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Abstract. Climate simulations with more accurate process-
level representation at finer resolutions ( < 100km) are a
pressing need in order to provide more detailed actionable
information to policy makers regarding extreme events in a
changing climate. Computational limitation is a major obsta-
cle for building and running high-resolution (HR, here 0.25°
average grid spacing at the Equator) models (HRMs). A more
affordable path to HRMs is to use a global regionally refined
model (RRM), which only simulates a portion of the globe
at HR while the remaining is at low resolution (LR, 1°).
In this study, we compare the Energy Exascale Earth Sys-
tem Model (E3SM) atmosphere model version 1 (EAMv1)
RRM with the HR mesh over the contiguous United States
(CONUS) to its corresponding globally uniform LR and HR
configurations as well as to observations and reanalysis data.
The RRM has a significantly reduced computational cost
(roughly proportional to the HR mesh size) relative to the
globally uniform HRM. Over the CONUS, we evaluate the
simulation of important dynamical and physical quantities as
well as various precipitation measures. Differences between
the RRM and HRM over the HR region are predominantly
small, demonstrating that the RRM reproduces the precipita-
tion metrics of the HRM over the CONUS. Further analysis
based on RRM simulations with the LR vs. HR model pa-
rameters reveals that RRM performance is greatly influenced

by the different parameter choices used in the LR and HR
EAMVI. This is a result of the poor scale-aware behavior of
physical parameterizations, especially for variables influenc-
ing sub-grid-scale physical processes. RRMs can serve as a
useful framework to test physics schemes across a range of
scales, leading to improved consistency in future E3SM ver-
sions. Applying nudging-to-observations techniques within
the RRM framework also demonstrates significant advan-
tages over a free-running configuration for use as a test bed
and as such represents an efficient and more robust physics
test bed capability. Our results provide additional confirma-
tory evidence that the RRM is an efficient and effective test
bed for HRM development.

1 Introduction

A key goal of the United States (US) Department of En-
ergy (DOE) Energy Exascale Earth System Model (E3SM)
project (formally known as the Accelerated Climate Model-
ing for Energy, ACME) is to develop a high-resolution (HR,
0.25° or finer in the horizontal) fully coupled Earth system
model for climate simulation and prediction (Bader et al.,
2014). Testing new physical parameterizations and tuning
loosely constrained parameters within existing parameteri-
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zations are important steps of model development. However,
the computational cost of running a globally uniform HR
model (HRM) is high. For example, a 1-year 0.25° HR E3SM
atmosphere model version 1 (EAMv1) simulation requires
0.6 million core hours on 675 “Knights Landing” (KNL, In-
tel Xeon Phi Processor 7250) nodes of the Cori supercom-
puter at the National Energy Research Scientific Computing
Center (NERSC). A regionally refined model (RRM) capa-
bility (Ringler et al., 2008; Zarzycki and Jablonowski, 2014;
Roesler et al., 2019), which only simulates a fraction of the
globe at HR, is adopted by EAMv1 to reduce the computa-
tional cost of HR simulations and to examine the parameter-
ization sensitivity to HR scales. The RRM simulation cost is
usually dominated by the computational cost of the HR re-
gion, and thus the total model cost is roughly proportional
to the size of the region with finer resolution, referred to as a
“mesh” (typically chosen to be about 10 % of the globe, mak-
ing the cost about 10 % of a uniform HRM simulation). In
the ongoing E3SM phase II project, the RRM configuration
is planned as a central tool to achieve the E3SMv2 science
goal of understanding the relative impacts of global forcing
versus regional influences of human activities on flood and
drought in North America. RRM will be routinely used over
North America to address DOE’s goal of understanding the
Earth system changes affecting US energy-sector decisions.
It will be also applied as a physics test bed to improve the
scale awareness of parameterizations in upcoming versions
of E3SMv2 and v3 as well as an important strategy to per-
form a larger ensemble of HR simulations. RRM is also a vi-
tal capability for progress towards an eventual global cloud-
resolving model with 3 km horizontal grid spacing targeting
E3SMv4 and beyond.

The RRM approach has been established and validated
with other models over many regions of interest. For in-
stance, Zarzycki et al. (2014) showed the effectiveness of an
RRM with aquaplanet experiments using the Community At-
mosphere Model (CAM). Zarzycki and Jablonowski (2014,
2015) demonstrated improved skill in simulating tropical
cyclones in CAM with a refined mesh over the North At-
lantic. Rhoades et al. (2016) and Wu et al. (2017) depicted
that the variable-resolution (VR) Community Earth System
Model (CESM) was able to accurately capture the clima-
tology and seasonality of important variables over moun-
tain regions. Huang and Ullrich (2017) reproduced the ge-
ographic patterns of historical precipitation climatology over
the western US with the VR-CESM. Gettelman et al. (2018)
performed comprehensive tests of a VR dynamical core in
CESM2 and showed that VR grids were feasible alternatives
to conventional nesting for regional climate research. Roesler
et al. (2019) found that refining the grid over the contiguous
United States (CONUS) did not exert a noticeable influence
on the global circulation in the EAM version 0 (EAMVO,
which is almost identical to CAMS5.3 except for some mi-
nor tunings and bug fixes). These earlier studies have demon-
strated that RRMs can be used as an effective tool to study
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important climate features over regions of interest with high
resolution.

Compared to EAMvO, EAMv1 (Rasch et al., 2019) in-
cludes significant changes to its physics, substantially in-
creased vertical resolution, retuning, and bug fixes (Zhang
et al., 2018). All these changes cause the model to behave
very differently from EAMvO, especially in terms of regional
clouds and precipitation characteristics (Xie et al., 2018).
Given these substantial model changes and the critical role
that RRM will play in future E3SM scientific applications,
this paper documents further scientific analysis of RRM be-
havior with EAMv1. We contrast simulations between the
RRM and the globally uniform HR EAMv1 over the RRM
region, with the goal of providing more insights into the
EAMv1 RRM capability to the user community. This study
emphasizes hydrology-related simulation skill over North
America: a key element of the E3SM Water Cycle science
driver. We investigate whether RRM reproduces the same
performance as HRM of these fields enabling it to be used
as an effective physics test bed for understanding physical
processes and improving their representations in EAMv1 and
in future versions. In addition, EAMv1 physical parameter-
izations (and in particular the cloud parameterizations) are
not inherently scale-aware and hence require retuning when
increasing model horizontal or vertical resolution. Unfor-
tunately, this leads to two different parameter settings for
EAMv1 high- and low-resolution models. It is key to de-
termine how the two different parameter settings influence
RRM performance, since most earlier studies just used the
established low-resolution model parameters over the RRM
domain, which may not yield optimal RRM results due to
scale-aware shortcomings of the existing physical schemes.

This study centers mainly on “proof-of-concept” exam-
ples. More in-depth analysis of RRM behavior will be re-
ported in separate studies when RRM is more routinely used
in E3SM phase II and by general users. In many EAMvl1
application scenarios, it is expected that the RRM will be
more feasible and practical than the HRM. This could in-
clude evaluation against regional measurements, uncertainty
quantification studies that typically demand a large ensemble
size (Qian et al., 2016, 2018), and users with limited com-
putational resource. Findings from this study regarding the
strengths and weaknesses of the EAMv1 RRM configuration
should provide valuable guidance for future RRM applica-
tions in the HR E3SM development and broad community
use of the E3SM RRM.

Additionally, we provide detailed information on how to
utilize the RRM capability with nudging for process-level
understanding of model deficiencies. Similar to the hind-
cast approach (Phillips et al., 2004; Ma et al., 2015) used
in climate model evaluation, the nudging approach is able to
maintain the large-scale dynamical state close to an observed
state and hence provides a better assessment of atmospheric
physics performance. This nudged approach is particularly
useful for those processes that are related to fast physics. Xie
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et al. (2012) and Ma et al. (2014) demonstrated a strong cor-
respondence between short (a few days) and long (seasonal
to annual) timescale systematic errors in climate models for
fields related to fast physics, such as clouds and precipitation.

This paper is organized as follows. Section 2 provides an
overview of the RRM EAMv1 and summarizes the setup of
simulations and the observational datasets used for model
evaluation. Results are shown in Sect. 3, including model cli-
matologies over the CONUS domain where our RRM has its
fine-resolution mesh, the analysis of quantities related to the
hydrological cycle, and an in-depth analysis of precipitation
characteristics — the large-scale to convective partitioning,
the intensity distribution, and the summertime diurnal cycle.
Section 4 describes an example of running the nudged RRM.
Section 5 provides a summary of this work and prospects for
future studies.

2 Methodology
2.1 Model overview and experiment design

The E3SM project aims to build a global HR fully cou-
pled Earth system model for climate simulation and predic-
tion on current and next-generation supercomputing facili-
ties (Bader et al., 2014). Since all the simulations analyzed
here are atmosphere-only ones, we only provide informa-
tion about the atmosphere model. Details about the coupled
E3SM model can be found in Golaz et al. (2019). EAMv1
originated from CAMS.3 (Neale et al., 2012) but has un-
dergone substantial development. An overview of EAMv1
is given by Rasch et al. (2019). More details on the sim-
ulated cloud and precipitation characteristics and overview
of the low- and high-resolution model tunings are provided
in Xie et al. (2018). EAMvlI uses the spectral element dy-
namical core (Taylor and Fournier, 2010; Dennis et al., 2012)
on a cubed-sphere computation grid with an explicit Runge—
Kutta time integration scheme. This dynamical core has sus-
tained scalability with an increasing number of elements
and processors (Fournier et al., 2004). Major changes in
EAMVv1 compared to its earlier version include substantially
increased vertical resolution (72 vs. 30 vertical layers), a
higher (~ 0.1 hPa compared to 2hPa) model top, and im-
proved physical parameterizations including the Cloud Lay-
ers Unified By Binormals (CLUBB) scheme (Golaz et al.,
2002; Bogenschutz et al., 2013), updated cloud microphysics
(MG2) (Gettelman and Morrison, 2015), predicted aerosols
(the Modal Aerosol Module, MAM4) (Liu et al., 2016), and a
linearized ozone chemistry (Linoz2) (Hsu and Prather, 2009).
Impacts of the new cloud physics and the increase in vertical
resolution on EAMv1-simulated climate are documented in
Xie et al. (2018) and Qian et al. (2018). In the present paper,
we focus on the EAMv1 regionally refined test bed capability
over the CONUS domain.
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The CONUS regionally refined grids consist of LR and
HR regions and a transition area between them (see Fig. 1a).
The HR grid is located in the CONUS area. We created the
regionally refined grid with the offline software tool Spheri-
cal Quadrilateral Grid Generator (SQuadGen, https://github.
com/ClimateGlobalChange/squadgen, last access: 14 May
2019). The effective resolutions for the LR and HR regions
are 1 and 0.25°, respectively. Because of the horizontal res-
olution differences in the low-resolution model (LRM), the
HRM, and the RRM, the topography is represented differ-
ently in these configurations. We used a new tensor hypervis-
cosity formulation (Guba et al., 2014) to eliminate numerical
noise and oscillations. Additional details about the CONUS
RRM as well as the topography data are reported in Roesler
et al. (2019). It is worth mentioning that the RRM grids have
also being generated and tested over the tropical western Pa-
cific (TWP) and the eastern North Atlantic (ENA).

In the present study, we mainly analyze the atmosphere-
only simulations (see Tables 1 and A1) forced by observed
present-day climatologies of aerosol emissions, greenhouse
gases, sea surface temperatures (SSTs), and sea ice concen-
trations. The simulations use an interactive E3SM land model
on the same grids as the atmosphere. We run the EAMv1 with
globally uniform LR and HR grids as well as the CONUS
RRM grid. All simulations are performed with the 72 verti-
cal layers. Since the EAMv1 parameterizations are not scale-
aware, both dynamical and physical parameters are adjusted
to optimize the model performance at different resolutions
(Xie et al., 2018). This leads to different parameter settings
for the EAMvl LRM and HRM. As shown in Table Al of
Xie et al. (2018), the differences are mainly in parameters
that control convection and cloud microphysics. Thus, dif-
ferences between LRM and HRM analyzed in the following
sections arise from different horizontal resolutions and pa-
rameter settings as well as the different physics time steps.
The LRM and HRM physics time steps are 30 and 15 min,
respectively. The dynamics use three layers of substepping.
For the LRM (HRM), the Lagrangian vertical discretization
time step is 15 min (2.5 min), the horizontal discretization
time step is 5 min (75 s), and the explicit numerical diffusion
time step is 100 s (18.75s). The RRM uses the same dynam-
ics time steps over the LR and HR domains. For the purpose
of mimicking the HRM behaviors, we opt to use the same dy-
namical and physical parameters and time step for the RRM
control simulation as in the HRM. Besides the RRM con-
trol case, we also perform an RRM test (RRM_LR) with the
LRM dynamical and physical parameters. Comparing these
two RRM results, we are able to explore the impact of dif-
ferent parameter settings on the RRM performance, which is
not possible for conventional RRM studies with only the LR
parameters.

Current climate models commonly suffer from system-
atic biases in simulating climate mean states of clouds and
precipitation associated with flaws in physical parameteriza-
tions (e.g., Klein et al., 2013; Ma et al., 2014). However,
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Figure 1. The CONUS regionally refined grid in (a) a global orthographic projection and (b) a cylindrical equidistant projection zoomed in
over the high-resolution (HR) portion. The effective resolutions for the low-resolution (LR) and the HR regions are 1 and 0.25°, respectively.
The two regions are connected with a transient area. The blue box (latitude range: 22-50°N, longitude range: 64—126°W) in panel (b)

represents the analyzed area for CONUS.

Table 1. List of EAMv1 simulation configurations, speed, and costs. The speed and cost are for the NERSC Cori-KNL machine. SYPD:

simulation year per day.

Simulation Configuration  Effective angular ~ Number of Speed  Number of Cost (core-

resolution elements (SYPD) nodes  hours per year)
Low-resolution model (LRM) Default 1° 5400 6 81 22000
High-resolution model (HRM) Default 0.25° 86400 2 675 551000
Regionally refined model (RRM) HRM default 1 to 0.25° 9905 1.7 88 84000
RRM_LR LRM default 1 to 0.25° 9905 1.9 88 75000
LRM AMIP Default 1° 5400 6 81 22000
RRM non-US nudging HRM default 1 to 0.25° 9905 1.7 88 84000

compensating errors from nonlinear feedback mechanisms
also contribute to climate mean biases, making it a challenge
to pin the errors to specific parameterizations. The numeri-
cal weather prediction technique (Phillips et al., 2004), also
known as the transpose Atmospheric Model Intercompari-
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son Project (transpose AMIP) (Williamson, 2013) or hind-
cast (Ma et al., 2015) approach, has been increasingly used
in climate models, including EAMv1, to understand and re-
duce model errors associated with fast atmospheric physi-
cal processes. Similar to the hindcast method, the EAMv1
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RRM can be run in a nudging configuration to diagnose
parameterization-related errors and help to guide develop-
ment in HR E3SM. More guidance on using the nudged
RRM approach will be discussed in Sect. 4.

To demonstrate the nudging capability, we perform
an RRM simulation nudged to the European Centre for
Medium-range Weather Forecasting Interim (ERAI) analysis
fields of horizontal velocities (U and V) (Dee et al., 2011)
with a 6 h relaxation timescale. The nudged simulation uses
the prescribed weekly, 1° spatial resolution SSTs and sea ice
from the National Oceanic and Atmospheric Administration
Optimum Interpolation analysis data (Reynolds et al., 2002).
In addition, we conduct an LR atmosphere-only simulation
with time-evolving forcings (i.e., AMIP style) to compare it
with the nudging simulation. Output from the Cloud Feed-
back Model Intercomparison Project Observation Simulator
Package (COSP) (Bodas-Salcedo et al., 2011) is used to com-
pare with cloud observations from satellites (Zhang et al.,
2019). All free-running simulations are run for a period of
5 years. The first year is regarded as spin-up; thus, we study
the results from the last 4 years. The nudging run simulates
the year 2011, whereas the AMIP results are extracted for the
year 2011 from a long simulation starting from 1870 (Golaz
et al., 2019). Model output is stored as monthly and hourly
averages.

2.2 Evaluation datasets

Skillful depictions of the large-scale circulation and sub-
grid-scale physics are essential for more realistic model
simulations of the atmospheric hydrological cycle. We
choose evaluation variables to cover both aspects. Evaluation
datasets are summarized in Table 2. Meteorological fields,
such as geopotential height, surface pressure, winds, temper-
ature, relative humidity, and precipitable water are from the
ERALI reanalysis product (Dee et al., 2011). Seasonal pre-
cipitation climatology estimations are based on the Global
Precipitation Climatology Project (GPCP) (Huffman et al.,
2009). Daily precipitation observations are taken from the
GPCP 1° daily (1DD) data (Huffman et al., 2001). Hourly
precipitation is compared with the dataset collected by the
Next-Generation Radar (NEXRAD) network (NOAA, 2013)
and developed under the Climate Science for a Sustainable
Energy Future (CSSEF) project (Zhang et al., 2005, 2011;
Giangrande et al., 2014). Simulated cloud amount is veri-
fied against International Satellite Cloud Climatology Project
(ISCCP) data (Rossow and Schiffer, 1991). In order to com-
pare with the cloud diagnostics from COSP, we also use the
satellite data products generated especially for model evalu-
ation from ISCCP (Pincus et al., 2012; Zhang et al., 2012),
Moderate Resolution Imaging Spectroradiometer (MODIS)
(Pincus et al., 2012), and Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) (Chepfer et al.,
2010). Top-of-atmosphere cloud radiative effects are evalu-
ated with the Clouds and the Earth’s Radiant Energy System—
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Energy Balanced and Filled (CERES-EBAF v2.8) dataset
(Loeb et al., 2012).

3 Results

In this section, we will focus on the results of June—July—
August (JJA) and December—January—February (DJF), the
two more extreme seasons at the CONUS in a year when
some long-standing systematic model errors are present.

3.1 Overall model performance

Taylor diagrams (Taylor, 2001) offer a concise way of sum-
marizing model performance and comparing different model
results. Here we employ Taylor diagrams to demonstrate the
performance of a selection of important variables (Gleck-
ler et al., 2016). Figure 2 shows the JJA and DJF model
climatology of selected thermodynamically related variables
(numbered) over the CONUS domain (i.e., the blue box in
Fig. 1b) of the RRM grids. Green dots denote LRM results,
whereas red dots indicate HRM results and blue dots RRM
results with the HRM parameters. The model results are il-
lustrated relative to the verification data (marked by the ref-
erence point (1, 0)) described in Sect. 2.2. To make consis-
tent comparisons between different model resolutions, model
results are conservatively interpolated (with the “conserve”
method of the Earth System Modeling Framework, ESMF,
https://www.earthsystemcog.org/projects/esmf/, last access:
1 May 2019, regridding software) to the coarser verification
data grids before calculating the Taylor statistics. The radial
axis shows the geographic variability (i.e., standard devia-
tion, SD) in the model climatology normalized by that in
the observations. The angular axis indicates the spatial cor-
relation (i.e., Pearson correlation coefficient, r) between the
simulations and the observations. By design, the distance to
the reference point (1, 0) represents the centered root-mean-
square (rms) difference between the simulated and observed
patterns normalized by the SD of the observations. The closer
the distance to the (1, 0) point, the better the model perfor-
mance. We should note that the primary purpose of our analy-
sis is to show how well the RRM, as an analogue to the HRM,
reproduces the HRM results. The observations and the LRM
results provide quantitative references to examine the RRM—
HRM similarity and also identify poorly simulated behaviors
as targets of HRM development.

Relative to the evaluation datasets (Fig. 2a, b), the thermo-
dynamic variables are generally well-simulated by EAMv1
with all three model configurations. All correlation coef-
ficients are greater than 0.85 (mostly > 0.95). Normalized
SDs lie close to the 1.0 dashed curve, especially in JJA. The
model generally represents these large-scale circulation re-
lated quantities better with finer-resolution settings, as the
red dots (HRM) are usually closer to the (1, 0) point (rep-
resenting evaluation data) than the corresponding green dots

Geosci. Model Dev., 12, 2679-2706, 2019
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Table 2. Summary list of observational and reanalysis-based evaluation datasets for model performance.

Variable Data source Period Reference Web link (last access: 29 April 2019)
7500, PS, U200, ERA-Interim 1989—2005 Deeetal. (2011) http://apps.ecmwf.int
U850, T500, T>y,,  reanalysis
TMQ, RH500,
OMEGAS500
CLDTOT ISCCP 1983—2001  Rossow and Schiffer https://isccp.giss.nasa.gov/products/browsed2.html
(1991)
PRECT GPCP 1979—2009 Huffman et al. (2009)  https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
PRECT GPCP1DD 1997—2013  Huffman et al. (2001)  ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2
PRECT NEXRAD 2009—2013 NOAA (2013), Gian-  https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00345
grande et al. (2014)
LWCF, SWCF CERES-EBAF  2000—2013  Loeb et al. (2012) https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA
FISCCP1_COSP ISCCP 1983—2008  Pincus et al. (2012) http://climserv.ipsl.polytechnique.fr/cfmip-obs
CLMODIS MODIS 2002—2010  Pincus et al. (2012), http://climserv.ipsl.polytechnique.fr/cfmip-obs
Zhang et al. (2012)
CLDTOT_CAL, CALIPSO 2006—2010  Chepfer et al. (2010) http://climserv.ipsl.polytechnique.fr/cfmip-obs
CLDHGH_CAL,
CLDMED_CAL,
CLDLOW_CAL

(LRM). Nevertheless, there are a few exceptions, for exam-
ple, 2m air temperature (7>, or TREFHT, reference height
temperature) in JJA (see Fig. 2a), which is likely associated
with cloud and thus surface radiation changes (Van Wever-
berg et al., 2018) along with feedbacks (surface energy par-
titioning shifting towards more sensible heat flux) from the
land surface model.

More importantly, when using the HRM as the reference
point (Fig. 2¢, d), blue dots (RRM) are located closer to (1,
0) than the green dots (LRM), indicating that the RRM mim-
ics the HRM behaviors quite well. Additionally, we plot the
RRM_LR results (purple dots) on Fig. 2c, d to illustrate the
potential impact of poor scale awareness, which is a common
problem for current climate models, on conventional RRM
applications. Lacking the tuned HRM parameters, previous
RRM studies often rely heavily on LRM parameters and can-
not quantify the likely performance deterioration due to the
parameter—resolution mismatch. Here we take advantage of
having both LR and HR tuned parameters to show the param-
eter influence on RRM performance. As expected, RRM_LR
is generally less satisfactory than RRM in matching the HRM
behaviors (Fig. 2c, d), but the extent varies for different quan-
tities. For instance, the 200 hPa zonal wind (U200) is rela-
tively insensitive to parameter changes in RRM configura-
tions in both seasons. These results reflect the large-scale na-
ture of upper-troposphere wind fields. In contrast to U200,
RRM total precipitable water (TMQ) shows greater sensitiv-
ity to parameter settings, since it is more closely related to
sub-grid-scale physical processes. These results suggest that
RRM generally does well in representing large-scale thermo-

Geosci. Model Dev., 12, 2679-2706, 2019

dynamical behaviors of HRM, but some quantities are sensi-
tive to the choice of LRM or HRM parameter settings. A re-
tuning may be needed for the refined region to optimize per-
formance when model physical parameterizations are scale-
sensitive. Specifically, for EAMv1, using the HRM parame-
ter setting is recommended when one utilizes the RRM capa-
bility.

Compared to thermodynamics variables in Fig. 2, the
cloud and precipitation variables in Fig. 3 are more sen-
sitive to sub-grid-scale parameterizations (e.g., convection,
cloud microphysics, and radiation). Similar to Bacmeister
et al. (2014), the variables in Fig. 3 are more poorly sim-
ulated than those in Fig. 2 in all configurations: they have
weaker (0.5-0.9) correlation coefficients and are further from
the (1, 0) point in both seasons (Fig. 3a, b). These results
are consistent with the idea that improving the simulation of
these variables requires both better-resolved large-scale cir-
culations and improved representation of physical processes
by better physical parameterizations. Figure 3c, d demon-
strate this idea quantitatively: the LRM-HRM differences
become smaller for all variables after refining the CONUS
grids (green to purple); the differences are further reduced
by changing the parameters to match the HRM values (pur-
ple to blue). Nevertheless, our findings are similar: when in-
creasing the resolution, model performance is generally bet-
ter in DJF (Fig. 3b) and remains the same or slightly de-
graded in JJA (Fig. 3a); the RRM results follow those of the
HRM closer than do the LRM in both seasons (Fig. 3c, d).
In addition, all variables except total precipitation (PRECT)
are more sensitive to the resolution change in winter than in

www.geosci-model-dev.net/12/2679/2019/
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Figure 2. Taylor diagrams for three different model climatologies (color-coded: green — LRM; red — HRM; blue — RRM; and purple —
RRM_LR) in JJA (a, ¢) and DJF (b, d). Results are from the CONUS domain (the blue box in Fig. 1b). For panels (a) and (b), verification
data are used as the reference point (1, 0), and statistics are calculated on the coarser verification grids. For panels (c) and (d), the HRM is
the reference, and statistics are calculated on the HRM grids. The numbers represent the following: 1 — 500 hPa geopotential height (Z500);
2 — surface pressure (PS); 3 — 200 hPa zonal wind (U200); 4 — 850 hPa zonal wind (U850); 5 — 500 hPa temperature (7'500); 6 — 2 m air

temperature (TREFHT or 75 ,,); and 7 — total precipitable water (TMQ).

summer (greater LRM—HRM separation in Fig. 3b than in
Fig. 3a). For example, the variance of 500 hPa vertical ve-
locity (OMEGAS00) is almost independent of resolution in
summer but about 50 % larger in the HRM configuration than
in the LRM in winter, suggesting stronger wintertime circu-
lation and a finer scale of resolved dynamics with the HRM
configuration.

These overall Taylor statistics indicate that the RRM sim-
ulation with the HR parameters captures the HRM climato-
logical statistics reasonably well, which provide the basis for
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potential applications of the RRM to effectively test physical
parameterizations and simulate regional climate at high res-
olutions. In the following sections, we will further evaluate
the similarity between the RRM and the HR EAMv1 simula-
tions. We will examine some variables that are closely related
to the atmospheric hydrologic cycle with a primary focus on
detailed aspects of precipitation, which remains a significant
challenge in current climate models and is a major focus ap-
plication for E3SM.
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(SWCF).

3.2 Regional geographic patterns

In this section we study whether RRMs can reproduce the re-
gional geographic patterns of hydrologic variables simulated
by HRM.

3.2.1 Precipitation

Figure 4 shows the geographic pattern of mean total (large-
scale + convective) precipitation differences between LRM
and GPCPIDD observations and the differences among
model configurations over the CONUS domain in JJA.
The differences between the LRM and evaluation data

Geosci. Model Dev., 12, 2679-2706, 2019

(i.e., panel a) are computed on the evaluation data grid,
while those between models (i.e., panels b—d) are com-
puted on the HRM grid. Dotted regions mark where the
differences are statistically significant at a 95 % confidence
level with the two-tailed Student’s ¢ test assuming that each
year is an independent sample. EAMvl global precipita-
tion results are described by Xie et al. (2018). Compared
to GPCP1DD observations, the LRM mostly overestimates
(up to 3mmd~") western US precipitation and underesti-
mates (up to 4mmd~") eastern and central US precipita-
tion (Fig. 4a). As implied by the similar correlation coef-
ficients of precipitation in Fig. 3a, the mean precipitation
pattern exhibits rather uniform spatial changes (especially

www.geosci-model-dev.net/12/2679/2019/
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Figure 4. Mean differences of total precipitation (unit: mm d_l) in JJA for (a) LRM minus GPCP1DD data, (b) HRM minus LRM, (¢) RRM
minus LRM, (d) RRM minus HRM, and (e¢) GPCP1DD. The differences between the LRM and evaluation data (i.e., panel a) are computed on
the evaluation grid, while those between models (i.e., panels b—d) are computed on the HRM grid. Dotted areas denote where the differences
are statistically significant at the 95 % confidence level with the two-tailed Student’s 7 test.

over land) among different model configurations (Fig. 4b—d).
Over land, the HRM and RRM typically produce less precip-
itation than the LRM (partially due to the model tuning, not
shown) and the HRM rains the least. Differences between the
RRM and the HRM are largely insignificant. In regions that
pass the significance test, the differences are also relatively
small, for instance, < I mmd~! in the southern central US
and < 2mmd~! in the eastern US.

Figure 5 shows the differences in precipitation climatology
patterns for DJF. An obvious change from the JJA results in
Fig. 4 is the topographic signatures in differences between
HRM and LRM (Fig. 5b) and RRM and LRM (Fig. 5c) over
mountain regions in the western US, which are associated
with better-resolved topography in the RRM and HRM sim-
ulations. In addition, the signs of model differences (Fig. Sb—
d) are less uniform in DJF than in JJA. Nevertheless, mean
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precipitation differences between the RRM and the HRM
are also small (within £2mmd~") and not statistically sig-
nificant over most grid cells. Overall, the RRM and HRM
EAMVv1 produce very similar mean precipitation geographic
patterns in both seasons.

Following the COSP evaluation method described by
Zhang et al. (2019), cloud fields (not shown here) from the
LRM, HRM, and RRM are compared with the observations
from ISCCP, MODIS, and CALIPSO. In JJA, all model con-
figurations generally underestimate total cloud amount rela-
tive to CALIPSO observations over the CONUS. High thick
(optical depth > 9.4) clouds lessen with enhanced horizontal
resolution over the western central US, matching the precip-
itation change pattern over the same region in Fig. 4a. Low
clouds along the western coast over the ocean increase no-
ticeably in the RRM and HRM compared to the LRM. In

Geosci. Model Dev., 12, 2679-2706, 2019
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Figure 5. Same as Fig. 4, but for DJF.

DIJF, a greater reduction of cloud amount occurs at all levels
at the western central US than in JJA with increased reso-
lution. In both seasons, similar to precipitation, the RRM—
HRM cloud differences are generally smaller than those for
HRM-LRM.

3.2.2 Precipitable water

Figures 6 and 7 show the seasonal mean TMQ in JJA and
DIJF compared with the ERAI reanalysis data. The LRM un-
derestimates the JJA TMQ over most places (see Fig. 6a) ex-
cept the northwest US and smaller areas of the eastern US
and Mexico, where we observe significantly overestimated
precipitation in Fig. 4a. As suggested by the improvement of
precipitation with increasing resolution in Fig. 2, the LRM
underestimation is generally improved in the HRM (Fig. 6b)
and the RRM (Fig. 6¢). The mean RRM-HRM differences
(Fig. 6d) are mostly positive (< 4kgm™2). This is due to
reduction in precipitation in RRM than in HRM outside of
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CONUS, where the RRM resolution is coarser than that of
the HRM.

In DJF, the LRM TMQ (Fig. 7a) resembles the patterns
(overestimation over the western US and underestimation
over the eastern US) of precipitation (Fig. 5a) against evalua-
tion data. Such similarity implies that the precipitation biases
in winter are directly related to flaws in precipitable water.
The RRM and the HRM differ less (mostly statistically in-
significant, see Fig. 7d) than their differences with the LRM
(Fig. 7b, c).

3.2.3 Low-level circulation

The low-level jet (LLJ) over the Great Plains of the US has a
significant impact on precipitation primarily in summer (Hig-
gins et al., 1997; Pu and Dickinson, 2014). It is responsible
for transporting about one-third of the moisture from the Gulf
of Mexico to the central US (Helfand and Schubert, 1995).
Based on reanalysis data, Higgins et al. (1997) reported con-
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Figure 6. Same as Fig. 4, but for total precipitable water (TMQ, unit:

nections between the Great Plains LLJ events and regional
precipitation anomalies in summer, such as greater precipita-
tion over the north central US and Great Plains and declining
precipitation along the Gulf coast and east coast. Here, we
examine the 850 hPa horizontal wind speed (Figs 8 and 9;
the difference vectors are shown by colors (magnitudes) and
magenta streamlines (directions)) as an example of the low-
level circulation.

In summer, the LRM simulates stronger wind than the
ERAI reanalysis over a large portion of CONUS but a weaker
southerly LLJ in the central US (see Fig. 8a), which con-
tributes to the low precipitation bias in the Great Plains and
along the Gulf coast in Fig. 4a. Enhancing resolution signifi-
cantly strengthens the LLJ (Fig. 8b, c), consistent with results
presented by Berg et al. (2015) for reanalyses with a range
of resolutions, and reduces the differences compared to the
ERALI reanalysis, since simulations at finer horizontal reso-
lution can resolve the LLJ-related temperature and pressure
gradients better than ones at coarser resolution. By contrast,
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the overestimation of zonal wind strength over the northeast-
ern US becomes slightly worse with finer resolution. The
RRM-HRM (Fig. 8d) difference (mostly within 0.8 m s
is generally smaller than that in other panels, especially for
the LLJ region over the south central US.

In winter, we find about twice greater wind differences
than in summer (note the different color scales in Figs. 8
and 9). However, the main features remain unchanged; for
instance, the LRM also simulates zonal winds that were too
strong (mostly > 1.0ms~!) (Fig. 9a), and the RRM—HRM
difference is relatively small (within £2.0ms~!) and mostly
insignificant (Fig. 9d). These results suggest that the RRM
mimics the low-level circulation of the HRM, including the
summertime LLJ. Together with the precipitable water re-
sults in the previous section, they imply similar water va-
por transport patterns in the RRM and HRM. Therefore, the
RRM is a useful tool to study the HR water transport over
CONUS.

Geosci. Model Dev., 12, 2679-2706, 2019
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3.2.4 Surface air temperature

Warm and dry model biases over the summertime central US
have been studied for more than a decade (Klein et al., 2006)
and are still deficient in the current generation of regional
and global climate models (Cheruy et al., 2014; Mueller and
Seneviratne, 2014; Lin et al., 2017; Ma et al., 2018; Mor-
crette et al., 2018). Land (soil moisture)—atmosphere cou-
pling plays a key role in causing warm and dry biases (Mo
and Juang, 2003; Klein et al., 2006; Lin et al., 2017; Ma et
al., 2018; Van Weverberg et al., 2018) and the related precip-
itation biases.

Figure 10 shows the mean JJA patterns of differences in
T>m between the LRM and ERAI data and between three
EAMv1 model pairs over CONUS. Over the central US,
the LRM simulation exhibits statistically significant posi-
tive temperature (up to 3 K) biases throughout the area (see
Fig. 10a), corresponding to precipitation low bias (Fig. 4a) in
this region. As implied by the Taylor diagram (Fig. 2), perfor-
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mance degrades further (by up to about 4 K) with enhanced
resolution. This warm bias can be roughly attributed to two
separate sources (Ma et al., 2018): the evaporative fraction
(EF) contribution and the radiation contribution which is pri-
marily caused by excessive absorbed solar radiation at the
surface. EF is defined as the fraction of the combined la-
tent and sensible heat fluxes that are in latent form. Mod-
els with too low an EF tend to use the radiative input to
heat the surface instead of evaporating water. The larger bias
in the HRM is because the EF contribution is a few times
larger with enhanced resolution, while the radiation contri-
bution remains almost unchanged. The noisy and large dif-
ferences in Fig. 10b, c over western and central mountain
regions are likely associated with topographic differences at
different resolutions. Figure 10d shows that the RRM-HRM
differences are small (< 2 K) and statistically not significant
but robustly positive over the west coast and negative else-
where.
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Figure 8. Same as Fig. 4, but for 850 hPa wind speed (unit: ms~!) in JJA. The vectors are shown by colors (magnitudes) and magenta
streamlines (directions). Grid boxes where surface pressure is less than 850 hPa are shaded in gray in the difference plots.

Figure 11 shows the 7>, results in DJF. The LRM
(Fig. 11a) still suffers from warm bias over the central
US, but it is less severe and much less widespread than in
JJA. Over almost the entire eastern US, the LRM underesti-
mates (by up to 4K) T>,. The HRM (Fig. 11b) and RRM
(Fig. 11c) simulations appear better than the LRM over the
Great Plains, the north central US, and the southeastern US.
The RRM-HRM differences in Fig. 11d are again the small-
est among all panels and statistically insignificant except for
the southwestern US.

So far, we have demonstrated that the RRM capability re-
produces the characteristics of hydrologic fields simulated in
HRM. This proves that the RRM is a reliable test bed which
can be used to effectively study and understand these model
biases. Next, we will present further analysis of precipitation
with RRM and compare it with HRM. Note that the hydro-
logical cycle is a major focus of E3SM of which precipitation
is the most important atmospheric variable.

www.geosci-model-dev.net/12/2679/2019/

3.3 Precipitation characteristics

3.3.1 Partitioning between large-scale vs. convective
precipitation

Precipitation in climate models (e.g., EAMvl) consists of
large-scale and convective components. Large-scale precip-
itation results from condensation due to resolved processes
at the model grid resolution and is simulated by the micro-
physics scheme, while the convective precipitation results
from unresolved sub-grid-scale processes that are approxi-
mated by the deep convection parameterization. Poor parti-
tioning between these two components manifests itself as er-
rors in the vertical structure of latent heating which corrupts
the dynamical response of the environment to convection.
Accurately capturing the partitioning is challenging for cli-
mate models, which often overestimate the convective com-
ponent (Lin et al., 2013; Yang et al., 2013). Thus, the par-
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Figure 9. Same as Fig. 8, but for DJF. Note that the color scale is different from that in Fig. 8.

titioning between the large-scale and convective precipita-
tion is an important evaluation metric for climate models. Al-
though they can be clearly defined in the model, the two pre-
cipitation components are difficult to separate observation-
ally in a manner comparable to the model. Thus, we only
plot the model results for the ratio.

Figures 12 and 13 display the mean ratio of large-scale
to total precipitation from EAMv1 models in JJA and DJF,
respectively. As expected, convection is a more important
source of precipitation in summer and at lower latitudes. The
ratio of the large-scale precipitation increases with resolution
in Figs. 12 and 13 because more precipitation can be resolved
with finer-resolution grids and thus classified as large-scale
precipitation. Similar convective precipitation changes with
resolution are reported by Bacmeister et al. (2014) for CAM4
and CAMS. Consequently, compared to the LRM, large-scale
precipitation in the HRM and RRM is more prevalent (espe-
cially in the north) during the summer months (see Fig. 12b,
¢) and is even more dominant during the winter months (see

Geosci. Model Dev., 12, 2679-2706, 2019

Fig. 13b, c¢). In both seasons, the RRM matches the HRM
overall distributions of the precipitation partitioning includ-
ing some regional details, for example, the contour lines
along the Sierra Nevada in California in DJF.

3.3.2 Precipitation intensity distribution

Besides the mean precipitation pattern and partitioning into
its large-scale and convective components, it is crucial to
accurately represent the precipitation intensity distribution
in a changing climate because evidence suggests that ex-
treme events, such as severe storms and flooding, will in-
tensify due to the direct impact of global warming on pre-
cipitation (Trenberth, 2011; Seeley and Romps, 2014; Walsh
et al., 2014). Like many other global climate models (e.g.,
Dai, 2006; Stephens et al., 2010; Pendergrass and Hartmann,
2014), Terai et al. (2017) showed that EAMVO suffers from
deficiencies in precipitation intensity over the globe, overes-
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timating the frequency of light to moderate rain compared to
the GPCP1DD data.

Figure 14 shows EAMv1 vs. GPCP1DD intensity func-
tions over CONUS in JJA and DIJF. Before aggregating
the distribution, modeled precipitation rates are interpolated
with the ESMF conservative regridding method to the same
1° x 1° grids as GPCP1DD data. All datasets are averaged
over daily intervals. The frequency is then counted in log
bins of precipitation rates on each grid. In this way, the
frequency functions from datasets at different spatial and
temporal resolutions become comparable. It is evident in
Fig. 14 that EAMvI still simulates excessive light precipita-
tion (< 10mmd—!) with all three configurations in both JJA
and DJF. As implied by the mean behaviors in Figs. 12 and
13, convective precipitation accounts for a larger fraction of
the total in JJA than in DJF across the whole spectrum (not
shown in Fig. 14). Total precipitation from the RRM (blue
dots) is closer to the HRM (red dots) than to the LRM (green
dots) in most bins. These results suggest that we can use the
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RRM as a test bed to address issues of intensity statistics over
CONUS in the HR configurations of future EAM versions.

3.3.3 Diurnal cycle of summertime precipitation

Representing the correct timing and location of these con-
vection episodes is of critical importance for precipitation
prediction and hydrologic research (IPCC, 2012). Doing so
requires the ability to capture many different meteorologi-
cal phenomena. For example, summertime mesoscale con-
vective complexes (MCCs) or systems (MCSs) contribute
a significant amount of the total precipitation and play an
important role in extreme precipitation events over the cen-
tral US (Maddox, 1980; Carbone et al., 2002; Ashley et al.,
2003; Tuttle and Davis, 2006), while disorganized convec-
tion strongly influences precipitation over the southeastern
US (Dai et al., 1999; Bacmeister et al., 2014; Rickenbach et
al., 2015). The diurnal cycle of precipitation is one important
measure of a model’s ability to reproduce these phenomena.

Geosci. Model Dev., 12, 2679-2706, 2019
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Figure 13. Same as Fig. 12, but for DJF.
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For example, Bacmeister et al. (2014) used the diurnal cy-
cle of precipitation to diagnose deficiencies in capturing the
observed phase of MCSs over the central US in CAMS with
both LR and HR configurations.

Figure 15 illustrates the mean diurnal phase and magnitude
patterns of maximum precipitation in JJA from the NEXRAD
data and the EAMv1 simulations. The mean diurnal maxi-
mum is determined from the first harmonic of the Fourier
series constructed from the hourly precipitation time series
in each grid box. The phase (local time) of the maximum
is indicated by colors, while the magnitude the saturation of
the color. The NEXRAD data (Fig. 15a) show the distinct
nocturnal (19:00—04:00LT, UTC—6h) peak over the cen-
tral US. This nocturnal peak has been attributed to the east-
ward propagation of MCSs originating at the front range of
Rocky Mountains in the afternoon (Riley et al., 1987; Dai et
al., 1999; Carbone et al., 2002; Jiang et al., 2006; Dirmeyer
et al., 2012). Unfortunately, no model configuration is suc-
cessful at capturing this nighttime maximum. The RRM and
HRM diurnal phases are similar and show modest improve-
ment over the LRM in the sense that they have weaker am-
plitudes (lighter colors in panels ¢ and d than in panel b) of
incorrect diurnal cycles. The similarity between RRM and
HRM indicates that RRM simulations will be valuable for
understanding and addressing this important model bias.

To evaluate the known eastward propagation feature of
the convection in this area, we average the JJA precipita-
tion over four subregions: mountains, high plains, middle
plains, and low plains, outlined by solid square boxes on
Fig. 15a. Figure 16 shows the mean composite diurnal cy-
cle in these subregions. We first calculate the simple mean
diurnal cycle from the hourly time series for each grid box.
The first and second diurnal harmonics of the mean diurnal
cycle — obtained using fast Fourier transform — are retained
and adjusted to local time to generate the composite diurnal
cycle. The composite lines plotted in Fig. 16 are averages

www.geosci-model-dev.net/12/2679/2019/

of the composite diurnal cycle in each grid box within the
subregions. In the NEXRAD measurements (Fig. 16a), there
is a clear propagating pattern: the maximum emerges over
the mountains (black) in the afternoon at 15:00 LT, moves
eastward and intensifies across the Great Plains, and reaches
the middle (blue) and the low (green) plains in the night at
20:00 and 00:00 LT, respectively. The three EAMv1 simula-
tions (Fig. 16b—d) do not reproduce the convection propa-
gation and miss the nocturnal precipitation peak. Although
the HRM and the RRM show better skill than the LRM from
the mountains to the high plains, these convective events are
not strong enough (smaller magnitudes compared to obser-
vations) to sustain propagation further east.

The late afternoon rainfall peak over the southeast US is
associated with disorganized convection (Bacmeister et al.,
2014), a different mechanism than that over the central US.
The red dashed lines in Fig. 16 denote the results for the
southeast US. The diurnal cycle over the southeast US is gen-
erally well-simulated by the LRM, HRM, and RRM (pan-
els b—d), but the time of peak precipitation is a few hours
early, consistent with the experience of other models (Dai et
al., 1999; Stratton and Stirling, 2012; Bechtold et al., 2014).
More physically based improvements are needed to find a
solution to the summertime diurnal cycle issue for precipi-
tation over the CONUS, and the RRM provides an efficient
test bed for parameterization testing. Previous studies (e.g.,
Bechtold et al., 2004, 2014; Stratton and Stirling, 2012) pro-
vide possible solutions for this issue of simulating the diurnal
cycle of convective precipitation over land by modifying con-
vective trigger procedures, entrainment, and convective clo-
sures. Our recent study (Xie et al., 2019) shows substantial
improvement in the precipitation diurnal cycle in the LRM
by employing a new convective trigger with a dynamic con-
straint on the convection onset and with the capability of de-
tecting moist instability above the boundary layer. We will
apply the RRM test bed to extend the new convective trigger

Geosci. Model Dev., 12, 2679-2706, 2019
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Figure 15. Mean diurnal phase (local time; unit: hours) and magnitude (unit: mm d—1) of the maximum precipitation in JJA calculated from
the first harmonic for (a) NEXRAD observations, (b) LRM, (¢) HRM, and (d) RRM. The phase is indicated by colors, while the magnitude is
indicated by the saturation of the color. In panel (a), the solid boxes denote four central US regions from west to east: mountains (37-40°N,
105-108°W), high plains (37-40°N, 101-104°W), middle plains (37-40°N, 97-100°W), and low plains (37-40°N, 93-96°W). The dashed
box marks the southeast (31-34°N, 82-90°W) regions.
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Figure 16. Mean JJA composite precipitation diurnal cycle from the NEXRAD and model simulations for the subregions (denoted in Fig. 15):
mountains (black lines), high plains (purple lines), middle plains (blue lines), low plains (green lines), and southeast (red dashed lines). Panels
represent (a) NEXRAD, (b) LRM, (c¢) HRM, and (d) RRM. We first calculate the simple mean diurnal cycle from the hourly time series for
each grid box. The first and second diurnal harmonics of the mean diurnal cycle — obtained using fast Fourier transform — are retained and
adjusted to local time to generate the composite diurnal cycle. The composite lines plotted here are averages of the composite diurnal cycle
in each grid box within the subregions.
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to the HRM and report the results in a future paper. This bias
in the diurnal cycle of convection is significantly improved
in convection-permitting (horizontal grid spacing < 2—4 km)
simulations (Prein et al., 2015). The E3SM project is mak-
ing progress in developing its convection-permitting version
(E3SMv4), for which the RRM test bed will be heavily relied
on.

4 Nudging capability for RRM

Nudging is an effective technique to create quasi-
deterministic model realizations of observations for a spe-
cific time period. There is increasing use of nudging in cli-
mate model development and evaluation of physical parame-
terizations (e.g., Jeuken et al., 1996; Ghan et al., 2001; Koop-
erman et al., 2012; Zhang et al., 2014). Since nudging simu-
lations constrain the model states closer to observed meteoro-
logical conditions, they facilitate the evaluation of modeled
physics during specific meteorological episodes. Therefore,
nudging can help advance process-level understanding of
physical phenomena and ultimately improve physical param-
eterizations. This is similar to the hindcast approach (Phillips
etal., 2004; Ma et al., 2015) that has been widely used for cli-
mate model evaluation. EAMv1 has a built-in nudging capa-
bility as part of its physics module. When running the nudged
RRM, one has various choices available such as nudging
variables, locations, and timescales. In this section, we will
provide an example of the value of EAMvl RRM nudging
simulations.

The EAMv1 nudging capability in the physics module al-
lows the relaxation of model state variables (U, V, T, and
specific humidity, or a subset thereof) towards analysis or re-
analysis data. The nudging strength is determined by a frac-
tional nudging coefficient between 0 and 1, which can be a
spatial constant or a spatial variable specified by a Heaviside
window function. Following previous findings by Zhang et
al. (2014) and Ma et al. (2015), we opt to only nudge hori-
zontal velocities for better cloud and aerosol properties with
a 6 h relaxation timescale (see Eq. 1 of Zhang et al., 2014).
The nudging coefficient map is shown in Fig. 17. The corre-
sponding nudging parameter settings are documented in Ta-
ble 3. This non-US nudging setting creates a smooth transi-
tion from the strongest nudging (red) over coarser grid points
to the weakest nudging (blue) over finer grid points. Running
in this mode builds a pseudo-regional model framework in
a global model. It gives the simulation more freedom over
part of the HR region and reduces the nudging noise due to
inconsistency between the model and analysis data over the
free-running region for better evaluation of physics over this
region.

As an example of the nudging results, we create the Hov-
moller diagrams (Fig. 18) of hourly mean total precipita-
tion, meridionally averaged over 35-45°N, 93-115°W (the
magenta box in Fig. 17) during the period of the DOE At-
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Figure 17. Nudging coefficient map zoom-in over North America.
A coefficient of 0 indicates that no nudging is applied. The magenta
box marks the area of the Hovmoller plots in Fig. 18.

Table 3. Nudging parameter settings for the non-US nudging simu-
lation.

Nudging parameter Value

Nudge_Model .true.

Nudge_Path Path to analysis or reanalysis data

Nudge_File_Template ‘interim_se_%y%m%d00_%y%m
%d18_TQUV-%s.nc’

Nudge_Times_Per_Day 4

Model_Times_Per_Day 96

Nudge_Uprof 2
Nudge_Ucoef 1.00
Nudge_Vprof 2
Nudge_Vcoef 1.00
Nudge_Tprof 0
Nudge_Tcoef 0.00
Nudge_Qprof 0
Nudge_Qcoef 0.00
Nudge_PSprof 0
Nudge_PScoef 0.00
Nudge_Beg_Year 2011
Nudge_Beg_Month 1
Nudge_Beg_Day 1
Nudge_End_Year 2011
Nudge_End_Month 12
Nudge_End_Day 31
Nudge_Hwin_lo 1.0
Nudge_Hwin_hi 0.0
Nudge_Hwin_lat0O 38.0

Nudge_Hwin_latWidth ~ 34.0
Nudge_Hwin_latDelta 3.8
Nudge_Hwin_lon0 254.0
Nudge_Hwin_lonWidth  44.0
Nudge_Hwin_lonDelta 3.8
Nudge_Vwin_lo 0.0
Nudge_Vwin_hi 1.0
Nudge_Vwin_Hindex 73.0
Nudge_Vwin_Hdelta 0.1
Nudge_Vwin_Lindex 0.0
Nudge_Vwin_Ldelta 0.1
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Figure 18. Hovmoller plots of hourly mean total precipitation (unit: mm d—1) over 35-45°N, 93-115°W during 22 April-6 June 2011 for

(a) NEXRAD observations, (b) AMIP LRM, and (c¢) nudging RRM.

mospheric Radiation Measurement (ARM) Facility’s Mid-
latitude Continental Convective Clouds Experiment (MC3E,
22 April-6 June 2011) (Jensen et al., 2016). The main sci-
ence goal of the MC3E campaign is to improve the under-
standing of midlatitude continental convective cloud systems
and their interactions with the environment (Xie et al., 2014).
Many cloud and precipitation events are observed and clearly
shown in the NEXRAD panel (Fig. 18a), such as convective
events on 25 April and around 23 May and widespread strat-
iform rain on 10 May. As expected, the AMIP simulation
(Fig. 18b) struggles to capture the statistics of these high-
frequency weather systems. The RRM nudging simulation
(Fig. 18c) reproduces the timing and location of most events
because nudging the horizontal velocities outside of the ana-
lyzed area provides more realistic boundary conditions of the
large-scale circulation in the free-running domain. There are
still some deficiencies in the nudged simulation, for exam-
ple the incorrect number and propagating speed of convec-
tive events, particularly after 15 May. The nudged RRM has
cleanly separated these remaining (model-deficiency-based)
problems from issues related to the large-scale circulation.
This demonstrates that the nudged RRM is an effective test
bed for isolating and fixing parameterization problems at res-
olutions we cannot afford to run globally.

5 Summary and discussion

We have presented an overview of the climatological results
comparing initial atmosphere-only simulations from globally
uniform low resolution (LR, 1°), high resolution (HR, 0.25°),
and the regionally refined model (RRM, 1 to 0.25°) over
the contiguous US (CONUS) with the atmosphere model
version 1 (EAMv1) using the Energy Exascale Earth Sys-
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tem Model (E3SM). Our analysis has established that the
RRM can generally mimic HR model (HRM) climate be-
havior over the finely resolved portion (CONUS) for both
well-simulated larger-scale thermodynamics fields and less
satisfactory smaller-scale physical variables.

Similar to other models (Dai, 2006; Bacmeister et al.,
2014), the EAMv1 HRM suffers from deficiencies in con-
vection, clouds, and moist physics (Xie et al., 2018). To ver-
ify that the RRM is a suitable alternative framework to the
HRM to address these deficiencies, we examine the seasonal
mean geographic patterns of precipitation, vertically inte-
grated precipitable water, low-level circulation, and surface
temperature for JJA and DJF. Given its key importance in
the atmospheric hydrologic cycle, we conduct in-depth anal-
ysis on precipitation, including fractions of the large-scale
precipitation and daily intensity functions, and the JJA diur-
nal cycle. Overall, the RRM is similar to the HRM for many
finer-scale features, including reproducing long-standing cli-
mate model biases, such as a lack of summertime nocturnal
precipitation peaks and the warm bias in surface air temper-
ature.

Poor scale awareness of EAMv1 physical parameteriza-
tions necessitates retuning the model when increasing resolu-
tion. Different from previous RRM work using primarily the
LR model (LRM) parameters, we make use of both LRM and
HRM parameters and illustrate the significant impact of HR
vs. LR parameters on RRM performance due to poor scale
awareness, particularly for variables that are closely related
to sub-grid-scale physical processes. The high sensitivity of
EAMv1 to model resolution suggests the need to develop
better scale-aware physical parameterizations or convection-
permitting simulations in the future. This study demonstrates
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how RRMs can be used as a useful test bed to evaluate po-
tentially improved schemes across different spatial scales.

To help users better utilize the E3SM RRM capability, we
provide detailed guidance on running the RRM in the nudg-
ing mode so that deficiencies in model physical parameter-
izations can be better isolated. By relaxing the horizontal
velocities over coarser-resolution grids to analysis data, we
create more realistic boundary conditions to the free-running
higher-resolution area. Such a pseudo-regional model frame-
work within a global model displays great advantages in cap-
turing observed convective episodes over the AMIP config-
uration and hence allows us to calibrate simulated physical
processes against observations under different meteorolog-
ical conditions. With more realistic large-scale circulation
conditions, the nudged RRM can be used as a physics test
bed for regional process-level studies and aid in the develop-
ment of future HR EAM versions.

Code availability. The E3SM source code is available on GitHub:
https://github.com/E3SM-Project/E3SM (last access: 2 July 2019;
E3SM Project, DOE, 2018).

www.geosci-model-dev.net/12/2679/2019/

Data availability. The E3SM simulation data used in this study
can be downloaded at http://portal.nersc.gov/project/acme/tang30/
E3SMv1_RRM_CONUS/. The ERA-Interim reanalysis data can
be obtained from http://apps.ecmwf.int/. ISCCP cloud amount data
are available from https://isccp.giss.nasa.gov/products/browsed2.
html. GPCP and GPCP1DD precipitation datasets can be ob-
tained from https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.
html and ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2/. NEXRAD data
are available from https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.
noaa.ncdc:C00345. CERES-EBAF top-of-atmosphere cloud radia-
tive effects data can be downloaded at https://ceres.larc.nasa.gov/
products.php?product=EBAF-TOA. The satellite data for COSP are
archived at http://climserv.ipsl.polytechnique.fr/cfmip-obs/.
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Appendix A

Table A1l. EAMv1 simulation setup details.

Simulation Code hash  Grid Compset
Low-resolution model (LRM) Tal7edbe5 ne30_ne30 FC5AV1C-04P2
High-resolution model (HRM) 66793ald3  nel20_nel20 FC5AV1C-HO1A
Regionally refined model (RRM)  7al7edbe5  conusx4vl_conusx4vl  FC5AV1C-04P2*
RRM_LR T7al7edbe5  conusx4vl_conusx4vl FC5AV1C-04P2
LRM AMIP dd18fc56e  ne30_oECv3 F20TRC5-CMIP6
RRM non-US nudging 7al7edbe5  conusx4vl_conusx4vl  FC5AVI1C-04P2*

* Used non-default parameter values in Table A2.

Table A2. Non-default parameter values.

Parameter Value
cldfrc_dpl 0.03
clubb_cl14 1.75
clubb_c8 4.73
rsplit 2
se_nsplit 6
cld_macmic_num_steps 3
zmconv_alfa 0.2
zmconv_c0_Ind 0.0035
zmconv_c(0_ocn 0.0043
zmconv_dmpdz —02x1073
zmconv_ke 5.0x 1076
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Appendix B: Abbreviations list

ACME
AMIP
ARM
CALIPSO
CAM
CERES-EBAF
CESM
CLUBB
CONUS
COSP
CSSEF
DIJF

DOE
E3SM
EAM

EF

ENA
ERAI
ESMF
GPCP
GPCP1DD
HR

HRM
ISCCP
JJA

KNL
Linoz
LLJ

LR

LRM
MAM
MCC
MC3E
MCS
MODIS
NERSC
NEXRAD
OMEGAS500
PRECT
rms

RRM

SD

SST

T™MQ
TREFHT
TWP
U200

UsS

VR

Accelerated Climate Modeling for Energy

Atmospheric Model Intercomparison Project
Atmospheric Radiation Measurement

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
Community Atmosphere Model

Clouds and the Earth’s Radiant Energy System—Energy Balanced and Filled
Community Earth System Model

Cloud Layers Unified By Binormals

Contiguous United States

Cloud Feedback Model Intercomparison Project Observation Simulator Package
Climate Science for a Sustainable Energy Future
December—January—February

Department of Energy

Energy Exascale Earth System Model

E3SM atmosphere model

Evaporative fraction

Eastern North Atlantic

European Centre for Medium-range Weather Forecasting Interim
Earth System Modeling Framework

Global Precipitation Climatology Project

GPCP 1° daily

High-resolution

High-resolution model

International Satellite Cloud Climatology Project
June—July—August

Knights Landing

Linearized ozone chemistry

Low-level jet

Low-resolution

Low-resolution model

Modal Aerosol Module

Mesoscale Convective Complex

Midlatitude Continental Convective Clouds Experiment
Mesoscale convective system

Moderate Resolution Imaging Spectroradiometer
National Energy Research Scientific Computing Center
Next-Generation Radar

500 hPa vertical velocity

Total precipitation

Root-mean-square

Regionally refined model

Standard deviation

Sea surface temperature

Total precipitable water

Reference height temperature

Tropical western Pacific

200 hPa zonal wind

United States

Variable resolution
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