

Supplement of

Implementation of an immersed boundary method in the Meso-NH v5.2 model: applications to an idealized urban environment

Franck Auguste et al.

Correspondence to: Franck Auguste (franck.auguste@cerfacs.fr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

The Implementation of an immersed boundary method in the Meso-NH v5.2 model: Applications to an idealized urban-like environment paper is enriched with a viscous buoyancy-driven flow case (Straka et al., 1993). This additional case presents the comparison of the results obtained by a Boundary-Fitted Method (BFM) and Immersed-Boundary Method (IBM) used in the Meso-NH (MNH) code (Lafore et al., 1998; Lac et al., 2018). This case induces an IB forcing of the energy equation (see Eq. 1 of the main paper). The popular and thermodynamic case proposed by Straka et al. (1993) is a cold air bubble falling in an idealized atmospheric condition and followed in time by the development of a gravity current above an ideal surface. This case with MNH-BFM was intensively investigated in Lunet et al. (2017) to compare a fifth-order WENO advection scheme to a fourth centered scheme (CEN4), the two showing a good agreement with the literature. In this study, only CEN4 is employed.

5

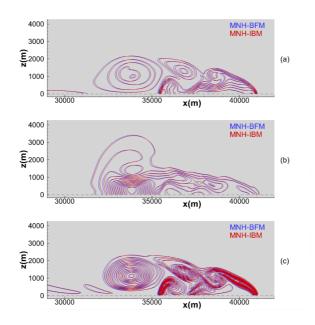


Figure S1. The Straka density current developed at t = 900 s: (a) sixteen isocontours of the potential temperature $\theta \in [284 : 299]$ K; (b) the kinetic energy where $e_k \in [0:660] m^2 s^{-2}$; (c) the enstrophy where $e_s \in [0:0.0064] s^{-2}$. The blue (red) line corresponds to the MNH-BFM (MNH-IBM) solutions with $\Delta x = 50$ m.

- 10 *Case description.* The ambient conditions correspond to a neutrally ($\theta = 300$ K) stratified dry atmosphere with air initially at rest (see Straka et al, 1993 for details on the reference conditions). Kinematic viscosity is imposed to $\nu_f = 0.1 \ m^2 . s^{-1}$. The case satisfies the incompressible or quasi-incompressible hypothesis (low Mach number). The two-dimensional domain is defined by $x \in [0:51,2.10^3]$ m in the horizontal direction and $z \in [0:6,4.10^3]$ m in the vertical direction. The type of lateral boundary conditions is cyclic. Free slip conditions without permeability are applied at the bottom and top surfaces. No
- 15 relaxation (to avoid reflective waves) is injected in the upper part of the atmosphere. The flow is symmetric with respect to the z axis at $x = 25, 6.10^3$ m (hence only the results in the region $x > 25, 6.10^3$ m are shown). Absolute temperature is initially placed in a region with an elliptic shape and maximum amplitude localized in its center: Location are $(x_c; z_c) = (25, 6; 3).10^3$ m; size is $(x_r; z_r) = (4; 2).10^3$ m; region is $R = \sqrt{(\frac{x-x_c}{x_r})^2 + (\frac{z-z_c}{z_r})^2}$; amplitude is $\Delta T = -15\cos(\pi R + 1)/2$ K if R < 1, $\Delta T = 0$ K elsewhere.
- 20 After nine minutes the shear at the front (between the disturbed and undisturbed region) is sufficiently high to initiate a vortex shedding (Kelvin-Helmholtz instability type). After fifteen minutes three vortices are clearly visible. Here we only focus on the flow properties at this particular time. The variables obtained at t = 900 s are presented in the Table S1.

Fi	Front location			$x_{front} = x - 25600$						
Extreme values of the temperature				$\Delta \theta_{min} = \theta_{min} - 300$						
Extreme values of the velocity field				$u_{min,max}$ (horizontal direction), $v_{min,max}$ (vertical direction)						
Kinetic energy				$e_k = \frac{1}{2} \boldsymbol{u} ^2$						
Enstrophy				$e_s = (abla imes oldsymbol{u})^2 = oldsymbol{\omega} ^2$						
	$\Delta \theta_{min}$	u_{min}	u_{max}	v_{min}	v_{max}	x_{front}	$\sum_{n=2}^{\infty} u ^2$	$\sum \boldsymbol{\omega} ^2$	ω_{max}	
	K	$m.s^{-1}$	$m.s^{-1}$	$m.s^{-1}$	$m.s^{-1}$	km	$\overline{m}^2.s^{-2}$	$10^{-5}s^{-2}$	$10^{-2}s^{-1}$	
$\Delta x = 25m$										
Rosa et al. (2011)	-9.96	-15.29	35.06	-15.94	13.07	15.16				
Straka et al. (1993)	-9.77	-15.19	36.46	-15.95	12.93	15.53	11.18	8.37		
MNH-BFM	-9.66	-15.26	36.14	-15.91	12.93	15.39	10.50	8.15	7.45	
$\Delta x = 50m$										
MNH-BFM	-9.66	-15.24	36.11	-15.88	12.89	15.40	10.50	8.09	7.43	
MNH-IBM	-9.74	-15.13	36.08	-15.94	13.09	15.41	10.18	7.87	7.41	

Table S1. The Straka current: definition of the studied local and integrated variables (top) and comparison (depending on the spatial resoutions) of MNH-IBM, MNH-BFM results and thus of Rosa et al. (2011) and Straka et al. (1993) (bottom).

Results. To obtain a MNH-BFM reference solution a 2048×256 mesh ($\Delta x_{ref} = 25$ m) is used. The time step is fixed to $\Delta t = 0.1$ s: the CFL number respects $\frac{U_{max}\Delta t}{\Delta x} < 0.2$. The results of the MNH-BFM reference solution are in good agreement with those of Straka et al. (1993) and Rosa et al. (2011) using the same spatial resolution: the travelled distance by the current, the energies and the vorticity production are well-recovered (Table S1).

Using a 1024×128 mesh ($\Delta x_{ref} = 50$ m) and $\Delta t = 0.1$ s ($\frac{U_{max}\Delta t}{\Delta x} < 0.1$), the case is simulated with MNH-BFM and MNH-IBM. The convergence in space of the solution is shown by the weak differences of the MNH-BFM results between the $\Delta x_{ref} = 25$ m and $\Delta x_{ref} = 50$ m resolutions. The good agreement beteen MNH-BFM and MNH-IBM on the density current location and its characteristics at t = 900 s is illustrated in Figure F1 plotting the θ potential temperature (top), the kinetic energy (middle) and the enstrophy (bottom) contours (BFM in blue line; IBM in red line). Note that two additional points are

10 energy (middle) and the enstrophy (bottom) contours (BFM in blue line; IBM in red line). Note that two additional points are necessary in the vertical direction (below the ground, dashed line in Figure F1) to compute the ghost points in MNH-IBM. Even if the fluid-solid interface is flat in this case, MNH-IBM preserves the change of the potential energy due to the gravitational acceleration in the momentum equation, which reflects the impermeability conditions of the ground due to the

Cut-Cell Technique employed in the pressure solver. The slip condition on the tangent velocity and the potential temperature 15 at the ground are also well-insured by the Ghost-Cell Technique.

References

5

Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., and others: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 1929-1969, 2018.

Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fisher, C., Hèreil, P., Mascart, P., Masson, V., Pinty,
J. P., Redelsperger, J.-L., Richard, E., and Vilà-Gueau de Arellano, J.: The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations. Scientific objectives and experimental design. Annales Geophysicae, 16, 90-109, 1998.

Lunet, T., Lac, C., Auguste, F., Visentin, F., Masson, V., and Escobar, J.: Combination of WENO and explicit Runge-Kutta methods for wind transport in Meso-NH model. Mon. Wea. Rev., 145(9), 3817-3838, 2017.

25 Rosa, B., Kurowski, M., and Ziemiański, M.: Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of a numerical weather prediction model Part I: Dry benchmarks. Acta Geophysica, 6(59), 1236-1266, 2011.

Straka, JM, Wilhelmson, R. B., Wicker, L. J., Anderson, J. R., and Droegemeier, K. K.: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. for Num. Methods in Fluids, 17(1), 1-22, 1993.