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Abstract. Graphs are commonly gridded by triangulation,
i.e., the generation of a set of triangles for the points of the
graph. This technique can also be used in a coupler to im-
prove the commonality of data interpolation between dif-
ferent horizontal model grids. This paper proposes a new
parallel triangulation algorithm, PatCC1 (PArallel Triangu-
lation algorithm with Commonality and parallel Consis-
tency, version 1), for spherical and planar grids. Experimen-
tal evaluation results demonstrate the efficient parallelization
of PatCC1 using a hybrid of MPI (message passing inter-
face) and OpenMP (Open Multi-Processing). They also show
PatCC1 to have greater commonality than existing parallel
triangulation algorithms (i.e., it is capable of handling more
types of model grids) and that it guarantees parallel consis-
tency (i.e., it achieves exactly the same triangulation result
under different parallel settings).

1 Introduction

A coupler is a fundamental component or library used in
models for Earth system modeling. It handles coupling be-
tween component models or even between the internal pro-
cesses or packages of a component model. A coupler’s fun-
damental functions are data transfer (between different com-
ponent models, processes, or packages) and data interpola-
tion (between different model grids) (Valcke et al., 2012)

that can refer to horizontal remapping, vertical remapping,
grid staggering, and vector interpolation for various types of
coupling fields. Most existing couplers have the capability
of horizontal remapping of coupling fields between different
horizontal grids, especially spherical grids. As the horizon-
tal grids of models generally remain unchanged throughout
the time integration of a simulation, the data interpolation
function of a coupler is generally divided into two stages: the
first calculates the remapping weights for a source horizontal
grid to a target horizontal grid, and the second uses the same
remapping weights to calculate the remapping results at each
instance of data interpolation. Most existing couplers can
read in offline remapping weight generated by other software
tools such as SCRIP (Jones, 1999), ESMF (Hill et al., 2004),
and YAC (Hanke et al., 2016), while some couplers such as
OASIS (Redler et al., 2010; Valcke, 2013; Craig et al., 2017)
and C-Coupler (Liu et al., 2014, 2018) also have the abil-
ity of generating online remapping weights. Online remap-
ping weights generation can obviously improve the friend-
liness of couplers because users will no longer be forced to
manually generate offline remapping weights after changing
model grids or resolutions.

Commonality can be viewed as a fundamental feature of a
coupler. For example, most existing couplers such as OASIS,
CPL (Craig et al., 2005, 2012), MCT (Larson et al., 2005),
and C-Coupler have been used in a range of coupled models.
In the past, the longitude–latitude grid (i.e., a regular grid)
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was most widely used. However, the rapid development of
Earth system modeling has seen various types of new hori-
zontal grids appear, such as the reduced Gaussian grid, tripo-
lar grid, displaced pole grid, cubed-sphere grid, icosahedral
grid, Yin–Yang grid, and adaptive mesh, some of which are
unstructured. The continuous emergence of new types of hor-
izontal grids introduces a significant challenge to the com-
monality of couplers, especially the commonality of data in-
terpolation between any two horizontal grids. There are in
general two options to address this challenge: either the new
types of horizontal grids are incrementally supported via in-
cremental upgrades of the code of a coupler or remapping
software as required or a common representation is designed
and developed for various types of horizontal grids and then
the remapping weights are calculated based on the common
grid representation, thus allowing the code of a coupler or
remapping software to remain almost unchanged throughout
the development of model grids. As the first option will result
in the code of a coupler or remapping software to become in-
creasingly complicated, the second option is preferred, pro-
vided a common grid representation can be found.

A common grid representation can be achieved by first
viewing a grid as a set of independent grid points (only the
coordinate values of each point are concerned, while the re-
lationships among grid points – e.g., that one grid point is the
neighbor of another – are neglected) and next using one spe-
cific gridding method to build relationships among the grid
points. Triangulation is a widely used gridding method that
generates a set of triangles for independent points in a graph.
Therefore, its use can potentially improve the commonality
of data interpolation. In fact, triangulation has already been
used by couplers, such as C-Coupler.

Existing triangulation algorithms do not have high time
complexity. For example, Delaunay triangulation (Su and
Drysdale, 1997), which is a widely used triangulation algo-
rithm, has a time complexity of O(N logN) for N points.
However, the overhead of triangulation cannot always be ne-
glected, especially as model grids gain increasing numbers
of points as the model resolution increases. Modern high-
performance computers equipped with increasing numbers
of computing nodes containing increasing numbers of pro-
cessor cores can dramatically accelerate various applications,
including triangulation, that can be efficiently parallelized.
MPI (message passing interface) is a widely used parallel
programming library that can explore the parallelism of pro-
cessor cores either in the same computing node or among
different nodes, while OpenMP (Open Multi-Processing) is
a widely used parallel programming directive that can ex-
plore the parallelism of processor cores in the same comput-
ing node. For higher parallel efficiency, many applications
(including models for Earth system modeling) have benefited
from the hybrid use of both MPI and OpenMP, where MPI
generally directs the parallelism among computing nodes
and OpenMP controls that of processor cores within the
same computing node. Some existing couplers, such as MCT,

OASIS3-MCT_3.0 (Craig et al., 2017), and C-Coupler2 (Liu
et al., 2018), work as libraries and generally share the paral-
lel setting used by a component model. When a component
model utilizes a hybrid of both MPI and OpenMP for par-
allelization, a parallel triangulation algorithm that has been
integrated in a coupler will waste the parallelism of proces-
sor cores exploited by OpenMP if the triangulation algorithm
only utilizes MPI for parallelization.

Existing couplers such as MCT, CPL6/CPL7, OASIS3-
MCT_3.0, and C-Coupler2 can achieve parallel consistency,
which means achieving exactly the same results under dif-
ferent parallel settings. Parallel consistency is important for
debugging parallel implementations. Without it, distinguish-
ing reasonable errors and faults introduced by parallelization
is very difficult. However, the parallelization of triangula-
tion algorithms may damage their consistency. To develop
efficient parallel triangulation algorithms, the entire grid do-
main is generally decomposed into a set of subgrid domains,
the triangulation on each subgrid domain is conducted inde-
pendently, and the overall result of triangulation is obtained
through merging or stitching the triangles from all subgrid
domains. If the merging or stitching does not force paral-
lel consistency, a parallel triangulation algorithm may obtain
different triangles under different parallel settings. As a re-
sult, a coupler may not be able to guarantee parallel consis-
tency after implementing such a parallel triangulation algo-
rithm.

Therefore, for a triangulation algorithm to be potentially
useful in a coupler, it will need to show consistently all three
of the following features: commonality (capable of handling
almost every type of model grid), parallel efficiency (efficient
parallelization with a hybrid of MPI and OpenMP), and par-
allel consistency. There are several parallel triangulation al-
gorithms that can handle spherical grids (most model grids
are spherical grids): for example, the algorithm proposed by
Larrea (2011) (called the Larrea algorithm hereafter), the al-
gorithm proposed by Jacobsen et al. (2013) (called the Jacob-
sen algorithm hereafter), and an improved algorithm based
on the Jacobsen algorithm (Prill and Zängl, 2016) (called the
Prill algorithm hereafter). However, none of them simultane-
ously achieve the three required features (Sect. 2). With the
aim of achieving these three features, we designed and de-
veloped in this work a new parallel triangulation algorithm
named PatCC1 (PArallel Triangulation algorithm with Com-
monality and parallel Consistency, version 1) for spherical
and planar grids. Evaluations using various types and res-
olutions of model grids and different parallel settings reveal
that PatCC1 can handle various types of model grids, achieve
good parallel efficiency, and guarantee parallel consistency.

The remainder of this paper is organized as follows. We
briefly introduce related works in Sect. 2, introduce the over-
all design of PatCC1 in Sect. 3, describe the implementation
of PatCC1 in Sect. 4, evaluate PatCC1 in Sect. 5, and briefly
summarize this paper and discuss future work in Sect. 6.
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2 Related works

This section further introduces the Larrea, Jacobsen, and Prill
algorithms in detail.

The Larrea algorithm aims to triangulate global grids. It
first uses a 1-D decomposition approach to decompose a
global grid into nonoverlapping subgrid domains of stripes
(the boundaries of each subgrid domain are longitudes)
and next assigns each subgrid domain to an MPI process
(OpenMP is not used in the parallelization) for local trian-
gulation. To obtain the overall result of triangulation, it col-
lects the local triangles generated by each MPI process and
stitches them together using an incremental triangulation al-
gorithm (Guibas and Stolfi, 1985), but without guaranteeing
parallel consistency. Therefore, the Larrea algorithm has lim-
itations on commonality, parallel efficiency, and parallel con-
sistency.

The Jacobsen algorithm can triangulate spherical and pla-
nar grids. It first decomposes the whole grid domain into par-
tially overlapping circular subgrid domains and next instructs
each MPI process (OpenMP is not used in the parallelization)
to conduct 2-D planar triangulation for a circular subgrid do-
main, where the points on a spherical grid are projected onto
a plane before the triangulation. To obtain the overall result,
it first collects together the local triangles generated by each
MPI process and next scans each triangle, where a triangle
is pruned from the overall result if the same triangle already
exists. As this algorithm does not check or guarantee parallel
consistency, it introduces a risk of overlapping triangles in
the overall result. Although it is aimed for use with spheri-
cal grids and planar grids, the evaluation in Sect. 5.2 shows
that it is still unable to handle some types of model grids
well such as longitude–latitude grids and grids with concave
boundaries.

As an upgraded version of the Jacobsen algorithm, the
Prill algorithm achieves the following two improvements, but
without improving the commonality or the parallel consis-
tency. First, OpenMP is further used in parallelization, which
means that parallelization uses a hybrid of MPI and OpenMP.
Second, the centers of circular subgrid domains are deter-
mined adaptively, while the circle centers in the Jacobsen al-
gorithm must be specified by the user. The Prill algorithm
uses a 3-D spherical triangulation implementation rather than
a 2-D planar triangulation implementation.

3 Overall design of PatCC1

The first step of a parallel triangulation algorithm is to de-
compose the whole grid domain into subgrid domains. Gen-
erally, three questions should be considered in designing a
decomposition approach. The first is whether there should be
overlapping regions among the subgrid domains. The Larrea
algorithm does not have overlapping regions among the sub-
grid domains, so triangles across the boundaries of subgrid

domains are not obtained through the local triangulation for
each subgrid domain but are calculated during the last step
that obtains the overall triangulation result. We do not prefer
such an implementation as it requires the development of a
program that can efficiently calculate in parallel the triangles
across boundaries. The second consideration is the choice of
the general shape of subgrid domains. We prefer rectangles
rather than the stripes used in the Larrea algorithm and the
circles used in the Jacobsen and the Prill algorithms because
the 1-D decomposition corresponding to a petaloid shape will
limit the parallelism of a parallel triangulation algorithm, and
a circle-based decomposition is disadvantageous in terms
of extra overhead. For example, Fig. 1a shows a triangle
that should be obtained from the correct triangulation of the
whole grid domain that is rectangular and a decomposition of
the whole grid domain into four circles. Although these cir-
cles are partially overlapping, none of them fully covers the
unique triangle in Fig. 1a. To achieve proper triangulation,
these circles should be enlarged accordingly, as in Fig. 1b,
where each circle fully covers the triangle. Figure 1c shows a
decomposition into four rectangles, each of which also fully
covers the triangle. As larger regions of overlap generally
mean increased overhead for parallelization, the comparison
between Fig. 1b and c indicates that a circle-based decompo-
sition will introduce higher extra costs than rectangle-based
decomposition. The third question is whether it is reasonable
to force uniform areas among the subgrid domains. We pre-
fer to support nonuniform areas because the time complexity
as well as the overhead of triangulation is generally deter-
mined by the number of grid points, while different subgrid
domains with uniform area may have significantly different
numbers of points. In summary, PatCC1 should conduct grid
domain decomposition using partially overlapping rectangles
of nonuniform area.

The next step after decomposing the whole grid is to trian-
gulate each subgrid domain separately. Generally, an exist-
ing sequential algorithm can be used for this step. Although
a spherical grid is on a surface in 3-D space, we prefer 2-D
triangulation algorithms rather than 3-D spherical triangula-
tion algorithms because the latter generally have relatively
complicated implementations and introduce higher compu-
tational cost than the former. Experience gained from the Ja-
cobsen algorithm shows that 2-D triangulation can be used
after projecting the points in a spherical subgrid domain onto
a plane. However, projection will introduce a challenge to the
commonality of parallel triangulation. When there are multi-
ple points corresponding to the same location, projection will
implicitly “merge” them into one point, which means only
one point is kept while the other grid points are implicitly
pruned. Multiple points can correspond to the same location
but have different coordinate values that stand for different
grid cells. For example, in a global longitude–latitude grid,
there are a set of grid points located at each pole, each of
which corresponds to a different grid cell. As PatCC1 is un-
able to guarantee that all points at a pole consistently corre-
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Figure 1. Examples of overlapping regions under different shapes of subgrid domains.

spond to the same value of each field throughout any model
integration, no polar point can be pruned by PatCC1. To over-
come this challenge, a step of preprocessing model grids was
designed and integrated in the main flowchart of PatCC1.

The next step after local triangulation is to merge the local
triangles from all the subgrid domains together, where the
parallel consistency corresponding to each overlapping re-
gion is checked. When an overlapping region fails to pass
the check (which indicates that the corresponding subgrid
domains are not large enough), the corresponding OpenMP
threads or MPI processes will enlarge the corresponding sub-
grid domains and then incrementally retriangulate them.

A parallel program generally has limited parallel scalabil-
ity, which means that lower parallel speedup may be obtained
when more processor cores are used. To make the parallel
speedup achieved by PatCC1 as high as possible, a comput-
ing resource manager was designed and developed. It first
determines the maximum number of processor cores accord-
ing to the number of points in the grid and next picks out a
set of processor cores that will be used for conducting paral-
lel triangulation. Moreover, it manages the affiliation of each
processor core, i.e., which MPI process a processor core be-
longs to and which OpenMP thread a processor core corre-
sponds to.

Figure 2 shows the main flowchart of PatCC1, which con-
sists of the following main steps.

1. Preprocess the whole grid;

2. Initiate the computing resource manager;

3. Decompose the given model grid into subgrid domains;

4. Conduct local triangulation for each subgrid domain;

5. Check the parallel consistency: if the parallel consis-
tency is not achieved, go back to the fourth main step
to repeat local triangulation incrementally for the corre-
sponding subgrid domains after enlarging them;

6. When an overall result of triangulation is required,
merge all triangles produced by local triangulations to-
gether, after removing repeated triangles.

Figure 2. Main flowchart of PatCC1.

4 Implementation of PatCC1

This section introduces the implementation of PatCC1. In ad-
dition to describing each main step in the main flowchart in
Fig. 2, we introduce parallelization with the hybrid of MPI
and OpenMP.

4.1 Preprocessing of the whole grid

Regarding a spherical grid, PatCC1 takes the longitude and
latitude values of each grid point as input and preprocesses
the spherical grid as follows.

1. The latitude value of each grid point must be between
−90 and 90◦ (or the corresponding radian values).
When the spherical grid is cyclic in the longitude di-
rection, each negative longitude value of grid points
will be transformed into the corresponding value be-
tween 0 and 360◦ (or the corresponding radian value).
When the spherical grid is acyclic in the longitude direc-
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tion and the leftmost point has a larger longitude value
than the rightmost point, a transformation will make the
longitude values of points monotonically increase from
the left side to the right side of the grid. For example,
given an acyclic grid with longitude values from 300 to
40◦, the longitude values between 300 and 360◦ will be
transformed to values between −60 and 0◦.

2. If multiple grid points are at the north (south) pole and
have different longitude values, their latitude values will
be changed to a new value that is also the largest (small-
est) latitude value among all grid points, but is slightly
smaller (larger) than +90◦ (−90◦) (or the correspond-
ing radian values) so that these points will not be the
same point after projection. Moreover, a pseudo point
at the north or south pole is added to the spherical grid.
For example, given a longitude–latitude grid with a res-
olution of 1◦ having 360 grid points at the north and
south poles, the latitude values of these points can be
transformed to +89.5 and −89.5◦, respectively.

Given a regional (not global) spherical grid or a planar grid
that is essentially a concave grid (e.g., the grid in Fig. 3a that
has concave boundaries), as the Delaunay triangulation al-
gorithm cannot handle a concave grid, false triangles will be
obtained after triangulation (e.g., the red triangles in Fig. 3b).
When designing PatCC1, we found that it is difficult to de-
sign a strategy to remove these false triangles. To address this
challenge, a set of pseudo grid points on a bounding box of
the regional grid is added, which can avoid the generation of
false triangles (e.g., the result of triangulation in Fig. 3c). Af-
ter removing the pseudo edges containing pseudo grid points,
the result of triangulation can embody the profile of the con-
cave boundaries (e.g., the result in Fig. 3d).

4.2 Computing resource manager

When using a hybrid of MPI and OpenMP for paralleliza-
tion, a unique processor core (called a computing resource
unit hereafter) is generally associated with a unique thread
that belongs to an MPI process. Therefore, the pair MPI pro-
cess ID and ID of the thread in the MPI process can be used
to identify each computing resource unit. The computing re-
source manager records all computing resource units in an
array, where the threads or MPI processes within the same
computing node of a high-performance computer correspond
to continuous elements in the array. To facilitate the search of
computing resource units, the array index is used as the ID
of each computing resource unit.

To achieve uniform implementation of parallelization with
an MPI and OpenMP hybrid, the computing resource man-
ager provides functionalities of communication between dif-
ferent computing resource units. If two computing resource
units are two threads belonging to the same MPI process, the
communication between them will be achieved through their

shared memory space; otherwise, the communication will be
achieved by MPI calls.

As the use of more computing resource units does not
necessarily mean faster triangulation, e.g., when many com-
puting resource units are available for an insufficiently large
number of points in the whole grid, PatCC1 will select a part
of the computing resource units for triangulation with the
aim of near-optimal parallel performance. To achieve this,
the computing resource manager first determines the maxi-
mum number of computing resource units according to the
number of points in the whole grid and a threshold of the
minimum number of points in each subgrid domain (which
can be specified by the user). When the maximum number
is smaller than the number of available computing resource
units, the computing resource manager will select the same
ratio of computing resource units from each computing node.
For example, for 1000 available computing resource units
where each computing node includes 20 computing resource
units, when the maximum number is 500 then 500 comput-
ing resource units will be selected, with each computing node
contributing 10 computing resource units.

4.3 Grid decomposition

The grid decomposition of PatCC1 includes two stages. The
first is simultaneously to decompose the whole grid into a
set of seamless and nonoverlapping subgrid domains (called
kernel subgrid domains hereafter), assign each kernel sub-
grid domain to a computing resource unit, and build a tree
for searching kernel subgrid domains. The second stage pro-
duces expanded subgrid domains through properly enlarging
each kernel subgrid domain so that at least two expanded
subgrid domains will cover a common boundary between
kernel subgrid domains, and thus parallel consistency can
be checked after the triangulation of the expanded subgrid
domains is finished. In the following context, the first and
second stages are called kernel decomposition and domain
expansion, respectively.

A primary goal of grid decomposition is to achieve bal-
anced triangulation times among subgrid domains. Although
it is difficult or even impossible to achieve absolutely bal-
anced times, we can design a simple heuristic according to
the number of points in a subgrid domain because the time
complexity of triangulation depends on the number of points.
The grid decomposition therefore will try to achieve a simi-
lar number of points among kernel or expanded subgrid do-
mains. To facilitate the triangulation for a polar region, the
subgrid domain covering the pole will be circular, while the
remaining grid domain that does not cover any pole will be
decomposed into a set of rectangles (given a spherical grid,
rectangles are defined in longitude–latitude space), as men-
tioned in Sect. 3. To avoid narrow rectangles, the grid de-
composition should try to achieve a reasonable ratio (e.g., as
close to 1 as possible) of the lengths of the edges of each
rectangular subgrid domain. To avoid the additional work of
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Figure 3. Example of adding pseudo grid points to handle the triangulation of a concave grid.

handling cyclic boundary conditions in triangulation, a cyclic
grid domain will be decomposed into a set of (at least two)
acyclic rectangular subgrid domains. Therefore, a global grid
will be decomposed into at least four subgrid domains, even
when there are fewer than four computing resource units.

Figure 4 shows the pseudocode of the grid decomposition,
where the procedure decompse_whole_grid corresponds to
kernel decomposition. This procedure takes the whole grid
after preprocessing (pseudo points have been added) and the
active computing resource units that have been selected by
the computing resource manager as inputs. The free com-
putational capacity of each computing resource unit will be
initialized to the number of grid points per computing re-
source unit (shortened to average point number hereafter),
and will be decreased accordingly when a kernel subgrid
domain is assigned to a computing resource unit. A com-
puting resource unit without free computation capacity will
no longer be considered in grid decomposition. The proce-
dure decompse_whole_grid first generates at most two cir-
cular kernel subgrid domains with centers at the two poles
according to the average point number, whenever the model
grid covers either or both poles. Each circular kernel subgrid
domain is assigned to a computing resource unit and will be
inserted into the search tree of kernel subgrid domains.

The procedure decompse_whole_grid next calls the pro-
cedure decompse_subgrid, which recursively decomposes a
given rectangular grid domain for a given set of computing
resource units with successive IDs (called a computing re-
source set). A cyclic grid domain will be divided into two
acyclic subgrid domains with the same area even when the
given computing resource set contains only one computing
resource unit. If there is only one computing resource unit,

the given rectangular subgrid domain will be assigned to
it. Otherwise, the given computing resource set will be di-
vided into two nonoverlapping subsets with balanced total
free computational capacity, and two nonoverlapping rectan-
gular subgrid domains will be generated accordingly (their
point numbers will be balanced according to the total free
computational capacity of the two computing resource sub-
sets) through cutting the given rectangular grid domain at the
long edge. For example, given a rectangular grid domain with
6000 points and a set of five computing resource units (no. 1–
no. 5) with the same free computational capacity, the two
computing resource subsets will include three (no. 1–no. 3)
and two (no. 4 and no. 5) computing resource units, and thus
the two rectangular subgrid domains will contain about 3600
and 2400 points, respectively. Next, the MPI processes that
have common computing resource units with the first (sec-
ond) computing resource subset will recursively decompose
the first (second) rectangular subgrid domain, recursively. At
each recursion, the newly generated subgrid domains will be
inserted into the domain search tree as the children of the
given grid domain.

The procedure expand_sub_grid_domain in Fig. 4 corre-
sponds to the domain expansion stage. It is responsible for
the expansion of a given kernel subgrid domain that has been
assigned to the current computing resource unit (a comput-
ing resource unit will call this procedure several times when
multiple kernel subgrid domains have been assigned to it). It
first estimates a halo region for expansion based on an ex-
pansion rate (the ratio between the numbers of points after
and before expansion) that can be specified by the user and
then searches the kernel subgrid domains overlapping with
the halo region from the domain search tree. (The search tree
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Figure 4. Pseudocode for grid decomposition.

will be adaptively updated through a procedure (not shown)
similar to the procedure decompose_subgrid when it does not
include a kernel subgrid domain that overlaps with the halo
region.) At the same time as generating an expanded subgrid
domain, all neighboring kernel subgrid domains of the given
kernel subgrid domain will be recorded.

The above design and implementation can be viewed as a
procedure of constructing a specific k–d tree (Bentley, 1975)
in longitude–latitude space for grid decomposition. They
achieve balanced grid decomposition (balanced numbers of
grid points) among the active computing resource units in
most cases, and achieve a low time complexity of O(N ) for
an MPI process, because the overall domain search tree is

almost a binary tree and an MPI process is generally only
concerned with a limited number of top-down paths in the
tree.

4.4 Local triangulation

As introduced in Sect. 3, we prefer to use a 2-D algorithm in
local triangulation. Such an algorithm can directly handle the
triangulation of planar grids, while it is necessary to project
each subdomain of a spherical grid onto a plane before con-
ducting 2-D triangulation. Similar to the Jacobsen algorithm,
the local triangulation of PatCC1 also utilizes stereographic
projection because the Delaunay triangulations on a spherical
surface and on its stereographic projection surface are equiv-
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alent (Saalfeld, 1999). Our implementation, for a spherical
grid, first sets the projection point to the point antipodal to
the center of each spherical subgrid domain, generates the
stereographic projection, and then applies the planar Delau-
nay triangulation process to the projected points.

For the triangulation process, we developed a divide-and-
conquer-based recursive implementation, which in general
achieves a time complexity of O(N logN ). A recursion of
the triangulation implementation is to triangulate the points
within a triangular domain. It first finds a point that is near to
the center of the triangular domain and next divides the tri-
angular domain into two or three smaller triangular domains.
Legalization of triangles will be conducted when an illegal
triangle is generated (in the Delaunay triangulation, a trian-
gle is illegal if another point is within the circumcircle of the
triangle). To avoid frequent memory allocation/deallocation
operations that will greatly increase overhead, especially for
parallel programs, an optimization of the memory pool is
implemented, which efficiently manages the memory usage
during triangulation.

There will be multiple legal solutions of Delaunay triangu-
lation in cases having more than three points at the same cir-
cle, a situation that is unavoidable or even normal for model
grids. When a circle that contains more than three points is
in the overlapping region between two expanded subgrid do-
mains after grid decomposition, local triangulation of the two
expanded subgrid domains may produce different results cor-
responding to the overlapping region, which means that the
triangulation of the whole grid will fail to achieve parallel
consistency. A policy was therefore designed and used in the
local triangulation to guarantee parallel consistency: given
that the four points of two neighboring triangles (that share
two points) are at the same circle, triangulation is legal only
when the unique leftmost point or the lower-left point (if
there are two leftmost points) are not shared by the two tri-
angles (original coordinate values before projection will be
used for determining the unique leftmost point or the lower-
left point). Figure 5 shows an example demonstrating this
policy. The triangulation in Fig. 5a is illegal because P 1
is the unique leftmost point but is shared by the two trian-
gles. Figure 5b shows the corresponding legal triangulation.
In Fig. 5c, both P 1 and P 2 are leftmost points, while P 2 is
the lower left point. As P 2 is shared by the two triangles, the
triangulation in Fig. 5c is illegal. Figure 5d shows the corre-
sponding legal triangulation.

As a subgrid domain at a polar region is circular and cov-
ers the corresponding pole, significant load imbalance could
be introduced after decomposing a latitude–longitude grid.
For example, given a global latitude–longitude grid with
720× 360 points and 1000 active computing resource units,
the number of grid points per computing resource unit is
about 259, while a polar subgrid domain must contain at
least one latitude circle with 720 points. To address this prob-
lem, we developed a fast triangulation procedure (its time
complexity is O(N )) specific for latitude–longitude grid do-

mains, which will be used when a polar subgrid domain has
been confirmed as a latitude–longitude grid domain.

4.5 Checking parallel consistency

PatCC1 will examine the parallel consistency of triangulation
based on the overlapping regions among the expanded sub-
grid domains. When the local triangulations for any pair of
overlapping expanded subgrid domains do not produce ex-
actly the same triangles on the overlapping region, the tri-
angulation for the whole grid fails to achieve parallel con-
sistency. As the local triangulations for a pair of overlap-
ping expanded subgrid domains are generally conducted sep-
arately by different computing resource units, data commu-
nication among computing resource units will be required for
this step. To reduce the overhead of the data communication,
only the triangles across a common boundary between two
kernel subgrid domains are considered and a checksum cor-
responding to these triangles will be calculated and used for
the check.

4.6 Merging all triangles

This main step is optional. It may be unnecessary when
the result of triangulation will only be used for generating
remapping weights in parallel because a computing resource
unit generally can only consider the subgrid domains as-
signed to it in parallel remapping weight generation. This
step is necessary when the overall triangulation result will
be required, and has already been implemented in PatCC1
for evaluating whether PacCC1 achieves the parallel consis-
tency. The root computing resource unit will gather all tri-
angles within or across any boundary of each kernel subgrid
domain from all active computing resource units and then
prune repeated triangles (after passing the parallel consis-
tency check, any pair of triangles with overlapping area are
the same).

4.7 Parallelization with an MPI and OpenMP hybrid

To parallelize PatCC1 with an MPI and OpenMP hybrid, we
try to parallelize each main step separately, as follows:

1. Preprocessing of the whole model grid. Parallelization
of this step with MPI would introduce MPI data com-
munication with a space complexity of O(N), where N

is the number of points in the whole model grid; while
the time complexity of this step is also O(N), this step
is not parallelized with MPI to avoid MPI communica-
tion. In other words, each MPI process will preprocess
the whole model grid. However, all OpenMP threads in
an MPI process will cooperatively finish this step, which
means that each OpenMP thread is responsible for pre-
processing a part of the points in the whole model grid.

2. Initialization of the computing resource manager. This
step will introduce collective communication among
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Figure 5. Example demonstrating the policy for guaranteeing a unique triangulation solution. The four points P 1–P 4 in each graph (a–d)
lie on the circumference of the same circle.

the MPI processes. It therefore cannot be accelerated
through parallelization and more MPI processes gener-
ally means a higher overhead for this step.

3. Grid decomposition. Similar to the first step, the first
stage of this step, which decomposes the whole grid into
kernel subgrid domains, is not parallelized with MPI,
while all active OpenMP threads in an MPI process
will cooperatively decompose the whole grid. In de-
tail, task-level OpenMP parallelization (corresponding
to the OpenMP directive “#pragma omp task”) is uti-
lized, where each OpenMP task corresponds to a func-
tion call of the procedure decompose_subgrid if its input
subgrid domain contains enough points (i.e., the point
number is larger than a given threshold). In the second
stage of this step, each MPI process is responsible for
expanding the subgrid domains that have been assigned
to it while task-level OpenMP parallelization is further
implemented. Therefore, the second stage has been par-
allelized with both MPI and OpenMP.

4. Local triangulation. Each computing resource unit is
responsible for the local triangulation of the expanded
subgrid domain assigned to it. Therefore, this step has
been parallelized with both MPI and OpenMP.

5. Checking parallel consistency. Parallel consistency is
simultaneously checked among different pairs of com-
puting resource units corresponding to different pairs of
overlapping expanded subgrid domains. Therefore, this
step has been parallelized with both MPI and OpenMP.

6. Reconducting local triangulation for some subgrid do-
mains after enlarging them. A computing resource unit
is responsible for its assigned subgrid domains that fail
to pass the parallel consistency check. Therefore, this
step has been parallelized with both MPI and OpenMP.

7. Merging all triangles. This step will introduce collective
communication among all active computing resource
units. It therefore cannot be accelerated through paral-
lelization and more active computing resource units or
more points in the whole grid generally means a higher
overhead for this step.

To minimize memory usage and synchronization among
computing resource units, we prefer data parallelization for
each step of PatCC1, where different computing resource
units generally handle different subgrid domains. Consider-
ing that the subgrid domains to be decomposed dynamically
change throughout the main recursive procedure of the grid
decomposition (step 3), we implemented task-level OpenMP
parallelization to achieve data parallelization, where all tasks
correspond to the same procedure but different subgrid do-
mains.

5 Experimental evaluation

This section evaluates PatCC1 in terms of commonal-
ity, parallel efficiency, and parallel consistency. As the
source code of the Jacobsen algorithm is publicly avail-
able (https://github.com/douglasjacobsen/MPI-SCVT, last
access: 8 November 2018), we compared it with PatCC1. The
parameter of expansion rate of PatCC1 is set to 1.2 through-
out the evaluation.

5.1 Experimental setups

5.1.1 Computer platforms

Two computer platforms are used for evaluation: a shared-
memory single-node server and a high-performance com-
puter. The single-node server is equipped with two Intel
Xeon E5-2686 18-core CPUs running at 2.3 GHz. Simul-
taneous multithreading (SMT) is enabled when using the
single-node server and thus there are 36 physical processor
cores and 72 logical process cores. Each computing node of
the high-performance computer contains two Intel Xeon E5-
2670 v2 10-core CPUs running at 2.5 GHz. SMT is not en-
abled on the high-performance computer and there are 20
physical (and thus also logical) processor cores in each com-
puting node. Each computer platform provides enough main
memory for evaluation.

Both the Jacobsen algorithm and PatCC1 are compiled
with GNU compiler 4.8.5 under the optimization level O3
on either computer platform, and with the same Intel MPI li-
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brary 3.2.2 on the single-node server and with the same Open
MPI library 3.0.1 on the high-performance computer.

5.1.2 Model grids

As shown in Table 1, a set of spherical grids from real models
are used for evaluation: they are of different types and have
different resolutions. Table 2 shows the generation of nine
global grids based on three grid types (i.e., longitude–latitude
grid, cubed-sphere grid, and randomly generated grid) and
three levels of resolution (i.e., coarse, medium, and fine).

5.2 Evaluation of commonality and parallel consistency

An algorithm with commonality should successfully triangu-
late all grids in Tables 1 and 2. Given a whole grid, a success-
ful triangulation should satisfy at least the following criteria:

1. The whole triangulation process finishes normally;

2. Each triangle is a legal Delaunay triangle and there is
no overlapping area between any two triangles;

3. Given that any two grid points do not have the same
coordinate values, every grid point is included in at least
one triangle;

4. Each concave boundary (if any) in the original grid is
retained after triangulation.

Following the above criteria, PatCC1 successfully triangu-
lates all grids in both tables. Regarding the Jacobsen algo-
rithm, it fails to triangulate all the longitude–latitude grids
that cover at least one pole (shown in bold in Tables 1 and 2)
because the triangulation process will exit abnormally when
multiple points are at the same location on the sphere, and
there are a number of points at each pole. It also fails to trian-
gulate the polar grids in Table 1 with concave boundaries. As
shown in Fig. 6, the Jacobsen algorithm will generate a num-
ber of false triangles above the concave boundaries, whereas
PatCC1 does not generate any false triangles. The above re-
sults demonstrate that PatCC1 has much greater commonal-
ity than the Jacobsen algorithm.

To evaluate parallel consistency, the last main step of
PatCC1 is enabled, and all triangles will be written into a
binary data file after sorting them. All grids in both tables
are used for this evaluation. At least four parallel settings are
used for each grid (with different numbers of MPI processes
or different numbers of OpenMP threads). The test results
show that for each grid, the binary data files of triangles un-
der all parallel settings are exactly the same. We therefore
conclude that PatCC1 achieves parallel consistency.

5.3 Evaluation of parallel performance

5.3.1 Performance on the single-node server

We first evaluate the parallel performance using all grids in
Table 2 on the single-node server. When the total number

of processes or threads does not exceed 36, each process
or thread will be set to a unique physical core. As the Ja-
cobsen algorithm will use offline grid decomposition infor-
mation included in two predefined files (one containing a
list of region centers for parallelization and the other con-
taining the connectivity of the regions) and three pairs of
these files for three parallel settings (2, 12, and 42 processes)
are publicly available (https://github.com/douglasjacobsen/
MPI-SCVT, last access: 8 November 2018), we use only
these three parallel settings to run the Jacobsen algorithm.
To compare the Jacobsen algorithm and PatCC1, we focus
only on the time for local triangulation without considering
the time for grid decomposition because the Jacobsen al-
gorithm uses offline grid decomposition information while
PatCC1 calculates grid decomposition information online.
According to the test results in Table 3, PatCC1 is faster and
achieves higher parallel speedup than the Jacobsen algorithm
in most cases. Moreover, higher parallel speedup is achieved
by PatCC1 for finer grid resolution.

To further evaluate the parallel performance of PatCC1 on
the single-node server, more parallel settings are used and
the time is measured for each main step (except the last step
because it is optional and cannot be parallelized). The test
results corresponding to randomly generated grids, cubed-
sphere grids, and longitude–latitude grids are shown in Ta-
bles 4–6, S1–S3, and S4–S6 (in the Supplement), respec-
tively. The results lead to the following observations.

1. Concurrent running of MPI processes will degrade the
performance of the first main step (for preprocessing the
whole grid), and more MPI processes generally mean
more significant degradation. As this step is memory
bandwidth bound and has not been parallelized with
MPI, the overall complexity of memory bandwidth re-
quirement is O(MN ), where M is the number of MPI
processes and N is the number of grid points. Given M

MPI processes, the increment of the run time is gener-
ally larger than 1 but much lower than an M-fold in-
crease. This is because concurrent running of MPI pro-
cesses enables the utilization of more memory band-
width while the overall memory bandwidth capacity on
a computing node is limited. Regarding OpenMP paral-
lelization, a small parallel speedup (larger than 1) with-
out performance degradation is obtained. This is be-
cause the overall complexity of the memory bandwidth
requirement remains consistently O(N ), and the con-
current running of OpenMP threads also enables the uti-
lization of more memory bandwidth.

2. As the second main step (initiating the computing re-
source manager) will introduce collective communica-
tion among MPI processes, the overhead of this step in-
creases with the increment of MPI processes, while the
overhead remains almost constant with the increment of
OpenMP threads.
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Table 1. Set of spherical grids (from real models) of different types and with different resolutions.

Grid type Name of the grid data file Number of Grid region Description
points

Polar grid ar9v4_100920.nc 1 684 800 A north pole region From the Regional Arctic Climate
Model (RACM). This grid has concave
boundaries.

wr50a_090301.nc 56 375 A north pole region From the Regional Arctic Climate
Model (RACM). This grid has concave
boundaries.

Cubed-sphere grid ne30np4-t2.nc 48 602 Global region From the HOMME dynamic core of the
atmosphere model CAM

ne60np4_pentagons_100408.nc 194 402 Global region From the HOMME dynamic core of the
atmosphere model CAM

Displaced pole grid gx3v5_Present_DP_x3.nc 11 600 Global region without
Antarctica

From the ocean model POP

Version_3_of_Greenland_pole_x1_T-grid.nc 122 880 Global region without
Antarctica

From the ocean model POP

Longitude–latitude grid fv1.9x2.5_050503.nc 13 824 Global region From the finite-volume dynamic core
of the atmosphere model CAM

licom_eq1x1_degree_Grid.nc 70 560 Global region without
Antarctica

From the ocean model LICOM

licom_gr1x1_degree_Grid.nc 61 200 Global region without
Antarctica

From the ocean model LICOM

LICOM_P5_Grid.nc 242 640 Global region without
Antarctica and the
north pole

From the ocean model LICOM

T42_Gaussian_Grid.nc 8192 Global region From the spectral dynamic core of
the atmosphere model CAM

T62_Gaussian_Grid.nc 18 048 Global region From the spectral dynamic core of
the atmosphere model CAM

T85_Gaussian_Grid.nc 32 768 Global region From the spectral dynamic core of
the atmosphere model CAM

T42_grid.nc 8192 Global region From the spectral dynamic core of
the atmosphere model CAM

Gamil_2.8_Grid.nc 7680 Global region From the atmosphere grid GAMIL

Gamil_1.0_Grid.nc 64 800 Global region From the atmosphere grid GAMIL

R05_Grid.nc 259 200 Global region From a land surface model

3. Similar to the first main step, the first stage of the
third main step (decomposing the whole grid into kernel
subdomains) suffers significant degradation when using
more MPI processes. Although concurrent running of
OpenMP threads can achieve a faster speed than the
concurrent running of MPI processes when the resolu-
tion of the grids is medium or fine, more significant per-
formance degradation is also observed when using more
OpenMP threads. This is because the overall complexity
of the memory bandwidth requirement under OpenMP-
only parallelization is O(N logM), where M is the num-
ber of OpenMP threads, the task-level OpenMP par-
allelization introduces some extra overhead, and the
parallelism exploited is limited. As shown in Table 7,
OpenMP parallelization actually accelerates this stage.

4. As the second stage of the third main step (expanding
kernel subdomains) has been parallelized with both MPI
and OpenMP, obvious speedup is obtained in concurrent
running of MPI processes or OpenMP threads. Com-
pared with MPI parallelization, OpenMP parallelization
can avoid redundant grid decomposition among MPI
processes (different kernel subdomains assigned to dif-
ferent MPI processes may have the same kernel sub-
domain as a neighbor) but will introduce the overhead
of OpenMP task management and scheduling. As a re-
sult, OpenMP parallelization and MPI parallelization
can outperform each other at different grid sizes (i.e.,
numbers of grid points).

5. As the fourth main step (local triangulation) has been
parallelized with both MPI and OpenMP, obvious
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Figure 6. Triangulation results for the polar grid ar9v4_100920.nc that contains concave boundaries.

Table 2. Set of global grids generated in the present study, based on
three grid types and three resolution levels.

Grid type Resolution Number of
level points

longitude–latitude grid Coarse 64 800
Medium 720 000
Fine 6 480 000

cubed-sphere grid Coarse 48 602
Medium 540 002
Fine 4 860 002

randomly generated grid Coarse 100 000
Medium 1 000 000
Fine 10 000 000

speedup is obtained in concurrent running of MPI pro-
cesses or OpenMP threads. Although the same strategy
of a computing resource unit only handling the local
triangulation of the expanded subgrid domain that has
been assigned to it is employed for both paralleliza-
tions, MPI parallelization outperforms OpenMP paral-
lelization in most cases. One possible reason for this is
that memory allocation is still necessary in local trian-
gulation after the optimization of the memory pool is
implemented, while concurrent MPI processes handle
memory allocation generally more efficiently than con-
current threads.

6. Although parallelization with OpenMP or MPI does not
achieve obvious parallel speedup for the fifth main step
(checking parallel consistency), this step generally takes

a small proportion of the overall execution time of par-
allel triangulation.

7. As SMT can effectively hide the latency from irreg-
ular memory access, while frequent irregular mem-
ory accesses are introduced by the pointer-based data
structures of triangles, SMT provides additional paral-
lel speedup for local triangulation in most cases.

8. Regarding the total execution time, OpenMP-only ex-
ecution and MPI-only execution can outperform each
other at different levels of grid sizes, while hybrid MPI–
OpenMP execution generally achieves a moderate per-
formance between the two.

5.3.2 Performance on the high-performance computer

We next evaluate the parallel performance of PatCC1 using
the fine grids in Table 2 on the high-performance computer.
OpenMP is compared using 1, 5, and 10 threads, and the time
for each main step (except the last step) is measured. The test
results for the randomly generated grid, cubed-sphere grid
and longitude–latitude grid are shown in Tables 8, S7, and
S8 (in the Supplement), respectively. Each computing node
contributes 10 processor cores when there are 20 comput-
ing resource units or more. For example, when there are 800
computing resource units, 80 computing nodes are used. In
addition to the observations discussed in Sect. 5.3.1, we can
make the following observations regarding the increment of
computing nodes.

1. The execution time of the first main step remains al-
most constant with the increment of computing nodes
because the requirement and capacity of the memory

Geosci. Model Dev., 12, 3311–3328, 2019 www.geosci-model-dev.net/12/3311/2019/



H. Yang et al.: PatCC1 3323

Table 3. Comparison of local triangulation times for the Jacobsen algorithm and PatCC1 under different numbers of total MPI processes.
Only one OpenMP thread is enabled in each MPI process.

Grid type Resolution Algorithm Run time Parallel speedup
level (ms) (2 processes/42 processes)

2 processes 12 processes 42 processes

Cubed-sphere grid Coarse Jacobsen 87.3 25.2 14.9 5.87
PatCC1 111.0 37.8 14.0 7.93

Medium Jacobsen 2428.8 679.0 408.0 5.95
PatCC1 1185.4 248.6 109.9 10.79

Fine Jacobsen 42 466.1 16 689.4 9273.0 4.58
PatCC1 12 596.2 2426.0 983.7 12.80

Randomly generated grid Coarse Jacobsen 363.9 107.5 34.8 10.45
PatCC1 219.6 66.1 28.8 7.61

Medium Jacobsen 10 218.5 3205.4 1902.3 5.37
PatCC1 2490.5 429.2 208.6 11.94

Fine Jacobsen 392 330.7 95 512.4 35 366.5 11.09
PatCC1 28 448.2 4672.1 2091.8 13.60

Table 4. Run time and parallel speedup of each main step of PatCC1 under different parallel settings, when using the randomly generated grid
at the coarse-resolution level. “3-1” and “3-2” indicate the first stage (decompose the whole grid into kernel subgrid domains) and second
stage (expand each kernel subgrid domain) of the third step, respectively. “MPI==OpenMP” indicates that the number of MPI threads and
the number of OpenMP threads in each MPI process are equal.

Main step Settings of Run time (ms) under different Parallel speedup
ID MPI+OpenMP numbers of computing resource units (1 unit/72 units)

1 unit 6 units 36 units 72 units

1 MPI only 0.3 1.8 1.9 3.7 0.07
OpenMP only 0.3 0.2 0.1 0.1 2.03
MPI==OpenMP 0.3 – 0.6 – –

2 MPI only 0.030 0.076 0.388 0.998 0.03
OpenMP only 0.030 0.033 0.036 0.038 0.79
MPI==OpenMP 0.030 – 0.073 – –

3-1 MPI only 1.3 3.0 2.5 3.7 0.34
OpenMP only 1.3 1.8 4.5 5.7 0.22
MPI==OpenMP 1.3 – 4.4 – –

3-2 MPI only 21.0 8.9 3.5 5.0 4.18
OpenMP only 21.0 9.8 6.6 11.3 1.86
MPI==OpenMP 21.0 – 4.3 – –

4 MPI only 389.1 110.8 21.1 18.5 21.06
OpenMP only 389.1 118.0 50.3 63.4 6.13
MPI==OpenMP 389.1 – 28.9 – –

5 MPI only 0.2 0.1 0.6 0.8 0.28
OpenMP only 0.2 0.2 0.5 1.3 0.16
MPI==OpenMP 0.2 – 0.5 – –

Total MPI only 411.9 124.7 30.0 32.7 12.60
OpenMP only 411.9 130.0 62.1 82.0 5.03
MPI==OpenMP 411.9 – 38.8 – –
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Table 5. Run time and parallel speedup of each main step of PatCC1 under different parallel settings, when using the randomly generated grid
at the medium resolution level. “3-1” and “3-2” indicate the first stage (decompose the whole grid into kernel subgrid domains) and second
stage (expand each kernel subgrid domain) of the third step, respectively. “MPI==OpenMP” indicates that the number of MPI threads and
the number of OpenMP threads in each MPI process are equal.

Main step ID Settings of Run time (ms) under different Parallel speedup
ID MPI+OpenMP numbers of computing resource units (1 unit/72 units)

1 unit 6 units 36 units 72 units

1 MPI only 3.3 12.2 19.4 41.8 0.08
OpenMP only 3.3 1.6 1.0 1.0 3.26
MPI==OpenMP 3.3 – 5.0 – –

2 MPI only 0.062 0.116 0.369 1.357 0.05
OpenMP only 0.062 0.070 0.072 0.070 0.89
MPI==OpenMP 0.062 – −0.105 – –

3-1 MPI only 10.8 26.3 32.6 65.9 0.16
OpenMP only 10.8 15.5 23.5 24.1 0.45
MPI==OpenMP 10.8 – 32.6 – –

3-2 MPI only 184.6 54.0 32.3 44.6 4.14
OpenMP only 184.6 66.0 21.1 30.5 6.06
MPI==OpenMP 184.6 – 30.1 – –

4 MPI only 4883.3 834.6 172.4 138.0 35.39
OpenMP only 4883.3 834.6 193.1 178.8 27.32
MPI==OpenMP 4883.3 – 178.0 – –

5 MPI only 0.7 0.2 0.5 0.9 0.80
OpenMP only 0.7 0.2 0.4 1.4 0.51
MPI==OpenMP 0.7 – 0.6 – –

Total MPI only 5082.7 927.5 257.6 292.5 17.38
OpenMP only 5082.7 918.1 239.3 235.8 21.56
MPI==OpenMP 5082.7 – 246.5 – –

bandwidth corresponding to each computing node re-
main constant.

2. The cost of the second step increases with the number
of computing resource units especially the number of
processes because this step introduces collective com-
munications among all computing resource units.

3. The execution time of the first stage of the third main
step increases slightly with the increment of computing
nodes because there will be more recursion levels in grid
decomposition when more computing resource units are
used.

4. The main step of local triangulation achieves significant
parallel speedups. When using 800 processor cores, it
achieves more than a 360-fold speedup for all fine grids.

5. The cost of parallel consistency check increases with
the increment of computing nodes, and decreases when
more OpenMP threads are used under the same number
of computing resource units. This is because the parallel
consistency check will introduce MPI communications

among processes and the overhead of communications
generally increases or decreases with the increment or
decrement of processes.

5.3.3 Impact of computing resource management

As introduced in Sect. 4.2, the computing resource manager
can adaptively select a part of the computing resource units
for triangulation when too many computing resource units
are available. To evaluate the benefit of this functionality, we
employ a randomly generated global grid with 2000 points
and run PatCC1 on the single-node server under different
numbers of MPI processes (MPI only). As shown in Table 9,
when this functionality is disabled, after the MPI process
number reaches 20, the execution times of local triangula-
tion and the whole PatCC1 algorithm increase with further
increases in MPI processes. When this functionality is en-
abled (the threshold of the minimum number of points in
each subgrid domain is set to 100), after the MPI process
number reaches 20, the execution times of both local triangu-
lation and the whole PatCC1 algorithm increase only slightly.
(The times for preprocessing the whole grid and initiating
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Table 6. Run time and parallel speedup of each main step of PatCC1 under different parallel settings, when using the randomly generated
grid at the fine-resolution level. “3-1” and “3-2” indicate the first stage (decompose the whole grid into kernel subgrid domains) and second
stage (expand each kernel subgrid domain) of the third step, respectively. “MPI==OpenMP” indicates that the number of MPI threads and
the number of OpenMP threads in each MPI process are equal.

Main step Settings of Run time (ms) under different Parallel speedup
ID MPI+OpenMP numbers of computing resource units (1 unit/72 units)

1 unit 6 units 36 units 72 units

1 MPI only 69.3 101.2 206.3 441.9 0.16
OpenMP only 69.3 22.3 10.9 10.9 6.37
MPI==OpenMP 69.3 – 41.3 – –

2 MPI only 0.066 0.118 0.286 0.877 0.08
OpenMP only 0.066 0.078 0.070 0.087 0.76
MPI==OpenMP 0.066 – 0.119 – –

3-1 MPI only 108.3 135.8 348.6 684.3 0.16
OpenMP only 108.3 152.7 293.4 319.6 0.34
MPI==OpenMP 108.3 – 224.4 – –

3-2 MPI only 1772.3 372.2 317.8 448.7 3.95
OpenMP only 1772.3 389.4 158.5 132.5 13.37
MPI==OpenMP 1772.3 – 263.6 – –

4 MPI only 58 117.3 9322.6 1662.9 1308.8 44.41
OpenMP only 58 117.3 9659.6 1782.1 1381.5 42.07
MPI==OpenMP 58 117.3 – 1923.0 – –

5 MPI only 1.7 0.5 0.7 1.1 1.56
OpenMP only 1.7 1.2 0.5 1.9 0.90
MPI==OpenMP 1.7 – 1.1 – –

Total MPI only 60 069.0 9932.5 2536.5 2885.7 20.82
OpenMP only 60 069.0 10 225.3 2245.6 1846.5 32.53
MPI==OpenMP 60 069.0 – 2453.5 – –

Table 7. Run time of step 3-1 with and without OpenMP parallelization when using the randomly generated grid under different resolution
levels.

Resolution Settings of Run time (ms) under different
level OpenMP numbers of computing resource units

1 unit 6 units 36 units 72 units

Coarse With OpenMP 1.3 1.8 4.5 5.7
Without OpenMP 1.2 1.6 4.0 4.7

Medium With OpenMP 10.8 15.5 23.5 24.1
Without OpenMP 10.6 14.3 32.4 40.0

Fine With OpenMP 108.3 152.7 293.4 319.6
Without OpenMP 108.3 183.6 353.5 427.7

the computing resource manager still increase with the in-
crement of MPI processes.)

6 Summary and future work

This paper proposes a new parallel triangulation algorithm,
PatCC1, for spherical and planar grids. Experimental evalu-
ation employing comparison with a state-of-the-art method
and using different sets of grids and two computer platforms
demonstrates that PatCC1, which has been parallelized with
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Table 8. Run time and parallel speedup of each main step of PatCC1 under different parallel settings, when using the randomly generated
grid at the fine-resolution level. “3-1” and “3-2” indicate the first stage (decompose the whole grid into kernel subgrid domains) and second
stage (expand each kernel subgrid domain) of the third step, respectively.

Main step Settings of Run time (ms) under different Parallel speedup
ID MPI+OpenMP numbers of computing resource units (1 unit/800 units)

1 unit 20 units 200 units 800 units

1 MPI only 78.9 138.0 238.3 170.5 0.46
5 OpenMP threads 78.9 29.9 41.4 37.9 2.08
10 OpenMP threads 78.9 19.3 18.3 17.4 4.52

2 MPI only 1.6 2.4 2.2 34.4 0.05
5 OpenMP threads 1.6 1.6 5.8 8.1 0.20
10 OpenMP threads 1.6 1.5 2.1 0.3 5.32

3-1 MPI only 105.8 410.6 469.4 523.3 0.20
5 OpenMP threads 105.8 178.5 202.1 181.2 0.58
10 OpenMP threads 105.8 171.4 189.5 174.4 0.61

3-2 MPI only 1971.7 392.9 319.7 321.9 6.13
5 OpenMP threads 1971.7 219.4 137.8 163.3 12.07
10 OpenMP threads 1971.7 212.6 117.7 136.5 14.44

4 MPI only 58 416.1 3143.6 335.4 156.1 374.33
5 OpenMP threads 58 416.1 3216.3 341.0 154.5 378.00
10 OpenMP threads 58 416.1 3448.3 432.0 151.4 385.87

5 MPI only 2.1 33.6 74.3 136.7 0.02
5 OpenMP threads 2.1 16.0 37.0 69.2 0.03
10 OpenMP threads 2.1 1.9 29.9 54.8 0.04

Total MPI only 60 576.3 4121.2 1439.3 1342.9 45.11
5 OpenMP threads 60 576.3 3661.6 765.1 614.3 98.61
10 OpenMP threads 60 576.3 3855.0 789.4 534.8 113.26

Table 9. Evaluation of the functionality of adaptively selecting a part of computing resource units for triangulation. A randomly generated
global grid with 2000 points is used and PatCC1 is run on the single-node server under different numbers of computing resource units (MPI
only).

Adaptive active computing Main step Execution time (µs) under different
resource units number of computing resource units

1 unit 10 units 20 units 25 units 36 units 72 units

Disabled Local triangulation 23 451 4572 4274 4380 4676 6746
Whole PatCC1 25 488 5612 5891 6057 6686 11 613

Enabled Local triangulation 23 169 4572 4275 4284 4279 4319
Whole PatCC1 25 344 5557 5917 5973 6145 6606

a hybrid of MPI and OpenMP, is an efficient parallel triangu-
lation algorithm with commonality and parallel consistency.

C-Coupler1 and C-Coupler2 have already employed a se-
quential Delaunay triangulation algorithm for the manage-
ment of horizontal grids. When cell vertexes of a horizontal
grid are not provided, they can be automatically generated
from the Voronoi diagram based on the triangulation and fur-
ther used by nonconservative remapping algorithms (the cou-
plers will force users to provide real cell vertexes of grids

involved in conservative remapping). Our future work will
replace the sequential triangulation algorithm in C-Coupler2
(the latest version of C-Coupler) by PatCC1 so as to develop
the next coupler version (C-Coupler3), which is planned to
be finished and released before the end of 2021.

Calculations for the position of a point to a line (on the line
or not) or to the circumcircle of a triangle (on, in, or out of
the circle) are fundamental operations in local triangulations.
Due to the round-off errors from floating-point calculations,
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accurate conditions cannot be employed for such calculations
and thus error-tolerant conditions are developed. For exam-
ple, a point will be judged on a circle if the ratio between
the distance from the point to the circle and the radius of the
circle is within the corresponding tolerant error. Our expe-
riences have shown that improper tolerant errors introduce
failures of triangulation to some grids. Without theoretical
guides, the tolerant errors in PatCC1 have to be set empir-
ically, i.e., no failed triangulation in all test cases generally
mean a proper setting of the tolerant errors. In the future,
more test cases with more grids will be designed for better-
ing the setting of tolerant errors.

An improper setting of the expansion rate can introduce
performance reduction to PatCC1. When the expansion rate
gets bigger, an expansion will produce bigger overlapping re-
gions among expanded subgrid domains, which will result in
higher overhead in local triangulations; when the expansion
rate gets smaller, failures of the parallel consistency check
may be increased, which will also slow down the whole al-
gorithm. The expansion rate currently is a constant value in
PatCC1 that can be specified by users. In the future, we will
investigate how to automatically determine its proper values.

When developing the OpenMP parallelization, we pre-
ferred to develop coarse-grained rather than fine-grained par-
allelization to minimize code modification. Such an OpenMP
parallelization achieves obvious parallel speedup for most
of the main steps of PatCC1, except the first stage of grid
decomposition. We tried to develop a fine-grained OpenMP
parallelization for this stage, but without success because it
requires modification of the kernel algorithm which would
thus degrade the performance.

When using a small number of computing resource units,
the main step of local triangulation generally takes most of
the execution time of the whole PatCC1 algorithm because
the time complexity of each other step is lower. With the in-
crement of computing resource units, the local triangulation
is accelerated dramatically, while the nonscalable and low-
time-complexity steps (e.g., preprocessing of the whole grid
and grid decomposition) gradually become bottlenecks. Our
future work will investigate the acceleration of these steps,
especially when the grid is extremely large and many com-
puting resource units are used.

The computer platforms used for evaluation in this pa-
per are heterogeneous. To make PatCC1 adapt to a homo-
geneous computer platform where processor cores have dif-
ferent computing powers, the free computational capacity of
each computing resource unit can be initialized according to
its computing power.

Code availability. The source code of PatCC1 is generally free
for noncommercial activities and a version of the source code can
be downloaded via https://doi.org/10.5281/zenodo.3249835 (Wire-
Fisher, 2019). Regarding commercial usage, please contact us first
for the permission.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-12-3311-2019-supplement.
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