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Abstract. This study describes the numerical implementa-
tion, verification and validation of an immersed boundary
method (IBM) in the atmospheric solver Meso-NH for ap-
plications to urban flow modeling. The IBM represents the
fluid—solid interface by means of a level-set function and
models the obstacles as part of the resolved scales.

The IBM is implemented by means of a three-step proce-
dure: first, an explicit-in-time forcing is developed based on
a novel ghost-cell technique that uses multiple image points
instead of the classical single mirror point. The second step
consists of an implicit step projection whereby the right-hand
side of the Poisson equation is modified by means of a cut-
cell technique to satisfy the incompressibility constraint. The
condition of non-permeability is achieved at the embedded
fluid—solid interface by an iterative procedure applied on the
modified Poisson equation. In the final step, the turbulent
fluxes and the wall model used for large-eddy simulations
(LESs) are corrected, and a wall model is proposed to ensure
consistency of the subgrid scales with the IBM treatment.

In the second of part of the paper, the IBM is verified and
validated for several analytical and benchmark test cases of
flows around single bluff bodies with an increasing level of
complexity. The analysis showed that the Meso-NH model
(MNH) with IBM reproduces the expected physical features
of the flow, which are also found in the atmosphere at much
larger scales. Finally, the IBM is validated in the LES mode
against the Mock Urban Setting Test (MUST) field exper-
iment, which is characterized by strong roughness caused
by the presence of a set of obstacles placed in the atmo-

spheric boundary layer in nearly neutral stability conditions.
The Meso-NH IBM-LES reproduces with reasonable accu-
racy both the mean flow and turbulent fluctuations observed
in this idealized urban environment.

1 Introduction

Urbanization impacts the physical and dynamical structure
of the atmospheric boundary layer, influencing both the lo-
cal weather and the concentration and residence time of pol-
lutants in the atmosphere, which in turn impact air quality.
While the physical mechanisms driving these interactions
and their connections to climate change are well understood
(the urban heat island effect, anthropological effects), their
precise quantification remains a major modeling challenge.
Accurate predictions of these interactions require modeling
and simulating the underlying fluid mechanics processes to
resolve the complex terrain featured in large urban areas, in-
cluding buildings of different sizes, street canyons and parks.
For example, it is well known that pollution originates from
traffic and industry in and around cities, but the actual dis-
persion mechanisms are driven by the local weather. Further-
more, fine-scale flow fluctuations influence nonlinear physic-
ochemical processes. The present study addresses these is-
sues by focusing on the numerical aspects of the problem.
With the progress in metrology, it is now possible to ob-
tain reliable measurements of the atmospheric conditions
over a city. For example, during the Joint Urban experi-
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ment (JU2003), scalar dispersion was measured experimen-
tally over the streets of Oklahoma City (Clawson et al., 2005;
Liu et al., 2006). Similarly, the CAPITOUL experiment
(2004-2005), conducted in Toulouse, analyzed the turbu-
lent boundary layer developed over the urban topography
and evaluated the energy exchanges between the surface
and atmosphere (Masson et al., 2008; Hidalgo et al., 2008).
More recently, the multiscale field study by Allwine et al.
(2012) provided meteorological observations and tracer con-
centration data in Salt Lake City. Other studies analyzed
reduced-scale and/or idealized models to understand urban
climate features as in the COSMO (Comprehensive Outdoor
Scale Model Experiment for Urban Climate) and Kugahara
projects (Moriwaki and Kanda, 2004). For example, Kanda
et al. (2007) and Wang et al. (2015) respectively used an ar-
ray of cubic bodies and stone fields as small-scale models.

In order to use these experimental data in the future for
model validation, the numerical models need to first be ver-
ified for academic test cases and simplified scenarios repre-
sentative of atmospheric turbulent boundary layer flows. In
particular, flow interaction with buildings or any generic ob-
stacles plays a crucial role in urban flow modeling. The range
of scales of objects acting as obstacles is huge in an urban
setting, encompassing large buildings and small vegetation
scales, and so is the range of the corresponding flow—obstacle
interactions. Covering all possible cases is obviously impos-
sible but we can rely on the invariance of certain flow char-
acteristics at different scales. For example, the von Kdrman
streets are observed in the wake of a centimeter-scale cylin-
der as well as in the cloud layout behind an island. Following
this, a wide selection of benchmark flows can be analyzed to
verify and validate the numerical treatment of fluid—obstacle
interaction with a view to atmospheric applications.

The physical application considered in this work is the at-
mospheric mesoscale reaction to perturbations induced by
urban areas; the more the obstacles are considered part of
the scales numerically resolved, the higher the accuracy of
the results. To access this resolution, this study presents the
development, implementation, verification and validation of
an immersed boundary method (IBM) (Mittal and Iaccarino,
2005) in the Meso-NH model (MNH) (Lafore et al., 1998;
Lac et al., 2018) for applications to urban flow modeling'.
This choice was dictated by the fact that numerical solvers
in MNH enforce conservation on structured grids and hence
cannot handle body-fitted grids with steep topological gradi-
ents. The main idea behind IBM is the detection of an inter-
face separating a fluid region (where conservation laws hold)
from a solid region (corresponding to the obstacle volume)
using different techniques (e.g., markers, level-set functions,
local volume fraction, etc). Two main classes of IBM exist
based on the continuous and discrete forcing approaches, re-

'Meso-NH  scientific documentation: http://mesonh.aero.
obs-mip.fr/mesonh52/BooksAndGuides (last access: 13 May
2019).
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spectively. The continuous forcing approach was developed
by Peskin (1972) for biomechanics applications and consists
of the addition of a continuous artificial force (acceleration
indeed) in the momentum conservation equation that mim-
ics the effect of the obstacles (heart linings) and drives the
flow to relax to no-slip conditions at the wall of the obsta-
cles. This approach and its variant developed by Goldstein
et al. (1993) for a rigid interface can suffer from the lack
of stiffness (fluid—solid interface is generally spread over
few cells) and the time step restriction (spring and damper
model with large natural frequency). Nevertheless, the con-
tinuous forcing approaches are very successful in many ap-
plications (penalization method as in Angot et al., 1999, fic-
titious domain method, etc). In the second IBM class, the
discrete approach, the boundary conditions are specified at
the immersed interface. To simulate flows around nonmov-
ing and rigid bodies, two subclasses of discrete approaches
can be defined as in Mittal and Iaccarino (2005): direct or
indirect approaches, depending on the forcing location (Pier-
son, 2015). Many types of discrete forcing exist, e.g., direct
forcing in the fluid region near the interface as in Mohd-
Yusof (1997), the immersed interface method (Leveque and
Li, 1994) and the Cartesian grid method (Clarke et al., 1986).
Depending on how to resolve the partial differential equa-
tions, Cartesian grid methods (Ye et al., 1999) are written
for finite-volume discretizations (cut-cell technique, CCT)
and for finite-difference discretizations (ghost-cell technique,
GCT) as in Tseng and Ferziger (2003). CCT reshapes the cell
cut by the interface to preserve mass, momentum and energy.
Using GCT, the local spatial reconstruction is done inside the
solid region. Note that the latter technique has been success-
fully implemented in the Weather Research and Forecasting
(WRF) model (Lundquist et al., 2010, 2012).

In this study, a discrete forcing approach is adopted
wherein the fluid—solid interface is modeled by means of a
level-set function (Sussman et al., 1994). The motivation be-
hind this choice is that we are primarily interested in model-
ing explicitly rigid and nonmoving bodies in a turbulent flow
and with sufficiently fine resolution to avoid the large dis-
sipation inherent in the presumed spread interface. The GCT
does not introduce source terms in the conservation equations
modeling the fluid region so that boundary conditions are im-
posed at the interface and/or in the solid region. The only
corrections to the physical model in the fluid region come
from subgrid turbulent parameterizations. The idea is that in
future mesoscale applications, IBM will be used to resolve
large obstacles (in the solid region), such as buildings, but
also mountains, whereas a subgrid drag model will be used
to handle unresolved obstacles such as vegetation (Aumond
et al., 2013).

The paper is organized as follows. Section 2 briefly de-
scribes the general features of MNH. Section 3 details the
numerical implementation of the IBM. Inspired by the works
of Bredberg (2000), Piomelli and Balaras (2002), and Craft et
al. (2002) and to close the turbulence problem, an immersed
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wall model is proposed in Sect. 3.3. Section 4.1 and 4.2 de-
scribe the validation of the method for academic flows, re-
spectively potential (Lamb, 1932; Batchelor, 2000) and vis-
cous flows. Finally, Section 5.1 and 5.2 discuss the results of
turbulent flow simulations and comparisons with data from
field experiments. Conclusions are drawn in Sect. 6. Addi-
tional tests and validations on potential and inviscid flows are
respectively documented in Appendix A and B. The study of
a viscous and thermodynamic case (Straka et al., 1993) is
given in the Supplement.

2 The Meso-NH code at a glance

MNH is an atmospheric non-hydrostatic research model. Its
spatiotemporal resolution ranges from the large meso-alpha
scale (hundred of kilometers and days) down to the micro-
scale (meters and seconds). It is massively parallel on the
nested and structured grids adapted on most international
hosting computer platforms. Several parameterizations are
available: radiation, turbulence, microphysics, moist convec-
tion with phase change, chemical reactions, electric scheme
and externalized surface scheme. In the present study, only
two subgrid parameterizations are approached: turbulence
and surface schemes.

2.1 The conservation laws

The spatial discretization X is based on terrain-following co-
ordinates (Gal-Chen and Somerville, 1975). The staggered
mesh is regular Ax = Ay = A in the horizontal directions
and a transformation of the vertical one is available in order
to fit a non-plane surface. The release of the vertical space
step is available wherein a fine resolution is unnecessary. In
the current study, only flat problems are considered with a
Az = A restriction for altitudes in the presence of immersed
obstacles.

The core of the MNH dynamic in its dry version is based
on the resolution of the Euler and thermodynamic equations
(energy preserving). The anelastic approximation (Lipps and
Hemler, 1982; Durran, 1989) is assumed; the reference state
is stratified, and the density deviation to the hydrostatic case
in the buoyancy term is considered. The system can be sim-
plified into the Boussinesq approximation when considering
a uniform reference state. The tendencies of each prognostic
variable ¥ satisfying the usual conservation laws in MNH are
expressed as % |Csl’ where the subscript csl is used to distin-
guish these tendencies from those arising from the applica-
tion of the IBM procedure (Sect. 3.1). The prognostic vari-
ables are the resolved momentum, the potential temperature
and if necessary an arbitrary passive scalar. The prognostic
variable is decomposed into a resolved component, ¥, and
an unresolved component, ¥’ (' =0 in a direct numerical
simulation, DNS). An additional prognostic equation on the
subgrid turbulent kinetic energy (STKE) is solved for a large-
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eddy simulation (LES; Sect. 2.3). The potential temperature
is defined through the Exner function IT and the absolute
temperature 7 = P/(p;Rq) = 0(P/Py)Ra/Cr = 0TI, where
pr 1s the density of the reference state, P is the local pressure,
Pyo the reference ground-level pressure, Rq the gas constant
and C,, the specific heat capacity at a constant pressure for
dry air. The thermodynamic equations and an additional pas-
sive scalar equation are

3 (et - poy =

Apd)| —V (obm) — V- (pre’u’) +peFy . M
ot csl

a ra —_
(PrS) —_V. (,Ors_u) —_Vv. (,OrS/ll/) , (2)
ot csl

where F"' corresponds to pressure effects. The transport of
each prognostic scalar in Egs. (1), (2) and (6) is made by
a piecewise parabolic method (PPM) with undershoot and
overshoot limitation (Colella and Woodward, 1984; Lin and
Rood, 1996). The temporal algorithm of the advection term
in these scalar transports is a forward-in-time scheme (noted
FT). The momentum equations are

a(ortt)
at

==V (pu@u)+ V- (uVu)

csl

7 6.

S— —n 0
-V (pru’ ® u’) +oF, + o8

)
T
where u is the resolved wind, g the acceleration due to the
gravity appearing in the buoyancy term, 6; is the poten-
tial temperature of the reference state, u¢ the dynamic vis-
cosity and V- (o' @ u’) the Reynolds stresses. The spa-
tial discretization of V - (o:# @ w) in Eq. (3) can be done by
second- or fourth-order centered schemes and third- or fifth-
order weighted essentially non-oscillatory schemes (Jiang
and Shu, 1996). The temporal evolution of the resolved wind
is achieved by a fourth-order explicit Runge—Kutta (ERK)
algorithm (Shu and Osher, 1989; Lunet et al., 2017). In the
ﬁ);gsent study At is fixed to respect the Courant number
% < 1 (n, the time step index) and no additional time
splitting is implied. The temporal viscous stability condition
O(vg/ A?) (vf the kinematic viscosity) imposes an additional
restriction when the viscous term is explicitly resolved in
time.

The bottom, lateral wall and top surfaces take a free-slip,
impermeable and adiabatic behavior without the call of an
externalized surface scheme. The open boundary condition is
a Sommerfeld equation defined as wave radiation (Carpenter,
1982) to enforce the large scales and allow for the reflection
wave damping.

2.2 The incompressibility condition

The wind of the resolved scales has to satisfy the continuity
equation V - (o) = 0. The method consists of the pro-

jection of the predicted velocity field #* (solution of Eq. 3
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without the pressure term) into the null divergence subspace.
This projection estimates the irrotational correction to apply
to u* through a potential scalar W*:
- _. At
atl =T — Vo, “
Pr

W* is obtained with the resolution of the pseudo-Poisson

equation written as

V. (pr—lw*) =AY T (5)

The horizontal part of the operator to invert in the ellip-
tic problem is treated in the Fourier space (Schumann and
Sweet, 1988), and its vertical part leads to the classical tridi-
agonal matrix. The mathematical operator to invert V - (V)
is exact for flat problems (Bernadet, 1995). When the mesh
is built with terrain-following coordinates over a flat surface,
the solution of the pressure problem becomes inaccurate. In
this orography presence case, an iterative procedure is em-
ployed such as a Richardson, a conjugate gradient (Young
and Jea, 1980) or a residual conjugate gradient (Skamarock
et al., 1997) algorithm.

2.3 The turbulent subgrid scales

To execute LES, the Reynolds stress V- (o’ ® w’) appearing
in Eq. (3) are estimated. The LES closure is done by an eddy—
diffusivity approach called 1.5TKE with a 1.5-order closure
scheme (Cuxart et al., 2000). The isotropic part of the subgrid
turbulence is given by the prognosis of the subgrid turbulent

kinetic energy ¢ = %(u’2 + 02 4 w'?):

9 L —
(éotre) == V(pet) = prg—=— pu/ @ - VI

csl

+ V- (pKeln/eVe) = piKee le,  (6)

where K, and K. are constants prescribed in the turbulence
scheme, and /,,, and /. are the length scales defining the tur-
bulent viscosity. The dissipation term is directly estimated
from e and /. (the left-hand term in Eq. 6). The anisotropic
part of the subgrid turbulence is diagnosed from the v gradi-
ent and e. The diagnosis of the anisotropic part of the subgrid
turbulence is obtained using ¥ and e.

Wi, =+ (2/3)8ije — (1/15) /e (oo + 24
l] ’ 3Xj ax,-
T
—(2/3)8;; —= 7
(2/3)8i; axm) @)
— 90
0'ul = —(1/6)ly/e—P; 8)
0x;
— 30 90
02 = +(5/36)12 — —d,, 9)
00Xy, 0Xpy

The Einstein summation convention is applied and ®; ,,
represents atmospheric stability functions (Redelsperger and
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Sommeria, 1981). The ground condition can be modeled by
the externalized surface scheme SURFEX (Masson et al.,
2013). In the dry version of MNH and with the hypothesis
of zero thermal flux at the ground and buildings, only the
turbulent friction is used. To compute the nonzero values of
u u’] at the ground, the SURFEX call employed in this paper
consists of the simple activation of a dynamic wall model re-
lated to the Prandtl theory (eddy viscosity concept). The form
of the surface turbulent fluxes is u:u/j |surf ~ =12 | ZT”; j—)’:j_.
Defining a friction velocity u* proportional to the turbulent
wall shear and a roughness length zq, the vertical gradient
of u is recovered by specifying a logarithmic profile (von
Karman, 1930) as u(z) = % In(1 + %) (note that the atmo-
spheric stability conditions are neutral or near neutral in this
paper; therefore, the additional Monin and Obukhov (1954)
term is neglected and Businger et al. (1971) functions do not
appear in the previous formulation). SURFEX is employed
in Sect. 5.2.

3 The IBM forcing in the Meso-NH code

The numerical domain is divided into two regions: where the
equations of continuum mechanics hold and a solid region
embedding the obstacle where they do not. After comparing
the methods (Fig. 1a) based on a local volume fraction func-
tion and the LSF (Sussman et al., 1994; Kempe and Froh-
lich, 2012), it was decided to use the LSF as it was able
to capture the interface between the fluid and solid regions
more accurately. The | ¢ | distance informs us about the min-
imal distance to the fluid—solid interface and the ¢ sign about
the region nature: sgn(¢) > 0 for the solid one; otherwise,
sgn(¢) < 0. The vector n normal to the interface and its lo-
cal curvature o are defined as n = % and 0 = —V -n. Fig-
ure la illustrates the continuous variation of LSF for an arbi-
trary bell-shaped interface. The LSF is estimated at the seven
available point types per cell to limit the discretization er-
rors (Fig. 1b): at the mass point P, where prognostic scalar
variables are localized, at the three velocity nodes U, V, W
where each projection u is characterized, and at the A, B, C
vorticity nodes employed by turbulent variables. The points
of the solid region act as external points of the computational
grid (as do external points in a boundary-fitted method at the
grid limit). An intensive study has been done to estimate the
modeling of the vector normal to the interface and the lo-
cal curvature using LSF. The forcing based on a ghost-cell
technique (GCT; and CCT or cut-cell technique) is applied
to the explicit-in-time schemes (and the pressure solver) and
detailed in Sect. 3.1 (and Sect. 3.2).

3.1 Ghost-cell technique and explicit-in-time schemes
The 1" value is estimated at the time n At (At, the time step).

The tendencies of the prognostic variables E =[u,0,s5, (e)]
(Sect. 2.1) cannot be deduced from the conservation laws in
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(a)
Presence
function

Level-set
function

2611

Figure 1. (a) Illustration of two ways to model a fluid—solid interface: the color code indicates the isocontours of the presence function C
and the level-set function ¢. (b) Definition of the point types per cell: M is the geometric mesh point, P the mass point, U, V, W the velocity

nodes, and A, B, C the vorticity nodes.

the solid region. Expecting a correction due to IBM, wherein
¢ > 0, a general formulation of the tendencies is written as

a9
ar ot

0

+o (10)

csl ibm'

The right-hand-side (RHS) first term of Eq. (10) is given
by the conservation laws (Sect. 2.1). The % ]ibm tendency is
the correction due to the GCT in the solid region and near
the immersed interface, satisfying the v desired boundary

conditions at ¢ = 0:

. $n+l . Wﬂ
At

oy
Jat

oY
Jt

an

ibm csl

Note that %—? |ibm is taken into account in the ERK temporal
algorithm. The freeze of the immersed wind conditions in
the ERK algorithm has also been implemented; it has shown
more unstable behavior for a large Courant number.

The forced points are called ghost points and are renamed
ghosts. To estimate the variable v/ and for each ghost, the
physical information is extracted near the interface and from
the fluid region. The extension (grid stencil) of the forc-
ing zone depends on the spatial accuracy of the numerical
scheme. For example, Fig. 2b—c show the case of a two-
layer stencil in a two-dimensional grid. The characteriza-
tion of the layer is done by a conditional loop applied di-
rection by direction on the LSF. For a 2-D case, the sign of
¢, )¢, [j—ki: j+k]) and G, j)-d(li —ki : i +kil, j)
is estimated. The integer value k; determines the cells trun-
cated by the interface: k; = 1 (k; = 2) defines the first (sec-
ond) layer. The calculation of these ghost layers has a com-
putational overhead due to data exchange among processors
in parallel simulations. The stencil of the numerical scheme
modeling the interface defines the k; value. In order to limit
this overhead, a low-order version of a centered explicit-in-
time scheme (Sect. 2.1) is employed when ¢ > —A. The

www.geosci-model-dev.net/12/2607/2019/

CPU cost of the “hybrid” advection scheme is largely com-
pensated for by the decrease in the ghost number and par-
allel exchanges. Appendix B reports a comparison analy-
sis between third-order weighted essentially non-oscillatory
(WENO) and second-order centered schemes used in the
vicinity of the interface; the studied case is the inviscid flow
around a circular cylinder.

In classical GCT (Tseng and Ferziger, 2003) the fluid in-
formation is obtained at a mirror point (noted /, renamed
mirror) found in the normal direction to the interface in such
a way that the interface node B is equidistant to / and G.
Figure 2a shows the characterization of one ghost G (of LSF
value ¢¢), its associated mirror / (of LSF value ¢;) and the
interface node B (GI = 2¢gn). Figure 2b illustrates several
ghosts and mirrors. The |/ B| distance depends on the forc-
ing stencil, and a problematic case regularly met in the mir-
ror interpolation is the vicinity of ghosts with the interface
(pc = —¢; K A, with A the space step), leading to a not
well-posed condition.

The new GCT. To overcome this problem, we define im-
age points (noted /1 and / in Fig. 2a; renamed images) hav-
ing a distance to the interface that depends only on the grid
spacing: GI; =IlA 4+ ¢gn with [ = (1;2). Figure 2a shows
the images for one ghost. The new approach enforces a large
enough value of the |/; B| distance. Figure 2b (c) illustrates
classical (new) GCT for several ghosts. Figure 2b shows
some mirror points associated with ghosts of the first layer
in the vicinity of the interface. Figure 2c shows that the
new approach ensures the image points are always located
in the fluid region, irrespective of the ghost location. The
definition of several images per ghost allows us to build a
profile of the ¥ fluid information normal to the interface.
¥ (I) is therefore recovered by a quadratic reconstruction
f using the (B, I, I) points. Two distinct calculations of
FfU(B), (1), ¥ (I2)) noted PLI* and PLI® are tested to

Geosci. Model Dev., 12, 2607-2633, 2019



2612 F. Auguste et al.: Implementation of an immersed boundary method in the Meso-NH v5.2 model

(@) (b)

(c)

Image p

Second imagg|-1 7

. g a’

(secondfayer)

“irg t, jmiige lnyer,

s O

Imagk points
(first layer)"
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Figure 2. (a) Node definitions acting in the ghost-cell technique: the ghost (G), interface (B), normal vector (r), mirror (/) and images
(11, I). (b, ¢) Mlustration of classical (new) GCT using the mirror (images). Triangles correspond to one of the node types (see Fig. 1b).

build the Lagrangian interpolation:

V) =[2LE (DY (B) + L (DY (1)
LY (DY )] [1+LEMD] (12)
V) = LYy(DT(B)+ LY (DY () + LY, (DT (L), (13)

where L2(I) and L(I) are the Lagrangian polynomials, as

follows.
2A —¢ 2¢
) (55)
a ¢_A 2¢
-5 (2)

(
(
won=(575) (55) a
(
(

b (D) (P24
LB(’)_(A)( A ) (4

The accuracy of an interpolation depends on the v/ profile.
For example, a logarithmic evolution of the tangent veloc-
ity is expected in LES. Otherwise, when the viscous layer is
modeled, a linear evolution is expected. To compare the abil-
ity of each quadratic interpolation to approach a wide vari-
ety of profiles, the recovery of power laws such as ¥ = ¢3/2
(Fig. 3a) and ¢ = ¢!/* (Fig. 3b) is studied. As illustrated,
PLI? fits the two analytical solutions better and is therefore
adopted. The classical and new GCTs have been compared
thoroughly, and part of this analysis is deferred to the Ap-
pendix. The interpolated field of the potential flow around a
single cylinder or a sphere was compared to the theoretical
solution; the sensitivity of the inviscid flow around the same

Geosci. Model Dev., 12, 2607-2633, 2019

bodies (Appendix B) to the type of GCTs has been stud-
ied. The new GCT has given the best results, especially in
the symmetry preservation in the inviscid flow cases. Note
that these results are also dependent on the 3-D interpola-
tion choice detailed in the following paragraph. The proposed
GCT is employed in the rest of this study. The GCT imple-
mentation is divided into four main steps: the fluid informa-
tion recovery, the interface basis change, the interface condi-
tion and the ghost value.

The fluid information recovery. E,l, for the images con-
tained in a pure fluid cell (all corner nodes are in the fluid
region), is recovered by a trilinear interpolation based on La-
grangian polynomials (LP), as follows.

N
X]—X
Lfon= ] =—F

p=lpi AP

N
yi—Jy
Lron=11 =
p=1p2j > TP

N
i —Z
ey = ] =—= (16)
p=1.p#k <k TP
. N N N
Ve yna) =2 > > LF e L o0 L @)
i=1j=1k=1
Y (X, Vs %) (17)

For truncated cells (at least one corner node is in the solid
region), ¥, is recovered using an inverse distance-weighting
(DW) interpolation:

LY (xp). 9 (xi)

Yx) ="

N
=1

k]

y DwW
ZL,' (x1)
i=1

%1 =% 1=y = x)2 4+ = )2+ (=202 (18)
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4 ' Anytical 2 ' Analytical
Iy ICal nalytca
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o 3
m —
=) =
noar 1 0 ar :
5 5
0 1 0 1
0 A 28 0 A 24
(1) (1)
Figure 3. Quadratic interpolations of two analytical profiles ¥ = ¢" (red lines) using two image points at ¢ = —[1;2]A and the interface
node. Green (blue) corresponds to L? (Lb) polynomial results.
where LPY(x) =| x; — x;|™® (o = 1). This formulation di-
verges when x; - x; and it is commonly ad.opted to t(B) = t(I,) if no rotation:
impose ¥ (x;) =¥ (x;) when 3(x; —x;) <€ (€ is an ar- o .
bitrary parameter depending on the mesh discretization, et(B) =2ei(I1) —e¢(/2) if linear evolution. (20)

€ < A). The 3-D extension is direct with |x3—xj|=
V1 —x)% + (i — yi)2 + (z1 — zi)?. The use of these inter-
polations was decided after comparisons with barycentric
Lagrangian and modified distance-weighting interpolations
(Franke, 1982) and tests on the « coefficient. As the bound-
ary condition is expressed in the interface frame and the grid
is staggered, the non-collocation of the # components im-
plies the interpolation of three different classes of cells (with
U, V,W corners; Fig. 1b) for each U, V, W ghost and build-
ing the change of frame matrix for which the proposed GCT
presents an interest during the characterization of the direc-
tion tangent to the interface.

The interface basis change. Velocity vector u, known in
the Cartesian mesh basis at the images [; (An; = A and
Any =2A in Fig. 2a), is projected in the basis of the in-
terface (n(B), t(B), c(B)) in which the boundary conditions
on each vector component are imposed. Computing the LSF
gradient, the normal direction is defined. Otherwise, (t,c)
represents two arbitrary tangent directions. The tangent di-
rection t is considered the predominant tangent direction of
the flow along the fluid—solid interface depending on the
image values and defining the velocity vector as u(l;) =
un(I)n + u,(I;)t(I;). The cotangent direction is defined as

n®u(l;)

I))y=——;
U= eay |

t(l)) =c(l) @n. 19)
The (n, t, ¢) basis at the interface is defined by considering
(or not) the rotation of the tangent velocity with the distance

to the interface:
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Finally, the third component is ¢(B) = n ® e(B) and (in-
verse) projection is known.

The interface condition. Let 5 and A%—'fl’ |, be the
Dirichlet and Neumann conditions on /. The general for-
mulation of the boundary condition ¥ (¢ =0) is written
as a Robin condition: ¥/ (¢ =0) =k g + (1 —ky).(Y (¢ =
—IA)—IA % | )- The switch between the Dirichlet condition
and the Neumann condition is done through the coefficient
ke € [0: 1]. To give some examples of a Dirichlet condition,
(ke; ¥ g) = (1; 0) is imposed on the & - n velocity component
normal to the interface arising from the impermeability hy-
pothesis and on the #-t component tangent to the interface for
ano-slip hypothesis. To give some examples of the Neumann
condition imposed by (k; %—m g) = (0;0): a no-flux condi-
tion on the potential temperature (as well on a passive scalar,
subgrid kinetic energy) and a free-slip case applied to u - t.
Note the %j approximation in the location of the derivative
term and the Neumann condition depending on the chosen
image (in practice the selected image I; is the closest one to
the interface).

An interface condition depending on the characteristics of
the surrounding fluid such as ¥/ (¢ =0) = F (E,l; % | 11) isa
wall model. Using two (three) images, simple wall models
such as the constant (linear) extrapolation of the ¥ gradient
is reached by the ‘;%’! L= 0 (?;Tf L= 0) computation. The
consistency between the tangent component to the interface
of the resolved wind and the subgrid turbulence is the subject
of Sect. 2.3.

The ghost value. Knowing ¥ (¢ =0) and WI; =Y(p=
—IA), ¥ (G) for a Dirichlet (Neumann) condition is written

Geosci. Model Dev., 12, 2607-2633, 2019
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as

W(G) =2y(B) —(I) (Dirichlet),

¥ (G) =2¢d—w 4+ (1) (Neumann). 21)
dn |p

In practice, three I; images are defined for which the lo-
cations are ¢ = —IA with [ =[1/2;1;2]. The choice of
the image distance to the interface affects the results. To
best approach the expected solution, two quadratic interpo-
lations depending on the images used and one combination
of these quadratic interpolations are tested. Figure 4a and b
illustrate these interpolations by considering two analytical
profiles (red lines): the quadratic interpolation Q11 (Q1) is
based on the image values located at ¢ = 1/2A and ¢ = A
and plotted in green symbols (at ¢ = A and ¢ = 2A plot-
ted in blue symbols). Depending on the analytical profile,
Fig. 4 shows the influence of the image location choice.
As expected, QI1 (QI) appears to be less accurate than
QL (Q) for Y (¢ € [-2A: —A]) (for ¥ (¢ € [-A:0])).
Q¢ is the combination of Q11 and Q1> (purple line). QI¢
preserves the advantage of each quadratic interpolation and
when ¢g < A (pg > A), QI (QI) is used in the rest of
the study. Knowing WHI (¢7) at the end of the MNH tem-

poral loop with QIc, the Enﬂ(qf") profile is extrapolated
from the fluid region to the solid region by applying an anti-

symmetry ¥ (@) = 29" 0) = 7" (97). The ghost
value is estimated and the i gradient at the interface is also

recovered.

3.2 Cut-cell technique and pressure solver
First looking at the RHS of Eq. (5), the 3(’%;?*) o COming
from the resolution of the explicit-in-time schemes near the
interface and in the solid regions badly affects the V -u*
computation (note that the GCT operates after the step pro-
jection). Therefore, the fictive wind of the solid region can
spread errors in the fluid region during the pressure resolu-
tion. To avoid it, a correction of the pressure solver is pro-
posed.

The elliptic problem (Eq. 5) is rewritten as a resolution of
the linear system P - W* = Q. In the standard MNH version,
V.u* = Q is estimated using a finite-difference approach. To
uncouple the solid region from the fluid region our revisited
version enforces a null divergence for pure solid cells and
estimates the balance of momentum fluxes by a finite-volume
approach for truncated cells (noted Qccy):

AT :/V-ﬁ*dV—i—/Vﬁ*dV: PR =TT
Vi Vs
A2

=D £A%", (22)
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where V = A3 is the cell volume, Vs (Vs) the fluid (solid) part
of V and S; the cell surfaces for which i is the index of each
surface orientation [e, w, n, s, b, f] as illustrated in Fig. 5a.
According to the Green—Ostrogradski theorem, the u;*S;
calculation is the classical way of a CCT (Yang et al., 1997;
Kim et al., 2001) to estimate the velocity divergence. A sim-

ilar approach is performed here by rebuilding the flux AZu*
for truncated and solid cells.

The +A2u;* calculation consists of a weighting of the out-
flux and influx function of the fluid and cell surface ratios
(Fig. 5a). Figure 5b gives an example of the west surface

(i = w, red border) in which A2uy*(j, k) is calculated us-
ing the LSF value ¢ = ¢ and the ones of the eight adjacent
nodes ¢, (j =1,k =+ 1). A disk of radius /7 A is split into
eight “piece-of-cake” segments P;,k (p=11:8]). An LSF lin-
ear interpolation detects (or not) the interface location. In the
presence of an interface, its distance from the studied node is
0 <38, < /mA. Knowing §,, the momentum flux balance
is formulated for a nonmoving body as (p is the index of the
piece of cake and i the index of the cell surface)

—~— A2[8
A2i* =< [ZH(—%)H(—@)IZ*

p=1

8 S 2
+> H(=¢pdi) - [H(—)p) ‘”(Zp) |
p=1

(Mg, + H-pT) ] (23)

The four encountered cases correspond to a pure fluid cell

—_— 8
A2y* = %2 > u;* when ¢, < 0and ¢; < 0 (Fig. 6a); a pure
p=1

solid cell A2u;* = 0 when ¢p > 0 and ¢; > 0 (Fig. 6b); and
two types of truncated cells depending on the fluid—solid na-
ture of the main node for which ¢,.¢; < 0 (Fig. 6¢c—d). Using
Eq. (23), Eq. (22) is solved and leads to the RHS computation
of Eq. (5).

Knowing Q.. the reflection now concerns the P matrix
to invert. The classical interface condition on the potential
W* is a homogeneous Neumann condition dal* =0. Using a
boundary-fitted method (BFM), the interface condition of the
moving or nonmoving body (Auguste, 2010) appears only on
the border of a numerical domain. Using an IBM and with-
out any impact of this interface condition on the P coeffi-
cients, the impermeability character of solid obstacles is not
achieved. Due to the inversion of the horizontal part of P by
a fast Fourier transform (Schumann and Sweet, 1988), the
solution of calculating P appears to be problematic. The
adopted solution consists of an iterative procedure as used in
MNH for non-flat problems. The non-respect of the W* con-
dition in P leads to a not well-posed system, and the iterative
procedure spreads to the entire fluid domain the enforcement
of the null divergence imposed on solid cells. The resolu-
tion of the pseudo-Poisson Eq. (5) leads to ¥* — W*M =
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Figure 4. Profile normal to the interface of two points of fluid information V: analytical solution (red lines), quadratic interpolation QI
using ¥ y—r1/2;11a (green symbols), Q1 using ¥ _4—11;21a (blue symbols), QI¢ as a combination of Q1; and QI (purple lines).
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Figure 5. (a) Momentum flux balance for an arbitrary truncated cell of volume V, where the u;* velocities (U; in the figure, i =
[e,w,n,s,b, f]) are supported by the S; surfaces in grey; the transparent volume is a part of the solid body. (b) Segmentation of the
Sy arbitrary surface (red border) in eight PI’,k pieces of cake (the border of P3* is indicated in green).

M
> P’I.Q’C"m, where M is the number of iterations. This
m=1

number is limited by a convergence criterion (compromise
between incompressibility satisfaction and CPU cost). Many
iterative procedures are available in MNH originally devel-
oped for non-Cartesian grids. Richardson and preconditioned
conjugate residual algorithms have been adapted here to the
obstacle immersion. The newly modified pressure solver is
tested and validated in Sect. 4.1.

3.3 Consistency with the turbulence scheme

It is known that ll’—" — 1 is a reasonable approximation in
nonhomogeneous, enon—isotropic turbulence such as in the
near-wall region. This approximation is indeed retained in
the present IBM implementation, which assumes [, = /¢
(hereafter noted /,, and called the mixing length). The Re-
delsperger et al. (2001) corrections near the ground are to
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match the similarity laws and the free-stream model con-
stants are not activated. [, is equal to the numerical cut-
off space scale sufficiently far from the ground, leading to
a A/e turbulent viscosity. Near the ground and following
the Prandtl idea consisting of the assumption of the linear
variation of /,, in the near-wall region, the upper limit of the
mixing length is min(kz, A) (k is the von Kdrman constant
and z is the altitude).

The turbulent characteristics are highly affected by surface
interaction. As a consequence and for LES, the subgrid tur-
bulence scheme (Sect. 2.3) is modified in the presence of
immersed obstacles in the subgrid turbulent kinetic energy
equation (Eq. 6), mixing length computation and Reynolds
stress diagnosis (Egs. 7, 8 and 9).

The subgrid turbulent kinetic energy condition. The
explicit-in-time resolution of Eq. (6) claims a GCT forcing
and an interface condition on the STKE e. Commonly, the

Geosci. Model Dev., 12, 2607-2633, 2019
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Figure 6. (a—d) £A*u;* calculations depending on the signs of
¢; = (¢) and ¢, on an arbitrary piece of cake. The white (grey)
region corresponds to the solid (fluid) one of PI’,“ (same color code
as in Fig. 5).

STKE profile is considered parabolically in the viscous sub-
layer (Craft et al., 2002; Bredberg, 2000) and constant in the
inertial and wake outer layers (Kalitzin et al., 2005; Capiz-
zano, 2011). Due to the high turbulent Reynolds number
Rey ~ (’)(104 — 105) encountered, a homogeneous Neumann
condition is applied at the immersed interface. The equilib-
rium between the production and dissipation of STKE could
be discussed and controverted; this choice acts as a first stage
in IBM development.

The near-wall correction of the mixing length. The von
Kéarmén limitation due to immersed walls acts through the
LSF, and the upper limit on the mixing length /,, near the
interface becomes min(kz, —¢, A) with a banning of neg-
ative values in the solid region. Whatever the production
of STKE and the turbulent shear, the lower limit /,,(—¢ <
0) induces a null value of the diagnosed surface fluxes.
In addition, a singularity appears in the dissipative term
oKeed/ 21’21_ Through pragmatic reasoning, the singularity
due to ln’ll(q& — 07) — oo amounts to the modeled length
scales being smaller than the Kolmogorov scale (v3e_l)%.
Considering the Kolmogorov scale as modeled, the turbu-
lence should vanish, which is in contradiction to the dis-
sipative term. In order to overcome this ill-posed problem,
a [, lower limit has to be specified. In the study of atmo-
spheric flows around buildings, a characteristic thickness of
the viscous layer H/+/Re can be defined around an H bluff
body for a Reynolds number based on the obstacle scale:
H ~ O(10m); Re ~ ©O(107). This thickness estimate is also
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Obstacle scale (m)

Figure 7. Illustration of the unresolved physical processes near a
nonidealized solid wall (black line) in an atmospheric context: the
length scale based on the viscous effects (grey line) is drastically
smaller than the roughness length. The roughness length approaches
the scale of smallest eddies and governs the log-law profile.

proportional to Ev/u* (E ~9.8 is commonly employed),
whereby the friction velocity u#™ is about 1cm per second.
Following these estimates, the length scale due to the vis-
cous effects zI” belongs to the millimeter domain in the ex-
pected atmospheric cases. Looking after a building surface
and its large heterogeneity (door, windows, surface charac-
teristics), its roughness length z%)b is at least in the decime-
ter domain and sz > z%)b (IMustration in Fig. 7). For low Re
and smooth surfaces, zi)b > z})b could be encountered. There-
fore, we assume z1° = max(zbb, ZLb) and that z'® is related to
the size of smallest unresolved eddies near walls (i.e., dissi-
pative scale). The mixing length near the wall is z'* < [,, <
min(kz, —¢, A).

The turbulent fluxes correction. The v gradient and the
turbulent diffusion O(z*./e) prescribe the turbulent fluxes
at the immersed interfaces (Eqs. 7, 8 and 9). As a first step
in the MNH-IBM implementation, a no-flux condition on
the mean potential temperature is imposed, leading to a zero
value of the sensible heat flux. Writing the mean velocity
field at B as u =u,t, u,;(B) is needed to recover a gra-
dient consistent with the turbulent shear. Considering the
Prandtl (1925) or von Kirman (1930) theories, the logarith-
mic profile is assumed in the vicinity of the wall accord-
ing to u;(z) = % In (1 + z%) Considering A to be the limit
of the resolved scales, most of the turbulent kinetic energy
%(u’2 + 2 +w'?) is contained in the subgrid when —¢ < A
and as Kye+/e with a constant Kye>>1. This assumption is
reinforced by the homogeneous Neumann condition applied
on e. This approach derives from RANS (Reynolds-averaged
Navier—Stokes) approaches, and the velocity friction is for-
mulated as u* = Kge f/@ /e, where C 18 a constant evolv-
ing between 0.03 (atmospheric applications) and 0.09 (fluid
mechanics applications). Adding a damping function for the
viscous cases (low turbulent Reynolds number, Re; < 20),
the tangent wall velocity at the interface is written as

www.geosci-model-dev.net/12/2607/2019/
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Kie/Cpv/e(d = —A/2)
k

A _o(.ib A1
1n(1+ﬁ[1—e 20204 ]) (24)

Finally, the pragmatic limitation u;(B) <u;(¢ = —A/2)
operates if the STKE value is too high. The proposed dy-
namic wall model evolves between the no-slip and free-slip
conditions. If the subgrid turbulence is weak or if the physi-
cal problem is fully resolved, the viscous layer is well mod-
eled and u#;(B) — 0. Otherwise, for an intense subgrid turbu-
lence or a fully unresolved problem, the shear due to the wall
presence is not perceived and ‘31’” g — 0. The wall model
establishes an equilibrium between the production of STKE
and the mean parietal friction. Note that the use of a log-
law model near a singularity such as sharp edges and cor-
ners could be called into question. Nevertheless, Section 5.1
and 5.2 show LES results employing this proposition. After
numerical investigations done during the single-cube study,
Ktke(yq ~ | appears to be a suitable choice.

u;(B) =

4 Flows around a circular cylinder
4.1 Potential flow

Isolated from the rest of the code, the resolution of
the pseudo-Poisson Eq. (5) leads to potential solutions
(Sect. 2.2). Theoretical ones are available for flow developed
around a nondeformable obstacle such as an infinite cylinder
or a sphere (Milne-Thomson, 1968; Batchelor, 2000). The
two bodies are investigated here. The flow around the infi-
nite cylinder is predominantly presented.

Figure 8 illustrates the cylinder case. The fluid density
is considered constant in time and in space. The flow is
initially imposed as spatially homogeneous with a constant
module of velocity Uy, and parallel streamlines (Fig. 8a).
This initialization does not respect the conservation of the
momentum flux, and the irrotational correction of the pro-
jection method goes to recover this conservation. At the
same time, the impermeability of the cylinder of diameter
D¢yl = 2Ry is achieved. Figure 8b shows the streamlines
obtained with the MNH pressure solver modified to take
into account the presence of immersed obstacles (Sect. 3.2).
Defining x as the direction parallel to the initial stream-
lines and y as the perpendlcular one, the expected solution

isu-Ugy I'=cosa(l — r—)x—smoz(l + Cy' )y (single and
non-confined body, («;7) cylindrical coordmates) The nu-
merical confinement is discussed hereafter, characterized by
L = L¢y1/Rey1, where Ly is the distance separating the lat-
eral domain surfaces (Fig. 8a).

The Richardson (RICH) and the residual conjugate gra-
dient iterative (RESI) methods are tested (Sect. 3.2). Fig-
ure 9a plots the evolution of the dimensionless residue
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R(k) (based on a characteristic divergence Us,/A) with
the iteration number k and obtained with the con-
finement L = 16. The two algorithms converge with a
weak dependence on the spatial discretizations (N =
[4 (red); 8 (green); 16 (blue); 32 (purple)] nodes per Rcyi).
The slope coefficient 488 (RES) <3980 (RICH), so RESI
demonstrates the hlghest velocity convergence. Even if
RICH is about 20 % faster per iteration than RESI, the global
CPU cost of the last one is lowest for the same solver residue
R(k). For this reason and due to a higher a priori radius
convergence, RESI is adopted. Note that the momentum
flux computed after the solver convergence at the x¢y lo-
cation (Fig. 8a) shows good mass preservation with a rel-
ative error of [0.48 % (N =4);0.20%(N = 8);0.18%(N =
16);0.14 % (N = 32)] in regard to the incoming flux local-
ized by its xjpjer longitudinal coordinate. Similar results were
obtained with a spherical body (not shown here).

With a change of Galilean reference frame, this study cor-
responds to a uniform body acceleration ay, in a fluid initially
at rest. However, a possible viscous term, the hydrodynamic
force exerted on the body, is reduced to the added mass effect
Amgap = fv ap‘" dV for At — 0. A is the dimensionless co-
efficient and mf the displaced fluid mass. Acy theoretically
equals 1 in the non-confined cylinder case (Lamb, 1932). The
red curve in Fig. 9b illustrates the effect of the confinement
L on Agy for N = 16 resolution. Unsurprisingly, Acy| in-
creases with the confinement (Brennen, 1982). The weak de-
pendence of Acy with L > 16 allows us to consider the body
to be isolated for L ~ 16. The green curve in Fig. 9b shows
the impact of the space resolution for L = 16. The numer-
ical added mass coefficient is in good agreement with the
theoretical one, presenting a relative error of about 2% for
N > 16. It induces a respect for the impermeability hypoth-
esis at the immersed interface. A similar study for a spher-
ical body gives Agph = %+0.4 %. Figure 10 illustrates the
contours of the kinetic energy around the sphere in an arbi-
trary symmetry plane. The green contours (numerical solu-
tions) fit well with the red contours (theoretical solutions).
A convergence study of the pressure solver is discussed in
Appendix A.

4.2 Viscous flow

A pure dynamic and well-documented case that naturally
follows previous ones is studied here. This physical case is
the wake past a circular cylinder (non-stratified flow) at two
moderate Reynolds numbers Re = (40; 140). One of the fore-
runners is Taneda (1956), who experimentally studied the na-
ture of eddy structures.

Taneda (1956) found a regular Hopf bifurcation at a crit-
ical Reynolds number Re; = Yooley o, 45. Below Re. and
above Re > 5, a boundary layer separation leads to a steady
recirculating region in the near wake (Fig. 11c). Above Re; &
45, an unsteady mode breaks the planar symmetry and the
body wake presents an alternate vortex shedding (Fig. 11-

Geosci. Model Dev., 12, 2607-2633, 2019
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(a)

(b)

Figure 8. Potential flow around a cylinder: (a) initial state around the body of diameter Dcy) = 2Rcy1; (b) streamlines obtained after the
Poisson equation resolution. The confinement is defined as L = Ly1/ Rey)-
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Figure 9. Potential flow around a cylinder: (a) velocity convergence of two iterative methods (residual conjugate gradient, Richardson) for
different spatial resolutions N = [4 : 32](L = 16); (b) evolution of the added mass coefficient A(N; L) with the confinement L = L¢y)/Rcyl
(N = 16) and with the node number per radius cylinder N (L = 16). The confinement is defined in Fig. 9a.
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Figure 10. Potential solution around a sphere: (a) kinetic energy in
an arbitrary symmetry plane; (b) zoom.
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d). The standing eddy (the von Karman street) obtained by
MNH-IBM at Re = 40 (140) is visualized in Fig. 11a (b) by
the injection of a passive tracer on the body surface.

The standing eddies at Re < Re. are commonly described
with a 63 detachment angle, [, recirculating length and (a; b)
location of the vortex core (Fig. 12). The limit of the numer-
ical domain is 10Dy upstream of the obstacle for the inlet
condition (U, the uniform incoming velocity) and lateral
condition (slip condition) and 15 D¢y for the outlet condition,
allowing for the vorticity evacuation. As Cai et al. (2017)
mention, this domain can induce a low numerical confine-
ment effect. Three regular Cartesian meshes are built with
10, 20 and 30 nodes per Dey).

The 20pts/Dcy1 and 30pts/Dcy1 meshes present a good
spatial convergence and weak differences at Re = 40. 64 ~
53°42° and the recirculation length I,/ D¢y ~ 2.2 £0.05.
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Figure 11. Eddy structure in a viscous fluid: steady (left, Re ~ 40) and unsteady (right, Re & 140) solutions obtained by the current numerical
investigation (a and b, MNH-IBM and 30pts/ Dcy1) and by the Taneda (1956) experiments (¢ and d). The visualization is due to the presence
of a passive tracer injected on the body surface and transported by the flow.
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Figure 12. Recirculating region at Re=40 (MNH-IBM,
20pts/Deyy): definition of the 6y (°) separation angle, I recir-
culating length and (a;b) vortex core location. The distance is
dimensionless by Dcy.

The 10pts/Dcy1 mesh shows more discrepancies, which are
attributable to the nonability of the coarsest resolution to
capture the viscous boundary layer for which the thickness
evolves in Dey /Re. Note that the impact of the low-order
(centered or WENO) modeling of the advection at the im-
mersed interface is weak for this viscous case (Sect. 3.1).
Table 1 compares the 20pts/Dcy results with a part of the
results literature collected in Gautier et al. (2013).

The focus is on the unsteady mode at Re = 140. The ratio
between the characteristic time of inertial effects Dey1/Uso
and the one related to the vortex shedding 1/f defines
the Strouhal number St = {T.Do' Brazza et al. (1986), Park
et al. (1998) and Stalberg et al. (2006) confirm the equa-
tion St(Re) = —3.3265/Re+0.18164-1.6-10~*/Re proposed
by Williamson (1989). MNH-IBM obtains St(Re = 140) €
[0.177 :0.179] and an absolute maximum relative error
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Table 1. Description of the standing eddies in the wake of the solid
cylinder (Re = 40): comparison of the separation angle 64 (°), re-
circulating length /; (m) and vortex core location (a; b) between the
literature and MNH-IBM.

Authors 0a (°)  It/Deyi  b/Deyl  a/Deyl
Coutanceau and Bouard (1977) 53.8 2.13 0.76 0.59
Linnick and Fasel (2005) 53.6 2.28 0.72 0.60
Taira and Colonius (2007) 53.7 2.30 0.73 0.60
Bouchon et al. (2012) 53.4 2.26 0.71 0.60
Gautier et al. (2013) 53.6 2.24 0.71 0.59
Cai et al. (2017) 54.5 2.34 0.76 0.62
MNH-IBM 30pts/ Dcy ~ 54 ~2.2 ~0.7 ~ 0.6

lower than 2% in regard to the Williamson (1989) formu-
lation with the two finer resolutions. Our results are in good
agreement with those presented in the abovementioned and
more extensive studies. Details on DNS validation in a vis-
cous buoyancy-driven flow are also presented in the Supple-
ment.

5 Turbulent flows around parallelepiped(s)

This section is devoted to turbulent flows approaching our
perspective: the simulation of an atmospheric flow over a
city. The turbulent flows around a cubic body vertically con-
fined in a channel and over an urban-like roughness (set of
obstacles) are here described. MNH-IBM is explicitly com-
pared to experimental investigations in the two cases. Com-
parisons to other LESs from the literature will be mentioned.
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Common hypothesis and methods. The fluid is considered
as neutrally stratified. The Coriolis term is negligible due
to the addressed space scales and timescales. The turbulent
diffusion is modeled by the subgrid TKE1.5 scheme trans-
ported by PPM (Sect. 2.3). All surfaces are considered non-
permeable and the IBM wall model (Sect. 3.3) is activated.
An (x, y, z) reference frame is defined (z, vertical direction)
and the velocity vector is written as u(t) = u(#)x+ v(2)y +
w(t)z. A time simulation is needed afterwards to establish
the turbulence state (not shown here). The overline notation
refers to the mean value in time in this section.

5.1 Flow over a surface-mounted cube

Using static pressure measurements, as well as laser-sheet
and oil-film visualizations, Martinuzzi and Tropea (1993)
and Hussein and Martinuzzi (1996) generated a large data
set for the study of flows around a cubic body placed in a
channel (Fig. 13a). RANS and LES have been used to ex-
plore in detail this physical case (Breuer et al., 1996; Shah
and Ferziger, 1997; Rodi et al., 1997; Frank, 1999; Krajnovic
and Davidson, 2002; Farhadi and Rahnama, 2006).

Physical details. A cube (H side) is placed in a channel
of 2H height. The channel is sufficiently large in the span-
wise direction to consider the cube to be single in that di-
rection. Turbulent flow is generated in the channel upstream
of the cube with a mean bulk velocity Up. Defining the di-
mensionless wall coordinate zT = u* - z/vy, the stream-wise
upstream velocity corresponds to a log law for smooth walls
uizh) u =554+ %log(zﬂ as described in Hussein and
Martinuzzi (1996). The Reynolds number, as defined by the
mean bulk velocity, the cube height and the molecular diffu-
sion, is Re ~ 40000.

The mean flow around the cube presents a set of five re-
circulating regions (Fig. 13b). Each cube surface is associ-
ated with one of these regions: the A—B vortex separations
in front of the cube, which spread laterally in a horseshoe D,
two vortices near side walls E, one F on the roof and main
arch vortex G downstream.

Numerical details. The top and bottom surfaces of the
cubic body are modeled by the IBM. A small value of
the roughness length zo/H ~ 1075 is imposed (low value
to model a smooth interface, viscous-scale intervention in
the z¥ calculation). The stream-wise (spanwise) direction
is x (y). The size of the grid is set as (x,y,z) = (—24H :
8H,—4H :4H,0H : 2H) with a location of the cube center
at (%; %; %). Three regular Cartesian meshes are employed
with a respective space step H/A =[10;20;40]. x/H €
[—24 : —4] is a region employed to model the fully turbu-
lent character of the incoming flow. The incoming turbulent
state is obtained by the IBM and a pseudo-recycling method
inspired from the works of Lund (1998), Mayor et al. (2002),
and Yang and Meneveau (2016) (not detailed here). The ver-
tical profiles of the stream-wise velocity and turbulent inten-

sity v ﬁ/ Ug ~2.10~2 (Hussein and Martinuzzi, 1996) are
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recovered at x/H ~ —4. We note that the turbulence gener-
ation deserves more attention, but we prefer to concentrate
only on the cube wake.

Results. Figure 14a, b and c show the time-averaged
streamlines in the vertical symmetry plane of the cube ob-
tained by MNH-IBM for the three space resolutions. The
streamlines of the coarse, medium and fine resolution are
respectively in red, green and blue. The discretization or-
der of the fine resolution is close to that of most literature
LESs except Shah and Ferziger (1997), who used a far more
precise grid near walls. The same figure obtained by the ex-
perimental investigation is given in Fig. 14d. The size of the
front (rear) region is characterized by the recirculating length
xt/H (x;/H). The experiment gives x;/H = [1.04:1.05]
and x;/H ~ [1.64 : 1.67]. The LES reference results give the
ranges xf/H €[0.81:1.28] and x;/H €[1.38:2.25]. For
the two finest resolutions (green and blue), the overall pre-
diction of MNH-IBM recovers a consistent mean topologi-
cal structure. MNH-IBM obtains for the two finest resolu-
tions xf/H €[0.99:1.21] and x;/H € [1.48:1.55]. MNH-
IBM does not capture, as with most LESs, the two divid-
ing lines A/B mentioned by Martinuzzi and Tropea (1993)
but only captures a flattened vortex. However, the bifurcation
point near the rear edge and ground is not detected by MNH-
IBM, while this point was modeled in Rodi et al. (1997). This
bifurcation point was also commented on in Martinuzzi and
Tropea (1993), even if their experimental uncertainty did not
allow us to visualize it in Fig. 14d.

Figure 14e shows an MNH-IBM instantaneous flow field
with the Q criterion (Hunt et al., 1988), and as the LES ref-
erence results mention, it presents a highly intermittent char-
acter clearly visible with the quasi-disappearance of the D
horseshoe and G arch. A frequency f of vortex shedding
dominates the highly intermittent activity in the body wake,
leading to the experimental Strouhal number St = fU—f ~
0.145. An MNH-IBM energy spectrum (discrete Fourier
transform of w(¢) in the body wake) finds a peak St € [0.10 :
0.12] for all the studied resolutions and a ~ —5/3 energetic
cascade slope for larger wave numbers (not shown). The St
values obtained by MNH-IBM are slightly lower than the ex-
perimental one but stay consistent with the St € [0.10: 0.15]
range of other LESs.

Still in the vertical symmetry plane of the mean
flow, Fig. 15 plots at four longitudinal positions x/H =
(1/2; 1; 2; 4) the vertical profiles of time-averaged quantities
related to the steady (u, w) and unsteady (TKE, u'w’) parts of
the solution. The color code corresponds to the spatial reso-
Iution (10pts/ H in red; 20pts/ H in green; 40pts/ H in blue).
Note that the Uy, bulk velocity was set to unity and therefore
presents variables in Fig. 15 that are dimensionless. In most
of the sub-figures, the higher the space resolution, the lower
the gap with the experiment. The top of Fig. 15 leads to a
similar conclusion as the literature LESs: the stream-wise ve-
locity is well recovered. The counterflow at the rear and roof
of the cube near (x/H;z/H) ~ (1; 1) informs us about the
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Figure 13. (a) Top visualization of the flow around a cube (Hussein and Martinuzzi, 1996); (b) schematic representation of the time-averaged
vortex structure around a cube (Martinuzzi and Tropea, 1993) and index of the recirculating regions.

(a)

03 - 0 T xH 2 3 4

(e)

/_MNH-IBM
(60pts/H)

Figure 14. Vertical symmetry plane of the mean flow: (a—¢) MNH-IBM time-averaged streamlines; (d) streamlines observed by Martinuzzi
and Tropea (1993); (e) MNH-IBM instantaneous visualization of the Q criterion (Hunt et al., 1988).

existence of the bifurcation point S1 (Fig. 15b). An underes-
timation appears on the counterflow at (x/H;z/H) =~ (2;0)
and is frequently observed in the literature (Fig. 15c). Some
discrepancies are found on two w profiles (Fig. 15f—g). Note
that Shah and Ferziger (1997) and Krajnovic and Davidson
(2002) highlight the difficulty of recovering it. The turbulent
kinetic energy and the Reynolds stress are correctly predicted
at the cube roof (Fig. 15i—j). The vertical profiles of TKE and
u’w’ downstream of the cube show an overestimate tendency
(Fig. 15k, p, 1). No experimental data are available on TKE at
x/H =4 (Fig. 151), but using the u’2(x/H = 4) experimen-
tal value (not shown here) and the u’2/TKE ratio obtained by
MNH-IBM, we suspect that TKE(x/H = 4) is still overesti-

www.geosci-model-dev.net/12/2607/2019/

mated. This turbulence diagnosis is relatively similar to that
of Farhadi and Rahnama (2006).

Sensitivity study. Some tests have shown a sensitivity of
the solution with both the incoming turbulence and constants
in the immersed wall model. Indeed, the existence of the
small vortex near the saddle node S1 (Depardon et al., 2006)
turns out to be strongly dependent on the inlet turbulence
(the lower the turbulent intensity, the bigger the size of this
vortex); the reattachment (or not) of the roof vortex F with
the main arch G is also observed. This sensitivity follows the
observations of Castro and Robins (1977), who studied the
cube placed in a uniform or turbulent incoming flow. In the
same way the existence of the vortex near the saddle node
S2 (Frank, 1999) is dependent on the ground boundary con-

Geosci. Model Dev., 12, 2607-2633, 2019
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Figure 15. Mean vertical profiles of velocities (top), turbulent kinetic energy and Reynolds stress (bottom). The lines correspond to the
MNH-IBM results. The symbols are the Martinuzzi and Tropea (1993) data except for TKE (Hussein and Martinuzzi, 1996). The profiles
are given at four longitudinal locations: (a, e,i,m) x/H = 1/2; (b, f, j,n) x/H = 1; (¢, g, k,0) x/H =2; (d, h, 1, p) x/H = 4.

dition. The u* /e = Ke "Wc  Tatio and the zo roughness
length fixed in the immersed wall model (Sect. 3.3) impact
the nature of the incoming turbulent state for which the sur-
face shear plays an important role. To give a significant ex-
ample and if a null value of Ky is applied on the channel sur-
faces (non-slip condition), x¢ highly increases and the vortex

Geosci. Model Dev., 12, 2607-2633, 2019

at S2 appears. Otherwise, Ke and zo do not crucially affect
the nature of the dynamic in the vicinity of the cube surfaces;
the pressure gradient between front and back faces governs.
To conclude this section and despite the uncertain-
ties of the inlet condition, MNH-IBM is in good agree-
ment with the experiments of Martinuzzi and Tropea (1993),
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Hussein and Martinuzzi (1996), and other LESs using a reso-
lution of about 10 points per cube length. Even if the coarsest
resolution loses a part of the expected physics, it maintains
a suitable modeling of the largest structures of the flow. A
parametric study on inlet turbulence generation has led us to
fix Kie ~ 2 in Eq. (24).

5.2 The Mock Urban Setting Test (MUST) experiment

The MUST is an experimental campaign organized during
early autumn 2001 in Utah’s West Desert (Biltoft, 2001;
Biltoft et al., 2002). Its objective was to quantify the disper-
sion of a passive tracer (propylene) in a dry atmospheric con-
text over a topography reproducing a near-urban canopy. The
main interest lies in the similitude between this experiment
and a pollution episode due to toxic gas propagation over
a city with high population densities. It provides extensive
measurements of meteorological variables and scalar disper-
sion information.

Physical details. The near-regular array is composed of
120 containers. Figure 16 gives a photograph and a picture
of the topography. The containers are equivalent in volume
and shape. Their spatial dimensions are (L, Ly,L;) =~
(2.4,12.2,2.5) m and the horizontal distance between con-
tainers is O(10) m. Following Table II in Yee and Biltoft
(2004), the 2681829 case (25 September 2001 at 18:29 UTC)
is selected. The Monin—Obukhov length is Ly, &~ 28000 m
and the stability condition is supposed neutral; the buoyancy
effects and the sensible heat flux are negligible in regard
to the inertia effects and the turbulent shear. The incoming
flow shows a mean horizontal angle with the container lay-
out (green arrow, Fig. 16b). The MNH—-IBM results are com-
pared to the experimental measurements reachable at several
altitudes (4, 8, 16 m) at the south tower and at the main T
tower placed in the array center. The locations of the towers
are indicated in Fig. 16b. A roughness length zop = 0.045m is
given by the experiment and related to the surrounding desert
vegetation.

Numerical details. The externalized scheme SURFEX
(Masson et al., 2013) models the ground friction. LSF is gen-
erated to represent the topography and IBM is used to model
the containers. The smallest characteristic container length is
discretized by O(10) cells. The mesh is a Cartesian and reg-
ular grid for z < 10 m with a space step A =0.2m. Above
10 m, the vertical space step is released in a geometric pro-
gression of 1.08 ratio. The altitude of the numerical domain
top is about § times the container height.

The distance between the horizontal limit of the computa-
tional domain and the array is about 20 times the container
height. The large-scale flow is forced by an open boundary
condition. A mean horizontal angle of —41° with the x di-
rection is fixed for all altitudes; note that the low angle devi-
ation and the turbulence observed upstream of the containers
in the experiment are not numerically considered. Following
the experimental data given at the S tower (Fig. 17a, blue
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symbols) and assuming a log law |u| = ’f(—*log(l. +2/20), a
least-squares regression estimates a friction velocity u* =
0.71ms~! and allows us to build the vertical profile of the
mean incoming flow (Fig. 17a, blue line). This u* value is
close to the experimental one ug,, = 0.68 ms~! found by a
sonic anemometer at the feet of the S tower. The same in-
let condition is used in the numerical studies of Hanna et al.
(2004), Milliez and Carissimo (2007), and Donnelly et al.
(2009). Note that an additional term O(L;l(l,) appears in their
formulation but is negligible in the 2681829 case.

Results. The black line (MNH-IBM) and symbols (Yee
and Biltoft, 2004) in Figure 17a (b) show the impact of the
near-urban canopy on the vertical profile of |u| (wind an-
gle) in the core of the array (T tower). Not surprisingly, the
canopy induces a global slowdown of |#| near the ground and
up to z<8 m. A decrease in the mean horizontal wind angle
is found at the same altitudes. This deviation is related to
the container orientation, which tends toward the flow being
aligned with the y direction. The same pattern is discussed
in Milliez and Carissimo (2007). A wind acceleration and
an increase in the wind angle are observed by MNH-IBM
for 28 m as in the LES results of Kénig (2014) and Dejoan
et al. (2010) on similar MUST cases. These few degrees of
deviation are observed by the experiment but not the accel-
eration. A part of this acceleration may be explained by a
Venturi effect and a too-closed top limit of the computational
domain (numerical confinement, under investigation).

Figure 18a (b) illustrates the time-averaged horizontal
wind field |u| (Ju| at t = 200s) at the 1.6 m altitude. These
figures highlight the fact that the incoming flow is not tur-
bulent in the simulation. This assumed gap constitutes a per-
spective (Camelli et al., 2005) not directly linked to IBM. It
also allows us to introduce here some comments on the turbu-
lence state. The atmospheric turbulence is dependent on the
roughness length (z¢ considered constant due to the homo-
geneous and flat desert over a few miles upstream). The first
container rows are the scene of the boundary layer transition
and act as a region of strong roughness change. The turbu-
lence observed in the urban-like canopy has two origins: the
incoming turbulence and that induced by the container pres-
ence. The contribution of both turbulence types varies as a
function of the altitude and distance to the first row.

The mean kinetic energy Ex = %(ﬁ2 + 02 +w?), friction

. 4——n  ——2 o
velocity u* =+/u’w’~ +v'w'" and turbulent kinetic energy

TKE = %(u/ 2+ v2 4+ w'?) are estimated at the T tower and
indicated in Table 2. All the variables are in good agree-
ment with the experiment at z =4 m (about 2 times the con-
tainer height). The friction velocity at z(T) = 4m is at least
2 times larger than ug,(S) = 0.68ms~! observed at the S
tower feet. That increase is the signature of the turbulence
developed by the urban-like canopy. Looking at the results
at z(T) =8 m and z(T) = 16 m, the higher the altitude, the
more discrepancies appear between the experimental and nu-
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Figure 16. (a) Photograph of the MUST containers in Utah’s West Desert; (b) schematic representation of the container layout. The locations
of the concentration (detectors) and wind sensors (S and T towers) are indicated, as are the position (red cross) of the pollutant release and
the direction of the incoming flow (green arrow) for case 2681829. Source: Biltoft (2001) and Yee and Biltoft (2004).
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(black) towers. The symbols (lines) are the Yee and Biltoft (2004) experimental measurements (MNH-IBM results).

merical results. The experimental measurement of the fric-
tion velocity at z = 16 m is close to the upstream value.

The discrete Fourier transform of the u temporal evolution
(Fig. 19) at z(T) = (4; 8) m shows the coherence between the
energetic cascade of the experimental investigations and that
of the numerical ones. At z(T) = 16 m, MNH-IBM underes-
timates the unsteady part of the solution for all wave num-
bers. The same behavior is observed on v and w (not shown
here).

The MNH-IBM results are consistent with the experimen-
tal observations below z(T)<S10m. This modeling induces
the turbulence to be mostly due to the container wakes up-
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stream of the T tower and not to the incoming turbulence
(not modeled in the simulation). The influence of the atmo-
spheric turbulence grows with altitude and MNH-IBM di-
verges with the experiment. This divergence for z(T)=>10m
leads us to think that the thickness of the container has an in-
fluence about 4-5 times the height of the urban-like canopy.

6 Conclusions and perspectives

This study details the first implementation of an immersed
boundary method (IBM) in the atmospheric Meso-NH
(MNH) model currently based on mathematical formulations
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Table 2. Kinetic energy, turbulent kinetic energy and friction velocity obtained by the experimental (Yee and Biltoft, 2004) and numerical

(MNH-IBM) investigations at three altitudes of the tower T.

Ey (m?s2) ‘ TKE (m? s2) ‘ u* (ms—1)
MNH-IBM  Yee and Biltoft (2004) ‘ MNH-IBM  Yee and Biltoft (2004) ‘ MNH-IBM  Yee and Biltoft (2004)
z=4m 15.3 14.1 3.33 3.78 1.14 1.08
z=8m 36.7 29.7 1.70 3.28 0.68 0.83
z=16m 65.8 48.5 0.02 1.75 0.02 0.60

written for structured grids. The MNH-IBM aim is to explic-
itly model the fluid—solid interaction in the surface boundary
layer developed over grounds presenting complex topogra-
phies such as cities or industrial sites.

A level-set function (Sussman et al., 1994) characterizes
the geometric properties of the fluid—solid interface. Two
original approaches of the ghost-cell (Tseng and Ferziger,
2003) and cut-cell techniques (Udaykumar and Shyy, 1995)
are implemented to correct the MNH numerical schemes. A
newly proposed GCT recovers the fluid information in sev-
eral image points by presenting a distance to the interface in-
dependent of the ghost’s distance. The CCT consists of a new
finite-volume approach of flux balance near the immersed in-
terface. The GCT is applied to the numerical schemes based
on explicit time integration and the CCT is employed in the
implicit resolution of the Poisson equation, satisfying the
incompressibility hypothesis. The adaptation and use of it-
erative procedures solves the pressure problem without any
modification to the inverted matrix. The turbulence problem
is closed at the fluid—solid interface by a pragmatic LES—
RANS formulation based on the subgrid turbulent kinetic en-
ergy and the length of the smallest energetic eddies.

www.geosci-model-dev.net/12/2607/2019/

The pressure solver, adapted to the IBM and isolated from
the rest of MNH, is used to model potential flows around
several obstacles. Compared to analytical and theoretical so-
lutions, the numerical results demonstrate the ability of the
IBM adaptation to ensure that the momentum is preserved
and the continuity equation is respected. Non-dissipative
flows are simulated to test the IBM forcing of the wind
advection scheme (the impact of interpolations collected in
Franke (1982), classical and novel GCT comparison, and
numerical diffusion near the interface). These tests validate
the proposed GCT “three images and ghost points” using an
inverse distance-weighting (trilinear) interpolation near (far
from) the interface. The modeling of the advection term near
the fluid—solid interface is ensured by a second-order cen-
tered scheme associated with an artificial viscosity. The ar-
tificial viscosity is calibrated after comparisons with a third-
order WENO scheme. With these numerical choices, MNH-
IBM demonstrates its ability to model wake instabilities past
a circular cylinder placed in a viscous fluid. Then, large-
eddy simulations of turbulent flows around bodies with sharp
edges and corners are executed (i.e., a cube placed in a chan-
nel as in Martinuzzi and Tropea, 1993, and a near-neutral
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Figure 19. Spectrum of the measured (blue line) and modeled (green line) u wind component at the T tower at z = (4;8; 16) m. f* is
dimensionless as a Strouhal number using |u|inet(z = 2.5 m), and z = 2.5 m is the container length.

atmospheric application over an array of containers as in
Biltoft, 2001). These two LESs validate the proposed im-
mersed wall model, switching the characteristic space scale
defining the turbulent Reynolds number between one ob-
tained by either a viscous length scale (the cube case) or a
roughness length (the container case).

Future work. This study constitutes a first robust step to-
wards a better understanding of the interactions between
“weather and cities” and better predictions of such inter-
actions. The idealized character of the physical cases ap-
proached here offers some insights. One improvement would
consist of a generalization of the IBM writing to terrain-
following coordinates (Gal-Chen and Somerville, 1975), al-
lowing for the simulation of high-curvature bodies in the
presence of non-flat ground. In the run-up of the resolu-
tion of multiscale problems, consistency with grid nesting
(Stein et al., 2000) would be pertinent as would coupling
to a drag model (Aumond et al., 2013). In the current pa-
per, “simple” bodies are investigated; the modeling of real
houses and buildings with arbitrary shapes in close proxim-
ity to each other is ongoing with work dedicated to a brief
and intense pollutant episode due to a factory explosion in
2001 over Toulouse, assuming a dry neutral case with nonre-
active gas dispersion. Such hypotheses involve a broad range
of physical phenomena requiring numerical compliance with
IBM, including chemical reactions, phase changes and ra-
diative effects. Such compliance would allow for access to a
large variety of atmospheric situations.
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Code availability. The immersed boundary method has been im-
plemented in the 5.2 version of the Meso-NH code. This refer-
ence version is under the CeCILL-C license agreement and freely
available at http://mesonh.aero.obs-mip.fr/mesonh52 (last access:
13 May 2019).

The source files dedicated to IBM and the input files for the
simulations in Sects. 4 and 5 can be downloaded from the CER-
FACS web page: https://cerfacs.fr/MNHIBM/Auguste-GMD-2019
(Auguste, 2019). A Supplement to this article contains the tar ball
(1Mo) of these files. The immersed boundary method will be inte-
grated in a future Meso-NH version.
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Appendix A: Space convergence of the pressure solver

Array of vortices. A Poisson equation solution is investi-
gated (Fig. Ala) by imposing in the RHS of Eq. (5) the
dlvergence V.u* = - (12 + m?)cos(lx) sin(rmy), where
I =m = cste. The error norms (L, = {/>"|P, — P(|?, where
Py, is the numerical pressure and P; the theoretical one) are
estimated in the presence (or not) of an immersed cylindri-
cal body (Fig. Al). The space second order of the pressure
solver is recovered without IBM. The order decreases with
IBM and stays consistent regarding the L ,—(o0;1;2) slopes.
Note that an immersed square or sphere gives similar results.
Agnesi hill. The irrotational solution around two 2-D bell-
shaped interfaces is investigated with IBM and the boundary-
fitted method (BFM; terrain-following coordinates). The to-
pography is characterized by a height 4, and a shape i (x) =
—2 (kg =4, bell 1; k, =38, bell 2). The bell slope is
1 +( ka- x)
arbitrarily and respectively described here as gentle or steep.
Figure A2 shows the pressure contours obtained with IBM
(left) and BFM (right) for a gentle (top) and a steep (bot-
tom) shape. The minimal pressure value is localized at the
top of each bell and goes to zero far from this location. The
reference BFM and IBM simulations with the fine resolution
(N = 160 nodes per h,, red) show a good agreement for each
hill. The blue (green) corresponds to a coarser mesh employ-
ing N/3 (N/9) nodes per h,. Weak differences appear be-
tween the N and N /3 meshes for both IBM and BFM, reveal-
ing a good space convergence (Fig. A2a—b). Numerical errors
are visible with IBM near the interface, but the Venturi effect
is well modeled. Differences become more significant with
the N/9 mesh, especially with the BFM BELL?2 presenting
the highest curvature value (Fig. A2d). IBM appears less ac-
curate than BFM when the ground presents low curvature in
regard to the space resolution. Otherwise, IBM seems more
pertinent than BFM to model high interfaces such as sharp
edges or corners. The minimum pressure that could reach
—o0 is smoothed by IBM and allows the pressure solver not
to diverge. Note that Lundquist et al. (2010, 2012) used a
compressible WRF model and observed similar behaviors.
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Figure Al. Array of vortices around a cylinder: (a) illustration;
(b) Loo, L1 and L, norm functions of the space resolution.
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Figure A2. Potential flow function of the space resolution (color
code) plotting the pressure contours around two bells (a, b: BELL1,
gentle slope; ¢, d: BELL2, steep slope) and obtained with IBM (a, ¢)
and the boundary-fitted method (b, d).

Appendix B: Inviscid flow around a circular cylinder

For most atmospheric applications, the region size for which
the fluid molecular viscosity vt influences the dynamic is suf-
ficiently small to be considered negligible (Sect. 2.3). Solv-
ing the Euler equations, the impact of the numerical diffusion
could be significant, especially near the fluid—solid interface.
The adopted strategy with IBM is to model the advection
term with a low-order scheme near the interface (Sect. 3).
The order decrease in IBM is not essential but allows us
to limit the number of ghosts in the solid region, thereby
limiting the communications during a parallel computation.
Indeed, the chosen implementation implies that the associ-
ated images and ghost points have to be localized in the in-
tegration volume of each processor. The WEN3 third-order
weighted essentially non-oscillatory and CEN2 second-order
centered schemes are available in MNH. Far from the inter-
face a CEN4 fourth-order centered scheme is employed. Ta-
ble B1 summarizes the advection scheme nomenclature.
The vorticity equation for a 2-D inviscid flow reveals no
production in time. The numerical vorticity production at the
immersed surface of a cylindrical body is studied here by
initializing the simulation with the potential solution. To fit
the potential solution a nontrivial condition is employed on

the tangent velocny = 0. Expecting a numerical vorticity
sufficiently controlled to avoid the flow separation, the effect
of the artificial diffusion v, A% injected with CEN2 is com-
pared to the WEN3 intrinsically diffusive behavior. Further-
more, this study had estimated the 3-D interpolation impact
(not detailed here).
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Figure B1. Solving the Euler equations: (a) vorticity production E: (t*) influenced by the Courant number (CFL = 0.8, line; CFL =0.2,
symbol) and by the vyt artificial viscosity (red, green, blue, purple and cyan, respectively; vart = v;ff[l; 2:4;16; 256]_1) using an advection
CEN2 second-order centered scheme near the interface; (b) velocity magnitude field obtained with a WEN3 third-order weighted essentially
non-oscillatory scheme (top) and CEN2 + vflf.tf25671 (bottom). CEN4 is the advection scheme used far from the interface. The mesh is the
coarser one (MESH1).

0.5 .

T
WEN3: lines
CENZ: symbols

Figure B2. Solving the Euler equations: (a) influence of the space resolution (red: MESH1; green: MESH2; blue: MESH3) on the vorticity
production E :(t*) when the near-interface advection is modeled by WEN3 (line) and CEN2 + vgtf (symbol); (b) vorticity magnitude field
obtained by WEN3 (top) and CEN2 + viet (bottom).

art

Figure Bla plots the evolution in time of the enstrophy A reference value of the artificial viscosity is also defined as
Ef ") = UDo?i]}f V|V x u|dV depending on the Ar time step v;ftf = AA—XIZCFL.

and vy using CEN2 near the interface (with U, the veloc- Figure B1b illustrates the vorticity field in the vicinity of
ity of the incoming flow and V the integration volume in the the interface between the intrinsically diffusive WEN3 and
fluid region). The enstrophy increases in time and reaches a CEN2 + vyt with vy = v{f{ 256~!. The streamlines are main-
mean value when the produced vorticity near the interface tained without detachment near the interface with WEN3.

is evacuated from the numerical domain and in the body Otherwise, the CEN2 solution with low artificial diffusion
wake. Except for the simulations with low artificial diffu- presents numerical instabilities and vortex shedding.
sion (symbols and curves in cyan and purple), the vorticity Figure B2a plots the enstrophy evolution for three meshes

production is weakly dependent on the physical time and (color code) for WEN3 (lines) and CEN2+v, with vy =
CFL Courant number (symbols and curves in red, green and v;ftf (symbols). MESH1 (10 nodes per D¢y1), MESH2 (20

blue). It induces vuy proportional to Uss Ax & O (%)' nodes per Dcy1) and MESH3 (40 nodes per Dcy) are respec-
tively the coarse, intermediate and fine mesh. The border of
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Table B1. Summary of the mean wind advection scheme used
(WENO: weighted essentially non-oscillatory).

Advection Space Intervention location  Artificial

scheme order diffusion
CEN4  centered 4 far from the interface  no
CEN2  centered 2 near the interface yes
WEN3 WENO 3 near the interface no

the numerical domain is always distant from the cylinder of
more than 10Rcy. The CEN2+v™ vorticity production ap-
pears fairly close to the WEN3 one for the three space reso-
lutions. Figure B2b corroborates the last comment, present-
ing the vorticity contours dimensionless by %. A suitable
Vart combined with the CEN2 choice is also in the range of
the too-diffusive WEN3 results and the growth of numeri-
cal instabilities. CEN2+vf4~1 is retained as the advection

scheme of the mean wind near an immersed interface.
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