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Abstract. We introduce and study the impact of three
stochastic schemes in the EC-Earth climate model: two at-
mospheric schemes and one stochastic land scheme. These
form the basis for a probabilistic Earth system model in
atmosphere-only mode. Stochastic parametrization have be-
come standard in several operational weather-forecasting
models, in particular due to their beneficial impact on model
spread. In recent years, stochastic schemes in the atmo-
spheric component of a model have been shown to improve
aspects important for the models long-term climate, such
as El Niño–Southern Oscillation (ENSO), North Atlantic
weather regimes, and the Indian monsoon. Stochasticity in
the land component has been shown to improve the vari-
ability of soil processes and improve the representation of
heatwaves over Europe. However, the raw impact of such
schemes on the model mean is less well studied. It is shown
that the inclusion of all three schemes notably changes the
model mean state. While many of the impacts are benefi-
cial, some are too large in amplitude, leading to significant
changes in the model’s energy budget and atmospheric cir-
culation. This implies that in order to maintain the benefits
of stochastic physics without shifting the mean state too far
from observations, a full re-tuning of the model will typically
be required.

1 Introduction

One of the key guiding principles of the scientific method is
the need to assess and quantify uncertainty. The truncation of
the true climate system to a finite grid necessarily introduces
a large source of uncertainty from unresolved sub-grid-scale
processes. While parameterizations are usually developed to
account for these unresolved processes (Bauer et al., 2015),
the parametrization process relies on introducing a number
of simplifications and assumptions that are not always valid,
effectively introducing an additional layer of uncertainty in
any model prediction (Palmer et al., 2005). Some of these
assumptions are resolution-dependent: for example, convec-
tion parameterizations typically assume that the size of a grid
box is large enough for the grid box to contain a large sam-
ple of clouds, such that the average influence of the clouds
is well constrained by the resolved flow (Arakawa and Schu-
bert, 1974; Lord et al., 1982). As the model resolution contin-
ues to increase, such assumptions can become increasingly
tentative, even while the resolution is still far from being ex-
plicitly cloud resolving. Hence, the need to represent the un-
certainty of the sub-grid contribution to the flow becomes
increasingly important.

In medium-range and seasonal forecasts using numerical
weather prediction models, the use of stochastic schemes
has become widespread as a means to sample this uncer-
tainty. Studies have shown that when properly calibrated,
such schemes have a beneficial impact on both the spread
and mean state of these forecasts (Weisheimer et al., 2011;
Berner et al., 2017; Leutbecher et al., 2017). In recent years,
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there has also been increasing interest in understanding the
impact of these schemes on the long-term climate of models.
In Palmer (2012), it was argued that introducing stochasticity
into climate models may be a key step towards eliminating
persistent model biases and reducing uncertainty in climate
projections. Since then, the insertion of a stochastic compo-
nent into a climate model has been demonstrated to improve
several key processes, including El Niño–Southern Oscilla-
tion (ENSO) (Christensen et al., 2017a; Yang et al., 2019;
Berner et al., 2018), the Madden–Julian Oscillation (MJO)
(Wang and Zhang, 2016), and the representation of the In-
dian monsoon (Strømmen et al., 2017). Improvements were
also found on regime behaviour, northern hemispheric block-
ing patterns, and tropical precipitation (Dawson and Palmer,
2015; Davini et al., 2017; Watson et al., 2017). Most of these
studies focused on a particular, multiplicative noise scheme
called the “stochastically perturbed parametrization tenden-
cies” scheme (SPPT). A more flexible variant of this scheme
(dubbed “ISPPT”) was developed and found to substantially
improve the skill of weather forecasts in areas with signifi-
cant convective activity, although only a limited evaluation
of its impact over longer timescales was reported (Chris-
tensen et al., 2017b). Most modern climate models also in-
corporate a full land system and are coupled to an ocean
model, both of which carry their own sources of uncertain-
ties. In MacLeod et al. (2016), stochasticity was added to the
land scheme in the Integrated Forecast System (IFS) used
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) and was found to have a positive impact on
seasonal predictability, as well as the 2003 European heat-
wave. In the ocean, a number of schemes have been consid-
ered, including perturbations of ocean mixing processes and
sea ice (Juricke et al., 2013; Juricke and Jung, 2014; Juricke
et al., 2017, 2018). Both variability and mean states of key
quantities were found to improve. More recently, there have
also been some studies focusing on the impact of stochastic
schemes on the atmosphere–ocean coupling (Williams, 2012;
Rackow and Juricke, 2019).

The idea behind the “Probabilistic Earth-System”, as put
forward in Palmer (2012), is to incorporate stochastic rep-
resentations of model uncertainty not only into the atmo-
sphere, but also into the land, sea ice, and ocean compo-
nents of the EC-Earth model, thus obtaining a state-of-the-art
Earth system model with stochasticity in each major compo-
nent. Such a fully probabilistic coupled climate model will be
tested in the PRIMAVERA project (Haarsma et al., 2016).
In this paper, we will present the schemes used in the land
and atmosphere components, and perform initial tests in an
atmosphere-only configuration. This allows us to test the raw
impact of the atmosphere and land schemes on the mean cli-
mate with no ocean coupling. In this sense, the study con-
ducted here is a first test of the configurations to be used in
the PRIMAVERA simulations. A key motivating question is
whether the benefits of such schemes can be achieved with-
out any additional model tuning.

As will be seen, the two atmosphere schemes and one land
scheme have a notable impact on the energy budget of the
model, implying that in coupled mode, the inclusion of dif-
ferent combinations of these schemes can be expected to
shift the model climate to a potentially quite different sta-
ble state. In fact, even in these atmosphere-only simulations,
we demonstrate significant changes in the mean state of sev-
eral variables on the large scale, such as atmospheric water
vapour content, cloud liquid water, cloud cover, soil temper-
ature, and soil moisture. This highlights that the non-linear
impacts of random model error, as represented through a
zero-mean stochastic perturbation, cannot be neglected in cli-
mate models. While some of the changes are positive com-
pared with reanalysis data, not all are. In particular, key
global quantities such as net surface energy that models are
frequently tuned for, can be strongly altered. This implies
that while adding stochasticity can be beneficial, additional
model tuning may be required to keep the mean state close
to observations.

In Sect. 2, we describe the model used and the stochas-
tic schemes under consideration. In Sect. 3, we describe the
experiments carried out, the reference data, and the statis-
tical methods. Sections 4–7 contain the actual analysis. We
choose to focus our evaluation on the impact of these stochas-
tic schemes on the mean climate. In Sects. 4–6, we examine,
for each scheme in turn, changes in the global mean of key
variables relative to a set of deterministic simulations. These
changes provide insight into the impact of the schemes on
the energy budget and the hydrological budget. In Sect. 7 we
compare changes in the modelled circulation as represented
by the Hadley cell and the quasi-biennial oscillation (QBO)
across all three schemes (SPPT, ISPPT, and stochastic land).
Finally, Sect. 8 contains a discussion on the cause of the ob-
served changes as well as our conclusions.

We note that while we do not test the stochastic ocean
schemes here, basic tests of the impact of these on the ocean
component NEMO (the Nucleus for European Modelling of
the Ocean model) of EC-Earth can be found in Juricke et al.
(2017, 2018).

2 Model description

2.1 About EC-Earth

EC-Earth is an Earth system model developed by the inter-
national EC-Earth consortium (Hazeleger et al., 2012). The
atmospheric component utilizes a modified version of the
Integrated Forecast System used by ECMWF. Land surface
processes are simulated using the Hydrology Tiled ECMWF
Scheme of Surface Exchanges over Land (H-TESSEL) (Bal-
samo et al., 2009). More details are given in Sect. 2.3. Dy-
namic ocean coupling is available using the NEMO model
version 3.6; as we will consider atmosphere only simulations,
we omit further details on the ocean component.
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The tests in this paper were performed using EC-Earth ver-
sion 3.2.1, a stable version for atmosphere-only simulations,
based on cycle 36r4 of the IFS (released in 2010). The IFS
solves the resolved processes in spectral space, with advec-
tion and physics parameterizations computed on a reduced
Gaussian grid. The parameterizations used are described ex-
tensively in Beljaars (2004). Modifications to the IFS are
carried out to improve the model performance on climate
timescales. In particular, various parameters controlling the
physics parameterizations were tuned by the consortium to
obtain a realistic energy budget for the period from 1990
to 2010, as compared to observational estimates (Trenberth
et al., 2009).

In all experiments carried out, we used the default resolu-
tion of the current EC-Earth version, which uses 91 vertical
levels and a spectral resolution of T255, corresponding to a
horizontal resolution of around 80 km.

2.2 Description of the SPPT and ISPPT schemes

The SPPT scheme has been included in the operational
model of the IFS since 1998. The scheme is designed to
represent forecast uncertainty that arises from the simplifi-
cations and approximations involved in the parametrization
of unresolved atmospheric processes. It does this by perturb-
ing, at each time step, the total net tendency from the physics
parameterizations using a multiplicative noise term r:

P̂ k = (1+µkr)
6∑
i=1

P i,k, (1)

where P i,k is the vector made up of the tendencies of the
prognostic model variables (winds, temperature, and humid-
ity) from the ith physics parametrization scheme, and k in-
dicates the vertical model level. The physics schemes are as
follows: 1st is radiation (RDTN); 2nd is turbulence, verti-
cal mixing, and orographic drag (TGWD); 3rd is convection
(CONV); 4th is large-scale water (cloud) processes (LSWP);
5th is non-orographic drag (NOGW); and 6th is methane ox-
idation (MOXI). The perturbation, r , is constant in the verti-
cal, but is tapered through µk ∈ [0,1] to smoothly reduce the
perturbation to zero in the boundary layer and stratosphere;
this is done to avoid introducing numerical instabilities. The
perturbation r , which evolves in time, follows a Gaussian
distribution with mean zero, and is smoothly correlated in
space and time. The implementation in EC-Earth follows that
in the Integrated Forecasting System as described in Palmer
et al. (2009). The perturbation r is generated by summing
over three independent spectral patterns with standard devia-
tions (0.52, 0.18, and 0.06), spatial correlation lengths (500,
1000, and 2000 km), and temporal decorrelation scales (6 h,
3 d, and 30 d) respectively: the different patterns are meant to
capture model error at different scales which may, in princi-
ple, be independent of each other. The perturbation r is lim-
ited between −1 and 1 to ensure that P̂ has the same sign as
P =

∑
P i .

The SPPT scheme described above assumes that the dif-
ferent physics parameterizations have the same model error
characteristics. If the net tendency is small, SPPT represents
the associated model uncertainty as small, even if the as-
sociated individual tendencies were large. Christensen et al.
(2017b) proposed a generalization to the SPPT approach in
which each physics process is perturbed independently using
multiplicative noise:

P̂ =

6∑
i=1

(1+µkri)P i,k. (2)

The random patterns, ri , are independently generated and
evolved. The statistical properties of the ri (standard devi-
ation, and spatial and temporal correlations) can be individ-
ually specified to account for differences in the uncertainty
characteristics arising from each physics scheme. This gen-
eralization, “Independent SPPT” (ISPPT), was shown to sig-
nificantly improve the reliability of ensemble forecasts in
the tropics, and in areas with significant convective activity
(Christensen et al., 2017b). This indicates that ISPPT is likely
a better representation of the uncertainty associated with con-
vection than SPPT. Further justification for the use of ISPPT
over SPPT has been provided by considering coarse-graining
experiments (Christensen, 2019).

Note that in these standard implementations of SPPT and
ISPPT, the fluxes in precipitation and evaporation are not per-
turbed using a random pattern. Implementing such a change
would improve consistency in the transport of moisture in the
model, and is of interest for future investigation.

Finally, it has been found, in Davini et al. (2017), that the
SPPT scheme does not conserve water, leading to an unphys-
ical drying of the atmosphere. A “humidity fix” was intro-
duced in ibid, which we also use for our SPPT and ISPPT ex-
periments. At each tim step, the “fix” computes, global mean
precipitation, and evaporation, and reinserts the amount of
humidity required to bring these into balance. This humidity
is reinserted with spatial weighting favouring regions where
the imbalance is large.

2.3 Description of the stochastic land scheme

The land surface model used here is H-TESSEL, the Tiled
ECMWF Scheme for Surface Exchanges over Land (TES-
SEL) with revised land surface hydrology, comprising a sur-
face tiling scheme and vertically discretized soil. The surface
tiling scheme allows each grid box a time-varying fractional
cover of up to six tiles over land (bare ground, low and high
vegetation, intercepted water, and shaded and exposed snow)
and two over water (open and frozen water). Each tile has a
separate energy and water balance, which is solved and then
combined to give a total tendency for the grid box, weighted
by the fractional cover. Full details of the model may be
found in Balsamo et al. (2009).

Stochasticity is induced in the land-scheme via the hy-
draulic conductivity, which is calculated in H-TESSEL us-
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ing the van Genuchten formulation (van Genuchten, 1980).
This formulation is favoured by soil scientists as it has shown
good agreement with observations in intercomparison stud-
ies (Shao and Irannejad, 1999). The hydraulic conductivity is
in this formulation given by

γ = γsat
[(1+αhn)1−1/n)−αhn−1)]2

(1+αhn)(1−1/n)(l+2) , (3)

where α, l, and n are soil texture parameters that are depen-
dent on the soil type, h is soil water potential (the potential
energy of soil water due to hydrostatic pressure), and γsat is
the hydraulic conductivity at saturation. The two key soil pa-
rameters α and γsat of Eq. (3) are stochastically perturbed.
These particular parameters have been chosen as previous
studies found them to be particularly sensitive (Cloke et al.,
2008; MacLeod et al., 2016). Each parameter is perturbed
with its own integration of the spectral pattern generator. As
with SPPT and ISPPT, the spectral pattern is obtained as a
sum of three patterns, each with the same spatial and tempo-
ral decorrelation scales as for those schemes. In this case, the
weightings for each scale are set to 0.33. Estimates of these
parameters based on observational data suggest that the two
parameters are correlated (Cosby et al., 1984), and so a third
pattern is used as a base for each pattern in order to intro-
duce a correlation between them. The correlation coefficient
between the two parameters is prescribed to be 0.6 on aver-
age. The perturbation is multiplicative, as with SPPT. That
is, each parameter p is multiplied by (1+ r), where r is the
randomly generated spectral pattern described above.

Previous work has investigated the impact of represent-
ing uncertainty in these particular hydrology parameters. Per-
turbing coupled atmosphere–ocean seasonal hindcast experi-
ments (MacLeod et al., 2016) resulted in an improved repre-
sentation of soil-moisture driven processes active during the
2003 heatwave, leading to an improved signal in the seasonal
forecast of surface air temperature. In a set of atmosphere-
only experiments, MacLeod et al. (2016) showed a strong
sensitivity of soil moisture memory to uncertainty in these
parameters. Using the same atmosphere-only model, Orth
et al. (2016) also demonstrate an improvement in subseasonal
forecast skill via the incorporation of land surface parameter
uncertainty.

3 Data and methods

3.1 Experimental set-up and reference data

We performed four ensemble experiments, which we will,
for brevity, introduce as CTRL, SPPT, ISPPT, and LAND,
referring to the scheme being used in each (in the CTRL ex-
periments no stochastic schemes were used). The ensemble
members were run for 20 years each, starting from 1 Febru-
ary of the following years: 1960, 1965, 1970, 1975, and 1980.
Thus, the total period covered by all the experiments is 1960–

2000. The motivation for spacing out the members in this
way was to account for the possibility that the impact of
the schemes may be sensitive to the initial ocean state. The
creation of an ensemble, as opposed to e.g. a single, longer
run, was motivated by the experience from ensemble fore-
casting using stochastic schemes, where multiple ensemble
members are typically needed to estimate changes robustly.
While spin-up issues may have been a complicating factor in
these shorter experiments (especially for the LAND simula-
tions, given the slow variations in soil moisture), initial test-
ing suggested that the model adjustment was rapid, further
justifying the use of an ensemble of shorter runs.

Atmospheric initial conditions for these dates were pro-
vided by the Climate Prediction group at the Barcelona Su-
percomputing Center. These initial condition files are ob-
tained by interpolation of reanalysis data using the FULL-
POS post-processing software for the IFS: this carries out the
interpolation using the model executable to ensure minimal
model drift (Bellprat et al., 2016). The sea surface tempera-
tures and sea ice are then specified using the CMIP6 forcing
datasets to match observations. Radiative forcings such as
those from anthropogenic or volcanic sources were provided
by the same source.

For the SPPT scheme, we used the default settings for the
magnitudes and time/length-scales of the perturbations as in
Leutbecher et al. (2017), described in Sect. 2.2.

For ISPPT, we used the same settings for the three fields
as for SPPT. We set the convection and large-scale water pro-
cess tendencies to share the same perturbation, and let the
remaining four tendencies (radiation, turbulence and gravity
wave-drag, and non-orographic gravity wave drag) have sep-
arate, independent perturbations. We chose to use the same
perturbation because of the feedbacks between the convec-
tion and large-scale water processes schemes in the IFS,
whereby detrained moisture from the convection scheme acts
as an input to the large-scale water processes scheme. Thus,
perturbing the two schemes together improves consistency of
moisture transport in the model. Following the naming con-
vention introduced in Christensen et al. (2017a), this corre-
sponds to ISPPT 1,2,3,3,4,5, where the number indicates
which random seed was used to generate a pattern and the
ordering of the numbers indicates which of the six physics
parametrization schemes are perturbed with that pattern (see
Sect. 2.2).

For the LAND scheme, the parameter perturbations r were
restricted to be strictly between 1 and−1, as numbers greater
than or equal to 1 were found to produce unphysical runoff
behaviour. For this reason, the standard deviation of the noise
perturbations were set to 0.33, allowing 3 standard deviations
to explore the full available range.

To allow for a single reanalysis dataset to be used across
all of the experiments, ERA40 (Uppala et al., 2005) was cho-
sen as our reference point. When evaluating the QBO, we use
the more recent reanalysis dataset ERA-Interim (Dee et al.,
2011). A disclaimer here is that these reanalysis datasets are
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both created via data assimilation using previous versions of
the IFS; therefore, they are related to EC-Earth in some ways.
For variables that are less strongly constrained by the assim-
ilation of existing observations (such as total cloud cover),
this may imply that the model bias may not be independent
of any existing biases within the reanalysis data themselves.

Finally, we note that additional simulations were also per-
formed with both SPPT+LAND and ISPPT+LAND config-
urations, to test the combined impact of schemes. However,
it was found that the impact of SPPT/ISPPT dominates the
impact of LAND when it comes to the large-scale changes
considered in this paper. Therefore, we have omitted these
configurations in the present paper.

3.2 Methodology

3.3 Statistical techniques

All fields considered were filtered by taking monthly means.
To compute the mean impact of the scheme, each simulation
is paired with the corresponding CTRL simulation covering
the same time period. The difference of each individual pair
is computed, and the mean across the five ensemble pairs
gives the mean impact of the scheme. When comparing the
CTRL simulations with the reanalysis, each CTRL simula-
tion is paired with the reanalysis data for the corresponding
time period, and again the mean across all five pairs defines
the CTRL bias. The standard deviation across the five ensem-
ble members is used to estimate the statistical significance of
the mean differences between model simulations. Twice the
standard deviations is used as an error bound (displayed ei-
ther with shading in time-series plots or explicitly written as a
number in percentage change plots). Because there are only
five samples, it is hard to claim that differences are defini-
tively significant even if the zero-line is further than 2 stan-
dard deviations away from the mean. However, in the cases
where this does happen, we have observed that all five in-
dividual differences have the same sign, suggesting that in
these cases the difference is likely significant.

To assess differences in spatial patterns, the five ensemble
members are concatenated to produce a time series spanning
1200 months at each grid point for each simulation, with the
ensemble members ordered according to their start date. A
two-tailed t test is applied to assess the significance of the
difference in the mean. Spatial plots then indicate the mean
difference across all the five simulations. Grid points where
the difference lies outside the 95 % confidence interval are
marked with dots. A cruder test was also used which simply
tested if four of the five differences had the same sign. The
results were almost identical.

Finally, to assess whether a reduction in the mean-square
error (MSE), relative to the reanalysis, was significant, we
computed the MSE for all five simulations of the scheme in
question, as well as the five MSEs of the CTRL simulations.
If the difference between the mean CTRL MSE and the mean

Table 1. Globally averaged surface energy fluxes for the CTRL sim-
ulation. The values in the “Observed” row are the estimates from
Trenberth et al. (2009) for the period from 2000 to 2004. STR rep-
resents net surface thermal radiation, SSR represents net surface so-
lar radiation, SLHF represents surface latent heat flux, SSHF rep-
resents surface sensible heat flux, and SRF represents net surface
energy. Units are in watts per square metre (Wm−2) in all cases.

STR SSR SLHF SSHF SRF

1991–1995 61.2 163.8 82.7 19.3 0.6
1991–2000 61.1 164.2 82.8 19.4 1.0
Observed 63 161 80 17 0.9

MSE of the scheme was greater than 2 standard deviations of
the spread in the MSEs across the five scheme simulations,
the difference was deemed significant.

3.4 Energy budget

As the simulations were performed with historical forcings,
the energy budgets of the five CTRL simulations are not com-
parable with each other. However, as the EC-Earth consor-
tium tuned the deterministic model to have a realistic energy
budget over the period from 1991 to 2010, the surface fluxes
of the CTRL simulation covering the period from 1991 to
2000 are shown in Table 1. The table has been split into two
parts, as the Pinatubo eruption in 1991 has a strong influence
on the first half of the period. For reference, the estimates of
these quantities from Trenberth et al. (2009), covering 2000–
2004, are also shown.

It can be seen that the CTRL simulation achieves a reason-
able energy balance, with the net surface energy close to the
observational estimate. As will be seen, the adjustment to this
budget by the introduction of the different stochastic schemes
is very fast and approximately constant in time. Therefore,
it is possible to assess whether the stochastic schemes lead
to an improved or degraded energy budget overall, although
it should be kept in mind that variations in the budget be-
tween years is often large. Focusing the comparison against
observations during this particular time period ignores possi-
ble changes in the evolution of the surface energy fluxes over
time, i.e. possible changes in the climate sensitivity of the
model. As this is the topic of the forthcoming study Strom-
men et al. (2019), we do not consider this in the present pa-
per.

4 The impact of SPPT

4.1 Impact on the mean state

Figure 1a shows the percentage changes in global mean
quantities due to SPPT, relative to the CTRL simulation.
Evaporation has notably increased by about 1 %. Figure 2b
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Table 2. Mean-square errors between the spatial means of the re-
analysis (ERA40) and each EC-Earth configuration (CTRL, SPPT,
ISPPT, and LAND) for T2M (2 m temperature), T (temperature) at
various levels (hPa), Prec (precipitation), E (evaporation), TCC (to-
tal cloud cover), RO (total runoff), TCW (total column water), SWS
(10 m wind speeds), and U (zonal winds) at different pressure lev-
els (hPa). Values where a stochastic scheme significantly reduced
the error (see Sect. 3.2) are displayed in bold.

CTRL SPPT ISPPT LAND

T2M 2.545 2.551 1.940 1.851
T1000 1.745 1.779 1.211 1.065
T850 1.694 1.794 1.614 1.202
T200 3.989 3.669 3.481 3.506
T100 5.802 5.753 4.844 5.013
T10 27.543 27.329 43.580 28.512
Prec 0.809 0.754 0.724 0.764
E 0.071 0.075 0.065 0.059
TCC 0.0035 0.0030 0.0028 0.0035
RO 0.457 0.393 0.366 0.405
TCW 1.454 1.471 1.546 1.557
SWS 0.445 0.463 0.479 0.448
U1000 0.464 0.500 0.4636 0.418
U850 0.699 0.781 0.735 0.605
U200 2.667 4.026 3.834 2.038
U100 2.912 3.033 3.111 2.491
U10 10.073 14.394 14.641 9.834

shows the spatial distribution of these changes1 averaged
across all seasons, to be compared against the bias of the
CTRL simulations to the reanalysis (Fig. 2a). The increase
can be seen to be concentrated in the western Pacific Ocean
in particular, with a notable decrease in the eastern Pacific.
We note that the spatial changes due to SPPT are not well
correlated with the CTRL bias, reducing the bias in places
and exacerbating it elsewhere. As the overall mean CTRL
bias is close to zero, the net increase in evaporation due to
SPPT represents a small degradation. This is also reflected in
the mean-square error (MSE) between the spatial means of
SPPT and the reanalysis, as found in Table 2, where it can be
seen that the MSE has increased with SPPT.

By contrast, precipitation, as seen in Fig. 3b, has generally
improved. This can be seen both in terms of the mean bias,
which has approximately halved, and the MSE (Table 2).
While the precipitation biases of the CTRL model (Fig. 3a)
are targeted well in key areas, such as the Pacific and Indian
oceans, the scheme exacerbates the biases elsewhere, such as
over the Maritime Continent and in sub-Saharan Africa.

The scheme has also notably affected clouds, with cloud
cover decreasing at all levels and cloud liquid water (the
vertical integral of liquid water contained within clouds in

1Note that we have not adhered to the IFS convention here that
downward fluxes are positive. Thus red values indicate an increase
in evaporation upwards.

a grid-point column) robustly increasing. Figure 4b shows
the spatial distribution of total cloud cover changes. The spa-
tial pattern of cloud liquid water changes (not shown) are
well correlated with these cloud cover changes, suggesting
that while cloud cover has decreased overall, the remain-
ing clouds are more optically thick. Note that because cloud
cover has decreased, the actual increase in cloud water due
to SPPT is likely proportionally larger than the∼ 1.2 % mea-
sured. Comparing Fig. 4a and b also shows that the net im-
pact of SPPT on total cloud cover is to significantly reduce
the CTRL bias. Indeed, SPPT has almost uniformly reduced
the bias everywhere, bringing the mean bias down to nearly
zero. The MSE has also gone down by about 15 %.

The impact on the spatial biases of the 2 m temperature
across all seasons are also shown in Fig. 5b. The cold bias
in the CTRL simulations (Fig. 5a) across the Equator can be
seen to be robustly decreased by SPPT. Conversely, the statis-
tically significant increase in temperatures over sub-Saharan
Africa introduces a bias that was not present in the CTRL
model. No notable impact is made on the warm bias in the
Arctic and Antarctic regions, and there is no notable change
in the MSE overall, nor in the total mean bias.

4.2 Impact on the energy budget

Figure 6a shows the mean difference between each SPPT
simulation with the corresponding CTRL simulation for the
globally averaged surface energy fluxes shown in Table 1.
Note that the standard EC-Earth convention has been used,
whereby downward fluxes are positive. Hence, a positive dif-
ference for a given flux indicates that the scheme increased
the flux in the downward direction on average, whereas a
negative difference indicates an increase in the upward direc-
tion on average. The benefit of adhering to this convention is
that the net surface energy, always in black, can be obtained
by summing all of the other flux quantities in the plots. In this
way, it is easy to assess which quantity has the strongest in-
fluence on altering the net budget. The time series have also
been smoothed by a 12-month running mean both to remove
the seasonal cycle and to highlight the overall trends.

It can be seen that the dominant impact of SPPT is a large
increase in latent heat flux consistent with the strongly in-
creased evaporation identified in the previous section. This,
in turn, is the main contribution to the reduced net surface
energy, with the total mean difference being −0.8 Wm−2.
Compared with the baseline budget from Table 1, this clearly
represents an unrealistic reduction in surface energy.

There is also a notable increase in surface solar radiation
(SSR). The previous section indicated that, while cloud liq-
uid water increased by around 1.2 %, the total cloud cover
decreased at all levels through the atmosphere. Thus, it ap-
pears that while the clouds are more optically thick, which
would tend to decrease SSR, the reduction in cloud cover
leads to an overall increase in shortwave radiation reaching
the surface.
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Figure 1. Average percentage change, relative to the CTRL, in the global mean of (a) SPPT, (b) ISPPT, and (c) LAND simulations. Variables
shown (see the x axis of (c)) are as follows: 2 m temperature (T2M), evaporation (E), total column water (TCW), low cloud cover (LCC),
mid-level cloud cover (MCC), high-level cloud cover (HCC), total cloud cover (TCC), and cloud liquid water (CLW). Uncertainty estimates
are twice the standard deviation of the five individual differences. Note that, due to conservation of water, the change in precipitation (not
shown) is almost exactly equal to the change in evaporation.

Finally, note that because the difference is essentially con-
stant in time, we can infer two important points. Firstly, the
impact of the scheme on the energy budget is independent of
the initial ocean state, and secondly, the scheme does not lead
to any systematic drift: the model fully adjusts to the scheme
within ∼ 1 month.

4.3 Impact on the hydrological budget

Figure 7a shows the percentage changes in the total col-
umn soil water content (SWVLTOT) along with the three
quantities responsible for modulating this quantity: precip-
itation, evaporation, and total runoff. Note that precipitation
and evaporation here have been restricted to land-points only,
explaining why the numbers do not exactly match those in
Fig. 1a. There is a small but significant decrease in the to-

tal soil water of around 1 %. As the SPPT scheme only di-
rectly interacts with atmospheric processes, this change will
be driven by the observed changes in precipitation and evap-
oration. Over land, precipitation decreases by around 1.7 %
and evaporation increases by about 1 %, both of which con-
tribute to the decrease in soil water. The notable decrease in
runoff is likely a consequence of the reduction in water in
the soil column. By reference to Table 2, the runoff changes,
seen in Fig. 8b are beneficial overall, reducing the MSE.
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Figure 2. Mean differences in evaporation between the (a) CTRL and ERA40, (b) SPPT and CTRL, (c) ISPPT and CTRL, and (d) LAND
and CTRL. Stippling indicates regions where the difference is statistically significant to the 95 % confidence interval, as measured by a
two-tailed t test. In each panel, M denotes the mean of the difference. Note the difference in the scales between (a) and (b, c, d).

5 The impact of ISPPT

5.1 Impact on the mean state

Figure 1b shows the percentage changes in global means in-
duced by the ISPPT scheme. The signal of increased evapora-
tion and cloud liquid water seen with SPPT is greatly ampli-
fied. Figure 2c shows the spatial distribution of evaporation
changes, which as with SPPT are strongest over the tropical
oceans. The total increase in evaporation is even greater than
that from SPPT, and again represents an overall increase in
the global mean bias. However, there is an enhanced spatial
coherence between the local changes from ISPPT and the
CTRL bias (Figure 2a). It can be seen that the sign of the
ISPPT changes are generally the opposite of the sign of the
CTRL bias, indicating that the scheme is effectively target-
ing the local biases, with a notable exception being the ocean
region south of Australia. This is reflected in the fact that
while the global mean bias has increased, the MSE (Table 2)
has decreased.

Figure 3c shows the changes in precipitation. Again, local
biases are well targeted, with the MSE decreasing even more
than with SPPT. The mean bias relative to reanalysis has been
reduced to near zero.

Unlike SPPT, total cloud cover has only decreased by a
very small amount, due entirely to a decrease in the high-

level clouds which dominates a small increase in low and
mid-level clouds. Figure 4c shows the change in total cloud
cover, where areas of overall decrease indicate decreases in
high-level cloud cover. As with SPPT, the changes serve to
decrease the CTRL bias, both in total and locally, as can be
seen by a notable decrease in the MSE (Table 2). Interest-
ingly, there is great spatial coherence between these changes
and those seen for SPPT in Fig. 4b. Indeed, an examination of
these and other variables generally suggests that a first-order
approximation of the mean impact of ISPPT is a stronger am-
plitude version of the impact of SPPT, but with the changes
being even more closely correlated with the local biases, as
seen with evaporation and precipitation above. The added
freedom of non-correlated perturbations with ISPPT allows
for a stronger influence on non-linear climate processes, most
notably those associated with convective processes (Chris-
tensen et al., 2017b).

Figure 5c shows the local changes in 2 m temperature. As
with SPPT, the cold bias along the Equator is reduced, but
unlike SPPT, the warm biases in the Arctic and Antarctic re-
gions are also reduced. The globally averaged mean bias has
been reduced by nearly 70 %, and the MSE has decreased by
nearly 25 %.
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Figure 3. Mean differences in precipitation between the (a) CTRL and ERA40, (b) SPPT and CTRL, (c) ISPPT and CTRL, and (d) LAND
and CTRL. Stippling indicates regions where the difference is statistically significant to the 95 % confidence interval, as measured by a
two-tailed t test. In each panel, M denotes the mean of the difference. Note the difference in the scales between (a) and (b, c, d).

5.2 Impact on the energy budget

Figure 6b shows the flux impact of ISPPT. As with SPPT,
the dominant effect is from the substantial increase in evap-
oration, as seen in Fig. 2c. In contrast to SPPT, ISPPT also
results in a substantial reduction in SSR of almost 1 Wm−2.
Figure 1b shows that while there was a small decrease in to-
tal cloud cover, low-level cloud cover (the layer reflecting the
most solar radiation), has increased by around 0.5 %. Even
more notably, the cloud liquid water content has increased
by nearly 5 %, increasing the albedo of these clouds signifi-
cantly. These factors combine to explain the decreased SSR.
A mild increase in sensible heat flux and thermal radiation
cannot compensate for this, such that the net result is a large
decrease in surface energy of around 1.7 Wm−2 relative to
CTRL. By reference to Table 1, this represents a large diver-
gence from observed values.

As with SPPT, the impact of the scheme is effectively con-
stant in time, and therefore independent of the underlying
initial ocean state.

5.3 Impact on the hydrological budget

Figure 7b shows percentage changes for the hydrological
budget for the ISPPT scheme. There is no notable change
in precipitation over land, but evaporation has increased by

around 3 %. This will have a drying effect on the top soil
layer. Despite this, no meaningful change is seen in the to-
tal column soil water. One possible explanation for this is
to first note that in general, if the top soil layer holds more
water, heavy rainfall events will more frequently saturate the
surface, triggering the land scheme to expel a lot of this water
as runoff at the top soil layer. This will tend to inhibit mois-
ture from sinking down to the lower soil layers. Conversely,
if the top layer is drier, as seen with ISPPT (due to e.g. the
increased evaporation), runoff at the top soil layer will not
be triggered as easily during rainfall, allowing more water to
reach the lower layers. In this way, increased evaporation can
be balanced by reduced runoff to produce no overall change
in total soil water. Noting the reduced runoff in Fig. 7b, pre-
sented visually in Fig. 8c, we speculate that this is the reason
that there is no change in soil water due to ISPPT. Of rel-
evance to this is the fact that more frequent heavy rainfall
events may be expected with ISPPT, as this is the case with
SPPT (Watson et al., 2017), and this could easily trigger the
above mechanism.

We finally note from Table 2 that the runoff changes are
broadly beneficial, reducing the MSE even more than SPPT
does.
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Figure 4. Mean differences in total cloud cover between the (a) CTRL and ERA40, (b) SPPT and CTRL, (c) ISPPT and CTRL, and
(d) LAND and CTRL. Stippling indicates regions where the difference is statistically significant to the 95 % confidence interval, as measured
by a two-tailed t test. In each panel, M denotes the mean of the difference. Note the difference in the scales between (a) and (b, c, d). The
percentage (%) units indicate the proportion of the column occupied by clouds.

6 The impact of stochastic land on the mean state

6.1 Impact on the basic mean state

Figure 1c shows the percentage changes in global means in-
duced by LAND. As with both SPPT and ISPPT, evapora-
tion increases. Spatial changes here are displayed in Fig. 2d,
where visual inspection shows that the changes mostly serve
to reduce the CTRL bias (Fig. 2a). This is confirmed by
a reduction in the MSE, as seen in Table 2. As we will
see in the section on hydrology, the changes in evaporation
over land are strongly correlated with changes in runoff. As
evaporation changes over land can have knock-on effects on
the global circulation more broadly, this already suggests a
mechanism whereby the LAND scheme, which only directly
interacts with soil processes, can still lead to global mean
state changes.

For precipitation, seen in Fig. 3d and Table 2, while the
MSE has decreased compared with the CTRL runs, the mean
bias remains unchanged. While the precipitation bias over
the Indian ocean and Maritime Continent are lower, biases
over India are higher and the changes over the Pacific ocean
are fairly ambiguous in their merit.

Unlike SPPT and ISPPT, the LAND scheme has a more
notable impact on total column water, increasing it by nearly

1 %. The cloud cover changes are similar in characteristic to
those of ISPPT, with low and mid-level cloud cover increas-
ing, and high-level cloud cover decreasing: Fig. 4d shows the
spatial distribution of these changes. It can be seen that while
the LAND scheme has reduced biases over all the major con-
tinents (with the exception of Australia), as well as over the
Indian Ocean, it has had only a limited impact over the Pa-
cific and Atlantic oceans. Consequently, the MSE, recorded
in Table 2, has not changed relative to CTRL.

Figure 5d shows the spatial changes in the 2 m tempera-
ture, where the major, statistically robust change is a big re-
duction in the warm bias in the Arctic and Antarctic regions.
This has reduced the overall mean bias relative to the reanal-
ysis by around 90 %, as well as notably reducing the MSE.

6.2 Impact on the energy budget

Turning on the LAND scheme only has a small impact on
the energy budget (Fig. 6c), increasing net surface energy by
about 0.1 W m−2 relative to the CTRL. The primary culprit
appears to be a decrease in outgoing longwave radiation. Fig-
ure 1c shows that atmospheric water vapour has increased by
about 1 %, which would (by strengthening the greenhouse ef-
fect) serve to trap more thermal radiation in the atmosphere.
While the same figure shows that high-level cloud cover has
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Figure 5. Mean differences in 2 m temperature between (a) CTRL and ERA40, (b) SPPT and CTRL, (c) ISPPT and CTRL, and (d) LAND
and CTRL. Stippling indicates regions where the difference is statistically significant to the 95 % confidence interval, as measured by a
two-tailed t test. In each panel, M denotes the mean of the difference. Note the difference in the scales between (a) and (b, c, d).

decreased, which would tend to negate that effect, the in-
crease in mid-level cloud cover may counteract the change in
high-level cloud to a large degree, such that the water vapour
increase ends up being the dominant driver of energy budget
changes.

As with SPPT and ISPPT, the impact of the scheme is ef-
fectively constant in time, and therefore independent of the
underlying initial ocean state.

6.3 Impact on the hydrological budget

Figure 7c shows the percentage changes observed upon in-
cluding the LAND scheme, restricted to land-points only.
The scheme has a big impact on both runoff and soil mois-
ture over Antarctica. However, the runoff scheme typically
does not behave realistically here, where the soil is trapped
under thick layers of ice. To avoid the quantified impacts
being dramatically skewed from this contribution, we ex-
cluded Antarctica from the data prior to computing percent-
age changes2.

Firstly, it can be seen that there is no statistically robust
change to the overall soil water content. This is puzzling at
first glance, as it can also be seen that there is an increase

2Note that this was not done for the other schemes, where quan-
tities computed globally also included Antarctica.

in precipitation over land which is not cancelled out by an
equal amount of evaporation; runoff has also decreased ro-
bustly by around 1 %. These changes would be expected to
lead to an increase in soil water. Indeed, examining the spa-
tial distribution of soil water changes (not shown), one finds
that areas of increased precipitation (Fig. 3d) mostly cor-
respond to areas of increased soil water content, and vice
versa. The two main exceptions are over Greenland and
Siberia, where a behaviour similar to that seen in Antarc-
tica is observed (strongly decreased soil water and runoff)
even with no meaningful change in precipitation. Figure 8d
shows the spatial distribution of runoff changes. The areas of
increased runoff correlate well with areas of increased pre-
cipitation/soil water content, with runoff triggered more fre-
quently the wetter the soil. The exceptions of Greenland and
Siberia are clearly visible.

This suggests that in regions not dominated by ice and
snow, long-term changes in runoff and soil water are driven
by the long-term circulation changes induced when stochasti-
cally perturbing hydraulic conductivity. However, in regions
such as Siberia and Greenland, there is a sharp decrease in
soil water content within the first month of each LAND simu-
lation, with no associated change in surface evaporation. This
extra decrease in soil water, independent of precipitation and

www.geosci-model-dev.net/12/3099/2019/ Geosci. Model Dev., 12, 3099–3118, 2019



3110 K. Strommen et al.: Stochastic EC-Earth

Figure 6. Global mean time series of energy fluxes for (a) SPPT minus CTRL, (b) ISPPT minus CTRL, and (c) LAND minus CTRL. Fluxes
shown are latent heat flux (SLHF, blue), sensible heat flux (SSHF, orange), surface thermal radiation (STR, red), surface solar radiation (SSR,
green), and net surface energy (SRF, black). Note the IFS convention that downward fluxes are positive and upward fluxes (such as sensible
and latent heat flux) are negative. SRF is the sum of the other fluxes. The black shading captures 2 standard deviations around the SRF mean
as sampled from the five individual differences. Time series have been smoothed with a 12-month running mean to remove the seasonal
cycle.

evaporation changes, explains why the total soil water mean
has not changed overall.

Comparing the runoff impacts with the CTRL bias
(Fig. 8a, d), we see that the local biases have mostly been
improved, with the MSE (Table 2) decreasing by about 10 %,
suggesting the increased variability in the LAND scheme is
serving to reduce the model bias.

7 Impact on the atmospheric circulation

We now assess the impact of all three schemes on two key
components of the atmospheric circulation: the Hadley cell
and the quasi-biennial oscillation (QBO). Our examination
of the former is motivated by the fact that, as we have seen
in the above sections, the schemes tend to have a large im-
pact on tropical convection, hinting at possible changes in
the Hadley cell circulation. The motivation for examining the
latter comes from an earlier study, Leutbecher et al. (2017),
on the impact of the SPPT scheme on the IFS in shorter-
range forecasts. It was found in ibid that the most notable
degradation of the scheme on the model was in the upper
level winds, where the QBO dominates variability. This was
noted as a potential source of concern, as literature suggests
that the QBO influences the extratropical winter climate. Ta-

ble 2 shows the MSE of zonal winds at various levels: in
agreement with ibid, we see a large increase in the bias at
the 10 hPa level. Therefore, we explicitly examine the perfor-
mance of the QBO in our experiments to assess the possible
changes.

7.1 Impact on the Hadley cell

The impact of the stochastic perturbations on the atmospheric
circulation is considered through analysis of the Hadley cir-
culation. The Hadley cell varies with the seasonal cycle, and
is stronger and wider in the winter hemisphere: we consider
the characteristics of the dominant Hadley cell separately
for the key seasons December–January–February (DJF) and
June–July–August (JJA). We characterize the zonally aver-
aged overturning circulation using a stream function, ψ , de-
fined as a function of latitude and height, following Waliser
et al. (1999). The procedure is performed separately for each
simulation.

To consider the effect of stochastic physics, we calculate
three summary diagnostics for the cell. Firstly, the strength
of the overturning is characterized using the maximum of the
stream function. The width of the overturning cell is indi-
cated by estimating the latitude of the upwelling and down-
welling branches of the cell respectively. This is defined as
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Figure 7. Average percentage change, relative to CTRL, in the global mean of (a) SPPT simulations, (b) ISPPT, and (c) LAND. All data
were restricted to land-points only. For LAND, Antarctica was also excluded. Variables shown are total soil water content (SWVLTOT), pre-
cipitation (Prec), evaporation (E), and runoff (RO). Uncertainty estimates are twice the standard deviation of the five individual differences.

the latitude at which the stream function changes sign at the
700 hPa level. The 700 hPa level was chosen as this corre-
sponds to the approximate level at which the stream-function
maximum is found. These results are shown for each ensem-
ble member in Fig. 9 using the five scattered points. The di-
agnostics are also shown for ERA40 for the five time periods
corresponding to the five ensemble members.

Figure 9a and b show the strength of the overturning cir-
culation for each simulation and both seasons. The SPPT
scheme shows no significant impact on the strength of the
overturning in DJF, and a slight (although not significant)
weakening in JJA. In contrast, both the ISPPT and LAND
approaches show a significant strengthening of the overturn-
ing cell in both DJF and JJA. For all simulations, the JJA
cell is stronger than the DJF cell. While the CTRL and SPPT

simulations have an overly weak Hadley cell, the Hadley cell
in the ISPPT and LAND experiments is too strong.

Figure 9c and d show the latitude of the downwelling
branch of the dominant cell for each season. As for the
strength of the circulation, SPPT has no significant impact on
this diagnostic. Both the ISPPT and LAND schemes lead to
a significant equatorward shift of the downwelling latitude in
DJF, in contrast to what is seen in reanalysis. In JJA all sim-
ulations are in agreement with ERA40, and only the LAND
scheme leads to a slight equatorward shift.

Figure 9e and f show the latitude of the upwelling branch
of the circulation. SPPT leads to no significant change in this
diagnostic, whereas the ISPPT and LAND schemes lead to a
large poleward shift. This introduces a substantial bias when
compared with ERA40, which needs to be understood. The
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Figure 8. Mean differences in runoff between the (a) CTRL and ERA40, (b) SPPT and CTRL, (c) ISPPT and CTRL, and (d) LAND and
CTRL. Stippling indicates regions where the difference is statistically significant to the 95 % confidence interval, as measured by a two-tailed
t test. In each panel, M denotes the mean of the difference. Note the difference in the scales between (a) and (b, c, d).

net effect of this is to increase the width of the Hadley circu-
lation in the ISPPT and LAND simulations.

The Hadley circulation is changing in response to climate
change. There is evidence that it has widened over recent
decades (Hu and Fu, 2007; Seidel and Randel, 2007), and
some evidence that it has also strengthened (Seager et al.,
2007), although GCMs struggle to reproduce the observa-
tional signal (Mitas and Clement, 2005; Johanson and Fu,
2009). To compare the climate change impact on the Hadley
circulation for each stochastic model, we indicate the years
covered by each simulation in Fig. 9.

The deterministic simulations show a general strengthen-
ing of the DJF Hadley circulation, although a weakening of
the JJA Hadley circulation is seen. This trend is also observed
in DJF for the three stochastic models, although the signal in
JJA is more mixed. While there is no climate change sig-
nal observed in the latitude of the downwelling branch for
any simulation, the simulations generally agree that the DJF
upwelling branch has shifted poleward. The exception is the
ISPPT simulation, which does not show a strong sensitivity
in this diagnostic.

7.2 Impact on the quasi-biennial oscillation

The QBO is a periodic downward propagation of easterly
and westerly wind regimes which accounts for the majority

of variability in the equatorial stratosphere (Baldwin et al.,
2001), also exerting a notable influence on the extratropical
atmosphere through modulating extratropical waves. Its pe-
riod is typically estimated to be around 28 months.

Figure 10 shows the average QBO period across each sim-
ulation for each of the four experimental set-ups, as well as
that for ERA-Interim. For each scheme, the period marked
with a cross in the figure is the average period across the
five ensemble members; the error bar shows 2 standard er-
rors of this mean estimate. The period was diagnosed here
using zonal equatorial (10◦ S–10◦ N) winds at 50 hPa, which
were zonally averaged. This produces a periodic time series
from which we can readily estimate the average spacing be-
tween zero-crossings to determine the average period. When
applied to the ERA-Interim reanalysis dataset, this produces
a period of almost exactly 28 months, suggesting that this
method captures the expected period well. It can be seen
that the deterministic model itself cannot achieve nearly as
long a period, falling just below 21 months. Both SPPT and
ISPPT have reduced the period by a small amount, but com-
pared with the initial bias of the deterministic model itself
these changes are small. While the mean period of LAND is
slightly smaller than CTRL, the error bars are large enough
to imply that this decrease is not statistically robust.
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Figure 9. Impact of stochastic parameterizations on the Hadley circulation. The magnitude of the overturning circulation indicated by the
maximum of the stream function of the dominant cell in (a) DJF and (b) JJA for each scheme. The latitude of the downwelling branch of
the dominant (winter hemisphere) cell in (c) DJF and (d) JJA. The latitude of the upwelling branch of the dominant (winter hemisphere) cell
in (e) DJF and (f) JJA. The data diagnostic is shown for each of the five AMIP simulations in turn, the darker colours indicate earlier years,
ranging from dark blue (1960–1980) to yellow (1980–2000).

Figure 11 shows a time–pressure level section of monthly
averaged zonal wind, restricted to the equatorial region
10◦ S–10◦ N with the seasonal mean removed. This gives
the usual visual representation of the QBO for the ensem-
ble members covering the 1980–2000 period, with ERA-
Interim over the same period also shown; the behaviour of
these members are representative of the full ensemble, where
there is little year to year variability in the degradation of the
QBO. It can be seen that EC-Earth indeed struggles to attain
both a strength, period, and extent of downwelling compa-
rable to ERA-Interim. None of the stochastic schemes no-
tably change this; in particular, there is no notable additional
degradation compared to the CTRL simulation.

8 Discussion and conclusions

8.1 Discussion

Because the impact of the schemes appears to be firmly
in place within the first month of each experiment, a com-
prehensive study pinning down the cause of the observed
changes would require a more process-based investigation of
the rapid response. As the experiments considered in this pa-
per were constructed to examine long-term rather than rapid
changes, such an investigation will be left to future work.
However, for completeness, we include some discussion here
on what the key processes at play may be. We note that an
examination of the rapid response of EC-Earth to SPPT was
carried out in Strommen et al. (2019). Analysis in that pa-
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Figure 10. Estimates of the QBO period, as measured using equa-
torial zonal winds at 50 hPa. The red crosses show the mean across
the five estimates (computed from the five ensemble members) for
each scheme, and the error bars capture twice the standard error of
this mean estimate. The ERA-Interim reanalysis product is shown
in black for comparison.

per shows that the most robust, rapid change when turning
SPPT on is an increase in cloud liquid water and evapora-
tion, thereby largely supporting the arguments presented in
what follows.

With both SPPT and ISPPT, the dominant impact on
the energy budget is increased evaporation. In the IFS, the
amount of evaporation at a grid point depends primarily on
the surface wind speeds and the extent to which the spe-
cific humidity at the surface grid point differs from the satu-
ration humidity (a function of surface temperature). While
wind speeds do increase by about 1.4 % on average with
ISPPT, the mean wind speeds are unchanged with SPPT, with
a tiny increase of only 0.06 %. Given that the increase in
evaporation of both SPPT and ISPPT are of the same order
of magnitude, this suggests that changes in humidity are a
key factor. Because sea surface temperatures are held fixed,
such changes will be, to first order, driven by changes in the
water content of the atmosphere as opposed to temperature
changes at the surface. One possibility is that the increase
in cloud liquid water is depleting the near-surface humidity,
causing more favourable conditions for evaporation. The fact
that both cloud liquid water and surface wind speeds increase
more with ISPPT could then explain why this impact is am-
plified in those experiments. Another possibility is that the
first-order impact is on convection in the tropics, which may
be activated more frequently with SPPT/ISPPT. This could
lead to a drying of the boundary layer, promoting more evap-
oration in response.3

Furthermore, the increase in cloud liquid water with both
SPPT and ISPPT could be due to an asymmetric response
to stochastic perturbations in the convection schemes. Given

3We thank an anonymous reviewer for suggesting this line of
thought.

a parcel of air close to saturation, whether the model actu-
ally triggers condensation depends sensitively on the humid-
ity and temperature tendencies, both of which are perturbed
by the stochastic schemes. A perturbation in one direction
may result in condensation, and thereby an increase in the
cloud liquid water, whereas a perturbation in the other direc-
tion leaves the parcel stable and the total cloud liquid water
unchanged. As the stochastic perturbations are zero mean, it
is expected that these two scenarios will occur at the same
rate, such that the net impact of the perturbations is to in-
crease the total amount of cloud liquid water, as observed.
An important point here is that the SPPT/ISPPT scheme has
a “supersaturation limiter” in place (Palmer, 2012). This lim-
iter essentially ensures that any perturbations which would
result in a parcel of air being pushed into a supersaturated
state are ignored. Therefore, the mechanism described above
cannot take place within a single time step. Nevertheless, a
perturbation may still push a parcel of air closer to saturation,
whereby the model dynamics themselves may bring the par-
cel towards condensation in the subsequent time step. In this
way, SPPT/ISPPT, by generally broadening the distribution
of temperature/humidity tendencies, may lead to increased
condensation on average.

We suggest that the changes in evaporation/convection
and cloud liquid water are the main sources of large-
scale changes to the mean climate caused by SPPT and
ISPPT. These variables strongly control cloud formation,
cloud albedo and latent heat release, which are the dominant
sources of changes to the energy budget.

In addition, changes to evaporation (and thereby precipita-
tion) dominate the hydrological budget. As the atmospheric
circulation is also coupled to thermodynamic processes, es-
pecially in the tropics, it is likely that the observed impact
on the Hadley cell can also be traced to these changes in the
hydrological cycle. This is supported by Numaguti (1993),
who showed that the strength and meridional structure of the
Hadley cell is closely linked to the distribution of evapora-
tion. With both ISPPT and LAND, the change in the Hadley
cell is largely detrimental compared to the reanalysis, imply-
ing that some of the positive impacts seen on the mean state
may be due to a compensation of errors. This would need to
be studied more carefully in future work.

For the LAND scheme, the first-order impact appears to
be regional changes in average runoff. That such changes
should be expected to occur can be understood by reference
to Eq. (3), which defines hydraulic conductivity. Because
runoff is triggered when the soil becomes saturated, its trig-
gering is intimately linked to the γ /γsat ratio, which reaches
its maximum of one precisely at saturation. This ratio, as seen
in Eq. (3), is highly non-linear in the perturbed parameter α,
implying that even mean-zero perturbations can be expected
to alter the mean state. This will lead to regional changes in
the moisture content of the soil layer, which, in turn, influ-
ences evaporation over land. The net impact is a decrease in
runoff and therefore an increase in evaporation. This change
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Figure 11. Visualization of the QBO (time–pressure level section of zonal winds between 10◦ S and 10◦ N with the seasonal mean removed)
for the ensemble member covering 1980–2000, the period overlapping the most with ERA-Interim. Pressure levels are plotted according to
a logarithmic scale for ease of interpretation. Units are in metres per second (m s−1).

permeates through to influence the rest of the climate system,
including an increase in total column water and large changes
in the vertical distribution of cloud coverage.

8.2 Conclusions

Three stochastic schemes are introduced into the atmo-
sphere and land components of the EC-Earth climate model.
The stochastic schemes incorporate zero-mean perturbations
into the model physics to represent uncertainty associated
with unresolved, sub-grid-scale variability. The interaction
of these perturbations with the non-linear Earth system re-
sults in systematic changes to the mean state of the model
in a way that is not obvious a priori. Schemes that are fairly
similar (SPPT and ISPPT) may have very different impacts,
and schemes that only directly affect a relatively small com-
ponent of the model (LAND) may still notably change the
global circulation. This highlights the importance of repre-

senting random model error in climate models, as well as in
initialized simulations, where stochastic schemes have long
been used to improve the reliability of forecasts (Palmer
et al., 2009; Berner et al., 2017).

Our experiments showed that the inclusion of all three
stochastic schemes, particularly ISPPT and LAND, led to
notable reductions in model biases compared with the de-
terministic model. This is seen perhaps most strikingly for
2 m temperature, precipitation, and total cloud cover, three
important quantities where both the mean bias and the MSE
were reduced. The distribution of runoff, a key driver of
land–atmosphere interaction in EC-Earth, was also improved
by all three schemes. This demonstrates that the inclusion of
stochastic schemes can have a beneficial impact on a model’s
long-term climate mean state.

Conversely, none of the schemes are able to improve the
representation of the QBO, and the Hadley cell becomes too
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strong and widens too far polewards with ISPPT and LAND.
This latter point is likely related to changes in evaporation:
while the spatial changes are targeting model biases, leading
to a reduced MSE, the overall amplitude of the change is too
large. Changes in evaporation may be due to increased trop-
ical convection. The impact of this change in evaporation is
seen most clearly in the energy budget, where both schemes
significantly reduced the net surface energy from the rel-
atively realistic levels attained in the deterministic model.
However, it is critical to recall that these schemes have not
been tuned, whereas the deterministic version of EC-Earth
used as a reference has been extensively tuned, specifically
when it comes to having a realistic energy budget. Tuning
parameters for EC-Earth include constants that regulate pro-
cesses such as entrainment and convection in the atmospheric
case, and runoff in the LAND scheme case. In particular, the
intensity and frequency of convection/runoff is modulated
by these parameters, and tuned in a way to achieve realistic
mean states. Non-linear impacts of stochastic schemes can
strongly alter both the intensity and frequency of these pro-
cesses, as our experiments have shown, and this significantly
alters the mean state of the model.

Therefore, it is clear that the inclusion of a stochastic
scheme must be treated in the same way as the inclusion of
any other new parametrization scheme, in that it will typi-
cally require a full re-calibration of the model parameters. By
doing so, one may be able to obtain all the benefits to second-
order diagnostics in the climate model in question (ENSO,
the Asian monsoon, the MJO, European blocking, etc.) while
still maintaining a realistic mean state and energy budget. In
fact, given the improvements seen in key regional biases in
our experiments, such a tuning procedure could potentially
lead to a notably improved mean state compared to a deter-
ministic model. This will be examined further as part of the
PRIMAVERA project, where these schemes will be tested
in a fully coupled atmosphere–ocean framework. This work,
presented in a future paper, will also include the stochastic
ocean and sea ice schemes and thereby examine the impact
of adding stochasticity in every component.
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