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Abstract. This work describes the lightning nitric oxide
(LNO) production schemes in the Community Multiscale
Air Quality (CMAQ) model. We first document the existing
LNO production scheme and vertical distribution algorithm.
We then describe updates that were made to the scheme
originally based on monthly National Lightning Detection
Network (mNLDN) observations. The updated scheme uses
hourly NLDN (hNLDN) observations. These NLDN-based
schemes are good for retrospective model applications when
historical lightning data are available. For applications when
observed data are not available (i.e., air quality forecasts
and climate studies that assume similar climate conditions),
we have developed a scheme that is based on linear and
log-linear parameters derived from regression of multiyear
historical NLDN (pNLDN) observations and meteorologi-
cal model simulations. Preliminary assessment for total col-
umn LNO production reveals that the mNLDN scheme over-
estimates LNO by over 40 % during summer months com-
pared with the updated hNLDN scheme that reflects the ob-
served lightning activity more faithfully in time and space.
The pNLDN performance varies with year, but it generally
produced LNO columns that are comparable to hNLDN and
mNLDN, and in most cases it outperformed mNLDN. Thus,
when no observed lightning data are available, pPNLDN can
provide reasonable estimates of LNO emissions over time
and space for this important natural NO source that influ-
ences air quality regulations.

1 Introduction

Lightning nitrogen oxide (LNO) is produced by the in-
tense heating of air molecules during a lightning discharge
and subsequent rapid cooling of the hot lightning channel
(Chameides, 1986). Since NO and NO, are often coexistent
in equilibrium after immediate release, they are often col-
lectively referred to as nitrogen oxides (NO,; NO,=NO +
NO3). NO, produced by lightning flashes is referred to as
lightning NO, (LNO,) in the literature. As one of the ma-
jor natural sources of NO, LNO is mainly produced in the
middle and upper troposphere. It plays an essential role in
regulating ozone (O3) mixing ratios and influences the oxi-
dizing capacity of the troposphere (Murray, 2016). Despite
much effort in both observing and modeling LNO during
the past decade, considerable uncertainties still exist with the
quantification of LNO production and distribution in the tro-
posphere (Ott et al., 2010). Most estimates of global LNO,
production range from 2 to 8 Tg N yr~!, which is 10 %—-15 %
of the total NO, budget (Schumann and Huntrieser, 2007).
However, owing to the concerted efforts to reduce anthro-
pogenic NO, emissions within the US in recent decades, it is
expected that the relative burden of LNO, and its associated
impact on atmospheric chemistry will increase. As a result, it
is important to include LNO, even when modeling ground-
level air quality and the interaction of air—surface exchange
processes.

To simulate the amount of LNO production in space and
time in a chemical transport model (CTM), it is important
to know the following: (1) where and when lightning flashes
occur, (2) the amount of LNO produced per flash and (3) how
LNO is vertically distributed. Historically, the lightning flash
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rates are derived with the aid of parameterizations in CTMs
(Price and Rind, 1992; Allen et al., 2000, 2010, 2012; Barthe
et al., 2007; Miyazaki et al., 2014). Various schemes have
been developed for determining LNO production per flash
based on assumptions regarding LNO production efficiency
per flash or the energy ratio of cloud-to-ground (CG) flashes
to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007).
The derived parameterizations based on theoretical analy-
sis (e.g., Price et al., 1997), laboratory studies (Wang et al.,
1998), limited aircraft or satellite observations, or a combi-
nation of these methods, are generally too simplified, have
large uncertainties (Miyazaki et. al., 2014) and cannot rep-
resent well the regional and temporal variability of lightning
activity (Boccippio et al., 2000; Medici et al., 2017). Over the
past decades, our understanding of the production and distri-
bution of LNO has been greatly improved with the aid of
ground-based lightning detection networks (e.g., Nag et al.,
2014; Rodger et al., 2006), aircraft measurements for specific
storms (e.g., Huntrieser et al., 2011), satellite observations
(Pickering et al., 2016; Medici et al., 2017; Boersma et. al.,
2005), and modeling studies (e.g., Zoghzoghy et al., 2015;
Cummings et al., 2013). Even though there are still substan-
tial sources of uncertainty, the LNO production rate per flash
is now more robust than earlier literature estimates (Bucsela
et al., 2010; Huntrieser et al., 2009, 2011; Pickering et al.,
2016; Ott et al., 2010).

An LNO production module, based on the lightning flash
rate and LNO parameterizations of Allen et al. (2012), was
first introduced in the Community Multiscale Air Qual-
ity (CMAQ) (Byun and Schere, 2006) model Version 5.0
(CMAQVS5.0) that was released in 2012. That scheme, like
the schemes used in previous work (Kaynak et al., 2008;
Smith and Mueller, 2010; Koo et al., 2010), uses flash rates
from the National Lightning Detection Network (NLDN)
(Orville et al., 2002) to constrain LNO. Specifically, LNO
production is proportional to convective precipitation and
is scaled locally so that the monthly average convective-
precipitation-based flash rate in each grid cell matches the
average of the monthly total NLDN flash rate, where the
latter is obtained by multiplying the detection-efficiency-
adjusted CG flash rate by Z + 1, where Z is the climatologi-
cal IC / CG ratio from Boccippio et al. (2000). This scheme,
even though it is constrained by NLDN data, depends on the
upstream convective precipitation predicted by the meteoro-
logical model that may be resolution dependent and gener-
ally shows low skill and large regional variations (e.g., Casati
et al., 2008). With the availability of NLDN lightning flash
data, an algorithm is implemented to estimate hourly LNO
production from NLDN lightning flash data, avoiding the
dependence on the presence of convective precipitation in
the model. For modeling exercises where the observed light-
ning flashes are not available (e.g., real-time air quality fore-
casts and past- or future-year projection studies), different
options are needed to provide the LNO estimates. An LNO
parameterization scheme is developed based on the relation-
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ship between the observed NLDN lightning flashes and mod-
eled convective precipitation from a set of Weather Research
and Forecasting (WRF) model simulations (the model used
to create meteorological inputs for CMAQ) of 2002 to 2014
over the continental United States.

In this paper, we present the updates and development of
the LNO module that was released in CMAQ version 5.2 in
June 2017 and present a preliminary assessment of the spa-
tial and temporal distribution of LNO columns in the ex-
isting (mNLDN), updated (hNLDN), and newly developed
(pNLDN) schemes. In a follow-on paper, a comprehensive
evaluation of model performance with the various schemes
will be presented.

Section 2 of this paper provides descriptions of the data
and model configurations. Section 3 describes the existing
and updated LNO schemes in CMAQ that are based on the
NLDN data. Section 4 presents an analysis of the histori-
cal relationship between NLDN lightning flashes and model-
predicted convective precipitation. Section 5 provides the
derivation of the parameterization scheme based on the anal-
ysis in Sect. 4. Section 6 is the assessment of the mNLDN,
hNLDN, and pNLDN schemes on their production of total
LNO columns. We conclude this study in Sect. 7 with dis-
cussions.

2 Data source and model configuration
2.1 NLDN data

The observed lightning activity data were obtained from
the National Lightning Detection Network (NLDN) (Orville,
2008). The raw CG flashes were gridded onto the model
horizontal grid cells hourly for use in the hNLDN scheme
and then aggregated into monthly mean values for use in the
mNLDN scheme. The NLDN CG flashes have a detection
efficiency of 90 %—95 % and a location accuracy of approxi-
mately 500 m. The detection efficiency for NLDN IC flashes
is lower and more variable (Zhu et al., 2016), so the climato-
logical IC / CG ratio developed by Boccippio et al. (2000) is
used to quantify LNO production by IC flashes.

2.2 Model configurations

The meteorological fields used in developing the LNO
schemes are provided by WRF model simulations (Sta-
marock and Klemp, 2008). The WRF output fields were pro-
cessed using the Meteorology-Chemistry Interface Proces-
sor (MCIP) to provide input for the CMAQ modeling system
(Otte and Pleim, 2010). We leveraged on the archived WRF
simulations from 2002 to 2014 to derive the regression-based
scheme (pNLDN). The archived meteorological outputs were
generated from three WRF versions: version 3.4 for 2002 to
2005, version 3.7 for 2006 to 2013, and version 3.8 for 2014.

NO is the direct product of lightning flashes, and after re-
lease a large portion of it can be quickly turned into NO, by
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reacting with O3 and other species in the atmosphere. Un-
der most circumstances, NO and NO; coexist in chemical
and/or photochemical equilibrium, so lightning-produced ni-
trogen oxides are generally referred to as LNO,. But only
NO is involved in the actual implementation of the schemes
in CMAQ. We, hereafter, refer to all the schemes as LNO
schemes. All the LNO schemes include three steps: (1) de-
rive or use observed lightning flashes at a grid cell, (2) trans-
late the lightning flashes into total column lightning NO at
the grid cell, and (3) distribute the total column NO among
model layers based on vertical distribution algorithms. Af-
ter the lightning NO is injected into the vertical layers, it is
then combined with (added to) the existing NO from other
emissions (both anthropogenic and biogenic sources). From
there, it undergoes the same chemical and/or photochemical
and physical processes as any other species do.

3 Description of the LNO module in CMAQ: existing
schemes and updates

3.1 Lightning module and the existing LNO schemes

Beginning with CMAQVS5.0, the LNO module contains two
options for in-line (based on model simulated parameters
at the run time) LNO production. The first option is an
over-simplified parameterization that assumes that 1 mmh~!
of convective precipitation (CP) corresponds to 147 light-
ning flashes for a 36 kmx 36 km horizontal grid cell (which
should be scaled for other resolutions). A preliminary analy-
sis indicated that this scheme produced unrealistically exces-
sive LNO during summer months (not shown). This option
was removed from CMAQ in version 5.2.

The second option in CMAQVS5.0 was developed by Allen
et. al. (2010, 2012) and utilized monthly National Lightning
Detection Network (hereafter referred to as mNLDN) flash
data. In this scheme, flashes are assumed to be proportional to
CP with the relationship varying locally with a two-step ad-
justment so that monthly average CP-based flash rates match
the NLDN observations. First, a global factor (lightning
yield) is applied at each grid cell to produce lightning flashes
from model CP. Then, a local adjustment (LTratio) is applied
at each grid cell to ensure that the local CP- and NLDN-
based flash rates match. Figure 1 shows the data preprocess-
ing for LNO production using mNLDN data in CMAQ. First,
CG flashes are gridded onto the modeling grid that is spec-
ified in the model input meteorological file using the For-
tran program, NLDN_2D. The output (GRIDDED NLDN)
is the monthly mean lightning flash density (LFD) over the
model domain in IOAPI format. Ocean_factor, Strike_factor,
and ICCG are R scripts that are used to convert NLDN CG
flashes to quantities that are proportional to LNO production.
The Ocean_factor script ingests the land—ocean mask and in-
dicates values of 1 for grid cells that contain land and 0.2 for
grid cells that only contain ocean. A value of 0.2 is used for
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oceanic-grid cells because the amount of lightning produced
per unit of convective rain is approximately 5 times less for
marine convection than for continental convection (Chris-
tian et al., 2003). The Strike_factor script ingests the gridded
NLDN CG lightning flash data and the CP values predicted
by the upstream meteorological model WREF to calculate the
Ratio_NLDN2CP according to the following equation:

nT nC
> > NLDNflashes
Ratio NLDN2CP = =1/=! , (1)
nT nC

> > CP

i=1j=1

where nT is the total time steps, and nC is the total grid cells.
Ratio_NLDN2CP is the ratio of the monthly average total
flashes over the domain to the monthly average CP over the
domain, and it is used to convert the CP values to flash rates.
The ICCG script interpolates the climatological IC / CG ratio
(Boccippio et al., 2000) onto the model grid cells according
to their geographical location and month of the year. Then
the Fortran program, LTNG_2D_DATA, collects all the in-
formation generated in the prior steps plus the LNO produc-
tion rate: moles NO per CG (MOSLN) and IC (MOLSNIC)
flash to generate one input file (one file for each month of
the year) that contains all the lightning parameters needed by
the CMAQ lightning module. An additional local adjustment
factor LTratio (monthly value at each grid cell) is needed to
ensure that the local CP- and NLDN-based CG flash rates
match.

nT
> NLDNflashes
LTratio = — =l (2)
> CP x Ratio_NLDN2CP

i=1

This value is capped at 50 to avoid placing excessive amounts
of lightning-NO emissions in model grid cells with much less
CP than observed in an attempt to match observed monthly
flash rates. Finally, the moles of NO produced per hour and
grid cell are calculated in the lightning module in CMAQ as
follows:

CLNO = CP x Ratio_NLDN2CP x LTratio
x Ocean_factor x (MOLSN + MOLSNIC x ICCG), (3)

where CLNO is the moles of NO, and Ra-
tio_NLDN2CP x LTratio x Ocean_factor is the lightning
yield per unit CP.

3.2 Vertical distribution algorithm

The moles of LNO are then distributed vertically using the
two-peak algorithm described in Allen et al. (2012), which
is a preliminary version of the segment altitude distribu-
tions (SADs) of flash channel segments derived from North-
ern Alabama Lightning Mapping Array data by Koshak et
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Figure 1. Flowchart of data preprocessing for LNO production in CMAQ for the mNLDN scheme.

al. (2014) convolved with pressure. A two-peak distribution
is used because NO produced by IC flashes is centered at a
higher layer of the atmosphere (350 hPa) than NO produced
by CG flashes (600hPa). Accordingly, LNO is distributed
with two Gaussian normal distributions: the upper distribu-
tion has a mean pressure of 350 hPa and a standard deviation
of 200 hPa, and the lower distribution has a mean pressure of
600 hPa and a standard deviation of 50 hPa. For each CMAQ
layer, the pressure (p) is calculated as follows:

p = o x (psfc — ptop) + ptop, “)

where o is the sigma value of the layer, psfc is the surface
pressure and ptop is the pressure at the top of the model do-
main.

At each pressure level (p), the standardized Gaussian pa-
rameter (x) is calculated as follows:

x=(p— WMU)/(«/E x WSIGMA), (5)

where WMU is the mean value of the distribution (either 600
or 350 hPa) and WSIGMA is the standard deviation of the
distribution (either 50 or 200 hPa).

Then the fraction of the column emissions at the pressure
(p) is calculated by the following distribution function:

Frac (x) = 0.5 x [1.0 + SIGN (1.0, x)

y 1.0—e(_4'0X)§’2)], ©)

where SIGN is a function that produces 1.0 if x > 0, and pro-
duces —1.0 otherwise.
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At each model layer, the weighted contribution is

W = (Bottomgrac — Toppyye) X F1
+ (Bottom2gryc — Top2prac) X F2, @)

where W is the weight at a model layer, Bottompr,c
and Topg,. are the fractional contributions calculated by
Eq. (6) at the bottom and top of the model layer, respec-
tively, for the upper distribution peak (WMU =350hPa,
and WSIGMA =200hPa), and Bottom2py,. and Top2pac
are for the lower distribution peak (WMU =600 hPa and
WSIGMA = 50hPa). F'1 and F?2 are scaling factors that con-
trol the relative contributions to W from the top and the bot-
tom distributions, respectively. Ideally, W would match the
vertical profile presented in Fig. 1 by Allen et al. (2012) and
the sum of W at all the layers is equal to 1. In the current
CMAQ configuration, F1 =1and F2=0.2.
Finally, the LNO at each layer is

LTEMIS(L) = W(L) x CLNO, (®)

where LTEMIS(L) is the LNO at layer L, W (L) is the weight
at layer L as calculated by Eq. (7) and CLNO is the total
column LNO.

3.3 Updates to the lightning module and the LNO
production scheme

As described above, the LNO production scheme, mNLDN,
calculates CLNO using scaled values of the convective pre-
cipitation. To simplify the procedure to generate LNO, in
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CMAQVS5.2 we used the gridded hourly NLDN (hNLDN)
flash data in the lightning module, which reduces Eq. (3) to

CLNO = NLDNCGflashes x Ocean_factor
x (MOLSN + MOLSNIC x ICCG). 9

NLDNCG flashes are generated using a Fortran program
adapted from NLDN_2D by reading in the raw NLDN CG
flashes. Ocean_factor and ICCG are the same as in Eq. (3),
but the R scripts are replaced by a Fortran program to put all
these parameters (including the parameters associated with
regression analysis described in the next two sections) into
one file as parameter input file for CMAQ. MOLSN and
MOLSNIC have default values of 350 mol per flash, but they
can be modified in the CMAQ run script via environment
variables.

Since the hNLDN scheme directly injects LNO into the
modeling grid cells based on observed lightning flashes,
it is possible that desynchronization exists between LNO
and other convectively transported precursor species for O3
production. However, when the lightning assimilation tech-
nique (Heath et al., 2016) based on the same observed light-
ning flashes is applied in WRF simulations, other precursor
species will be forced to occur at the correct times and lo-
cations. Therefore, it is recommended that lightning assim-
ilation be applied in WRF simulations when the hNLDN
scheme is used in CMAQ to produce LNO emissions.

4 Examining the relationship between NLDN flashes
and modeled CP

The existing LNO production schemes in CMAQ depend
heavily on CP amounts predicted by WRF. We analyzed
meteorological fields generated by the WRF model simula-
tions from 2002 to 2014 over the continental United States
to examine the relationship between the observed lightning
flashes and the predicted CP. Though the WRF model has
evolved over a few versions (from version 3.4 to 3.8), the
Kain—Fritsch (KF) convective scheme (Kain and Fritsch,
1990) was used consistently in simulations for all years.
We first examined the relationship between lightning flashes,
which were aggregated into hourly flash counts and gridded
onto the modeling grid cells, and the modeled hourly CP
from WRF over the continental United States (12 km hori-
zontal grid spacing). The results (not shown) showed little to
no correlation between the observed lightning flashes and the
predicted CP, regardless of the time period examined. How-
ever, when the lightning flashes and CP were each aggregated
to mean values over geographical regions (the entire model-
ing domain as the extreme) for each month in the time series,
as shown in Fig. 2, the correlation between the two quan-
tities was obvious. This suggests that although the model-
predicted CP is not a good predictor of lightning events in
space and time, it does show its skill in predicting cumula-
tive lightning activity across geographic regions for a given
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Figure 2. Correlation coefficients with error bars indicating the
95 % confidence interval between 12 monthly mean NLDN light-
ning flash density and mean convective precipitation from 2002 to
2014 over the model domain. All is the correlation coefficient for
all the years.

month. Further analysis of the relationship indicates unique
distribution patterns in space over the contiguous United
States through the years. As shown in Fig. 3a and b, light-
ning yields per unit CP are smaller in the eastern US than
in other areas confirming that the lightning yield varies re-
gionally. The original scheme used a universal lightning yield
for the entire modeling domain, while Allen et al. (2012) al-
lowed the yield to vary locally. This analysis indicates that
the yield is lowest in the east (Region 1) but similar in re-
gions 2-5, which could be combined. Figure 4a shows the
scatter plots and the corresponding linear regression equa-
tions as well as the correlation coefficients (). Again, the
data points over the two regions (east: region 1 and west:
regions 2-5 in Fig. 3a) are distinct, and the slope (0.05) asso-
ciated with the linear regression equation over the east is less
than half of the value over the west (0.13), meaning that the
lightning yield over the west is more than twice that over the
eastern US. Further analysis reveals that better relationships
exist when logarithmic translation is taken for both NLDN
flashes and CP as shown in Fig. 4b; i.e., after applying the
translation, the correlation coefficients increased for both the
western and eastern regions.

5 LNO; scheme based on the relationship between
NLDN flashes and CP

Statistically, the relationship between CP rate and NLDN
lightning flash rate over large regions suggests similar yields
within each region. But considerable scatter still exists within
each region, and the overall statistics may be dictated by cer-
tain large values. As an estimate, the most direct approach
would be to use regression equations to determine LNO from
CP for western US grid cells and regression equations for
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Figure 3. (a) The ratio (background) between lightning flash density and modeled convective precipitation (CP) in July (2002-2014; similar
patterns for other months are not shown) and the analysis regions (R1 to RS). (b) Comparison of monthly mean NLDN lightning flash
density (km~2h~1) and modeled convective precipitation for the domain (All) and regions (R1 to RS5) from 2002 to 2014. Each plotted pixel
represents the monthly mean value: 13 (years) x 12 (months) total pixels over each region.
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Figure 4. Comparison of monthly mean NLDN lightning flash density (km~2h~!) and modeled convective precipitation for the west (green,
region 1 from Fig. 3a) and east (blue, regions 2-5 in Fig. 3a) from 2002-2014 on a (a) linear scale and (b) logarithmic scale. Each plotted
pixel represents the monthly mean value: 13 (years) x 12 (months) total pixels over each region.

eastern US grid cells as shown in Fig. 4a and b. However,
in addition to the concern associated with variations within a
region, this direct application would also cause some prac-
tical problems: (1) the analysis regions are arbitrary, and
(2) the LNO production would be spatially inconsistent with
abrupt changes along the bordering grid cells separating re-
gions. Therefore, instead of deriving regression equations us-
ing the regional data, linear (log-linear) regression equations
are derived using data averaged over an area of adjacent grid
cells (analogous to the derivative concept to cut regions into

Geosci. Model Dev., 12, 3071-3083, 2019

small areas that cover adjacent model grid cells). In areas that
lack enough data points to perform the regression, data are
filled using the inverse distance weighting (IDW) spatial in-
terpolation technique (Lu and Wong, 2008). Figure 5 shows
the spatial-linear (upper panel) and log-linear (lower panel)
regression parameters and the correlation coefficients over
patches of 3 x 3 grid cells (36 kmx 36 km in area) using the
data from 2002 to 2014, respectively. As shown in Fig. 5, sig-
nificantly larger slope values appear over the Mountain West
and Central Great Plains states indicating a greater light-
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ning yield per unit CP over these regions than in other re-
gions. Comparison of the two correlation coefficient maps re-
veals that the log-linear relationship has higher correlations
over larger areas than the simple linear relationship. How-
ever, both approaches have correlation coefficients > 0.5 in
regions with frequent lightning activity.

5.1 Stability over time

A robust parameterization scheme should be relatively insen-
sitive to the training time period. In order to test this, the
lightning yield (slope of the linear and log-linear regression)
was re-calculated using data from 2002 to 2012 (P02-12),
2002 to 2014 but excluding 2011 and 2013 (P02-14sb2), and
2009 to 2014 (P09-14). The results are shown in Fig. 6. As
indicated in Fig. 6, the spatial patterns of slopes generated
using data from different time periods for both linear (upper
panel) and log-linear regressions (lower panel) are similar ex-
cept that larger values are created over the Great Plains east
of the mountains when the most recent years’ data (2009—
2014) were used to perform the linear regression. This differ-
ence may be attributable to the evolution of the WRF model
and the NLDN data (Nag et al., 2014) through the years, and
it also indicates that the parameters need to be updated to
include the most recent data available.

To test the sensitivity of LNO to the parameters derived
from different time periods, Fig. 7 shows the total monthly
column LNO for 2011 and 2013 generated using different
set of parameters derived using linear regression from dif-
ferent time periods, and for comparison the LNO produced
by the updated NLDN-based scheme, hNLDN, described in
Sect. 2 is also included. As shown in Fig. 7a, in 2011 the
parameter schemes (pNLDN) (except for P09-14) tend to
underestimate LNO during summer months (June, July and
August; JJA) compared with hNLDN scheme, but for 2013
(Fig. 7b) the pNLDN schemes produce both over- and under-
estimates of LNO during the summer months. In both years,
very small differences are observed with the pPNLDN scheme
with parameters from different time periods except P09-14.
The P09-14 parameters seem to produce the most LNO dur-
ing summer months in both years making it the best to match
LNO produced by hNLDN scheme in 2011, but it yields
more overestimates in June and July of 2013.

5.2 Sensitivity to logarithmic scales

As discussed earlier, the log-linear regression between
NLDN lightning flashes and CP produced better correlation
coefficients than the simple linear regression. We also no-
ticed, however, that if the log-scale parameters are applied
to all the data, too much LNO is produced relative to the
hNLDN scheme, especially during winter months when both
lightning activity and convective precipitation occur less fre-
quently. This high bias exists because the log scale tends to
inflate contributions from small values when linear regres-
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sion is performed after the log transformation. To test the
impact of log scale on the production of LNO, we choose the
summer months (JJA) in 2011 and specify a series of cut-
off values for CP (cm) that is linear regression parameters
are applied if CP is smaller than a specific cutoff value, and
log-linear regression parameters are applied otherwise. Fig-
ure 8 shows the monthly total column LNO produced with
CP cutoff values from 0.1 (PO1) to 0.6 (P06) cm. As indi-
cated in Fig. 8, the smaller the cutoff value is, the more LNO
produced. When the cutoff value of 0.2 is applied, LNO pro-
duction best matched those produced by hNLDN; however,
the summer months in 2011 are different from other years, in
that significantly more lightning flashes and convective pre-
cipitation were observed in the continental United States, es-
pecially in the east and southeast US. When the same cutoff
value (0.2) is applied to other years, LNO is overestimated
compared with that produced by the hNLDN scheme. For
generalized application to all years, dynamic cutoff values
are used with this scheme (the result is also shown in Fig. 8).
Specifically, if CP is greater than the intercept value at a loca-
tion from linear regression, the log-linear regression parame-
ters are used; otherwise, the linear regression parameters are
applied. This technique demonstrates acceptable results for
all of the years studied.

6 Assessment of LNO production schemes

As a preliminary assessment of these LNO production
schemes, we only investigate the distribution of column LNO
in time and space; a more detailed evaluation of the impact
of these schemes on air quality will be presented in a subse-
quent study.

Figure 9 shows the monthly total column LNO produced
by the different schemes for the years 2011 and 2013. For
both years, the mNLDN scheme tends to generate signif-
icantly more LNO during warm months (May—September)
than the hNLDN and pNLDN schemes. Collectively during
May to September, mNLDN produced about 40 % (39 % in
2011 and 42 % in 2013) more LNO than hNLDN. The re-
gression parameter-based scheme, pNLDN, underestimated
LNO during summer months (JJA) in 2011 compared to
hNLDN, but the two schemes generally agreed well in 2013.
As mentioned earlier, the significant underestimation of LNO
by pNLDN may be attributed to underestimated convective
precipitation in WREF, which reduced the count of lightning
flashes during this period. There were about 17 % more light-
ning flashes during JJA in 2011 than the same period in
2013 over the continental United States. The relatively poor
correlation coefficient between NLDN flashes and model-
predicted CP values in 2011 is also evident in Fig. 2, which
was the second smallest among the 13 years studied. The
daily total column LNO produced by these schemes for
July 2011 and July 2013 is presented in Fig. 10. Among
the schemes, mNLDN produced the most LNO on most

Geosci. Model Dev., 12, 3071-3083, 2019
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Figure 5. Parameters of linear (a—c) and logarithmic linear (d—f) regression parameters generated using all the data from 2002 to 2014.

(a, d) slope, (b, e) intercept and (c, f) correlation coefficient.

> <

Figure 6. The slope maps from linear (a—c) and log-linear (d—f) regressions using data from different time periods. (a, d) Data from 2002 to
2012, (b, e) data from 2002 to 2014 excluding 2011 and 2013, and (c, f) data from 2009 to 2014.

of the days in July for both years. Except for a few days,
pNLDN underestimated LNO in 2011 relative to the other
approaches, but in 2013 it produced comparable results to
hNLDN except that it overestimated LNO on the first few
days of the month. In addition, the day-to-day variance gen-
erated by pNLDN seems smaller compared with hNLDN for
both years.

The spatial distributions of monthly total column LNO
produced by each of the three schemes over the contigu-
ous United States for July 2011 and July 2013 are presented
in Fig. 11. Overall, the spatial patterns generally agree with

Geosci. Model Dev., 12, 3071-3083, 2019

each other for both years with pNLDN producing relatively
smaller values, especially along the edges or over locations
where LNO amounts are relatively small. Note that both
hNLDN and mNLDN are based on the same monthly ob-
served data, so consequently they produce similar spatial pat-
terns. The pNLDN is derived based on the linear and log-
linear regression parameters using multiple years’ historical
observed data and model simulations with different versions,
and it is applied to a specific period without including obser-
vations. Nevertheless, as the main intention for pNLDN to be
applied is when there are no observed lightning data avail-

www.geosci-model-dev.net/12/3071/2019/
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Figure 7. Total monthly column LNO over the model domain using parameters derived from different time periods for (a) 2011 and (b) 2013.
hNLDN: LNO is produced by the hourly NLDN lightning flashes, P02-12: parameters derived using data from 2002 to 2012, P02-14:
parameters derived using data from 2002 to 2014, P02-14sb2: parameters derived using data from 2002 to 2014 excluding 2011 and 2013,

and P09-14: parameters derived using data from 2009 to 2014.
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Figure 8. Total monthly column LNO over the model domain using
different CP cutoff values during summer months in 2011. hNLDN:
LNO produced by the hNLDN scheme, PO1-P06: CP (cm) cutoff
values from 0.01 (PO1), 0.02 (P02), to 0.06 (P06). Linear regression
parameters are applied when CP is less than the cutoff value and
log-linear regression parameters are used otherwise. Dym is when
the dynamical cutoff values are used (see text).

able (such as air quality forecasts and past or future climate
simulations with similar climate conditions), it can provide
a reasonable estimate for LNO comparable to that estimated
by hNLDN and mNLDN.

7 Summary and discussions

In this study, we described the LNO production schemes in
the CMAQ model’s lightning module and updated the exist-
ing monthly NLDN observation-based scheme with the cur-
rent understanding and resources. For retrospective model
applications, the hourly NLDN observation-based scheme,
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hNLDN, is expected to provide the highest-fidelity spatial—
temporal LNO. If observations are not available, such as in
air quality forecasts and future climate studies, the linear and
log-linear regression parameter-based scheme, pNLDN, pro-
vides a spatial-temporal estimate of LNO. Note that even
though the pNLDN scheme can provide LNO estimates for
past or future climate studies, the spatial dependency of the
relationship presented here may not hold under changing cli-
mate conditions.

Large uncertainties are still associated with each of these
schemes resulting from the various assumptions common to
all the LNO production schemes, e.g., the uniform NO pro-
duction rate per flash, the IC / CG ratios, the difference of
LNO production rates over land and ocean, and uniform ver-
tical profiles in time and space. The regression parameter-
based scheme suffers additional uncertainties resulting from
the way the parameters are derived. First, the CP values were
only produced by the KF convective scheme in this regres-
sion analysis. If other convective schemes are used in the
upstream meteorological model, the regression relationship
will differ. Spatially this scheme is only applicable to the area
over which the regression analysis was performed (here, the
contiguous United States). In addition, the parameters may
need to be reproduced when the model resolution or version
is changed or when updated observational data become avail-
able.

Lightning and LNO will remain an active research area in
atmospheric sciences for the foreseeable future. For example,
lightning data from Geostationary Lightning Mapper (GLM)
instruments on the Geostationary Operational Environment
Satellite (GOES) 16 and 17 (Goodman et al., 2013; Rudlosky
et al., 2019) are now publicly available. With more observa-
tions (both at surface and in space) available, the assumptions
associated with the LNO schemes will be updated to reflect

Geosci. Model Dev., 12, 3071-3083, 2019
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the evolving understanding of LNO production in time and
space. For example, Medici et al. (2017) recently updated
IC / CG ratios over the contiguous United States based on
the relative occurrence of CG and IC flashes over an 18.5-
year period. Their study updates the Boccippio et al. (2000)
climatology used in this study that employed 4-year datasets.
In addition, NASA George C. Marshall Space Flight Cen-
ter is updating the vertical distributions of lightning chan-
nel segments (SAD) based on 9-year North Alabama Light-
ning Mapping Array (NALMA) datasets (William Koshak,
personal communication, 2018). In addition, the Lightning
Mapping Array data could be used to obtain nominal dis-
tributions of IC and CG flashes and that information could
be used to derive the scaling factors (F'1 and F2) associated
with the vertical LNO distribution algorithm in Eq. (7). Thus
the vertical LNO distribution could be represented more ac-
curately in time and space. When all these data are available,
we will examine and adapt these updates to the lightning pa-
rameterizations and make them available in future CMAQ
releases. In this paper we have developed and demonstrated
a method that can now be applied to new observations as they
become available.

Code and data availability. CMAQ model documentation and re-
leased versions of the source code, including all model code
used in this study, are available at https://www.epa.gov/cmaq
(last access: 12 July 2019). The data processing and analysis
scripts are available upon request. The WRF model is available
for download through the WRF website (https://www.mmm.ucar.
edu/weather-research-and-forecasting-model, last access: 12 July
2019).

The raw lightning flash observation data used are not available
to the public but can be purchased through Vaisala Inc. (https:/
www.vaisala.com/en/products/systems/lightning-detection, last ac-
cess: 12 July 2019). The immediate data, except the lightning
flash data behind the figures, are available from https://zenodo.org/
record/2590452 (Kang, 2019). Additional input and output data for
CMAQ model utilized for this analysis are available upon request
as well.
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