding
to each receptor (Pudykiewicz, 1998; Issartel et al., 2007).
These retroplumes provide sensitivity information between
the source position and the sensor locations. Let us consider
a discretized domain of N grid cells in a two-dimensional
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space x= (x,y), a vector of M concentration measurements
µ= (µ1,µ2, . . .,µM)

T
∈ RM , and an unknown source vec-

tor s(x) ∈ RN to estimate. The measurements µ are related
to the source vector s by the use of sensitivity coefficients
(also referred to as adjoint functions) (Hourdin and Tala-
grand, 2006). The sensitivity coefficients describe the back-
ward propagation of information from the receptors toward
the unknown source. These vectors are related by the follow-
ing linear relationship:

µ= As+ ε, (1)

where ε ∈ RM is the total measurement error and
A ∈ RM×N is the sensitivity matrix with A(x)=
[a(x1),a(x2), . . .,a(xN )]. Here, each column vector
a(xi) ∈ RM of the matrix A represents the potential sen-
sitivity of a grid cell with respect to all M concentration
measurements.

For a given set of concentration measurements µ, the
source estimate function s(x) in Eq. (1) can easily be esti-
mated by formulating a constrained optimization problem.
This optimization problem minimizes a cost function J (s)=
sT s, subjected to a constraint ε = µ−As= 0. Using the
method of Lagrangian multipliers, s(x) can be estimated as a
least-norm solution:

s= ATH−1µ, (2)

where H−1 is the inverse of the Gram matrix H= AAT . This
estimate (Eq. 2) is not satisfactory because it generates ar-
tifacts at the grid cells corresponding to the measurement
points. Adjoint functions become singular at these points and
have very large values. These large values do not represent
a physical reality but rather artificial information. This was
highlighted by Issartel et al. (2007), who reduced this artifi-
cial information by a process of renormalization.

2.2 Renormalization process

This process involves a weight function W(x) ∈ RN×N in
space, which is purely a diagonal matrix with the diagonal

elements wjj > 0 such that
N∑
i=1
wjj =M . The introduction

of W transforms the source–receptor relationship in Eq. (1)
to

µ= AwWs+ ε, (3)

where the modified sensitivity matrix Aw is defined as Aw =

AW−1
= [aw(x1),aw(x2), . . .,aw(xN )] in which the column

vector aw(xi)= a(xi)/w(xi) of Aw is the weighted sensi-
tivity vector at xi . Considering a similar approach as out-
lined in the previous subsection, a new constrained opti-
mization problem can be formulated for Eq. (3) to estimate
s(x). This optimization problem minimizes a cost function
J (s)= sTWs, subjected to a constraint ε = µ−AwWs= 0,

and deduces the following expression sw of s (Appendix A in
Kumar et al., 2016):

sw = ATwH−1
w µ, (4)

where H−1
w is the inverse of Hw = AwWATw.

The weight function in the above-discussed renormaliza-
tion process is computed by using an iterative algorithm pro-
posed by Issartel et al. (2007) (Appendix A). A brief deriva-
tion for the estimation of an unknown point source (i.e., lo-
cation and intensity) from the renormalization inversion is
described in Appendix B.

3 The combinatorial optimization of a monitoring
network

A predefined large network of n sensors deployed in an area
of interest is considered to determine an optimized network
with a smaller number of sensors but with comparable infor-
mation. For a given number of p sensors such that p < n, one
determines an array of p sensors among n, which delivers a
maximum of information. It is a combinatorial optimization
problem that consists of choosing p sensors among n, thus
constituting an optimal network. The optimal network will
consist of p sensors for which a defined cost function is min-
imum. The number of possible choices nCp (number of com-
binations of p among n) is very high when an initial network
is sufficiently instrumented (n large) and p is small with re-
spect to n. As the number of combinations to be tested is very
large, the minimum of a cost function will be evaluated by a
stochastic algorithm, viz. simulated annealing (SA).

3.1 Cost function

A cost function is defined (based on renormalization theory)
as a function that minimizes the quadratic distance between
the observed and simulated measurements according to the
Hw norm (Issartel et al., 2012), where Hw is the Gram matrix
defined in Sect. 2.2. A cost function (say Js(x)) to minimize
is defined (Appendix C) as follows:

Js(x)= 1−
s2

w

µTH−1
w µ

, (5)

where sw is given by Eq. (4). A global minimum of the cost
function Js(x) is evaluated by the SA algorithm.

3.2 Simulated annealing (SA) algorithm for the
sensor’s network optimization

The problem of optimization of a network is solved using
a simulated annealing algorithm. The SA optimization algo-
rithm is utilized here for the determination of the optimal
networks by comparing its performance with the genetic al-
gorithm (GA) (Kouichi, 2017). These algorithms of different
search techniques (SA probabilistic and GA evolutionary)
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are evaluated based on the same cost function. The results
showed that the optimal networks retained by the GA and the
SA are quantitatively and qualitatively comparable (Kouichi,
2017). SA is advantageous because it is relatively easy to im-
plement and takes smaller computational time in comparison
to GA. Both the SA and GA optimization algorithms in the
framework of this approach (based on renormalization the-
ory) have little influence on the estimation of the parameters
of a source (Kouichi, 2017).

SA is a random optimization technique based on an anal-
ogy with thermodynamics. The technique was introduced to
computational physics over 60 years ago in the classic paper
by Metropolis et al. (1953). The algorithm of simulated an-
nealing is initiated by starting from an admissible network.
At the subsequent steps, the system moves to another feasi-
ble network, according to a prescribed probability, or it re-
mains in the current state. However, it is crucial to explain
how this probability is calculated. The mobility of the ran-
dom walk depends on a global parameter T , which is inter-
preted as “temperature”. The initial values of T are large,
allowing for the free exploration of large extents of the state
space (this corresponds to the “melted state” in terms of the
kinetic theory of matter). In the subsequent steps, the tem-
perature is lowered, allowing the algorithm to reach a local
minimum.

For SA, each network is considered as a state of a virtual
physical system, and the objective function is interpreted as
the internal energy of this system in a given state. According
to statistical thermodynamics, the probability of a physical
system to be in the same state follows the Boltzmann distri-
bution and depends on its internal energy and the tempera-
ture level. By analogy, the physical quantities (temperature,
energy, etc.) become pseudo-quantities. And during the min-
imization process, the probabilistic treatment consists of ac-
cepting a new network selected in the neighborhood of the
current network following the same Boltzmann distribution
and depending on both the cost difference between the new
and current networks and on the pseudo-temperature (simply
called temperature). To find the solution, SA incorporates the
temperature into a minimization procedure. So at high tem-
perature (i.e., starting temperature), the space of solution is
widely explored, while at lower temperature the exploration
is restricted. The algorithm is stopped when the cold tem-
perature is reached. It is necessary to choose the law of de-
creasing temperature, called the cooling schedule. Different
approaches to parameterize SA are explored in Siarry (2016).
Kirkpatrick et al. (1983) proposed an average probability
to determine the initial (starting) temperature. Nourani and
Andresen (1998) compared the widely used cooling sched-
ules (exponential, logarithmic, and linear). The SA algo-
rithm starts the minimization of an objective function at an-
nealing temperature from a single stochastic point, and then
it searches for the minimal solutions by attempting all the
points in the search domain with respect to their temperature
value. The algorithm is depicted in a flow diagram in Fig. 2,

and a step-by-step implementation of the SA procedure for
an optimized monitoring network in an urban environment is
described as follows.

Step 1. Parameter setting and initialization

Network parameters (n and p). The variable n is the num-
ber of possible locations of the sensors and p is the optimal
network number of sensors.

Starting temperature (T0). T0 is also called the highest
temperature. It was determined from the Metropolis law:
T0 =−

(1Js)
log(P0)

, where (1Js) is an average of the difference
of cost functions calculated for a large number of cases. P0
is an acceptance probability and following the recommen-
dations of Kirkpatrick et al. (1983), it was set to 0.8. Start
iterations (Itt = 0).

Length of the bearing (Lmax). The length of the bearing is
the number of iterations to be performed at each temperature
level. An equilibrium is reached for this number of iterations
and any significant improvement of the cost function can be
expected. No general rule is proposed to determine a suitable
length. This number is often constant and proportional to the
size of the problem.

The temperature decay factor (θ). The temperature re-
mains constant for Lmax iterations corresponding to each
bearing. We used the exponential schedule due to its effi-
ciency as denoted by Nourani and Andresen (1998). Then,
as the temperature decreases the law between two bearings
varies as Tb+1 = θTb, with 0< θ < 1, where b represents a
bearing. So, a decay pattern was retained by the bearings.

The cold temperature (Tcold). Tcold is often called the stop-
ping temperature. There is no clear rule to set this parameter.
It is possible to stop calculations when no improvement in
the cost function is observed during a large number of com-
binations. One can estimate this number and take into ac-
count the maximum length Lmax of each bearing; thus, the
cold temperature can be expressed as a fraction of the start-
ing temperature T0.

Assigning the first best set of sensors, xBest← xrand(p,n).
The variable xrand(p,n) corresponds to a vector of p sensor
locations randomly chosen among the n possible locations.
A new solution is randomly explored. This vector is assigned
to the first best set of sensors.

Step 2. Assigning a new set of sensors

This step involves xnew← xrand(p,n), where xrand(p,n) cor-
responds to a vector of p sensors locations randomly chosen
among the n possible locations. This vector is assigned to a
new set (xnew) of sensors.

Step 3. Cost difference

Given a sensor location xnew, the cost function Js(xnew) is
computed as follows:
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– set the µ vector by using the measurements at the xnew
locations;

– set rows of matrix A using the sensitivity at the xnew
locations;

– determine w(x), Hw, and aw iteratively using the algo-
rithm in Eq. (A2);

– compute the source term sw(x) using Eq. (4) and

– compute the cost function Js(xnew) using Eq. (5).

Js(xbest) is computed like Js(xnew) using the same prece-
dent steps. A cost difference is then calculated using 1Js =

Js(xnew)− Js(xbest). Increment the iterations (Itt← Itt+ 1).

Step 4. Test of sign of 1Js

If 1Js < 0, the error associated with xnew is less than that
with xbest, and thus xnew will become the next “best network”
(step 6). If this condition is not satisfied, the algorithm can
jump out of a local minimum (step 5).

Step 5. Conditional jump

When 1Js > 0, the algorithm has the ability to jump out of
any local minima if the condition P01 ≤ exp(−1Js

T
) is sat-

isfied, where P01 is the acceptance probability (a random
number between 0 and 1), and T is the current annealing
temperature. It means that xnew will be the next best network
even if the associated error is greater than that of xbest. If
P01 > exp(−1Js

T
), go to step 7.

Step 6. Update xbest

In this step, xbest is updated by xnew.

Step 7. Maximum iteration check

If the maximum number of iterations of a bearing (Lmax)

is reached, a state of equilibrium is then achieved for this
temperature and one can cool the actual temperature (step 8).
If not, continue iterations (step 2).

Step 8. Temperature cooling

Temperature is cooled using the cooling schedule and the it-
eration variable is reset to zero.

Step 9. Cold temperature test

The cold temperature (Tcold) is also known as the stopping
temperature. If this temperature is reached, the algorithm is
stopped. When Tcold is not reached, other temperature bear-
ings are performed using the cooling schedule.

Step 10. Optimal network

At this step, the last best network xbest is the optimal net-
work. Source parameters are then estimated using the con-
centration measurements and retroplumes only for sensors
from the obtained optimal network as follows: (i) x0 is es-
timated at the position of the maximum of the source es-
timate function sw(x), and (ii) the intensity q0 is given by
q0 = sw(x0)/w(x0).

In stochastic optimization algorithms, especially in SA, it
was observed that there is no guarantee for the convergence
of the algorithm with such a strong cooling (Cohn and Field-
ing, 1999; Abida et al., 2008). However, chances are that
a near-optimal network configuration can be reached. Due
to this, one or more near-optimal networks can be obtained
from this methodology that satisfy the conditions of a nearly
overall optimum condition.

4 The Mock Urban Setting Test (MUST) tracer field
experiment

The MUST field experiment was conducted by the Defense
Threat Reduction Agency (DTRA) in 2001. It aimed to help
develop and validate numerical models for flow and disper-
sion in an idealized urban environment. The experimental de-
sign and observations are described in detail in Biltoft (2001)
and Yee and Biltoft (2004). In this experiment, an urban
canopy was represented by a grid of 120 containers. These
containers were arranged along 12 rows and 10 columns on
the army ground in the Utah desert, USA. Each container has
dimensions of 2.54 m high, 12.2 m long, and 2.42 m wide.
The spacing between the horizontal lines is 12.9 m, while
the columns are separated by a distance of 7.9 m. The to-
tal area thus formed is approximately 200× 200 m2. The ex-
periment consists of 63 releases of a flammable gas (propy-
lene C3H6) that is not dangerous or harmful in quantities and
could be released through the dissemination system into the
open atmosphere (Biltoft, 2001). Different wind conditions
(direction, speed, atmospheric stability) as well as different
positions for gas emissions (inside or outside the MUST ur-
ban canopy at different heights) were considered. These gas
emissions were carried out under stable, very stable, and neu-
tral stability conditions. In this study, 20 trials in various at-
mospheric stability conditions are selected and the meteo-
rological variables are taken from an analysis of meteoro-
logical and micro-meteorological observations in Yee and
Biltoft (2004) (Table 1). It is noted that the errors related
to meteorological data can affect the accuracy of the source
term estimation (Zhang et al., 2014, 2015), although this er-
ror is not considered in this study. In each trial, the gas was
continuously released for ≈ 15 min, during which concen-
tration measurements were made. These concentration mea-
surements were carried out by 48 photoionization detectors
(PIDs); 40 sensors were positioned on four horizontal lines
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Figure 1. A schematic diagram of the MUST geometry showing
120 containers and source (stars) and receptor (black filled circles)
locations. In a given trial only one source was operational.

at 1.6 m of height (Fig. 1), and 8 sensors were deployed in
the vertical direction at a tower located approximately in the
center of the MUST array.

5 CFD modeling for retroplumes in an urban
environment

The flow field in atmospheric dispersion models in geomet-
rically complex urban or industrial environments cannot be
considered homogeneous throughout the computational do-
main. This is because the buildings and other structures in
that region influence and divert the flow into unexpected
directions. Consequently, the dispersion of a pollutant and
computations of the adjoint functions (retroplumes) are af-
fected by the flow field induced by these structures in an ur-
ban region. Recently, Kumar et al. (2015a) utilized a CFD
model to compute the flow field and forward dispersion in
20 trials of the MUST field experiment. In order to recon-
struct an unknown continuous point source, the computed
flow field is then used to compute the retroplumes for all se-
lected trials (Kumar et al., 2015b). The CFD computations
of the flow field presented in Kumar et al. (2015a) and retro-
plumes computed in Kumar et al. (2015b) are utilized in the
proposed optimization methodology described in this study
to obtain optimal monitoring networks. In these studies, the
CFD model fluidyn-PANACHE was utilized to calculate the
flow field, considering a subdomain of calculation (whose
dimensions are 250× 225 m2 with a height of 100 m) that
consists of the MUST urban array created by the containers,

sources, receptors, and other instruments in this experiment.
This subdomain is embedded in a larger computational do-
main (dimensions of 800×800 m2 with a height of 200 m) to
ensure a smooth transition of the flow between the edges of
the domain and the obstacle zone. This extension of the outer
domain far from the main experimental site is essential to re-
duce effects of the inflow boundary conditions imposed at the
inlet of the outer domain. A more detailed description of the
CFD model and its simulations for the MUST field exper-
iment, e.g., boundary conditions and the turbulence model,
is presented in Kumar et al. (2015a) and briefly discussed in
the Supplement. An unstructured mesh was generated in both
domains with more refinement in the urbanized area in the
inner subdomain and at the positions of the receptors, thus
generating 2 849 276 meshes.

The simulation results with fluidyn-PANACHE in each
MUST trial were obtained with inflow boundary conditions
from vertical profiles of the wind (U), the turbulent kinetic
energy (k), and its dissipation rate (ε). These inflow profiles
include the following: (i) a wind profile as in Gryning et al.
(2007), which includes profiles in stable and neutral condi-
tions and a profile based on the stability function by Beljaars
and Holtslag (1991) in very stable conditions; (ii) a temper-
ature profile, which includes logarithmic profiles based on
Monin–Obukhov similarity theory; and (iii) turbulence pro-
files, in which k and ε profiles are based on an approximate
analytical solution of one-dimensional k−ε prognostic equa-
tions (Yang et al., 2009). The atmospheric stability effects
in the CFD model fluidyn-PANACHE are included through
the inflow boundary condition (via advection). The fluidyn-
PANACHE model includes a planetary boundary layer (PBL)
model that serves as an interface between the meteorolog-
ical observations and the boundary conditions required by
the CFD solver. The observed turbulence parameters, e.g.,
(i) sensible heat flux (Qh), the Obukhov length (L), (iii) sur-
face friction velocity (u∗), and the temperature scale (θ∗),
were used to derive the vertical profiles of mean velocity
and potential temperature. As an example, the wind veloc-
ity vectors around some containers for trial 11 are shown in
Fig. S1.1 in the Supplement. This figure shows the deviations
in the wind speed and its direction due to the obstacles in an
urban-like environment. It should be noted that the MUST
experiment took place under neutral to stable and strongly
stable conditions. However, the only atmospheric stability
effects included in the CFD model are through the specifi-
cation of inflow boundary conditions. Atmospheric stability
has a profound impact on dispersion and would thus influ-
ence the adjoint functions. However, as presented and dis-
cussed in our previous study (Kumar et al., 2015a), even with
specification of the stability-dependent inflow boundary con-
ditions only, the predicted forward concentrations from the
CFD model are in good agreement with the measured con-
centrations for all 20 trials in different atmospheric stabil-
ity conditions. However, at microscales, small irregularities
can also break the repeated flow patterns found in a regu-
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Table 1. The meteorological values (wind speed (S04), wind direction (α04) at 4 m level of mast S), turbulence (the Obukhov length (L),
friction velocity (u∗), turbulent kinetic energy (k) at 4 m level of tower T), and source parameters (source height (zs), release duration (ts),
release rate (qs)) in 20 selected trials of the MUST field experiment (Biltoft, 2001; Yee and Biltoft, 2004). Here, trial nos. 1–20 are assigned
for continuation and simplicity, but these do not correspond to the same assigned trial number for a given trial name in the MUST experiment.

Trial Trial name qs ts zs S04 α04 u∗ L k

no. (JJJhhmm) (L min−1) (min) (m) (m s−1) (◦) (m s−1) (m) (m2 s−2)

1 2640138 175 21 0.15 2.35 17 0.26 91 0.359
2 2640246 200 15 0.15 2.01 30 0.25 62 0.306
3 2671852 200 22 0.15 3.06 −49 0.32 330 0.436
4 2671934 200 15 1.8 1.63 −48 0.08 5.8 0.148
5 2672033 200 15 1.8 2.69 −26 0.17 4.8 0.251
6 2672101 200 14 0.15 1.89 −10 0.16 7.7 0.218
7 2672150 200 16 0.15 2.30 36 0.35 150 0.409
8 2672213 200 15 1.8 2.68 30 0.35 150 0.428
9 2672235 200 15 2.6 2.32 36 0.26 48 0.387
10 2672303 200 19 1.8 2.56 17 0.25 74 0.367
11 2681829 225 15 1.8 7.93 −41 1.10 28 000 1.46
12 2681849 225 16 0.15 7.26 −50 0.76 2500 0.877
13 2682256 225 15 0.15 5.02 −42 0.66 240 0.877
14 2682320 225 15 2.6 4.55 −39 0.50 170 0.718
15 2682353 225 15 5.2 4.49 −47 0.44 120 0.727
16 2692054 225 22 1.3 3.34 39 0.36 170 0.362
17 2692131 225 17 1.3 4.00 39 0.42 220 0.582
18 2692157 225 15 2.6 2.98 43 0.39 130 0.505
19 2692223 225 15 1.3 2.63 26 0.35 120 0.484
20 2692250 225 17 1.3 3.38 36 0.37 130 0.537

lar array of containers with an identical shape (Qu et al.,
2011). In addition, uncertainties associated with the thick-
ness and the properties of the material of the container wall
also affect flow pattern and the resulting concentrations and
adjoint functions (Qu et al., 2011). Accordingly, the atmo-
spheric stratification and stability effects should also be in-
cluded through surface cooling or heating in the CFD model
as well as stability effects from inflow boundary conditions.
Since the released gas propylene is heavier than air and be-
haves as a dense gas, a buoyancy model was used to model
the body force term in the Navier–Stokes equations. The
buoyancy model is suitable for the dispersion of heavy gases
for which a density difference in the vertical direction drives
the body force.

In order to compute the retroplumes in each MUST trial,
first the CFD simulations were performed to compute the
converged flow field in the computational domain. Second,
the flow field is reversed and used in the standard advection–
diffusion equation to compute the adjoint functions ai(x). In
this computation of the retroplumes corresponding to each
receptor in a selected trial, the advection–diffusion equation
is solved by considering a receptor as a virtual point source
with a unit release rate at the height of that receptor. Also,
the meteorological conditions remained invariant during the
whole experimental period in a trial. Details about the retro-
plumes and the correlated theory of duality verification (i.e.,
comparison of the concentrations predicted with the forward

(direct) model and the adjoint model) for all 20 trials of the
MUST field experiment are given in Kumar et al. (2015b),
and we have utilized the same retroplumes in this study for
the optimization process. Since we are concerned with es-
tablishing an optimized monitoring network in a domain that
contains the MUST urban array, the retroplumes are com-
puted in the inner subdomain only. Consequently, all the
computations for an optimized monitoring network were car-
ried out in the inner subdomain only. The sensors in the op-
timized monitoring network are intended to deploy at a fixed
vertical height above the ground surface. Accordingly, the
retroplumes corresponding to only 40 receptors at 1.6 m of
height were utilized in computations for the optimized mon-
itoring networks in the MUST urban environment.

6 Results and discussion

The calculations were performed by coupling the SA algo-
rithm to a deterministic renormalization inversion algorithm
and the CFD adjoint fields to optimally reduce the size of an
existing monitoring network in an urban-like environment of
the MUST field experiment. The network optimization pro-
cess consists of finding the best set of sensors that leads to
the lowest cost function. In this study, the validation is re-
alized following two separate steps. The first step consists
of forming two optimal monitoring networks by using the
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Figure 2. Flow diagram of the simulated annealing procedures to determine an optimized monitoring network.

presented optimization methodology, which makes it pos-
sible to reduce the size of an original network of 40 sen-
sors to approximately one-third (13 sensors) and one-fourth
(10 sensors). The second step consists of comparing the a
posteriori performance of the obtained reduced-size optimal

networks with the MUST original network of 40 sensors at
1.6 m above the ground surface. In first step, a comparison
(based on a cost function) with networks of the same size
(e.g., 10 sensors) was implicitly performed during the opti-
mization process. As the SA is an iterative algorithm, during
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the optimization process networks of the same size are com-
pared at each iteration and the best one is retained. The net-
works have also been generated randomly like in Efthimiou
et al. (2017); however, the search space of the problem is
very large. In our case, the number of compared networks is
equivalent to the number of iterations (as an example for an
optimal network of 10 sensors, ∼ 3× 104 configurations are
compared). Here, the comparison is based on a cost function
and inspired by the renormalized data-assimilation method.
The cost function quantifies the quadratic distance between
the observed and the simulated measurements. The “optimal
network” produces the best description of the observations
(i.e., corresponds to the minimal quadratic distance) and per-
mits the a posteriori estimation of the location and emission
rate of an unknown continuous point source in an urban-like
environment.

The size of the MUST predefined (original) network is 40
sensors, and the sizes of the optimized networks are fixed af-
ter performing a first optimization with the number of sensors
from 4 to 16 (Kouichi, 2017). This first evaluation showed
that for some trials, a small number of sensors could not
allow for the correct reconstruction of the source, and di-
vergences in the calculations have been noted. Accordingly,
the source estimation obtained for different trials and net-
work sizes shows that, very often, networks of fewer than
eight sensors may not characterize the source correctly. On
the other hand, beyond 13 sensors, the source estimation is
not significantly improved, and the associated errors were
roughly constant (Kouichi, 2017). Therefore, in order to en-
sure an acceptable estimate of the source for all the trials, the
sizes of the optimized network are fixed as 10 and 13 sensors
(1/4 and ∼ 1/3, respectively, of the original network of 40
sensors).

The optimization calculations were performed using MAT-
LAB on a computer with the configuration Intel® Core™ i7-
4790 CPU @ 3.60 GHz and 16 GB of RAM. The averaged
computational time for the optimization of one 10-sensor net-
work was ≈ 2.5, and it was ≈ 8.5 h for the 13-sensor net-
work. In computations, a value of parameter T0 = 10 was
fixed according to the scale of the cost function and using
the methodology described in step 1, and Tcold = 10−13 was
used for both optimal sensor networks; θ is a decay factor
of the temperature for an exponential cooling schedule that
describes a procedure of the temperature decrease. The best
cooling schedule is the exponential decay as demonstrated by
Nourani and Andresen (1998) and Cohn and Fielding (1999);
θ was fixed as 0.9 following the recommendation in the lit-
erature (Siarry, 2014). This value allows for sufficiently slow
cooling in order to give more chances for the algorithm to
explore a large search space and to avoid the local minima.
Lmax is taken as 100 and 200 for the 10- and 13-sensor net-
works, respectively, following the recommendation in Siarry
(2014) and according to the number of possible combinations
that increases with the number of sensors (8.5× 108 for 10
sensors and 1.2× 1010 for 13 sensors).

Figure 3 shows the optimal networks of 10 and 13 sen-
sors, respectively, for three representative trials in the MUST
urban array: trials 5 (very stable), 11 (neutral), and 19 (sta-
ble). These three trials correspond to one trial each in neutral,
stable, and very stable atmospheric conditions during the re-
lease. The optimal monitoring networks of 10 and 13 sensors
for all 20 selected MUST trials are shown in Figs. S2.1 and
S2.2.

In order to analyze the performance of the optimal moni-
toring configurations of smaller sizes, source reconstructions
were performed to estimate the unknown location and the
intensity of a continuous point release. These source recon-
struction results were obtained using the information from
the optimal monitoring networks formed by 10 and 13 sen-
sors in each MUST trial. In this performance evaluation pro-
cess, the retroplumes and the concentration measurements
were utilized from the sensors corresponding to these opti-
mal networks. The retroplumes were computed using CFD
simulations, considering the dispersion in a complex terrain.
The source reconstruction results from both the optimal mon-
itoring networks were also compared with results computed
from the initial MUST network formed by 40 sensors (Kumar
et al., 2015b). As in practice, the number of measurements is
limited, but this comparison allowed for the conclusion that
in urban areas, the optimal reduction of a network size is pos-
sible without significantly degrading its efficiency for source
estimation.

Source estimation results from the different monitoring
networks are shown in Table 2 for all 20 selected trials of
the MUST experiment. These results are presented in terms
of the location error (Epl ), which is an Euclidean distance
between the estimated and the true source location, and Epq
is a ratio of the estimated to the true source intensity. The
corresponding monitoring network is represented by a super-
script p (representing the number of sensors in an optimal
network) on Epl and Epq . In order to quantify the uncertainty,
10 % Gaussian noise was added at each measurement. Ac-
cordingly, 50 simulations for the source reconstruction were
performed with these noise measurements using the optimal
networks for each trial. The average and the standard devi-
ation of Epl and Epq are calculated, and the results are also
presented in Table 2.

For a given trial, the skeleton parameter represents the
common sensors between two optimal networks of different
sizes (with 10 and 13 sensors). These results show that the
SA algorithm coupled with renormalization inversion theory
and the CFD modeling approach succeeded in reducing the
size of an existing larger network to estimate unknown emis-
sions with similar accuracy in an urban environment.

Figure 4 shows isopleths of the renormalized weight func-
tion (also called the visibility function) and the normalized
source estimate function snw(x)= sw(x)/max(sw(x)) corre-
sponding to both optimal monitoring networks for three rep-
resentative trials (e.g., 5, 11, and 19) of the MUST exper-
iment. These isopleths for all 20 selected MUST trials are
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Figure 3. The optimal networks of 10 (a–c) and 13 sensors (d–f), respectively, for trials 5 (very stable), 11 (neutral), and 19 (stable). Blank
and filled black circles respectively represent all (40) potential positions and the optimal positions of sensors.

Table 2. Source estimation results from the different monitoring networks for each selected trial of the MUST field experiment. Ep
l

and
E
p
q respectively denote the location error (m) and ratio of the estimated to true source intensity with the corresponding monitoring network.

Here, the superscript p on Ep
l

and Epq represents the number of sensors in an optimal network. “Skeleton” refers to the number of sensors
common to the optimal networks of 10 and 13 sensors for a given MUST trial.

Run E40
l

E13
l

E10
l

E40
q E13

q E10
q Skeleton

no. (m) (m) (m) sensors

1 3.3± 1.3 19.60± 12.13 33.76± 5.30 0.92± 0.08 1.04± 0.23 1.24± 0.22 3
2 42.9± 23.8 31.91± 8.80 56.88± 9.51 4.01± 1.57 3.21± 0.41 5.12± 3.63 4
3 10.8± 1.6 9.01± 2.47 9.01± 3.02 1.17± 0.27 0.71± 0.16 0.71± 0.16 7
4 22.8± 7.7 18.07± 1.84 18.07± 2.61 0.27± 0.35 0.83± 0.21 0.83± 0.26 6
5 21.9± 2.1 2.13± 2.54 11.56± 4.21 0.57± 0.07 0.95± 0.05 0.67± 0.05 6
6 5.0± 1.6 6.96± 0.19 6.96± 0.00 2.14± 0.60 1.04± 0.06 1.04± 0.04 7
7 12.4± 9.1 18.85± 9.08 12.99± 1.67 0.41± 0.49 3.11± 0.51 1.06± 0.07 4
8 15.8± 12.1 12.86± 1.28 15.79± 1.05 2.22± 0.90 1.32± 0.34 1.76± 0.11 6
9 7.7± 1.2 8.20± 0.35 8.08± 0.00 1.37± 0.07 3.06± 0.17 7.55± 0.39 5
10 8.8± 3.0 8.00± 4.57 8.00± 5.68 1.08± 0.19 1.08± 0.77 1.08± 1.07 8
11 19.8± 5.0 17.19± 12.00 17.19± 7.06 1.67± 0.12 1.62± 0.40 1.62± 0.26 3
12 7.4± 6.6 5.43± 11.69 10.22± 9.10 0.95± 0.06 0.85± 0.28 0.20± 0.04 4
13 7.7± 0.6 8.63± 4.36 8.63± 3.86 0.97± 0.07 0.78± 0.18 0.78± 2.05 4
14 2.2± 1.9 5.50± 2.98 5.50± 3.88 1.42± 0.17 0.88± 0.24 0.88± 0.40 7
15 1.1± 1.0 30.23± 2.14 37.98± 0.72 1.88± 0.09 0.57± 0.07 0.17± 0.01 7
16 26.7± 4.9 63.04± 6.84 29.80± 9.86 1.70± 0.06 0.29± 0.06 0.67± 0.23 5
17 7.0± 1.9 14.07± 2.78 23.05± 10.44 0.90± 0.05 1.10± 0.04 1.52± 0.16 6
18 14.3± 11.0 12.83± 4.18 12.83± 4.61 1.15± 0.46 1.15± 0.16 1.15± 0.21 6
19 22.3± 6.4 10.77± 4.25 13.46± 4.8 1.76± 0.16 0.99± 0.20 0.83± 0.25 6
20 32.5± 1.8 45.23± 1.78 44.29± 0.31 0.83± 0.04 1.68± 0.06 1.56± 0.06 7

www.geosci-model-dev.net/12/3687/2019/ Geosci. Model Dev., 12, 3687–3705, 2019



3698 H. Kouichi et al.: Optimal urban monitoring network

Figure 4. Isopleths of the renormalized weight function (w(x)) (gray in first and third columns) and the normalized source estimate function
(snw(x)= sw(x)/max(sw(x))) (colored in second and fourth columns) for both optimal networks of 10 and 13 sensors, respectively, for trials
5 (very stable), 11 (neutral), and 19 (stable). The black and white filled circles respectively represent the true and estimated source locations.

shown in Fig. S3. As already discussed in the literature, the
visibility function includes the natural information associ-
ated with a monitoring network for source retrieval in a do-
main and physically interprets the extent of regions seen by
the network (Issartel, 2005; Sharan et al., 2009). This func-
tion is independent of the effective values of the concentra-
tion measurements and depends only on the geometry of the
monitoring network. Hence, this leads to a priori informa-
tion about the unknown source apparent to the monitoring
network. A statistical parameter, a factor of g (FAg), for the
source reconstruction results from each monitoring network
is presented in Table 3, where FAg represents the percentage
of trials in which the source intensity is estimated within a
factor of g of the actual emission rates. The statistics calcu-
lated with the original 40-sensor network show that the av-
erage location error for all 20 trials is 14.62 m, and in 75 %
of the trials, the intensity of the source is estimated within a

factor of 2 of the actual emission rates. In 90 % of the trials,
intensity was estimated within a factor of 3, and it was esti-
mated within a factor of 4 in 95 % of the trials (Table 3). If
trial 2 is considered, large location errors (greater than 30 m)
and intensity values ranging between a factor of 3 and 5 were
observed (Table 2) independently of the number of sensors in
the networks. If we consider trials 15, 16, and 20, it was noted
from the numerical results that larger location errors do not
necessarily correspond to high intensity errors (Table 2).

From the distribution of the optimized sensors in the net-
works in Fig. 3 for trials 5, 11, and 19 as well as in Figs. S2.1
and S2.2 for all selected trials, it was noted that a larger num-
ber of sensors are close to the source position in the optimal
networks in most of the trials. The source reconstruction re-
sults from the optimal monitoring networks formed by 10
sensors have an averaged location error (E10

l ) of 19.20 m for
all 20 trials in the MUST experiment (Tables 2 and 3). In
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Table 3. Statistics for the source reconstruction results from each
monitoring network. Here, Ep

l
is the averaged location error for all

20 trials corresponding to each network. FAg represents the per-
centage of trials in which the source intensity is estimated within a
factor of g.

Sensors (p) E
p
l

(m) FA4 FA3 FA2

40 14.62 95 90 75
13 17.42 100 80 80
10 19.20 80 80 80

most of the trials, the location and the intensity of a continu-
ous point emission are estimated accurately and close to the
true source parameters. The location error is minimum in trial
14 (E10

l = 5.50 m) and maximum in trial 2 (E10
l = 56.88 m)

(Table 2). For this configuration of the optimal sensor net-
work, the source intensity in 80 % of the trials is estimated
within a factor of 2 of the true release rates (Tables 2 and 3).

For all 20 trials, the averaged location errorE13
l is 17.42 m

for the optimal networks formed by 13 sensors, which is
smaller than the averaged E10

l = 19.20 m obtained with 10
sensors (Tables 2 and 3). The location error is observed as
a minimum in trial 5 (E13

l = 2.13 m) and as a maximum in
trial 16 (E13

l = 63.04 m) (Table 2). For this optimal network,
in 80 % of the trials, the source intensity is estimated within
a factor of 2 of the actual emission rates. It was noted from
the evaluation results that the increase in the number of sen-
sors in a network has little influence on the accuracy of the
estimated intensity (Tables 2 and 3).

In some trials, it was also noted that the distance of an es-
timated source to a real source decreases with a decrease in
sensor number and also increases with the number of sen-
sors in some other cases. It may be because the information
added by a new sensor was not necessarily beneficial. It is
noticeable that in a particular meteorological condition (i.e.,
wind direction, wind speed, and atmospheric stability), some
of the sensors in a network may have little contribution to
the STE. So, increasing the number of sensors may not al-
ways provide the best estimation because with the addition
of more sensors, we also add more model and measurement
errors in the estimation process. These errors can affect the
source estimation results in some trials. In some cases, it may
also depend on the sensitiveness of the added sensor’s posi-
tion in an extended optimal network to the source estimation.
It is also noted that for a monitoring network, not only the
number of sensors but also the sensor distribution (or sensor
position) affects the information captured from the network.

In fact, both optimal networks for each trial show a di-
versity of structures independently of the number of sensors
considered. For this, the skeleton was used to analyze the het-
erogeneity of the structures of different optimal networks. A
skeleton with seven sensors is considered a strong common
base for the networks. This is the case for trials 3, 6, 14, 15,

and 20 (Table 2). It is noted that the overall results obtained
are comparable (few differences between the results obtained
by the networks). For these networks, a strong common base
leads to a near-global optimum. If we consider networks with
a weak common base, the skeleton was formed by up to three
sensors, particularly in trials 1 and 11. The performances do
not systematically converge independently of the size of the
networks. Thus, for trial 1, better results were obtained with
a network formed by 13 sensors compared to that by 10 sen-
sors. This result reflects the fact that the algorithm with the
network formed by 13 sensors probably converges toward
a near-global optimum. For trial 11, it was also noted that
the performances obtained by the two networks are identical.
This shows that the networks with different sensor configu-
rations may lead to a nearly overall optimum. This result is
in coherence with Kovalets et al. (2011) and Efthimiou et al.
(2017). Considering a network of 10 sensors, they show for
the same experimental data that the best source reconstruc-
tion is possible with only 5 % or 10 % of the randomly se-
lected total network combinations.

Considering the networks of intermediate structures with
skeletons varying from four to six sensors, for trials 2, 4, 5, 7,
8, 9, 12, 13, 16, 17, 18, and 19, no obvious trend is noticed.
These results tend to show that for a given trial, one or more
optimal networks can satisfy the conditions of a nearly over-
all optimum (to be minimized). The obtained optimal net-
works may have a more or less common structure (having a
greater or lesser number of skeletons).

Moreover, uncertainties calculated for different network
sizes do not show an obvious trend. Indeed, a general rela-
tionship between the number of samplers and the uncertain-
ties is not obvious. One may notice that changing the size of
the network (increasing or decreasing the number of sensors)
can lead to the growth or diminution of the uncertainties in
the source parameter estimations. As an example, for trial 7
uncertainties grow, while for trial 17 uncertainties diminish
(Table 2).

It should be noted that this study deals with the case of re-
ducing the number of sensors in order to obtain an optimal
network from an existing large network. This optimization
was carried out under the constraints of an existing network
of the original 40 sensors in the MUST field experiment. If
one compares the performances of the obtained optimal mon-
itoring networks of smaller sizes with the initial (original)
network of 40 sensors in the MUST environment, both op-
timal networks provide satisfactory estimations of unknown
source parameters. The 40-sensor network gives an averaged
location error of 14.62 m for all trials, and the release rate
was estimated within a factor of 2 in 75 % of the trials. How-
ever, reducing the number of sensors to∼ 1/3 of the original
40 sensors, the 13-sensor optimal networks also give compa-
rable source estimation performances with an averaged loca-
tion error of 17.42 m. Even with the 13-sensor optimal net-
works, source intensities in 80 % of the trials were accurately
estimated within a factor of 2. Similarly for the 10-sensor
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optimal networks, the averaged location error (19.20 m) is
slightly larger than that obtained from the 13- and 40-sensor
networks. However, reducing the number of sensors to 1/4
gives extra advantages in the case of limited sensor availabil-
ity for a network in emergency scenarios, such as accidental
or deliberate releases, in complex urban environments.

It should also be noted that the optimization evaluation
in this study is performed using the MUST set of measure-
ments, and this makes it more likely that the resulting sensor
configuration performs well in reconstructing the source (in
other words, the same measurements should not be used for
the optimization and for the reconstructions). However, this
does not limit the application of the proposed methodology
for some important practical applications like accurate emis-
sion estimations. In fact, this can be considered a limitation
of the data used for this application because for a complete
process of optimization and then evaluation one requires a
sufficiently long set of measurements so that all the data can
be divided into two parts, (i) one part for designing an op-
timal sensor network and (ii) another part for the evaluation
of the designed optimal network. However, the durations of
the releases in the MUST field experiment were not suffi-
ciently long to divide all the data from a test release sepa-
rately into two parts for designing the optimal sensor net-
work and then its evaluation. In further evaluations of the
resulting optimal sensor configuration, a different set of con-
centration measurements can be constructed by adding some
noise to the measurements. For a continuous release in steady
atmospheric conditions, the average value of the steady con-
centration in a test release is not expected to deviate drasti-
cally from the mean values in each segment of the complete
data. So this new set of concentration measurements with
added noise can partially fulfill the purpose of evaluating a
designed optimal network. As shown in Table 2, the errors in
the estimated source parameters are small even with the new
sets of concentration measurements constructed by adding
10 % Gaussian noise. This exercise shows that even if we
have utilized a partially different set of the measurements for
the evaluation of the optimal networks, the optimal networks
have almost the same level of source detection ability in an
urban-like environment. However, realistic data are required
for further evaluation of the optimization methodology.

Although the MUST field experiment has been widely uti-
lized for the validation of atmospheric dispersion models
and inversion methodologies for unknown source reconstruc-
tion in an urban-like environment, its experimental domain
was only approximately 200 m× 200 m (with buildings rep-
resented by a grid of containers) and can be considered small
for a real urban environment. Thus, it may not quite represent
a real urban region in terms of scale, meteorological variabil-
ity, and nonuniform terrain or roughness–canopy structure.
However, the methodology presented here is general in na-
ture to apply to a real urban environment. The methodology
involves the utilization of a CFD model, which can generally
include the effects of urban geometry, meteorological vari-

ability, and nonuniform terrain or roughness–canopy struc-
ture in a real urban environment. It is also noted that the op-
timal network design would depend on diurnal and spatial
variability in meteorological conditions, which may increase
or decrease the optimum number of sensors and may also
change the “best positions” to be instrumented by sensors.

7 Conclusions

This study describes an approach for optimally reducing the
size of an existing monitoring network of sensors in a geo-
metrically complex urban environment. It is a matter of re-
ducing the size of networks while retaining the capabilities
of estimating an unknown source in an urban region. Given
an urban-like environment of the MUST field experiment, the
renormalization inversion method was chosen for the source
term estimation. It was coupled with the CFD model fluidyn-
PANACHE for the generation of the adjoint fields. Com-
binatorial optimization by simulated annealing consisted of
choosing a set of sensors that leads to an optimal monitor-
ing network and allows for an accurate unknown source es-
timation. This study demonstrates how the renormalization
inversion technique can be applied to optimally reducing the
size of an existing large network of concentration samplers
for quantifying a continuous point source in an urban-like
environment with almost the same level of source detection
ability as the original network with a larger number of sam-
plers.

The numerical calculations were performed by coupling
the simulated annealing stochastic algorithm to the renormal-
ization inversion technique and the CFD modeling approach
to optimally reduce the size of an existing monitoring net-
work in urban-like environment of the MUST field experi-
ment. The optimal networks were constructed to reduce the
size of the original networks (40 sensors) to approximately
one-third (13 sensors) and one-fourth (10 sensors). The 10-
and 13-sensor optimal networks have estimated average loca-
tion errors of 19.20 and 17.43 m, respectively, and have com-
parable source estimation performances with an averaged lo-
cation error of 14.62 m from the original 40-sensor network.
In 80 % of trials with optimal networks of 10 and 13 sensors,
the emission rates are estimated within a factor of 2 of the
actual release rates. These are also comparable to the perfor-
mance of the original 40-sensor network, whereby in 75 % of
the trials the releases were estimated within a factor of 2 of
the actual release.

It was shown that in most of the MUST trials, the number
of sensors in optimal networks slightly influences the loca-
tion error of an estimated source, and this error tends to in-
crease as the number of sensors decreases. In 20 MUST tri-
als, an analysis of the networks formed by 10 and 13 sensors
revealed the heterogeneity of their structures in an urban do-
main. It was observed that for some trials, optimal networks
had a strong common structure. This tends to prove that a cer-
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tain number of sensors have a primordial role in reconstruct-
ing an unknown source. It would reflect the fact that disjoint
sets of sensors can lead to the best estimate of an unknown
source in an urban region. This opens enormous prospects for
assessing the relative importance of each sensor in a source
reconstruction process in an urban environment. Defining a
global optimal network for all meteorological conditions is
a complex problem, but it is of greater importance that one
may realize. This challenge consists of defining an optimal
static network able to reconstruct the sources in all varied
meteorological conditions. This information can be of great
importance to determine an optimal monitoring network by
reducing the number of sensors for the characterization of
unknown emissions in complex urban or industrial environ-
ments.

Code and data availability. The authors received access to the
MUST field experiment dataset from Marcel König of the Leib-
niz Institute for Tropospheric Research. The MUST database was
officially available from the Defense Threat Reduction Agency
(DTRA). Code developed and utilized for this work is accessi-
ble from https://doi.org/10.5281/zenodo.3269751 (Kouichi et al.,
2019).
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Appendix A: Weight function

Issartel et al. (2007) demonstrated that a weight function,
which reduces the artifacts of the adjoint functions at the
measurement points, must verify the following renormaliza-
tion criterion:

aTw(x)H
−1
w aw(x)≡ 1. (A1)

From an iterative algorithm by Issartel et al. (2007), w(x) is
determined as

w0(x)= 1,

and

wk+1(x)= wk(x)
√

aTwk(x)H
−1
wkawk(x). (A2)

Appendix B: Identification of point source

Following Sharan et al. (2009), consider a point source of
continuous release at a position xo = (xo,yo) and with the
intensity qo. The point source is thus expressed as a function
of the preceding parameters: s(x)= qoδ(x− xo). The rela-
tionship between the source and the measurements (Eq. 3)
becomes µ= qoaw(xo)w(xo)+ε. By replacing the measure-
ment term in Eq. (4), one obtains

sw = qow(xo)ATwH−1
w aw(xo); (B1)

sw reaches its maximum at position xo as the renormaliza-
tion criterion (Eq. A1) is satisfied only at this position. Thus,
sw(x) at xo becomes

sw(xo)= qow(xo), (B2)

which estimates the source intensity qo = sw(xo)/w(xo).

Appendix C: Derivation of the cost function

A cost function is defined (based on the renormalization the-
ory) as a function that minimizes the quadratic distance be-
tween the observed and the simulated measurements accord-
ing to the Hw norm (Issartel et al., 2012). Hw is the Gram
matrix defined in Sect. 2.2. The quadratic distance between
the real and the simulated concentration measurements ac-
cording to the Hw norm is given by

J =
∥∥µ− µ̂∥∥2

H−1
w
=

1
2

[
(µ− µ̂)TH−1

w (µ− µ̂)
]
. (C1)

When considering a point source, µ̂ is written by µ̂=

qoaw(x)w(x), where qo and x are respectively the intensity
and the position of a point source. By replacing µ̂ in Eq. (C1),
one obtains (Sharan et al., 2012; Issartel et al., 2012)

J = J (qo,x)

=
1
2

[
(µ− qoaw(x)w(x))T H−1

w (µ− qoaw(x)w(x))
]
. (C2)

For a fixed x in Eq. (C2), J reaches a strict local minimum if
the following two conditions are satisfied.

∂J (qo,x)
∂qo

= 0 (C3)

∂2J (qo,x)
∂q2
o

> 0 (C4)

For each fixed x, the first condition (Eq. C3) gives an es-

timate (q̃0) of q0 as q̃0 =
aTw(x)H−1

w µ

w(x) . The second condition

(Eq. C4) is always satisfied as ∂2J (qo,x)
∂q2
o
= w2(x) > 0, ∀x

(Sharan et al., 2012). Corresponding to the estimate q̃0 from
the first condition (Eq. C3), the cost function J from Eq. (C2)
leads to the following expression (Issartel et al., 2012):

J (q̃0,x)=
µTH−1

w µ

2

[
1−

s2
w

µTH−1
w µ

]
, (C5)

where sw is the same as given in Eq. (4) and µTH−1
w µ is a

positive constant. Considering Eq. (C5), it is obvious that the
minimization of J also corresponds to the maximization of

the term s2
w

µT H−1
w µ

or minimization of the term
[
1− s2

w
µT H−1

w µ

]
.

Accordingly, the minimum value of the cost function J in
Eq. (C5) leads to the following expression of the cost func-
tion (say Js(x)) to minimize:

Js(x)= 1−
s2

w

µTH−1
w µ

. (C6)

A global minimum of the cost function Js(x) is evaluated by
the SA algorithm.
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