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Abstract. Large-eddy simulation (LES) has become a well-
established tool in the atmospheric boundary layer research
community to study turbulence. It allows three-dimensional
realizations of the turbulent fields, which large-scale mod-
els and most experimental studies cannot yield. To resolve
the largest eddies in the mixed layer, a moderate grid resolu-
tion in the range of 10 to 100 m is often sufficient, and these
simulations can be run on a computing cluster with a few
hundred processors or even on a workstation for simple con-
figurations. The desired resolution is usually limited by the
computational resources. However, to compare with tower
measurements of turbulence and exchange fluxes in the sur-
face layer, a much higher resolution is required. In spite of
the growth in computational power, a high-resolution LES
of the surface layer is often not feasible: to fully resolve the
energy-containing eddies near the surface, a grid spacing of
O(1 m) is required. One way to tackle this problem is to em-
ploy a vertical grid nesting technique, in which the surface is
simulated at the necessary fine grid resolution, and it is cou-
pled with a standard, coarse, LES that resolves the turbulence
in the whole boundary layer. We modified the LES model
PALM (Parallelized Large-eddy simulation Model) and im-
plemented a two-way nesting technique, with coupling in
both directions between the coarse and the fine grid. The cou-
pling algorithm has to ensure correct boundary conditions
for the fine grid. Our nesting algorithm is realized by mod-
ifying the standard third-order Runge–Kutta time stepping
to allow communication of data between the two grids. The

two grids are concurrently advanced in time while ensuring
that the sum of resolved and sub-grid-scale kinetic energy is
conserved. We design a validation test and show that the tem-
porally averaged profiles from the fine grid agree well com-
pared to the reference simulation with high resolution in the
entire domain. The overall performance and scalability of the
nesting algorithm is found to be satisfactory. Our nesting re-
sults in more than 80 % savings in computational power for 5
times higher resolution in each direction in the surface layer.

1 Introduction

Turbulence in the atmospheric boundary layer (ABL) en-
compasses a wide range of scales from the boundary-layer
scale down to the viscous dissipation scale. In ABL flows,
Reynolds numbers (Re) of 108 are commonly encountered.
Explicit simulation of the Navier–Stokes equations down
to the dissipative scales (DNS: direct numerical simula-
tion) for atmospheric processes is prohibitively expensive, as
the required number of grid points in one direction scales
with Re3/4 (Reynolds, 1990). This corresponds to a three-
dimensional ABL simulation domain with a total number
of grid points of order 1017. The supercomputers of to-
day cannot fit more than 1012 grid points in their mem-
ory. To be able to compute turbulence processes in the
atmosphere nevertheless, the concept of large-eddy simu-
lation (LES) was introduced already a few decades ago,

Published by Copernicus Publications on behalf of the European Geosciences Union.



2524 S. Huq et al.: Vertically nested LES for high-resolution simulation of the surface layer

e.g., Deardorff (1974), Moeng and Wyngaard (1988) and
Schmidt and Schumann (1989), where the presence of a
sub-grid-scheme allows that only the most energetic eddies
are resolved. One of the first large-eddy simulations (LESs)
by Deardorff (1974) used 64 000 grid points to simulate
a domain of 5 km× 5 km× 2km with a grid resolution of
(125,125,50)m. The size of one such grid cell is just suf-
ficient to resolve the dominant large eddies, and there are
just enough grid points to represent the ABL. As computing
power progressed, higher resolution and larger domains be-
came possible. By the time of Schmidt and Schumann (1989)
the number of grid cells had risen to 160× 160× 48, simu-
lating an ABL of 8 km×8 km× 2.4 km with a resolution of
(50,50,50)m. Khanna and Brasseur (1998) used 1283 grid
points to simulate a domain of 3 km×3 km×1 km to study
buoyancy and shear-induced local structures of the ABL. Pat-
ton et al. (2016) used (2048,2048,1024) grid points with
a grid resolution of (2.5,2.5,2)m to study the influence of
atmospheric stability on canopy turbulence. More recently,
Kröniger et al. (2018) used 13×109 grid points to simulate a
domain of 30.72 km×15.36 km×2.56 km to study the influ-
ence of stability on the surface–atmosphere exchange and the
role of secondary circulations in the energy exchange. The
atmospheric boundary layer community has greatly bene-
fited from the higher spatial resolution available in these LES
to study turbulent processes that cannot be obtained in field
measurements. Still, especially in heterogeneous terrain, near
topographic elements and buildings or close to the surface,
the required higher resolution is not always attainable due to
computational constraints. In spite of the radical increase in
the available computing power over the last decade, large-
eddy simulation of high Reynolds number atmospheric flows
with very high resolution in the surface layer remains a chal-
lenge. Considering the size of the domain required to repro-
duce boundary-layer-scale structures, it is computationally
demanding to generate a single fixed grid that could resolve
all relevant scales satisfactorily. Alternatively, local grid re-
finement is possible in the finite volume codes that are not
restricted to structured grids. Flores et al. (2013) developed
a solver for the OpenFOAM modeling framework to sim-
ulate atmospheric flows over complex geometries using an
unstructured mesh approach. The potential of the adaptive
mesh refinement technique in which the tree-based Cartesian
grid is refined or coarsened dynamically, based on the flow
structures, is demonstrated by van Hooft et al. (2018). In the
finite difference models, a grid nesting technique can be em-
ployed to achieve the required resolution. In the nested grid
approach, a parent domain with a coarser resolution simu-
lates the entire domain, while a nested grid with a higher res-
olution extends only up to the region of interest. Horizontal
nesting has been applied to several mesoscale models (Ska-
marock et al., 2008; Debreu et al., 2012). Horizontally nested
LES-within-LES or LES embedded within a mesoscale sim-
ulation is available in the Weather Research and Forecast
model (Moeng et al., 2007). Comparable grid nesting tech-

niques are also widely employed by the engineering turbu-
lence research community but often use different terminol-
ogy. Nesting in codes with Cartesian grids is referred to
as local or zonal grid algorithm (Kravchenko et al., 1996;
Boersma et al., 1997; Manhart, 2004) and as overset mesh
(Nakahashi et al., 2000; Kato et al., 2003; Wang et al., 2014)
in unstructured or moving grid codes.

For our purposes, we will focus on vertical nesting; i.e.,
we consider a fine grid nested domain (FG) near the lower
boundary of the domain and a coarse grid parent domain
(CG) in the entirety of the boundary layer. While the lat-
ter’s resolution (< 50 m) is sufficient to study processes in
the outer region where the dominant eddies are large and in-
ertial effects dominate, such coarse resolution is not suffi-
cient where fine-scale turbulence in the surface layer region
is concerned. The higher resolution achieved by the vertical
nesting will then allow a more accurate representation of the
turbulence in the surface layer region, by resolving its domi-
nant eddies. For studies that require very high resolution near
the surface (e.g., virtual tower measurements, wakes behind
obstacles, dispersion within street canyons for large cities), a
nesting approach is an attractive solution due to the reduced
memory requirement. A challenge of the vertically nested
simulation is that the FG upper boundary conditions need to
be correctly prescribed by the CG. Though vertical nesting
is less common than the horizontal nesting, it has been im-
plemented in some LES models. A non-parallelized vertical
nesting was explored by Sullivan et al. (1996), but the code
is not in the public domain, and we could not find any record
of further development or application of this code in publi-
cations. A LES-within-LES vertical nesting is implemented
by Zhou et al. (2018) in the Advanced Regional Prediction
System (ARPS) model. We would like to point out that the
vertical nesting available in the Weather Research and Fore-
cast model (Daniels et al., 2016) is not a conventional ver-
tical nesting because the parent and the child grid still have
the same vertical extent; the child grid is only more refined
in the vertical.

An analysis of different nesting procedures for mesoscale
simulation was performed by Clark and Hall (1991); they
coined the terms “one-way” and “two-way” interactions. In
one-way interaction, only the FG receives information from
the CG, and there is no feedback to the CG. In two-way inter-
action, the FG top boundary conditions are interpolated from
the CG, and the CG values in the overlapping region are up-
dated with the FG resolved fields. The “update” process, re-
ferred to as “anterpolation” by Sullivan et al. (1996), is sim-
ilar to the restriction operation in multi-grid methods. Harris
and Durran (2010) used a linear 1-D shallow-water equation
to study the influence of the nesting method on the solution
and found the two-way interaction to be superior if the waves
are well resolved. They introduce a filtered sponge boundary
condition to reduce the amplitude of the reflected wave at the
nested grid boundary. We will make use of the interpolation
and anterpolation formulas of Clark and Farley (1984). Clark
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and Hall (1991) studied two different approaches for updat-
ing the CG values, namely “post-insertion” and “pressure de-
fect correction”. The two approaches were also investigated
by Sullivan et al. (1996) in their vertical nesting implementa-
tion. In the post-insertion technique, once the Poisson equa-
tion for pressure is solved in the FG, the resolved fields are
then anterpolated to the CG. In the pressure defect correc-
tion approach, the pressure in the CG and FG are matched
by adding a correction term to the CG momentum equations,
and an anterpolation operation is not required. Though Sulli-
van et al. (1996) note the pressure defect correction approach
to be more elegant, no significant difference in the results was
reported. In the following sections we describe the technical
realization and numerical aspects of the two-way nesting al-
gorithm. In the LES model PALM, a validation simulation is
set up, and the results of the nested and stand-alone simula-
tions are compared. A second simulation is set up to evaluate
the computational performance of the algorithm. The practi-
cal considerations and the limitations of the two-way nesting
are then discussed.

2 Methods

2.1 Description of the standard PALM

The Parallelized Large-eddy simulation Model (PALM) is
developed and maintained at the Leibniz University of
Hanover (Raasch and Schröter, 2001; Maronga et al., 2015).
We give a quick summary of the model here and highlight
the aspects which will reappear when discussing our nest-
ing modifications. PALM is a finite difference solver for the
non-hydrostatic incompressible Navier–Stokes equations in
the Boussinesq approximation. PALM solves for six prog-
nostic equations: the three components of the velocity field
(u,v,w), potential temperature (θ ), humidity (q) and the sub-
grid-scale kinetic energy (e). The sub-grid-scale (SGS) tur-
bulence is modeled based on the method proposed by Dear-
dorff (1980). The equations for the conservation of mass,
energy and moisture (Eqs. 1, 2, 3 and 4) are filtered over a
grid volume on a Cartesian grid. Adopting the convention
of Maronga et al. (2015), the overbar denoting the filtered
variables is omitted. However, the overbar is shown for SGS
fluxes. The SGS variables are denoted by a double prime.
The prognostic equations for the resolved variables are
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The symbols used in the above equations are listed in Table 1.
The 1.5-order closure parameterization modified by Moeng
and Wyngaard (1988) and Saiki et al. (2000) assumes a gradi-
ent diffusion parameterization (Eqs. 6, 7, 8). The prognostic
equation for the SGS turbulent kinetic energy (TKE) reads as
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with the SGS fluxes modeled as
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The eddy diffusivities are proportional to e3/2 under convec-
tive conditions (Maronga et al., 2015). For a thorough de-
scription of the governing equations and parameterizations,
see Maronga et al. (2015).

The prognostic equations are discretized on a staggered
Arakawa C grid, where the scalars are evaluated in the cen-
ter of the grid volume, and velocities are evaluated at the
center of the faces of the grid volume in their respective di-
rection. The advection terms are evaluated either with fifth-
order upwind discretization according to Wicker and Ska-
marock (2002) or with a second-order scheme according to
Piacsek and Williams (1970). The prognostic equations are
integrated in time using a third-order Runge–Kutta (RK3)
scheme. The low storage RK3 scheme with three sub-steps
proposed by Williamson (1980) guarantees a stable numer-
ical solution. The Poisson equation for pressure is solved
with a fast Fourier transform (FFT) when periodic bound-
ary conditions are applied in the lateral boundaries. There
are three FFT algorithms available in PALM, with Fastest
Fourier Transform in the West (FFTW) being the optimal
method for large-scale simulations. Monin–Obukhov simi-
larity theory (MOST) is assumed between the surface and the
first grid point. A vertical zero pressure gradient at the sur-
face guarantees the vertical velocity to be zero. Simulations
can be driven by either prescribing the surface temperature
or the surface sensible heat flux, similarly for the humidity.
At the top of the simulation domain the horizontal veloci-
ties equal geostrophic wind, and the vertical velocity is set
to zero. The pressure can assume either a Dirichlet condition
of zero value or a Neumann condition of zero vertical gradi-
ent. The scalar values can have either a fixed value Dirichlet
condition or a fixed gradient Neumann condition. The verti-
cal gradient of SGS turbulent kinetic energy (TKE) is set to
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Table 1. List of symbols in the governing equations and parameterizations.

Symbol Description

fi Coriolis parameter
ρ0 Density of dry air at the surface
π∗ Modified perturbation pressure
g Gravitational acceleration
θv Virtual potential temperature
Lv Latent heat of vaporization
Cp Heat capacity of dry air at constant pressure
qv Specific humidity
9qv Source/sink term of qv
5 Exner function for converting between temperature and potential temperature
Kh SGS eddy diffusivity of heat
Km SGS eddy diffusivity of momentum

zero at both top and bottom boundaries. PALM is a paral-
lelized model, and the standard way of parallelization is by
dividing the three-dimensional domain into vertical columns,
each of which is assigned to one processing element (PE).
Each vertical column possesses a number of ghost points
needed for computation of derivatives at the boundary of the
sub-domains. Each PE can only access data for a single sub-
domain. All PEs execute the same program on a different
set of data. For optimum load balancing between the PEs,
the decomposed sub-domains should have the same size. In
PALM, this condition is always satisfied as only sub-domains
of the same size are allowed. The data exchange between PEs
needed by the Poisson solver and to update the ghost points
is performed via the Message Passing Interface (MPI) com-
munication routines.

2.2 Nested model structure

2.2.1 Fine grid and coarse grid configuration

We are interested in achieving an increased resolution only
in the surface layer, the lowest 10 % of the boundary layer,
where surface exchange processes occur and where eddies
generated by surface heterogeneity and friction are smaller
than the dominant eddies in the mixed layer. We set up the
LES-within-LES case by maintaining the same horizontal
extent for the FG and the CG to have the whole surface better
resolved. We allow the vertical extent of the FG to be var-
ied as needed, typically up to the surface layer height. This
implementation of vertical grid nesting has two main chal-
lenges. The first challenge, that is purely technical in nature,
is to implement routines that handle the communication of
data between the CG and the FG. The second and the most
important challenge is to ensure that the nesting algorithm
yields an accurate solution in both grids. Below we use up-
per case symbols for fields and variables in the CG and lower
case for the FG; e.g.,E and e denote the sub-grid-scale turbu-
lent kinetic energy (a prognostic variable in our LES) of CG

and FG respectively. The nesting ratio is defined as the ratio
of the CG spacing to the FG spacing, and nx =1X/1x; cor-
responding symbols apply for y and z directions. The nesting
ratios nx , ny and nz have to be integers. It is possible to have
either an odd or even nesting ratio, and it can be different in
each direction. As the domain that is simulated in the FG is
completely inside of the CG domain, each FG cell belongs
to a CG cell. The two grids are positioned in such a way that
a FG cell belongs to only one CG cell, and one CG cell is
made up by a number of FG cells given by the product of the
nesting ratios nx×ny×nz. This means that if the grid nesting
ratio is odd, there will be one FG cell whose center is exactly
at the same position as the center of the coarse cell as shown
in Fig. 1b. The collection of FG cells that correspond to one
CG cell is denoted by C(I,J,K). The collection of yz faces
of the FG that corresponds to a yz face of the CG is denoted
by Cx(Is,J,K), where it is understood that the Is index is an
index on the staggered grid in the x direction to denote the
position of the face, and this is similar for the other types of
faces. We have used fx = 1/nx to denote the inverse of the
nesting ratio in the x dimension (corresponding symbols for
y and z). A schematic diagram of the overlapping grids is
shown in Fig. 1a.

2.2.2 Vertical nesting algorithm

We implement a two-way interaction algorithm, shown in
Fig. 2, because in our first trials we found that one-way nest-
ing did not improve the FG representation satisfactorily and
hence was not pursued further. The FG prognostic quantities
are initialized by interpolating the CG values in the overlap-
ping region. Optionally, the initialization of the FG can be
delayed until the CG has reached a fully turbulent state. Both
grids are restricted to have identical time steps. PALM finds
the largest time step for each grid such that the Courant–
Friedrichs–Lewy (CFL) condition is individually satisfied,
and the minimum of the two values is then chosen as the
time integration step for both grids. The right-hand side of
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Figure 1. (a) Schematic of the interpolation and anterpolation between grids. The FG top boundary condition is interpolated from the CG.
The CG prognostic quantities in the overlapping region are anterpolated from the FG. (b) Schematic of Arakawa C grid for two grids with
nesting ratio of 3. The black arrows and circles are CG velocity and pressure, respectively. The blue and red arrows are horizontal and vertical
velocity, respectively, in the FG. The filled black circle is the FG pressure. The symbols 8 and φ represent CG and FG scalar quantities. I
and K are CG indices and nx and nz are the nesting ratio in x and z, respectively.

the prognostic equation except for the pressure is first com-
puted concurrently in both grids. The values of u,v,w,θ and
q are then anterpolated to the CG in the overlapping region.
The CG solves a Poisson equation for pressure. The new
u,v,w,θ and q fields in the CG are interpolated to set the
FG Dirichlet top boundary conditions. The Poisson equation
is then solved for pressure in the FG, and the vertical velocity
in the FG is also updated by the pressure solver at this stage.
Since all the velocity components follow a Dirichlet condi-
tion at the FG top boundary, only a Neumann condition is
suitable for pressure (Manhart, 2004). PALM permits the use
of a Neumann zero-gradient condition for pressure at both
the top and bottom boundary. It is advisable to use a Neu-
mann boundary condition at the top and the bottom for the
CG too. The TKE is then anterpolated maintaining the Ger-
mano identity, and it is followed by the computation of SGS
eddy diffusivity for heat (kh) and momentum (km) in the CG.
This procedure is repeated at every sub-step of the Runge–
Kutta 3 time integration, and it ensures that the velocity field
remains divergence free in both grids.

In the 1.5-order turbulence closure parameterization, all
the sub-grid fluxes are derived from the turbulent kinetic en-
ergy and the resolved gradients at each time step. Therefore,
the sub-grid fluxes do not have to be interpolated from CG
to FG at the top boundary. Furthermore, in our implementa-
tion of the nesting method, we assume that most of the TKE
is resolved well down to the inertial subrange, except for the
lowest few grid layers. This allows us to use the zero-gradient
Neumann boundary condition for TKE at the FG top bound-
ary. We employ a simplified sponge layer by limiting the an-
terpolation of all prognostic quantities to one CG cell fewer
than the nested height. This segregation of the anterpolation
region in the CG and top boundary condition level of the FG
ensures that the flow structures in the CG propagate into the
FG without distortion due to numerical artifacts.

2.3 Translation between grids

2.3.1 Interpolation

For the boundary conditions at the top of the FG, the fields
from the CG are interpolated to the FG, according to Clark
and Farley (1984). We define the top of the FG as the bound-
ary level just above the prognostic level of each quantity. In
Eq. (10), 8 and φ represent CG and FG quantities, respec-
tively. For the scalar fields, the interpolation is quadratic in
all three directions. For the velocity components, the inter-
polation is linear in its own dimension and quadratic in the
other two directions. The same interpolation formulation is
also used to initialize all vertical levels of the fine grid do-
main at the beginning of the nested simulation. The interpo-
lation is reversible as it satisfies the conservation condition
of Kurihara et al. (1979):

< φ >=<8> . (9)

For clarity, we illustrate the interpolation by focusing on one
particular dimension, in this case x, but the same operation
holds for y and z. The interpolation in the x dimension reads
as

φm = η
m
−8I−1+ η

m
0 8I + η

m
+8I+1, (10)

with m running from 1 to nx , thus producing nx equations
for each CG cell I . For the interpolation in y and z there will
be two additional indices, producing nx × ny × nz equations
for all the FG cells corresponding to the CG parent cell. For
the quadratic interpolation a stencil with three legs is used,
relating the prognostic value of a FG cell to the value of its
parent CG and the values of the immediate CG neighbor on
the left and on the right of the parent cell, e.g., 8I−1 and
8I+1 for the x direction as shown in Fig. 1b. The stencil
coefficients are
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Figure 2. A flowchart of the two-way interaction algorithm. The
new routines needed for the vertical nesting are highlighted in red
and the standard routines are highlighted in blue. An arrow pointing
to the left indicates transfer of data from FG to CG, and vice versa.

ηm− =
1
2
Hm(Hm− 1)+α,

ηm0 = (1−H
2
m)− 2α,

ηm+ =
1
2
Hm(Hm+ 1)+α ,

(11)

with the weights Hm expressed in function of the inverse
nesting ratio,

Hm =
1
2
((2m− 1)fx − 1) , (12)

and the coefficient α is chosen such that the conservation
condition of Kurihara et al. (1979) is satisfied:

α =
1
24

(
f 2
x − 1

)
. (13)

It can be observed that the sum of the ηs equals 1.

2.3.2 Anterpolation

The anterpolation of the prognostic quantities is performed
by an averaging procedure according to Clark and Hall
(1991). The anterpolation equations for the velocities read
as

UI,J,K =< u>j,k =
∑

j,k∈CIJK
ui∗,j,kfyfz ,

VI,J,K =< v>i,k =
∑

i,k∈CIJK
vi,j∗,kfxfz ,

WI,J,K =<w>i,j =
∑

i,j∈CIJK
wi,j,k∗fxfy .

(14)

For the scalars it is

8I,J,K = [φ]i,j,k =
∑

i,j,k∈CIJK
φi,j,kfxfyfz . (15)

Here the lower case indices only count over the fine grid
cells that belong to that particular coarse grid cell. For each
(I,J,K) tuple of a parent CG cell, there exists a set CIJK
containing the (i,j,k) tuples of its corresponding children
FG cells. To ensure that the nested PALM knows at all times
which fine grid cells and coarse grid cells correspond, we
compute this mapping for the FG and CG indices before
starting the simulation, and we store it in the memory of
the parallel processing element. In the Arakawa C grid dis-
cretization that PALM uses, the scalars are defined as the
spatial average over the whole grid cell, and therefore it is re-
quired that the CG scalar is the average of the corresponding
FG scalars in (Eq. 15). However, the velocities are defined at
the faces of the cells in the corresponding dimension. There-
fore in (Eq. 14) the CG velocity components are computed
as the average over the FG values at the FG cells that cor-
respond to the face of the CG cell, expressed by i∗, j∗, k∗

respectively.
However, the TKE in the CG differs from the FG value,

due to the different resolution of grids. In the FG the SGS
motions are weaker because the turbulence is better resolved.
Therefore, TKE is anterpolated such that the sum of resolved
kinetic energy and TKE (SGS kinetic energy) is preserved,
by maintaining the Germano identity (Germano et al., 1991):

E = [e] +
1
2

3∑
n=1

([unun] − [un][un]) . (16)

Here the straight brackets are the spatial average over the
coarse grid cell (fxfyfz×

∑
i,j,k∈CIJK ), and the n index runs

Geosci. Model Dev., 12, 2523–2538, 2019 www.geosci-model-dev.net/12/2523/2019/



S. Huq et al.: Vertically nested LES for high-resolution simulation of the surface layer 2529

Figure 3. Schematic of the MPI processor grouping. The data ex-
change between the two groups is performed via the global com-
municator. M and N are the number of processors for CG and FG
respectively.

over the three spatial dimensions. In other words, to obtain
the CG TKE from the average FG TKE, we add the variance
of the FG velocity components over the FG cells comprising
the CG cell. Therefore CG TKE is always larger than FG
TKE.

2.4 Parallel inter-grid communication

MPI is the most widely used large-scale parallelization
library. The atmosphere–ocean coupling in PALM has
been implemented following MPI-1 standards (Esau, 2014;
Maronga et al., 2015). We follow a similar approach for
the MPI communications and have adopted MPI-1 stan-
dards for our nesting implementation. Concurrent execution
of the two grids is achieved with the MPI_COMM_SPLIT
procedure. The total available processors are split into two
groups, denoted by color 0 or 1 for CG and FG respec-
tively; see Fig. 3. The data between the processors of the
same group are exchanged via the local communicator cre-
ated during the splitting process, whereas the data between
the two groups are exchanged via the global communicator
MPI_COMM_WORLD.

Based on the nesting ratio and the processor topology of
the FG and the CG group, a mapping list is created and
stored. Given the local PE’s 2-D processor co-ordinate, the
list will identify the PEs in the remote group to/from which
data need to be sent/received; the actual communication then
takes place via the global communicator. There are three
types of communication in the nesting scheme:

i. Initialization of the FG. (Send data from coarse grid to
fine grid.) This is performed only once.

ii. Boundary condition for the FG top face. (Send data
from coarse grid to fine grid.)

iii. Anterpolation. (Send data from fine grid to coarse grid.)

The exchange of arrays via MPI_SENDRECV routines is
computationally expensive. Therefore, the size of the arrays
communicated is minimized by performing the anterpolation
operation in the FG PEs and storing the values in a tempo-
rary 3-D array that is later sent via the global communica-
tor to the appropriate CG PE. This approach is more effi-
cient than performing the anterpolation operation on the CG
which has fewer PEs and needs communication of larger ar-
rays from the FG. Furthermore, the array data that need to be
communicated during the anterpolation operation and for set-
ting the FG boundary condition are not contiguous in mem-
ory. The communication performance is enhanced by creat-
ing an MPI-derived data type that ensures that the data are
sent contiguously. Within the RK3 sub-steps, when one grid
executes the pressure solver, the other grid has to wait, lead-
ing to more computational time at every sub-step. However,
the waiting time can be minimized by effective load balanc-
ing; i.e., the number of grid points per PE in the CG should
be kept lower than in the FG. The reduction in workload per
CG PE is achieved with a few additional cores. The reduction
in computational time per step in the CG means the waiting
time on the FG PE is also reduced.

3 Results and discussion

3.1 Simulation setup for the nesting validation test

To evaluate the accuracy of the two-way nesting algorithm,
we set up a convective boundary layer simulation. Two over-
lapping grids with a nesting ratio of 5 in the lateral and ver-
tical direction are employed. The simulation parameters are
listed in Table 2. A stand-alone reference simulation with the
same resolution as the coarse grid (SA-C) and another ref-
erence with the same resolution as the fine grid (SA-F) are
performed for comparison. The grid configuration and the
computational resources used are listed in Table 3. The sim-
ulations were performed in a local computing cluster; each
compute node has 64 GB of main memory and a 2.8 GHz
Ivy Bridge processor with 20 cores. The simulation domain
has periodic boundary conditions in the lateral direction. The
Dirichlet boundary condition is applied for velocity at the top
and bottom boundaries, the vertical velocity component is set
to zero and the horizontal components are set to geostrophic
wind. At the top and bottom boundaries, the pressure and
humidity are set to a zero gradient Neumann condition. The
potential temperature is set to a Neumann condition at the
bottom, and the gradient is determined by MOST based on
the prescribed surface heat flux and roughness length. The
gradient of the initial profile is maintained at the top bound-
ary. In PALM, ug and vg represents the u and v component
of the geostrophic wind at the surface. The u and v ini-
tial profiles are set to be constant, equal to the value of the
geostrophic wind component in the domain, and the verti-
cal velocity is initialized to zero in the domain. The potential
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temperature is initialized to a constant value of 300 K up to
800 m, and above 800 m a lapse rate of 1 K (100 m)−1 is pre-
scribed. The humidity profile is initialized to a constant value
of 0.005 kg kg−1. The simulation is driven by prescribing a
surface heat flux of 0.1 K m s−1 and a surface humidity flux
of 4×10−4 kg kg−1 m s−1. The domain is more than 4 times
larger in the horizontal than the initial boundary layer height.

3.2 Analysis of the simulations

In a two-way nesting it is important that the flow structures
are propagated from the FG to CG and vice versa, without
any distortion. In Fig. 4, the contours in the CG region over-
lapping the FG have similar structures as the FG. The higher
resolution in the FG enables more detailed contours, whereas
the anterpolated CG contours are smoother. Furthermore, in
the CG region beyond the overlapping region, no distortion
of the contours is observed, indicating that the anterpolation
does not introduce sharp gradients in the CG.

Vertical profiles are used for quantitative comparison of
the nested and the reference simulations. The turbulent fluc-
tuations (e.g., θ ′′, w′′) are defined as the spatial deviations
from the instantaneous horizontal average. The turbulent
fluxes (e.g., <w′′θ ′′ >, < u′′u′′ >) are obtained using the
spatial covariance and are then horizontally averaged. All the
horizontally averaged profiles (e.g., < θ >, <w′′θ ′′ >) are
also averaged over time, but we omit the conventional over-
line notation for readability. The convective velocity scale
(w∗) and temperature scale (θ∗) obtained from SA-F are
used to normalize the profiles. The convective velocity is
calculated as w∗ = (g θ−1

0 Hs zi)
1/3, where g is the gravita-

tional acceleration, θ0 is the surface temperature and zi is the
boundary layer height in the simulation. The convective tem-
perature scale is calculated as θ∗ =Hs w

−1
∗ . In Fig. 5a and c,

the vertical profiles of difference between the potential tem-
perature (< θ >) and its surface value normalized by the con-
vective temperature scale are plotted. Since the FG profiles
are superior to the CG in the overlapping region, the anterpo-
lated CG values are not plotted. In Fig. 5a, there is no visible
difference between the stand-alone and the nested simula-
tions. However, in the region closer to the surface, plotted in
Fig. 5c, a better agreement between the SA-F and FG is ob-
served. The potential temperature variance (< θ ′′θ ′′ >) nor-
malized by the square of the temperature scale (θ2

∗ ) is shown
in Fig. 5b and d. Here too FG provides better accuracy close
to the surface.

In the vertical heat flux (<w′′θ ′′ >) profiles in Fig. 6, the
FG has good agreement with the SA-F in the surface layer
for the resolved, SGS and the total flux profiles. In the CG
regions above the nested grid height, a good agreement with
the SA-C is found as well. The improvement due to the two-
way nesting is seen in Fig. 6d and e, where the effects of low
grid resolution of the SA-C in resolved and SGS fluxes are
evident. However, no grid-dependent difference in the profile
is observed in the total flux.

The resolved variances of u, v and w normalized by the
square of the convective velocity (w2

∗) are plotted in Fig. 7.
The FG v andw FG profiles have a better agreement with the
SA-F than the u variance. The u and v variances in Fig. 7d
and e lie between SA-C and SA-F, indicating that the re-
solved variances are improved compared to the SA-C but not
sufficiently resolved to match SA-F. At the nesting height the
variances deviate more from the SA-F and approach the CG
values. Due to conservation of total kinetic energy across the
nest boundary, more CG TKE is contained in the sub-grid
scale. Consequently, the resolved CG variances could have
an undershoot as compared to SA-F, resulting in an under-
shoot of the FG variances too at the nesting height. Above
the nesting height, the variance of u, v and w in CG is simi-
lar to SA-C.

The resolved vertical velocity skewness in Fig. 8 shows
good agreement between the FG and SA-F close to the sur-
face. However, at the nesting height a small kink in the skew-
ness is noticeable. Zhou et al. (2018) observe that the mag-
nitude of the kink in the higher-order profiles can be mini-
mized by increasing the depth of the sponge layer. Our sim-
plified sponge layer approach appears to be unable to effec-
tively minimize the kinks at the nesting height. The resolved
skewness in CG is lower than SA-C, possibly due to larger
SGS TKE in the CG, as seen in Fig. 8d. The SGS TKE in
Fig. 8d shows an exact match between FG and SA-F close to
the surface and only marginal difference at the nesting height.
However, CG values are considerably different from the SA-
C values close to the surface due to the anterpolation main-
taining the Germano identity for conservation of kinetic en-
ergy across the grids. In the coarse-resolution SA-C, near the
surface, the SGS turbulence model appears to insufficiently
model the SGS effects. Above the nesting height the CG is
similar to SA-C.

The horizontal spectra of SGS turbulent kinetic energy and
vertical velocity are plotted in Fig. 9 at two levels, one within
the nested grid and one above the nested grid height. The FG
TKE spectra in Fig. 9c perfectly overlap the SA-F spectra.
The CG spectra have higher energy than the SA-C; this corre-
sponds to the higher CG TKE values observed in Fig. 8c. As
the limit of the grid resolution is reached at high wavenum-
ber, the drop in the CG spectra is marginally shifted com-
pared to SA-C. This improvement at high wavenumber is
due to feedback from the FG. Similarly, the vertical veloc-
ity spectra in Fig. 8d show marginal improvement at high
wavenumber for the CG with respect to SA-C. While the
FG agrees with SA-C at high wavenumber and at the spectra
peak, at low wavenumber FG follows the CG spectra. At the
level above the nested grid, the CG spectra agree with SA-C
for both TKE and the vertical velocity.

3.3 Computational performance

The computational resources used in the simulations dis-
cussed above are listed in Table 3. The resources needed
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Table 2. Simulation parameters for the nesting validation test.

Simulation parameters Value

Domain size: 4.0× 4.0× 1.65 km3

Fine grid vertical extent: 320 m
Kinematic surface heat flux: Hs = 0.1 K m s−1

Kinematic surface humidity flux: λEs = 4× 10−4 kg kg−1 m s−1

Geostrophic wind: ug = 1 m s−1, vg = 0 m s−1

Roughness length: 0.1 m
Simulated time: 10 800 s
Spin-up time: 9000 s
Averaging interval: 1800 s

Table 3. Grid configuration of the nested and stand-alone reference domains.

Case No. of (dx,dy,dz) CPU Core Grid points Time
grid points m cores hours per core steps

Coarse grid (CG) 200× 200× 80= 3.2× 106 20, 20, 20 20 376 1.6× 105 17 136
Fine grid (FG) 1000× 1000× 80= 80× 106 4, 4, 4 80 1503 1.0× 106 17 136

Total 1879

Stand-alone coarse (SA-C) 200× 200× 80= 3.2× 106 20, 20, 20 20 8 1.6× 105 3226

Stand-alone fine (SA-F) 1000× 1000× 400= 400× 106 4, 4, 4 400 8234 1.0× 106 18 343

Table 4. Number of grid points in nested and non-nested FG do-
main.

Case No. of grid points

Coarse grid 840× 840× 288= 0.20× 109

Fine grid 4200× 4200× 360= 6.35× 109

Total 6.55× 109

Non-nested FG 4200× 4200× 360= 6.35× 109

by SA-C is only 8 core hours. While the nested simula-
tions needed about 1879 core hours, the SA-F needed about
4 times more core hours than the nested simulation. As the
resolution is increased from 20 m in SA-C to 4 m in SA-F,
the number of time steps increased more than 5 times as
higher resolution demands a smaller time step size. Though
the number of time steps in FG is similar to SA-F, limiting
the nested grid in the vertical direction has reduced the num-
ber of CPU cores needed, and higher resolution in the surface
layer is achieved at a reduced computational cost.

Several factors influence the computational performance
of an LES code. Some factors depend on the hardware; e.g.,
the number of grid points per PE depends on the mem-
ory available per node. On the other hand, the communi-
cation time for data exchange between the PEs depends on
the topology of the domain decomposition. The best perfor-
mance in terms of communication time in a stand-alone run

is achieved when the number of sub-domains in the x and y
directions is equal. In that case the number of ghost points
at the lateral boundaries is optimally minimized. In a nested
simulation, the load per PE, i.e., the number of grid points per
PE, in the two grids varies. As the speed of the model inte-
gration depends on the PE load, the load balancing between
the fine and coarse grid has an effect on the computational
performance of the nested simulation. Keeping these factors
in mind, we designed the nested simulation domains listed
in Table 4 for the purpose of assessing the computational
performance, as the total number of processors is varied. To
avoid load balancing bias in the scalability analysis, the ratio
between the number of PEs for CG and FG is kept constant
in all the five runs listed in Table 5. Keeping the processor
ratio constant implies that the ratio between the number of
grid points per PE in CG and FG is also held constant. Con-
sequently, in this performance test, the FG has 1.25 times
more grid points per PE than the CG in all the processor con-
figurations tested. To compare the performance of the nested
model against the non-nested version of PALM under equiv-
alent work load, a grid with the same dimensions of the FG
is set up. This non-nested grid also has the same load per PE
and same number of cores as the FG. Such a non-nested setup
is acceptable for comparison since the number of PEs in CG
is negligible compared to the PE in FG in our setup (e.g.,
14 400 PEs in FG and only 576 PEs in CG). A pure stand-
alone simulation with FG resolution throughout the bound-
ary layer was not performed as it would need about 2.5×1010
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Figure 4. Instantaneous contours of vertical velocity, (a) CG and (b) FG, at the vertical x− z cross section at the center of the domain after
10 800 s of the simulation. The dashed line in (a) marks the top of the overlapping region. Flow structures in the FG, which are similar but
more detailed than the CG, qualitatively indicate the improvement to the surface layer resolution with the two-way nesting.

Figure 5. Vertical profile of horizontally averaged potential temperature normalized by the surface value (a, c) and variance of potential
temperature normalized by θ2

∗ (b, d). The nested grid profiles agree well with the SA-F in the surface layer. The improvement of the two-way
nesting, at the boundary layer height, is seen in the good agreement in the profiles of CG and SA-F in (b).
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Figure 6. Vertical profile of horizontally averaged heat flux normalized by the surface heat flux – resolved (a, d), sub-grid (b, e) and total
flux (c, f). The two-way nesting significantly improves the resolved and SGS fluxes in the surface layer.

Table 5. Grid configuration of the nested and non-nested FG domain.

Nested Non-nested FG

Run Total CG FG Avg. time Efficiency Total Avg. time Efficiency
PE PE PE per step (s) (%) PE per step (s) (%)

A 1664 64 1600 44.0 100 1600 14.9 100
B 3744 144 3600 19.9 98 3600 6.7 99
C 7488 288 7200 10.3 95 7200 3.6 92
D 8736 336 8400 9.3 90 8400 3.4 84
E 14 976 576 14 400 5.6 87 14 400 2.3 74

grid points, and such a large domain was computationally not
feasible. The performance is measured in terms of the time
taken to simulate one time step. To increase the accuracy of
this performance measurement, the simulation is integrated
for 10 time steps, and the average of the time per step is
plotted. The results presented in Fig. 10 show close to linear
scaling for up to 14 976 PEs in both nested and stand-alone
runs. The difference in time per step between the nested and
stand-alone runs can be interpreted as the additional compu-
tational time needed by the nesting algorithm. A jump in the
time taken to compute one step is observed when more than
8192 PEs are used. This is a hardware-dependent increase in
communication time as the nodes are grouped as “islands”
on SuperMUC system at the Leibniz Supercomputing Cen-
tre. The communication within the nodes of the same island

is faster than the communication across multiple islands. The
strong scaling efficiency in Table 4 is calculated, keeping the
run with the lowest number of PEs as the reference. As the
number of grid points per PE is reduced from run A to E as
shown in Table 5, the nested runs show slightly better effi-
ciency than the non-nested runs. The average time per step
of the nested grid is 3 times higher than the non-nested setup
for run A, but the factor decreases to about 2.5 for run E. This
improvement is possibly due to reduction in waiting time be-
tween the FG and CG as the number of grid points per PE
decreases.

3.4 Practical considerations

In this paragraph we summarize some guidelines for using
this nesting approach. In PALM, the user has the choice to
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Figure 7. Vertical profile of horizontally averaged resolved variance of u (a, d), v (b, e), and w (c, f) normalized by w2
∗. The variance of v

and w shows better agreement with the stand-alone reference in the surface layer.

Figure 8. Vertical profile of horizontally averaged resolved vertical velocity skewness (a, c) and SGS turbulent kinetic energy e (b, d)
normalized by w2

∗. The SGS TKE in the CG is higher than SA-C as a result of anterpolation maintaining the Germano identity.
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Figure 9. Spectra of SGS turbulent kinetic energy (e) (a, c) and vertical velocity (w) (b, d). At z/zi = 0.47 (a, b) and at z/zi = 0.11 (c, d),
kr is the horizontal wavenumber.

select between Wicker–Skamarock (Wicker and Skamarock,
2002) and Piacsek–Williams (Piacsek and Williams, 1970)
for the advection scheme. Similarly, for solving the Pois-
son equation for the pressure, the user can choose between
the FFT or multi-grid-based solver. During the develop-
ment and the validation of the two-way nesting, only the
Wicker–Skamarock advection scheme and FFT-based pres-
sure solvers were tested. The two-way nesting supports
only periodic boundary conditions in the horizontal for both
CG and FG, and therefore an FFT-based pressure solver is
an appropriate choice. However, to be able to use multi-
grid solvers, e.g., in nonperiodic horizontal boundary con-
ditions, modifications to the two-way nesting algorithm will
be needed. The large-scale forcing feature in PALM is found
to be compatible with the nesting algorithm without fur-
ther modifications. Other features like canopy parameteriza-
tion, radiation models and land surface models have not been
tested.

Our implementation of the vertical nesting allows only in-
teger nesting ratios in all directions. The height of the nested

domain has a direct influence on the accuracy of the two-
way nesting algorithm. Based on our trials (not shown) we
recommend that the FG covers at least 12 grid levels of the
CG. For better computational performance we recommend
that the number of grid points per PE in the CG is kept at
only 40 % to 80 % of the FG value. The reduced work load
of the CG is expected to minimize the waiting time of the
FG during the concurrent time advancement by the quicker
CG pressure solver step. However, the actual improvement in
performance will depend on the memory available, processor
speed and the inter-node communication architecture of the
computing cluster, and the optimal load balancing can only
be found through trials. Furthermore, the choice of the do-
main size is often restricted by the topology of the processor
decomposition. In a 2-D decomposition, the number of grid
points along the x direction should be an integer multiple of
the number of PEs along x and similarly for the y direction.
This condition has to be individually satisfied for the CG and
the FG. Though our nesting technique makes resolving the
surface layer resolution down to 0.5 m for a moderately large
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Figure 10. The nested simulations show close to linear scalabil-
ity. A non-nested domain with same number of grid points as the
FG is plotted to benchmark the scalability of the standard version
of PALM on the same machine. The difference between the blue
and the red line is approximately equal to the additional computa-
tional time needed by the nesting routines. The simulations were
performed on SuperMUC at the Leibniz Supercomputing Centre.
Each node has 32 GB of main memory and two Sandy Bridge pro-
cessors with 2.7 GHz; each processor has eight cores (Anastopoulos
et al., 2013).

domain computationally feasible, care should be taken to en-
sure the validity of such LES. In PALM, the height of the
first grid point should be at the least twice greater than the
local surface-roughness parameter. This technical restriction
is common to all models that employ MOST and ensures the
proper evaluation of the logarithm needed in the calculation
of u∗. Furthermore, Basu and Lacser (2017) recently recom-
mended that MOST boundary conditions should be adapted
for very high resolution LES, where the first grid point is
smaller than 2–5 times the height of the roughness elements.

4 Summary

We presented a two-way grid nesting technique that enables
high-resolution LES of the surface layer. In our concurrently
parallel algorithm, the two grids with different resolution
overlap in the region close to the surface. The grids are cou-
pled, i.e the interpolation of the boundary conditions and the
feedback to the parent grid are performed, at every sub-step
of the Runge–Kutta time integration. The anterpolation of the
TKE involves the Germano identity to ensure the conserva-
tion of total kinetic energy. The exchange of data between the
two grids is achieved by MPI communication routines, and
the communication is optimized by derived data types. Re-
sults of the convective boundary layer simulation show that
grid nesting improves the vertical profiles of variance and
the fluxes in the surface layer. In particular, the profiles of

the vertical temperature flux are improved. The current ver-
tical nesting only works with periodic boundary conditions
and with the same horizontal extent in both the domains. The
nested simulation needs 4 times less computational time than
a full high-resolution simulation for comparable accuracy in
the surface layer. The scalability of the algorithm on up to
14 976 CPUs is demonstrated.

Code availability. The Parallelized Large-eddy simulation Model
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