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Abstract. We present the first representation of grass pollen
in a 3-D dispersion model in Australia, tested using obser-
vations from eight counting sites in Victoria. The region’s
population has high rates of allergic rhinitis and asthma, and
this has been linked to the high incidence of grass pollen al-
lergy. Despite this, grass pollen dispersion in the Australian
atmosphere has not been studied previously, and its source
strength is untested. We describe 10 pollen emission source
methodologies examining the strengths of different immedi-
ate and seasonal timing functions, and the spatial distribu-
tion of the sources. The timing function assumes a smooth
seasonal term, modulated by an hourly meteorological func-
tion. A simple Gaussian representation of the pollen season
worked well (average r = 0.54), but lacked the spatial and
temporal variation that the satellite-derived enhanced vege-
tation index (EVI) can provide. However, poor results were
obtained using the EVI gradient (average r = 0.35), which
provides the timing when grass turns from maximum green-
ness to a drying and flowering period; this is due to noise
in the spatial and temporal variability from this combined
spatial and seasonal term. Better results were obtained using
statistical methods that combine elements of the EVI dataset,
a smooth seasonal term and instantaneous variation based on
historical grass pollen observations (average r = 0.69). The
seasonal magnitude is inferred from the maximum winter-
time EVI, whereas the timing of the season peak is based on
the day of the year when the EVI falls to 0.05 below its win-
ter maximum. Measurements are vital to monitor changes in

the pollen season, and the new pollen measurement sites in
the Victorian network should be maintained.

1 Introduction

Pollen is a biological particle, produced by plants to transfer
haploid genetic material during reproduction. With allergenic
properties pollen can be a human irritant, and is strongly
linked to seasonal allergic rhinitis and asthma. Melbourne,
in the state of Victoria, on the south-east coast of Australia,
has the highest prevalence of allergic rhinitis in the world
(Bousquet et al., 2008), and is a city of approximately 4.9
million inhabitants (ABS, 2018). Prior to 2017, pollen fore-
casts in Melbourne were generated manually by aeroaller-
gen scientists, relying on persisting the previous day’s pollen
count and an interpretation of forecasted weather (Schäppi
et al., 1998). However, despite the availability of a simple
pollen forecast, they were not connected to the likelihood
of thunderstorms, which proved fatal on the afternoon of
21 November 2016 (Lindstrom et al., 2017). During rush
hour, a north–south line of thunderstorms developed west
of Melbourne, and swept eastwards across the city. In the
following hours, 9900 people visited hospitals with breath-
ing difficulties, overwhelming the emergency services. It is
possible that strong winds collected large quantities of grass
pollen from north-western pasture regions, which were con-
centrated along the edge of the gust front. Victoria had ex-
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perienced the world’s largest epidemic thunderstorm asthma
event. In the aftermath, the state government funded bet-
ter planning of healthcare resources to improve prepared-
ness and response arrangements for similar events in the fu-
ture (Davies et al., 2017; Lindstrom et al., 2017). This plan
included the development of a pilot thunderstorm asthma
early-warning service using statistical pollen forecasts (Sil-
ver et al., 2019), operated by the Bureau of Meteorology
(BOM), and the concurrent development of a pollen fore-
casting system, built around pollen emission and transport
modelling. The pollen emissions component is called the
Victorian Grass Pollen Emissions Module version 1.0 (VG-
PEM1.0).

Pollen is generally not included in air quality models be-
cause its atmospheric lifetime is usually too short to be of
interest. Recently human exposure to pollen has become a
focus, particularly in the Northern Hemisphere (e.g. Sofiev
et al., 2015; Zhang et al., 2014) and urban areas (Skjøth et al.,
2013), such that detailed vegetation taxa maps are being pro-
duced for pollen forecasting (McInnes et al., 2017).

Techniques to model atmospheric concentrations of pollen
have included statistical techniques and dispersion mod-
els. Statistical techniques using standard multiple regression
analyses have predicted whether airborne pollen concentra-
tions will be higher or lower than a long-term mean with
> 87 % accuracy (Smith and Emberlin, 2006), but require
decade-long datasets (Emberlin et al., 2007), and are im-
proved by the availability of multiple sampling sites. Statis-
tical models require a representation of the flowering sea-
son, but perform poorly if the timing of the flowering season
changes (Beggs et al., 2015), whereas in urban areas, they
are subject to local-scale turbulence and heat island effects
(Emberlin and Norrishill, 1991). Meteorological dispersion
models can capture these effects, but are more computation-
ally demanding to run. Physical dispersion of pollen includes
(1) emission from the pollen source regions, (2) atmospheric
transport and (3) deposition, using measurements to validate
the predictions.

Kawashima and Takahashi (1999) were amongst the first
to develop a numerical description of pollen within a dis-
persion model, using a flowering map to simulate the cedar
pollen season in the Tohoku district of Japan. In the US, the
Biogenic Emission Inventory System was adapted to emit
birch and ragweed pollen and predicted the timing of the
birch pollen peak to within 2 d (Efstathiou et al., 2011). An
understanding of pollen release biology and accurate me-
teorological data are crucial for pollen forecasting (Pasken
and Pietrowiez, 2005). Wozniak and Steiner (2017) mod-
elled pollen from 13 different taxa based on plant functional
type mapping for the US, which could be used on climatic
timescales. Indeed, the climate-induced spread of ragweed is
predicted to double the number of Europeans suffering al-
lergic responses by 2060 (Lake et al., 2017). In Germany,
Helbig et al. (2004) simulated hazel and alder pollen emis-
sions and transport, but did not verify their predictions as no

pollen measurements were available. Schueler and Schlun-
zen (2006) simulated oak pollen emission in northern Ger-
many via the incorporation of landscape structural mapping,
finding that oak pollen plumes were transported up to 100 km
away. The EMPOL 1.0 model for birch pollen across all of
Europe was comprehensively evaluated by Zink et al. (2013).
The Finnish Meteorological Institute has developed the Sys-
tem for Integrated modeLling of Atmospheric coMposition
(SILAM; Sofiev, 2017, and references therein), to calculate
the concentrations of six pollen species at a 10 km resolution
on an hourly basis for all of Europe. This group have found
that the most important input parameter is temperature (Sil-
jamo et al., 2013).

Studies of pollen have focused on those taxa with a high
allergenic burden, which differs depending on region. In Eu-
rope, birch tree pollen is the major allergen and has been
the focus of intense research activity (Siljamo et al., 2013;
Sofiev et al., 2013; Siljamo et al., 2007; Sofiev et al., 2006).
However, birch is not common in Australia. Ragweed pollen,
which is a common allergic trigger in the Northern Hemi-
sphere, grows in the north-east and east of Australia but
not elsewhere (Bass et al., 2000). Native Australian grasses
such as wallaby and kangaroo grass are generally not wind-
pollinated and produce little pollen, whereas introduced agri-
cultural pasture grasses such as ryegrass (Lolium perenne)
and canary grass are high pollen emitters (Smart et al., 1979).
Ryegrass is grown extensively in Victoria and produces large
volumes of pollen in spring. In southern Australia most of
the allergenic burden has been attributed to ryegrass via skin
prick tests (Girgis et al., 2000; Bellomo et al., 1992). Further,
the rupturing of ryegrass pollen grains releases much smaller
starch particles that are capable of causing asthma (Taylor
and Jonsson, 2004; Suphioglu et al., 1992). Therefore, VG-
PEM1.0 focuses on pasture grass and has the following goals.
First, to improve public health emergency planning and re-
sponse arrangements around thunderstorm asthma, by pro-
viding a tool for appropriate information providers (i.e. Mel-
bourne Pollen Count and Victorian Department of Health
and Human Services). Second, that the VGPEM will feed
into other forecasting models such as BOM’s thunderstorm
asthma forecast.

This paper documents the first representation of grass
pollen in a 3-D dispersion model in Australia. As the great-
est uncertainty is in the pollen emission characteristics, we
develop and evaluate 10 methodologies, using observations
from eight counting sites in Victoria. First we describe these
grass pollen observations, and determine their correlations
with observed meteorological variables. Second, the grass
pollen emission methodologies are described and tested at
a spatial resolution of 3 km. The best performing method is
recommended for VGPEM1.0.
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2 Observations and characteristics of grass pollen

Despite Australians having high rates of asthma and allergy
compared to other Western nations (Lai et al., 2009), few
Australian pollen observation sites for routine monitoring or
research existed in 2016 (Beggs et al., 2015). In Australia,
all pollen sampling is performed using Burkard volumetric
pollen traps (de Morton et al., 2011). Samples are histolog-
ically stained and counted manually under a microscope by
trained personnel who reference the samples to pollen taxo-
nomic standards. One limitation of this method is that pollen
cannot be classified into particular species, or even genus,
based on visual examination alone.

The University of Melbourne (UoM) operated a pollen
count site in Victoria sporadically from the late 1970s to
1990, but since 1991 it has counted annually over the 3-
month period from October to December, coinciding with
the grass pollen season (Ong et al., 1995). In Victoria, rou-
tine pollen counting since 2017 distinguishes between 15
pollen taxa, with Haberle et al. (2014) finding that 70 % of
the total pollen measured at the UoM site is Cupressaceae
from a nearby cemetery. However we concentrate on the
Poaceae (grass) pollen, as it is the dominant outdoor hu-
man allergen in Australia. DNA sequencing at the UoM in-
dicates that ryegrass could have contributed 60 %–90 % of
the grass pollen counted over the 2016 pollen season (per-
sonal communication, E. Newbigin). The amount of grass
pollen during the season in any particular year in Melbourne
is strongly related to the amount of spring rainfall, which pro-
motes grass growth and flowering (de Morton et al., 2011).
The cumulative grass pollen count over the season in Mel-
bourne ranges between 1500 and 5000 grains m−3, with daily
maximums reaching 400 grains m−3 (Medek et al., 2016).
In Melbourne, the highest pollen counts are usually associ-
ated with northerly continental air masses (de Morton et al.,
2011), with an evening peak coinciding with the onset of
the stable nocturnal boundary layer and descending air (Ong
et al., 1995).

Two other pollen counting sites close to Melbourne at Bur-
wood and Geelong, which are run by Deakin University, have
been in operation since 2012. Five new sites were introduced
in 2017 around Victoria and are situated within university
or hospital grounds (Fig. 1a, b and Table 1). Pollen sam-
pling occurred daily during the 2017 grass pollen season at
09:00 AEDT , representing the mean daily pollen concentra-
tion from 09:00 AEDT the previous day to 08:59 AEDT on
the day of collection. Pollen observations from these eight
sites are used to assess the accuracy of pollen predictions in
this study.

In Australia, grass pollen counts are graded “low” if the
count is 19 m−3 or less, “moderate” if it is between 20 and
49 m−3, “high” if it is between 50 and 99 m−3 and “extreme”
if it is above 100 m−3. Whilst epidemiological studies com-
monly use annual pollen totals, we use a daily pollen risk
classification system because we aim to predict daily pollen

concentrations. The Australian grass count categories are
similar to those used in the UK and Europe for the low and
medium count categories, but the Australian extreme cate-
gory is reached at pollen counts up to 3 times lower than in
Europe and the US (Zink et al., 2013; Osborne et al., 2017;
US National Allergy Bureau, 2019). Between 20 and 60 d
in each Melbourne season are observed in the moderate or
above category, and up to 37 d are observed in the high or
above category (Medek et al., 2016). However, it is clear that
climate change is impacting the timing and strength of the
grass pollen season (Ziska and Beggs, 2012), as are changes
to agricultural practices and the expanding boundary of the
city. These changes highlight the importance of long-term
observations and the need to sustain the new pollen observa-
tion sites in Victoria.

3 Treatment of pollen in VGPEM1.0

Pollen is set up in VGPEM1.0 as an inert particle tracer.
The pollen source methodologies are tested using the CSIRO
Chemical Transport Model (C-CTM), a framework of mod-
ules designed to calculate the concentrations of gases and
aerosol which are subjected to emission, dispersion and de-
position within the atmosphere (Cope et al., 2009). The C-
CTM has been used to model the impacts of anthropogenic
emissions on urban air sheds (Chambers et al., 2019; Paton-
Walsh et al., 2018), to model volatile organic compounds
from vegetation (Emmerson et al., 2019, 2018, 2016) and
also to investigate the health impacts of reducing the sul-
fur content in shipping fuels (Broome et al., 2016). The C-
CTM is driven by meteorology from the Australian Commu-
nity Climate and Earth System Simulator model (ACCESS,
Puri et al., 2013), run at a 3 km resolution using boundary
conditions from ERA-Interim for a domain covering Victoria
(Fig. 1a). ACCESS provides the meteorological parameters
necessary for pollen emission and transport, namely wind
speed and direction, temperature, relative humidity (RH) and
rainfall.

Particles are output as micrograms per cubic metre
(µg m−3) in the C-CTM, and require unit conversion to cal-
culate grains per cubic metre (consistent with the pollen ob-
servations), using the mass of one pollen grain. Grass pollen
diameters are found in the range from 30 to 40 µm (Brown
and Irving, 1973). Early calculations by Smart et al. (1979)
estimated the mass of one ryegrass pollen grain in Melbourne
to be 1× 10−9 g, which converts to a very low density of
44.5 kg m−3 using a 35 µm diameter. The grass pollen den-
sity is a large source of uncertainty. Whilst Smart’s study
is local to our work, studies of pollen from other grass taxa
yield much higher densities, for example 980 kg m−3 for Se-
cale (rye) (Durham, 1946) and Dactylis glomerata (Stanley
and Linskens, 1974).

The pollen density also impacts on the dry deposition ve-
locity, which controls the length of time the pollen grain
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Figure 1. Maps of (a) Victoria within Australia, (b) pollen observing sites within the domain, (c) mean annual rainfall, (d) pasture grass
coverage, (e) terrain and (f) population density. Data sources: (c) BOM, (d) ABARES, (e) Geoscience Australia and (f) the Bureau of
Statistics.

is airborne. The C-CTM dry deposition parameter follows
Stoke’s law. Sugita et al. (1999) measured Gramineae (grass)
pollen with a fall speed of 3.5 cm s−1. Skjøth et al. (2007)
suggest the deposition of grass pollen is 4 times larger than
the 1 cm s−1 estimated for birch pollen, and consistent with
the 4.3 cm s−1 measured by Durham (1946) on Secale (rye).
We will assume that each pollen particle is 35 µm in diam-
eter, spherical and has a density of 1000 kg m−3, which is
consistent with values used by Melbourne-based researchers
(de Morton et al., 2011; Knox, 1993), and similar to the grass
pollen density used in Zhang et al. (2014). A 35 µm particle
with a density of 1000 kg m−3 yields a deposition velocity
of 4.6 cm s−1, which is similar to Skjøth et al. (2013). Us-
ing these values, the estimated mass of each pollen grain is
22.4× 10−9 g.

This work relates exclusively to forecasting the presence
of intact grass pollen grains in the air, within Victoria, Aus-
tralia, and does not consider thunderstorm cells or the inter-
actions of grass pollen grains within them. The process of re-
entrainment of pollen grains once they are deposited to the
ground is not considered, nor is the rupturing process that re-
leases the allergenic contents of the grains – present on small
starch particles. Whilst the impacts of pollen rupturing on
numbers of cloud condensation nuclei has been investigated
by Wozniak et al. (2018), ruptured pollen grains are not rou-
tinely monitored in Victoria. Future development of VGPEM
may incorporate some of these processes.

Geosci. Model Dev., 12, 2195–2214, 2019 www.geosci-model-dev.net/12/2195/2019/
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Table 1. Locations of the Burkard pollen sampling network in Victoria arranged west to east, and their nearest automatic weather station
(AWS). Code refers to site names within figures of this paper. UoM refers to the University of Melbourne.

Site Code Long (◦E) Lat (◦S) Location Closest AWS (distance, km)

Hamilton H 142.03 37.74 Hamilton hospital grounds Hamilton airport (10.4 km)
Creswick Cw 143.90 37.42 UoM satellite campus Ballarat aerodrome (15.3 km)
Bendigo Bg 144.30 36.78 Latrobe University satellite campus Bendigo airport (5.5 km)
Geelong G 144.36 38.14 Deakin University, Waurn Ponds campus Geelong racecourse (7.0 km)
Melbourne M 144.96 37.80 UoM city campus Melbourne Olympic park (3.3 km)
Burwood Bu 145.12 37.85 Deakin University, Burwood campus Scoresby (11.4 km)
Dookie D 145.71 36.38 UoM satellite campus Shepparton airport (29.3 km)
Churchill Ch 146.43 38.31 Federation University campus Latrobe Valley airport (11.6 km)

3.1 Pollen emissions framework

Pollen emission and transport has never been modelled in
Australia; therefore, we trial three different emission frame-
works and vary their inputs. In some instances we test param-
eters proven not to work elsewhere and for other pollen taxa,
to investigate whether Australian ryegrass pollen character-
istics are different. The first framework is a spatio-temporal
decomposition of factors, the second is a pollen production–
loss model and the third is a derivative of the statistical model
for daily grass pollen concentrations used in the BOM’s pilot
forecasting system (Silver et al., 2019). The pollen emission
rate E at grid-point (x,y) and time t is expressed as follows:

E(x,y, t)= I (x,y, t)×G(x,y, t)× S(x,y), (1)

where I is the immediate timing (hour-by-hour variation due
to changes in prevailing meteorology), G describes the gross
seasonal timing (also termed the “phenology factor”) and S
provides the spatial source distribution for a given season.
The functions I , G and S are each dependent on other fac-
tors, which may include modelled meteorology, land use data
or satellite data; these details are discussed in subsequent sec-
tions.

Table 2 gives the combinations of options for calculating
E that are tested in this study. Each emission methodology is
run for three months between October and December 2017 to
cover the period of the pollen measurements. The modelled
pollen is also averaged on a 24-hourly basis (to 09:00 AEDT
each day) to be consistent with the 2017 pollen observations.

3.1.1 Immediate timing (I )

We consider two representations of the immediate timing
function (I ). The first, and simplest, assumes that emissions
are related to transport and are therefore proportional to the
surface wind speeds, used in scenarios E1, E2 and E3. The
second method, used in scenarios E4, E5, E6, E7 and E8 ac-
counts for several meteorological factors, treating them as
having independent effects.

I (x,y, t)= fh · fRH · fPR · fWS · fTM, (2)

where the terms fh, fRH, fPR, fWS and fTM represent the
response to hour of the day, RH, precipitation, wind speed
and temperature, respectively. This approach is similar to
Sofiev et al. (2013, Eq. 12), representing pollen emissions
from birch trees. The assumption is that grass pollen emis-
sions are greatest when conditions are hotter, windier, drier,
with less rain and around midday. The midday assump-
tion stems from an observational study conducted near Mel-
bourne which showed that the peak timing of ryegrass pollen
release (measured as the number of exposed anthers) occurs
in the early afternoon (Smart and Knox, 1979, Fig. 6). As
ryegrass flowers in spring when mornings are cool and damp,
the anthers need to dry before pollen is released. This timing
is represented as a Gaussian distribution with a mean at the
local solar noon (12:00 AEDT) and a standard deviation σh,
of either 2 or 4 h (Smart and Knox, 1979). The larger σh pa-
rameter allows for a wider peak in pollen around noon in the
later scenarios E6, E7 and E8.

For RH we adapt the approach of Sofiev et al. (2013), who
used a piece-wise linear relationship scaled from one (RH
of 50 % or less) to zero (RH of 80 % or above). For wind
speed, Sofiev et al. (2013) assumed a smaller emission rate
(fstagnant = 0.33) in stagnant conditions and scaled smoothly
to a saturation value (1.0) for higher wind speeds. We adapt
this approach to the case of RH, but use a logistic func-
tion (fl(y;α,c)=

1
1+e−α(y−c) , for location parameter c and

rate parameter α), where the rate and location parameters are
set to yield fl(50;αRH,cRH)= 0.95 and fl(80;αRH,cRH)=

0.05, with αRH being negative, meaning that the assumed
emissions rate decreases with increasing humidity. The final
fRH is then

fRH = fstagnant+ (1− fstagnant) · fl(RH;αRH,cRH). (3)

The equation for the temperature term (fTM) is identi-
cal to the RH term (Eq. 3), but taking temperature (◦C) as
the argument and with different rate and location parame-
ters. These are defined such that fl(6;αTM,cTM)= 0.05 and
fl(24;αTM,cTM)= 0.95. The implied rate parameter (αTM)
is positive, meaning that grass pollen emissions are assumed
to increase with increasing temperature.
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Table 2. Options tested for pollen emission in this study. EVI denotes the enhanced vegetation index.

Scenario Immediate timing (I ) Gross timing (G) Spatial function (S)

E1 Wind speed Gaussian Grass map
E2 Wind speed ∂EVI Grass map
E3 Wind speed ∂EVI 1.0 (embodied in ∂EVI value)
E4 Meteorological function (σh = 2) ∂EVI Grass map
E5 Meteorological function (σh = 2) Gaussian Grass map
E6 Meteorological function (σh = 4) Gaussian Grass map
E7 Meteorological function (σh = 4) Gaussian Production–loss model
E8 Meteorological function (σh = 4) Shifted Gaussian Grass map
E9 Statistical model V1 EVI based EVI based
E10 Statistical model V2 EVI based EVI based

A similar approach is taken for precipitation (fPR), with
the logistic rate and location parameters constrained to
satisfy fl(0;αPR,cPR)= 0.95 and fl(0.5;αPR,cPR)= 0.05,
where the precipitation is given in units of millimetres per
hour (mm h−1) and αPR is negative. We cannot impose a con-
straint of the function being 1.0 for zero precipitation, as the
logistic function approaches 1.0 asymptotically. Instead, we
scale the result based on the function’s value for zero humid-
ity (defined above as 0.95), resulting in

fPR =fstagnant+ (1− fstagnant) · fl(PR;αPR,cPR)/

fl(0;αPR,cPR). (4)

As noted above, the effect from wind speed (fWS) is
assumed to scale smoothly from a lower rate of 0.33 for
fstagnant in still conditions. We follow the parameterisation
of Sofiev et al. (2013, Eq. 11):

fWS = fstagnant+(1−fstagnant) ·(1−exp(−WS/Usatur)), (5)

where wind speeds (m s−1) are scaled by a saturation wind
speed (Usatur = 5 m s−1), above which the wind speed does
not promote the release of pollen.

3.1.2 The gross timing (G)

We consider two representations of the gross timing, a Gaus-
sian distribution to represent the growth and decline of the
springtime pollen season, and the enhanced vegetation index
(EVI). The Gaussian distribution (Eq. 6) is normalised to in-
tegrate to the theoretical maximum spatial production of rye-
grass pollen over the season, estimated by Smart et al. (1979)
as 464 kg ha−1 of ryegrass pollen in grasslands to the north
of Melbourne.

G(x,y, t)=
F

√
2πσ 2

exp
[
−
(d − n)2

2σ 2

]
, (6)

where d is the day number (from 1 October to 31 Decem-
ber = 92 d) within the season, n is the mean day number of
that season (46.5), σ is the standard deviation (26.7) and F is

a normalisation factor of 9.53× 10−8, so that seasonal emis-
sions integrate to 464 kg ha−1. This Gaussian representation
is used in scenarios E1, E5, E6 and E7.

We apply a second Gaussian representation in scenario
E8 which uses the shapes of the 2017 observed pollen time-
series to shift the distribution by either moving the mean ear-
lier or later in the grass season, and/or adjusting the standard
deviation to be tighter or wider. The curves are fitted by op-
timising the root mean squared error (RMSE) between the
pollen counts and the original Gaussian distribution (shown
in the Supplement). The peak of the grass pollen season is
earlier in Bendigo and Dookie than day 46.5, thus all grass-
land north of 37◦ S replaces n with 34.7 and σ reduces to
15.5 (F remains the same as above). The peaks in observed
pollen at Creswick and Churchill are later in the season and
count more pollen than other sites; thus, at locations south of
37◦ S and east of 143.5◦ E, n is replaced by 50.5, σ is nar-
rowed to 19.3 and F increased to 1.2× 10−7. At sites west
of 143.5◦ E (i.e. Hamilton), the peak of the pollen observa-
tions are greater and distributed more tightly, thus n reverts
to 48.1, σ is narrowed to 7.7 and F is increased further to
1.56× 10−7.

3.1.3 Enhanced vegetation index (EVI)

Devadas et al. (2018) developed a non-linear statistical model
for pollen concentrations using satellite greenness indices
across areas surrounding a receptor point. The EVI is a mea-
sure of landscape greenness, which is less affected by satu-
ration in higher biomass regions than the widely used nor-
malised difference vegetation index (Huete et al., 2002). The
EVI value typically increases rapidly with time during spring
due to foliage growth in deciduous trees or grass growth.
In the Victorian temperate climate, fresh grass rapidly dries
(or “cures”) in late spring and early summer, causing a fall
in the EVI. Given the absence of deciduous forests in Aus-
tralia, most of the temporal variation in the EVI is due to
grass growth and curing. Here we investigate a relationship
between the timing of the pollen season and the gradient in
the EVI over a region in the south-west of Victoria, spanning

Geosci. Model Dev., 12, 2195–2214, 2019 www.geosci-model-dev.net/12/2195/2019/
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37.3–38.3◦ S and 142.0–143.3◦ E (appearing as dashed lines
in Fig. 3). This region is upwind of Melbourne, in terms of
the prevailing climatological wind, and has high agricultural
activity.

Using the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) MOD13C1 data (from the Terra satellite at
0.05◦ resolution), Fig. 2a shows that the gradient in aver-
aged EVI drops off rapidly, around the same time as the
pollen season peaks. Fig. 2b shows that the first derivative
of EVI is with the grass pollen time-series at UoM. If we
examine inter-annual variation, assessing the day of the year
when the EVI falls most rapidly (represented as the middle
of the 16 d EVI compositing window) and the day of the year
when the grass pollen peaks (having first applied a smoothing
spline to the pollen time-series), a relationship between these
two quantities is observed: the Pearson correlation is 0.4, the
slope of the linear regression is 1.006 and the means of the
two Julian dates differs by only 2.7 d (Fig. 2c). This agree-
ment is especially notable given the uncertainty induced by
the wide EVI compositing window.

Taking this one step further, we apply a similar analy-
sis to each individual 0.05◦× 0.05◦ MODIS pixel (Fig. 3).
Given the high deposition velocity of grass pollen grains
(4.6 cm s−1, as discussed above), the contribution of pollen
emitted from the productive grassland areas in western Vic-
toria to observations recorded in Melbourne is likely to be
minimal. However, this analysis may help inform our under-
standing about the relationship between the remotely-sensed
vegetation index and broad-scale features of the pollen sea-
son. The timing of the fall in the EVI in south-west Vic-
toria not only correlates well with the timing of the grass
pollen season experienced in Melbourne (Fig. 3a), but the
differences in timing are also relatively small (Fig. 3b). The
north-west of the state is generally much drier than the south-
east (Fig. 1c), and the north-west area dries out earlier in the
year (Fig. 3c). Areas identified as crops or pasture (Fig. 1d)
demonstrate a more rapid fall in EVI (Fig. 3d).

This exploratory analysis suggests that in this bioclimate
the broad parameters of the pollen season can be diagnosed
from the EVI fields. On a broad temporal scale, a fall in the
EVI over pollen source regions is associated with increasing
pollen emissions. In light of this, we consider an EVI-based
representation of the gross timing (G):

G(x,y, t)=max
(

0,−
∂EVI(x,y, t)

∂ t

)
. (7)

The max(·) function ensures that the emissions are strictly
positive. We note that Eq. (7) incorporates both temporal and
spatial information, and can thus be used to represent the
spatial distribution, in which case we can set S = 1.0 for all
grid-points (x,y) (scenario E3). Alternatively, we can use the
same spatial forcing (based on an assumed land use classifi-
cation) to provide an extra spatial constraint. ∂EVI is used in
scenarios E2 and E4.

3.1.4 The spatial function (S)

Mapped grass and pasture for Victoria were extracted from
the Australian Land Use and Management (ALUM) classi-
fication (ABARES, 2017) and were re-gridded from a 50 m
resolution to the 3 km grid used by the C-CTM. ALUM in-
cludes 193 categories of which only three are assumed to
overlap with grazing pastures (“Grazing modified pastures”,
“Native/exotic pasture mosaic” and “Grazing irrigated modi-
fied pastures”); the fractional coverage of these three classes
together is shown in Fig. 1d. We include larger-scale maps of
the pasture grass coverage surrounding the pollen count sites
in the Supplement. While many cultivated cropping cereals
grown in the region are also grasses (e.g. wheat and barley),
they are mostly self-pollinating and thus produce very lit-
tle pollen compared with wind-pollinated grass species such
as ryegrass. The area to the east of Melbourne is mountain-
ous and therefore not arable (Fig. 1e), whereas the region to
the north-west is arid (Fig. 1c). The most productive areas
of pasture grass in Victoria are found in the west of the re-
gion near Hamilton and south-west of Churchill. The ALUM
grass map is used in scenarios E1, E2, E4, E5, E6, E7 and E8.

3.1.5 Pollen production–loss model

In reality, there is a finite amount of grass pollen available for
release at a given time, and once exhausted by in-plant dry
and wet deposition, or pollen release, the pollen reservoir is
only replenished at a finite rate. Scenario E7 is a production–
loss model for this pollen reservoir.

E(x,y, t)= A(x,y, t) · I (x,y, t) (8)
A(x,y, t)= A(x,y, t − δt)+P(x,y, t − δt)

−L(x,y, t − δt) (9)

P(x,y, t)= S(x,y, t) ·G(x,y, t) ·

(
δ t

T

)
(10)

L(x,y, t)= A(x,y, t) · exp(−λ · δt), (11)

where emissions, E, are set to be the product of the available
pollen reservoir, A, and the instantaneous emission factor,
I , at grid-point (x,y) and time t . δt is the model time-step.
The pollen produced, P , is given by the product of the spa-
tial and gross-timing terms, proportional to the fraction of
the grass pollen season covered between t and t + δt . L is
the amount lost between t and t + δt , T is the total length
of the grass pollen season and λ is the loss rate due to direct
deposition before the pollen leaves the plant. This loss can
occur direct to the ground or due to animals brushing past,
and differs from the in-atmosphere wet and dry deposition
rates. Zink et al. (2013) suggest that this loss process is sim-
ilar to a half-life, which we extend to provide a variable loss
rate accelerated in wet conditions. The loss decay parameter
(λ), is defined as a piece-wise polynomial function based on
the rain rate such that pollen has a half-life on the plant of 2 d
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Figure 2. (a) A 16-year climatology in EVI (black) from south-west Victoria (averaged over the region from 37.3 to 38.3◦ S and 142.0 to
143.3◦ E, shown in each panel of Fig. 3) and the grass pollen record in Melbourne (red); the full sequence of data is shown as circles, with a
locally weighted polynomial regression overlaid (Cleveland, 1979). The EVI data are 16 d composites. (b) As in panel (a) except presenting
the derivative of the 16 d EVI with respect to time. (c) The day of the year of the minimum of the ∂EVI

∂ t for each year plotted against the day
of the year of the maximum pollen; when assessing the timing of the grass pollen peak, the grass pollen time-series was smoothed using a
cubic smoothing spline. The dashed lines in (c) represent 16 d either side of a given day, which is the width of the MODIS EVI compositing
window.

in dry conditions and 12 h in wet conditions, with the latter
corresponding to a rain rate of 2 mm h−1.

3.1.6 Statistical models

In parallel to the emission–dispersion modelling presented
here, statistical forecasting methods have been trialled for
use in Victoria. These models are non-linear regression equa-
tions that use weather model data, derived parameters from
the MODIS EVI and land use maps as predictors. These data
can be decomposed into a slow-moving seasonal component
(similar to the gross-timing term described above) and a sec-
ond component that accounts for day-to-day variation. The
models were trained on daily pollen count data, and thus can-
not resolve higher-resolution temporal variation. The gross-
timing function smooths out much of the day-to-day varia-
tion, and is modulated by the immediate-timing term when
estimating temporal variability in the emissions module. The
two statistical models are described in detail in Silver et al.
(2019), and summarised here. “V1” used data from Mel-
bourne spanning from 2000 to 2016 (scenario E9), whereas

“V2” also used the 2017 data from the eight Victorian sites
(scenario E10). The V1 model was developed ahead of the
2017 pollen season before counts were available at the new
pollen sites, as the BOM required input for their pilot thun-
derstorm asthma service. The seasonal component was repre-
sented as a Cauchy distribution (which decays more slowly
than a Gaussian distribution), with a fixed scale parameter
(k = 19 d). The magnitude of the pollen season (correspond-
ing to the maximum of the seasonal term) was estimated
by univariate linear regression on the winter-time maximum
EVI. The timing of the seasonal maximum was estimated
by the day of the year when the EVI falls to 0.05 below
its winter-time maximum. The magnitude and timing were
smoothed spatially using an inverse cubed distance weight-
ing.

Both V1 and V2 were constructed as generalised additive
models (Wood, 2006), a form of multivariate regression that
allows for a non-linear influence of the predictor variable on
the response variable. The response variable used was the
log(x+ 1)-transformed pollen count. The log of the Cauchy
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Figure 3. Relationship between the timing of the peak in grass pollen in Melbourne and the timing of the sharpest drop in EVI at each
MODIS pixel: the correlation (a) and the root mean squared error in the timing (b). Also shown are the average timing (c) and rate (d) of
the fastest fall in EVI at each point in the domain. The dashed rectangle in south-west Victoria (spanning 37.3–38.3◦ S and 142.0–143.3◦ E)
displays the region over which the EVI time-series were averaged for Fig. 2. “argmin” refers to the minimum argument.

term and a number of derived weather parameters were con-
sidered for inclusion in the model. Each model was built
up via forward step-wise variable selection; starting with a
“null model” (predicting nothing but the mean), terms were
considered for inclusion. Each predictor was trialled as hav-
ing a linear or alternatively non-linear effect on the response
variable, and the out-of-sample prediction skill was tested.
The combination of predictor and form (i.e., linear or non-
linear) that yielded the biggest gain in predictive skill was
retained. This procedure was repeated until the incremental
impact of additional terms on predictive skill was negligible.
The model skill was tested by leaving out entire pollen sea-
sons, fitting the model without these data, then assessing the
model using the out-of-sample subset. Model skill was quan-
tified using the Pearson correlation between predicted and
observed pollen.

The statistical models were adapted for 3-D dispersion
modelling to use hourly meteorological inputs (or daily, in
the case of precipitation). The adapted forms of the two mod-
els are as follows:

log(1+P1(x,y, t))=−0.290+ 0.970 ·R1(x,y,d)

− 0.183 · log(PR(x,y,d)+ 1)− 0.117 · log(PR(x,y,d))
+ fTM1(x,y, t)+ fRH1(x,y, t) (12)
log(1+P2(x,y, t))= 1.225+ 0.770 ·R2(x,y,d)

− 0.033 ·WS(x,y, t)+ fRH2(x,y,h)

+ fTM2(x,y, t)+ fPR(x,y,d), (13)

where P is the predicted pollen emission for version i at grid-
point (x,y) and time t , Ri is the seasonal term based on the
EVI parameters at grid-point (x,y) and for day d (outlined
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below), and WS is the wind speed (m s−1). In both versions of
the statistical model, the variable selection process assigned
a non-linear response to the temperature, fTMi (◦C) and RH
fRHi (%). Only V2 uses a non-linear term for daily precipita-
tion, fPR (mm). The non-linear relationships between pollen
emission and increasing temperature, RH and precipitation
are shown in Fig. 4. The shaded regions correspond to plus
or minus twice the standard error of the GAM term, and are
greater in regions of the distribution with fewer observations.
For example, there were far fewer observations at the upper
tail of the temperature range considered, and the standard er-
rors are correspondingly larger.

The statistical parameterisations were based on ambient
pollen concentrations rather than emissions; thus, the non-
linear terms take transport and dilution processes into ac-
count. The shapes of these relationships are similar to those
described by Erbas et al. (2007) for grass pollen in Mel-
bourne, and also by Zink et al. (2013) for birch pollen in
Europe. The temperature response in both models increased
until 25 to 30 ◦C (Fig. 4a, c). The decline in pollen response
at higher temperatures is likely due to dilution with higher
planetary boundary layers. On days in November where the
temperature is above 25 ◦C, the maximum modelled bound-
ary layer height is nearly double the height modelled on days
below 25 ◦C. Thus, the assumption of declining emissions
with increased temperature is likely incorrect. There is rel-
atively little non-linearity with humidity. The general trend
is for increased concentrations (or emissions) in drier con-
ditions, explained by the drying required before anther de-
hiscence. The rainfall term shows a sharp decline until about
2 mm d−1, after which little additional pollen suppression oc-
curs, although there is considerable uncertainty given the rel-
ative paucity of high-rainfall days. The suppression of grass
pollen concentrations (or emissions) is likely due to the low
potential for anther dehiscence in moist conditions, and the
wet deposition of ambient pollen.

The seasonal term based on the EVI parameters is given as

Ri(x,y,d)= log(SFi(x,y) · fC(d,µi(x,y),k)),where (14)

fC(d,µ,k)=

(
π · k ·

[
1+

(
d −µ

k

)2
])−1

(15)

SF1(x,y)=max(−4355.913+ 21490.343

·Emax,smoothed(x,y),10−10) (16)
µ1(x,y)= Edrop,smoothed(x,y) (17)
SF2(x,y)= 267.627+ 8853.990 ·Emax,smoothed(x,y) (18)
µ2(x,y)= 202.478+ 0.385 ·Edrop,smoothed(x,y), (19)

where the scale factor parameter SFi(x,y) is based on
the smoothed value of the winter-time maximum EVI
(Emax,smoothed(x,y)), whereas the timing of the peak of the
pollen season (µi(x,y)) is assumed to scale linearly with
the smoothed field of the day of the year when the EVI
drops 0.05 below its winter-time maximum (see Silver et al.,

Table 3. The 2× 2 contingency table describing each model out-
come. The model outcomes a, b, c and d then become the variables
in Eqs. (20)–(23).

Observation
Model Yes No

Yes (a) Hit (b) False alarm
No (c) Miss (d) Correct negative

2019, for further details). The statistical approach accounts
for inter-annual variation via the EVI time-series at each grid
cell. Higher winter-time peak EVI values are associated with
higher cumulative grass pollen counts over the following sea-
son.

3.2 Statistical evaluation

The skill of the pollen forecasts depends in part on how well
the meteorology is predicted. The Pearson correlation indi-
cates the strength of the correspondence without considera-
tion of differences in magnitude, whereas the index of agree-
ment (IOA, described in the Supplement) is a good indica-
tor of model performance. The normalised mean bias (NMB)
gives the relative difference between the model and observa-
tions.

To determine the best pollen emission methodology, we
look for skill in the ability of VGPEM1.0 to forecast the pos-
sibility of the pollen being classed as high or extreme (> 50
grains m−3), which is a level at which health impacts may be
felt more strongly. The number and timing of predicted high
pollen days is evaluated quantitatively for consistency and
accuracy, by calculating the probability of detection (POD),
the false alarm ratio (FAR) and the equitable threat score
(ETS) from a simple table of model outcomes (Table 3). The
POD is the fraction of correctly identified high model fore-
casts compared with the observations, between zero and one:

POD=
a

a+ c
. (20)

The FAR puts a value between zero and one regarding how
many of the predicted high pollen days did not correspond
with an observed high pollen day:

FAR=
b

a+ b
. (21)

The ETS is the fraction of modelled high pollen days that
were correctly predicted and is adjusted for correctly mod-
elled days occurring with random chance. The ETS value is
between −1/3 and 1, with a score of 0 indicating no skill;
this is defined as

ETS=
a− arandom

a+ b+ c− arandom
, (22)
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Figure 4. The shape of the non-linear terms in the statistical models related to temperature (a and c), relative humidity (b and d) and rainfall
(e) for V1 (a and b) and V2 (c, d and e). The shaded regions correspond to plus or minus twice the standard error of the GAM term.

where

arandom =
(a+ c)× (a+ b)

a+ b
. (23)

As Zink et al. (2013) point out, low skill scores are given
to models where the pollen concentrations are close to ob-
served concentrations yet fall into separate “risk” categories.
For example, the model predicts 48 grains m−3 and classes
the risk category as “moderate”, whereas the observations
are 52 grains m−3 and the risk category is “high”. There-
fore, we also evaluate the modelled pollen against the ob-
servations in terms of their Pearson correlation, RMSE and
Gerrity score. Statistical evaluations using categorised and
non-categorised pollen counts will show how the Australian
grass pollen thresholds impact our results. The Gerrity score
puts a value on the accuracy of VGPEM1.0 in predicting all
of the observed pollen categories, relative to that of random
chance (Gerrity, 1992). Gerrity scores range between−1 and
1, with 0 indicating no skill and 1 being a perfect model. Cal-
culation of Gerrity scores is complex and is described fully
in the Supplement.

The best forecasting methodology will have a high Pear-
son correlation, Gerrity score, POD and ETS, and a low FAR
and small RMSE.

4 Results and discussion

4.1 Verification of meteorology

Meteorological variables are extracted from the ACCESS
runs at the locations of the AWSs closest to the pollen obser-
vation sites (Table 1). At some pollen observation sites the
AWSs are located more than 10 km away, or nearly 30 km
away in the case of Dookie. A direct comparison is made of
hourly temperature, wind speed, wind vectors, precipitation
and RH between ACCESS and the AWS observations, us-
ing the Pearson correlation, IOA and NMB. (Fig. 5). Here
the NMB is normalised by the mean of the absolute value
of the observations (as opposed to the mean of the observa-
tions) because wind vectors contain negative values. Tem-
perature and RH are both modelled with a high degree of
accuracy at all sites, demonstrating a high Pearson correla-
tion (average r = 0.9), almost no bias, and high IOA (average
IOA= 0.8). Predicted wind speeds are biased slightly low
(average NMB=−0.2). The V (north–south) component is
approximately as well modelled as the U (east–west) compo-
nent (average V r = 0.80 compared to average U r = 0.77).
Precipitation has a low degree of bias (average NMB= 0.17)
but is not particularly well correlated with the observations
(average r = 0.21), and has a lower overall IOA (average
IOA= 0.55).
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4.2 Observed and modelled pollen correlations with
meteorology

We assess which measured AWS meteorological variables
are most strongly related to the observed pollen. Figure 6a
shows that observed grass pollen is most strongly corre-
lated with temperature at the majority of sites (average r =
0.44), and most negatively correlated with RH (average r =
−0.34).

Observed wind speed is not strongly related to observed
grass pollen, except when combined with direction, specif-
ically the U wind vector is generally a stronger predictor
of pollen (average r = 0.32) than the V wind vector (aver-
age r = 0.22). We include a wind rose for each AWS site in
the Supplement to determine the strength of the winds. The
roses show a strong southerly influence, corresponding with
an afternoon sea breeze at most sites apart from Churchill, lo-
cated within an east–west aligned valley. Sites further west in
Victoria (Hamilton and Creswick) also show a northerly in-
fluence, generally with a greater percentage of wind speeds
above 4 m s−1 than elsewhere. Precipitation washes pollen
from the air, but shows no correlation here as rain during
the 2017 season was infrequent (average r = 0). Pollen ob-
servations at Dookie are the least correlated with any of the
meteorological variables, perhaps because the closest AWS
is 29 km away.

Figure 6b shows Pearson correlations for the modelled
pollen against ACCESS meteorology, using scenario E8 as
an example that uses the meteorological timing function.
The strengths of the modelled correlations are broadly sim-
ilar to those observed in Fig. 6a, but the model is more
strongly coupled to wind speed (average r = 0.25) and less
correlated with the U wind vector than is observed (aver-
age r =−0.07). However, the observed U and V correla-
tions are not strong, and do not point to particular loca-
tions being strong pollen sources. Inverse modelling may
help pinpoint productive grass pollen regions for each site.
We extracted the boundary layer height from the model (un-
available in the observations), which showed that the mod-
elled grass pollen is more strongly correlated with atmo-
spheric dilution (average r = 0.61) than it is to tempera-
ture (average r = 0.44). Average modelled diurnal bound-
ary layer evolution during November 2017 in Melbourne in-
creases after sunrise at 05:00 AEDT to a peak of 1780 m at
13:00 AEDT. The height declines during the afternoon coin-
cident with a southerly sea breeze, but is still above 1200 m at
17:00 AEDT. The nocturnal boundary layer is around 200 m.
Over 77 % of grass pollen is found at ground level (Damialis
et al., 2017) due to its size and density. The lifetime of our
model pollen over 1 km is 6 h. The model RH is more nega-
tively correlated with grass pollen levels (average r =−0.52)
than is observed. The observed relationship may be weaker,
as the pollen measurements are not coincident with the AWS.

4.3 Verification of pollen source methodologies

The modelled pollen concentrations are first normalised by
the observed seasonal mean across all observation sites,
which is equal to 47 grains m−3. This normalisation allows
the evaluation of trends in the daily grass pollen concen-
trations without considering their magnitude, as this can be
corrected later. For 2017, observed individual site means
range from 31 grains m−3 at Melbourne to 60 grains m−3 at
Creswick. The lowest means are found in the densely pop-
ulated regions of Geelong, Melbourne and Burwood (see
Fig. 1f). Figure 7 shows correlations and statistical results
for each pollen observation site. Numbers of observed days
in the lumped high and extreme category (> 50 grains m−3)
are above 20 d for all sites.

E1, E2 and E3 used wind speed as the immediate timing
function, which provided poor prediction skill scores (aver-
age r = 0.25, 0.18 and 0.17 respectively), similar to results
by Viner et al. (2010) and Zink et al. (2013). Wind pro-
motes pollen emissions, but the plant must flower first – a
process not controlled by wind speed. Wind also correlates
poorly with pollen observations due to the competing effects
of strength versus increased ventilation and mixing (Sofiev
et al., 2013). Subsequent method E5 used the meteorolog-
ical timing function that included temperature and RH and
performed better (average r = 0.43). Sofiev et al. (2013) also
showed that observed birch pollen in Europe was negatively
correlated with RH. Widening the timing of the peak pollen
emission from 2 to 4 h, as included in E6, improved results
further over E5 (average r = 0.44).

At most sites the Gaussian description of the season per-
formed better than the ∂EVI, shown by improvements in the
FAR of E1 over E2, both of which used wind speed as the
immediate timing descriptor (average FAR= 0.57 and 0.61
respectively), and E5 over E4, both of which used the me-
teorological timing function (average FAR= 0.48 and 0.52
respectively). These results indicate that using ∂EVI data
as descriptors of the pollen season results in poor skill at
most of the sites. The ∂EVI data are very noisy. However,
E4 using the ∂EVI data and a meteorological timing func-
tion gives a good Gerrity score (0.54) and high POD (0.92)
and ETS (0.40) at Dookie. When other elements of the EVI
data are used in the statistical models (E9 and E10), such
as the winter maximum and the day on which the EVI falls
below 0.05 of the winter maximum, the pollen prediction is
much improved at most sites (average POD E9= 0.67 and
E10= 0.69). The performance of E10 indicated improve-
ments in forecasting skill at all sites with the exceptions
of Dookie and perhaps Bendigo. E10 predicted the lowest
FAR of high pollen predictions at five of the eight observa-
tion sites (average FAR= 0.37). The ETS adjusts the model
score for achieving high pollen predictions at random. E10
achieves higher ETS scores at four of the eight sites (average
ETS= 0.35). Both the statistical emission parameterisations
assume an underlying Cauchy distribution, which is modu-
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Figure 5. Comparison of observed and modelled meteorological variables at automatic weather station sites nearest to the pollen observation
sites. (a) Pearson correlation. (b) Index of agreement. (c) Normalised mean bias.

Figure 6. Pearson correlations of (a) observed pollen with observed meteorological variables from the nearest automatic weather station,
and (b) modelled pollen with modelled meteorological variables.

lated by the effects of wind, temperature, RH and rainfall.
At each model grid cell, the peak and magnitude of this bell
curve is calculated from statistics inferred from the EVI gra-
dient.

The pollen production and loss model E7 had a very high
POD (0.96) at Hamilton, but the method was less effective

elsewhere with high FAR and RMSE scores at the other ob-
servation sites (average FAR= 0.55 and RMSE= 63). E7
used the Gaussian distribution for the seasonal term which
could be improved upon, but the method was superseded by
the good performance of the statistical models (with the ex-
ception of E9 in Hamilton and Geelong).
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Figure 7. Results from the pollen emission methodology scenarios: (a) Pearson correlation, (b) Gerrity score, (c) POD, (d) ETS, (e) FAR
and (f) RMSE. The sites are presented from west to east, and red refers to Gaussian methodologies, yellow refers to ∂EVI methodologies,
green refers to the production–loss model and blue refers to statistical methodologies. A higher score is better for the Pearson correlation,
Gerrity score, POD and ETS. A lower score is better for the FAR and RMSE.

The Geelong pollen observations are not well modelled
by most of the emission methodologies with Gerrity scores
mainly in the negative region and high FAR> 0.8. E10 pro-
vides the best scores by far at Geelong with a 0.62 Pearson
correlation and 0.3 Gerrity score, although, overall, results
are poorer for Geelong than any other site. The wind rose

for Geelong shows the strong Southern Ocean influence, and
there are few grass-filled pixels between the coast and the
pollen count site which the model relies upon (Supplement).

The sites vary considerably in terms of surrounding
land use, whereas all of the pollen in the model comes
from pasture grass. This impacts the individual site perfor-
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mance against the pollen observations. Hamilton, Dookie
and Churchill are close to pollen source areas. Creswick is
surrounded by forest. The Burwood and UoM sites are in
heavily built up areas with green space, which is not included
in the model pasture grass maps.

Comparing the results of the non-categorised Pearson cor-
relation and RMSE against the categorised Gerrity score
yields minor differences between 0.1 and 0.2 units, and sug-
gests that the Australian grass pollen thresholds influence
the analysis by about 15 %. If the best performing scenario
for each observation site and under all scoring methods is
counted from Fig. 7, shifted Gaussian methodology E8 is
best 12 times, statistical representation E9 is best 4 times and
E10 is best 25 times. E9, built using data prior to the 2017
season, has a stronger dependence on precipitation than E10,
which is not supported by the correlation of 2017 pollen with
meteorology. This suggests that the V2 statistical approach to
the immediate timing combined with an EVI-based approach
to the gross timing and a spatial source is likely to produce
the most accurate pollen forecasts.

It is useful to plot the observed and modelled pollen as
a cumulative time-series, as this indicates the timing of in-
creased and decreased pollen counts (Fig. 8). Here we focus
on the best performing scenarios from each of the seasonal
emission methods, capturing the range in descriptions of the
pollen season. The observations show an “S” shaped profile,
with increased pollen gradients in November. By the end of
the 2017 season, all modelled profiles reach a cumulative to-
tal of 4200 grains m−3 due to normalisation to the same ob-
served mean value.

The ∂EVI method E4 tends to emit grass pollen too early
in the season compared with observations at most sites. How-
ever at Dookie the shape of the season in E4 and E8 is
more similar to the observations, and E4 captures the mid-
November change when pollen counts decrease better than
E10. The observed pollen at Dookie experienced a much
larger grass pollen input from the middle of October to
early November than E10 (but is represented well by E8).
There is little additional observed pollen at Dookie after early
November, which is at least 20 d earlier than at the other sites.
At Melbourne, Bendigo and Burwood, both E8 and E10 pre-
dict the early part of the grass pollen season very well, but
emitted too much modelled pollen towards the end of the
season. The steeper gradient in E8 and E10 at Melbourne
between the middle and the end of November shows that too
much pollen was emitted during this period. In contrast, ob-
served pollen at Churchill, Creswick, and Hamilton shows a
rapid increase in emissions at the end of November that is not
matched by either E8 or E10. However, the observations sug-
gest that additional pollen continues to be emitted towards
the end of December at Creswick and Churchill, prolonging
the season. Scenario E8 captures the steep November gradi-
ent at Hamilton very well.

The observed and modelled pollen cumulative profiles in
Melbourne, Geelong and Burwood are less smooth than the

other regional sites, perhaps indicating more atmospheric
variability near the coasts. It might also indicate the larger
distances between the urban sites and the grass pollen pro-
duction regions (more transport and less local production),
compared with the monitoring sites within grass pollen pro-
duction areas (less transport and more local production).
Here we also note the apparent lack of an “S” shape in the
modelled profiles at Geelong, which may account for the
poor model performance at this site.

Table 4 splits the best model predictions from E8 and
E10 into low, moderate, high and extreme categories for di-
rect comparison with observed categories. Here data from
all counting sites are combined to ensure a large sample
size. The diagonal in each table highlights the number of
days the model has correctly predicted the observed cate-
gory. Values far from the diagonal indicate the model has
under- or over-predicted the observed pollen. We want to
avoid occasions where the observed pollen is extreme, but
the model predicts low pollen. Table 4 shows that both E8
and E10 have good skill in predicting low observed pollen
days. Both models also show high occurrences of predict-
ing moderate pollen when the observed category is low. Sil-
jamo et al. (2013) found difficulties in modelling moderate
category days, which is not the case here. Both models are
equally good at predicting the high and extreme observed
categories. E10 has fewer occurrences of predicting extreme
pollen on days when observations were low than E8. How-
ever, there are six cases in E8 and one in E10 that pre-
dict low pollen when the observations are extreme. These
cases occur around the 10–11 November within the city at
Geelong, Melbourne and Burwood. Examining the meteo-
rology from this period (pollen counts are date-stamped at
09:00 AEDT, but represent the preceding 24 h) shows that the
model has captured the observed temperature, wind speed,
direction and zero rainfall. The observed wind direction is
from the south and south-east, bringing mainly clean, ma-
rine air. However observed pollen is extreme on these days,
suggesting a highly localised source. One explanation is that
only pasture grass is considered in the model, whereas grass
is usually present in most other land use categories. There
is green space within most cities on both public and pri-
vate land, and grass plants are efficient at colonising dis-
turbed areas such as road verges. Correlations between ob-
served pollen at each site are not particularly strong (aver-
age r2

= 0.28), suggesting that the pollen sources may not
be related, or are highly localised. The modelled correla-
tions between all sites are very strong because they share the
same pollen source characteristics (average r2

= 0.80). In-
verse modelling could highlight where other grass land use
categories contribute to grass pollen. Future development of
VGPEM could consider the sub-grid-scale grass fraction us-
ing high-resolution satellite data sources.
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Figure 8. Cumulative time-series for pollen across the 2017 season. Sites arranged from west to east.

Table 4. The number of days the model predicts a particular observed pollen category for E8 (left) and E10 (right). Data from all Victorian
sites are combined. Bold text highlights where the model captures the correct observed category.

E8 Observation E10 Observation

Model Low Moderate High Extreme Model Low Moderate High Extreme

Low 229 49 18 6 Low 116 15 4 1
Moderate 69 33 29 13 Moderate 189 72 40 17

High 34 32 35 35 High 33 30 46 39
Extreme 14 15 21 55 Extreme 1 11 10 50

5 Conclusions

The aim of this work was to develop and assess the utility
of a grass pollen emission methodology for use in a pollen
forecasting tool for Victoria, Australia. Our work is the first
of its kind for Australia, and whilst initially based in the state
of Victoria, future work will see the methodology applied
nationally.

Grass pollen was observed during 2017 at eight sites in
Victoria, showing the strongest correlations with temperature
(positive) and RH (negative). Correlations of grass pollen
with wind speed and precipitation were not strong.

A total of 10 grass pollen emission source methodologies
were presented in this work. Most used the locations of pas-
ture grass in Victoria in combination with meteorological
parameters and a seasonal pollen emission parameter. The
seasonal parameter was either based on a simple Gaussian
representation of time variation, or on the enhanced vegeta-
tion index that measures greening from satellite. Each source
methodology was run using a host transport model driven by
ACCESS numerical weather predictions, at a spatial resolu-

tion of 3 km. The pollen was treated as an inert particle with
a diameter of 35 µm and a density of 1000 kg m−3; however,
these parameters are uncertain and impact the aerodynamic
properties of the pollen.

Comparison of predicted meteorology with observations
showed that ACCESS is very good at predicting tempera-
ture but less so for precipitation, compared with other me-
teorological parameters. Wind speeds are biased a little low,
but are not the strongest correlating meteorological param-
eter for observed pollen. The use of wind speed as the im-
mediate timing function in the pollen emissions framework
also performed poorly. The key to predictive skill in imme-
diate timing was to use a meteorological timing function that
incorporates the parameters most correlated with observed
pollen, namely temperature and RH.

Grass pollen source terms using the ∂EVI data did not per-
form particularly well, with the Victorian grass pollen sea-
son perhaps better described by a simple Gaussian variation.
Whilst emission method E8 worked well, the method is lim-
ited by fixed timings for the start and end of the pollen sea-
son, and the distributions were only trained on the 2017 Vic-
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torian observation data. These data may not account for re-
gional variation or inter-annual variability.

Implementing the maximum EVI value and the date on
which the EVI falls to 0.05 below this maximum within a
statistical methodology predicted pollen concentrations with
much better skill. The smoothed statistics for E10 used
16 years of observational data from the UoM and 1 year
from the seven other Victorian sites. The smoothed statistical
approach is modulated by the hourly effects of wind, tem-
perature, RH and rainfall, which introduces temporal varia-
tion. The EVI also varies spatially and temporally, meaning
that this method is suitable for future years and for other re-
gions of Australia. Additional training data will be included
to model pollen in other Australian regions to account for
the different seasonal flowering times of other grass species
(e.g. C4 grasses) (Beggs et al., 2015). The E10 methodology
will be implemented in VGPEM1.0.

Long-term observations are vital to record the grass pollen
emission strength across Victoria in future years, particularly
tracking changes brought about by climate change, changes
to agricultural practices and the growth of cities into ru-
ral areas. The new Victorian pollen observation stations es-
tablished after the thunderstorm asthma event in Novem-
ber 2016 should be maintained to aid with forecasting of po-
tential threats in future. Advances in technology may pro-
vide automated pollen counting which would improve the
temporal resolution and the possibility of recognising rup-
tured pollen grains. These technologies are required to sup-
port pollen forecasting, and to constrain future modelling of
the pollen rupturing process.

Code availability. The pollen emissions code is available as a text
file in the Supplement.

Data availability. The Victorian pollen counts and forecasts
from all eight sites are disseminated to the public via the
https://www.melbournepollen.com.au/ (last access: 29 May 2019;
MPC, 2019), a smartphone app (named “Melbourne Pollen Count”
for https://itunes.apple.com/au/app/melbourne-pollen-count/
id707461899 (last access: 29 May 2019), iOS, and
https://play.google.com/store/apps/details?id=com.plenum.pollen
(last access: 29 May 2019), Android) and an automated Facebook
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-12-2195-2019-supplement.

Author contributions. KME and JDS devised the experiments, and
wrote the VGPEM code and most of the paper. KME ran the
C-CTM. EN and ERL oversee six of the Victorian pollen count
sites. CS oversees the two Deakin pollen count sites. AW provided

the ACCESS meteorology. EE is the project manager. All authors
edited the paper.

Competing interests. The authors declare that they have no con-
flicts of interest.

Acknowledgements. We are grateful to the pollen counters at each
of the sites. Penelope Jones at the University of Tasmania performed
an external audit of the count data examined here. We acknowledge
the valuable and ongoing technical support from the University of
Melbourne Science IT Team, especially Usha Nattala and Uli Felz-
mann, as well as the team at Infrastructure Services. J. Silver’s work
on the initial development of the emission module code was funded
by a McKenzie Fellowship from the University of Melbourne.

Financial support. This research has been supported by the Vic-
torian Department of Health and Human Services (contract no.
C5949).

Review statement. This paper was edited by David Topping and re-
viewed by two anonymous referees.

References

ABARES: Catchment Scale Land Use of Australia; version
8, available at: http://data.daff.gov.au/anrdl/metadata_files/pb_
luausg9abll20171114_11a.xml (last access: 26 October 2018,
Australian Bureau of Agricultural and Resource Economics and
Sciences, 2017.

ABS: Product 3218.0 – Regional Population Growth, Australia,
2016–17, available at: http://www.abs.gov.au/ausstats/abs@.nsf/
latestProducts/3218.0Media_Release12016-17?OpenDocument
(last access: 19 December 2018), Australian Bureau of Statistics,
2018.

Bass, D., Delpech, V., Beard, J., Bass, P., and Walls, R. S.: Ragweed
in Australia, Aerobiologia, 16, 107–111, 2000.

Beggs, P. J., Katelaris, C. H., Medek, D., Johnston, F. H., Burton,
P. K., Campbell, B., Jaggard, A. K., Vicendese, D., Bowman, D.
M. J. S., Godwin, I., Huete, A. R., Erbas, B., Green, B. J., Newn-
ham, R. M., Newbigin, E., Haberle, S. G., and Davies, J. M.:
Differences in grass pollen allergen exposure across Australia,
Aust. NZ J. Publ. Heal., 39, 51–55, https://doi.org/10.1111/1753-
6405.12325, 2015.

Bellomo, R., Giglotti, P., Treloar, A., Holmes, P., Suphioglu, C.,
Singh, M., and Knox, B.: Two consecutive thunderstorm associ-
ated epidemics of asthma in the city of Melbourne, The possible
role of grass pollen., Med. J. Aust., 156, 834–837, 1992.

Bousquet, P. J., Leynaert, B., Neukirch, F., Sunyer, J., Janson,
C. M., Anto, J., Jarvis, D., and Burney, P.: Geographical distri-
bution of atopic rhinitis in the European Community Respira-
tory Health Survey I, Allergy, 63, https://doi.org/10.1111/j.1398-
9995.2008.01824.x, 2008.

www.geosci-model-dev.net/12/2195/2019/ Geosci. Model Dev., 12, 2195–2214, 2019

https://www.melbournepollen.com.au/
https://itunes.apple.com/au/app/melbourne-pollen-count/id707461899
https://itunes.apple.com/au/app/melbourne-pollen-count/id707461899
https://play.google.com/store/apps/details?id=com.plenum.pollen
https://twitter.com/melbournepollen
https://doi.org/10.5194/gmd-12-2195-2019-supplement
http://data.daff.gov.au/anrdl/metadata_files/pb_luausg9abll20171114_11a.xml
http://data.daff.gov.au/anrdl/metadata_files/pb_luausg9abll20171114_11a.xml
http://www.abs.gov.au/ausstats/abs@.nsf/latestProducts/3218.0Media_Release12016-17?OpenDocument
http://www.abs.gov.au/ausstats/abs@.nsf/latestProducts/3218.0Media_Release12016-17?OpenDocument
https://doi.org/10.1111/1753-6405.12325
https://doi.org/10.1111/1753-6405.12325
https://doi.org/10.1111/j.1398-9995.2008.01824.x
https://doi.org/10.1111/j.1398-9995.2008.01824.x


2212 K. M. Emmerson et al.: Victorian Grass Pollen Emissions Module

Broome, R. A., Cope, M. E., Goldsworthy, B., Goldsworthy, L.,
Emmerson, K., Jegasothy, E., and Morgan, G. G.: The mortality
effect of ship-related fine particulate matter in the Sydney greater
metropolitan region of NSW, Australia, Environ. Int., 87, 85–93,
2016.

Brown, H. M. and Irving, K. R.: Size and Weight of Common
Allergenic Pollens – Investigation of Their Number Per Mi-
crogram and Size Distribution, Acta Allergol., 32, 132–137,
https://doi.org/10.1111/j.1398-9995.1973.tb01319.x, 1973.

Chambers, S. D., Guerette, E.-A., Monk, K., Griffiths, A. D., Zhang,
Y., Duc, H., Cope, M., Emmerson, K. M., Chang, L. T., Silver,
J. D., Utembe, S., Crawford, J., Williams, A. G., and Keywood,
M.: Skill-Testing Chemical Transport Models across Contrasting
Atmospheric Mixing States Using Radon-222, Atmosphere, 10,
25, https://doi.org/10.3390/atmos10010025, 2019.

Cleveland, W. S.: Robust locally weighted regression and smooth-
ing scatterplots, J. Am. Stat. Assoc., 74, 829–836, 1979.

Cope, M. E., Lee, S., Noonan, J., Lilley, B., Hess, D., Azzi, M.:
Chemical transport model: Technical description, Internal report,
CSIRO Marine and Atmospheric Research, 2009.

Damialis, A., Kaimakamis, E., Konoglou, M., Akritidis, I., Traidl-
Hoffmann, C., and Gioulekas, D.: Estimating the abundance of
airborne pollen and fungal spores at variable elevations using
an aircraft: how high can they fly?, Nat. Sci. Rep., 7, 44535,
https://doi.org/10.1038/srep44535, 2017.

Davies, J. M., Erbas, B., Simunovic, M., Al Kouba, J., Mllic, A.,
and Fagan, D.: Literature review on thunderstorm asthma and
its implications for public health advice, Tech. rep., Queensland
University of Technology, 2017.

de Morton, J., Bye, J., Pezza, A., and Newbigin, E.: On the
causes of variability in amounts of airborne grass pollen
in Melbourne, Australia, Int. J. Biometeorol., 55, 613–622,
https://doi.org/0.1007/s00484-010-0361-x, 2011.

Devadas, R., Huete, A. R., Vicendese, D., Erbas, B., Beggs, P. J.,
Medek, D., Haberle, S. G., Newnham, R. M., Johnston, F. H.,
Jaggard, A. K., and Campbell, B.: Dynamic ecological obser-
vations from satellites inform aerobiology of allergenic grass
pollen, Sci. Total Environ., 633, 441–451, 2018.

Durham, C.: The volumetric incidence of atmospheric allergens, III,
Rate of fall of pollen grains in still air, J. Allergy, 17, 70–78,
1946.

Efstathiou, C., Isukapalli, S., and Georgopoulo, P.: A mechanistic
modeling system for estimating large-scale emissions and trans-
port of pollen and co-allergens, Atmos. Environ., 45, 2260–2276,
https://doi.org/10.1016/j.atmosenv.2010.12.008, 2011.

Emberlin, J. and Norrishill, J.: Spatial Variation of Pollen Deposi-
tion in North London, Grana, 30, 190–195, 1991.

Emberlin, J., Smith, M., Close, R., and Adams-Groom, B.: Changes
in the pollen seasons of the early flowering trees Alnus spp. and
Corylus spp. in Worcester, United Kingdom, 1996–2005, Int. J.
Biometeorol., 51, 181–191, https://doi.org/10.1007/s00484-006-
0059-2, 2007.

Emmerson, K. M., Galbally, I. E., Guenther, A. B., Paton-Walsh,
C., Guerette, E.-A., Cope, M. E., Keywood, M. D., Lawson, S.
J., Molloy, S. B., Dunne, E., Thatcher, M., Karl, T., and Malek-
nia, S. D.: Current estimates of biogenic emissions from euca-
lypts uncertain for southeast Australia, Atmos. Chem. Phys., 16,
6997–7011, https://doi.org/10.5194/acp-16-6997-2016, 2016.

Emmerson, K. M., Cope, M. E., Galbally, I. E., Lee, S., and Nelson,
P. F.: Isoprene and monoterpene emissions in south-east Aus-
tralia: comparison of a multi-layer canopy model with MEGAN
and with atmospheric observations, Atmos. Chem. Phys., 18,
7539–7556, https://doi.org/10.5194/acp-18-7539-2018, 2018.

Emmerson, K. M., Palmer, P. I., Thatcher, M., Haverd, V., and
Guenther, A. B.: Sensitivity of isoprene emissions to drought
over south-eastern Australia: Integrating models and satellite
observations of soil moisture, Atmos. Environ., 209, 112–124,
https://doi.org/10.1016/j.atmosenv.2019.04.038, 2019.

Erbas, B., Chang, J.-H., Newbigin, E., and Dhamarge, S.: Mod-
elling atmospheric concentrations of grass pollen using meteoro-
logical variables in Melbourne, Australia, Int. J. Environ. Health
Res., 17, 361–368, https://doi.org/10.1080/09603120701628693,
2007.

Gerrity, J. P.: A note on Gandin and Murphy’s equitable score, Mon.
Weather Rev., 120, 2707–2712, 1992.

Girgis, S., Marks, G., Downs, S., Kolbe, A., Car, G., and Paton,
R.: Thunderstorm-associated asthma in an inland town in south-
eastern Australia. Who is at risk?, Eur. Respir. J., 16, 3–8, 2000.

Haberle, S., Bowman, D., Newnham, R., Johnston, F., Beggs,
P., Buters, J., Campbell, B., Erbas, B., Godwin, I., Green,
B., Huete, A., Jaggard, A., Medek, D., Murray, F., Newbi-
gin, E., Thibaudon, M., Vicendese, D., Williamson, G., and
Davies, J.: The macroecology of airborne pollen in Aus-
tralian and New Zealand urban areas, PLoS ONE, 9, e97925,
https://doi.org/10.1371/journal.pone.0097925, 2014.

Helbig, N., Vogel, B., Vogel, H., and Fiedler,
F.: Numerical modelling of pollen dispersion
on the regional scale, Aerobiologia, 20, 3–19,
https://doi.org/10.1023/B:AERO.0000022984.51588.30, 2004.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Fer-
reira, L. G.: Overview of the radiometric and biophysical perfor-
mance of the MODIS vegetation indices, Remote Sens. Environ.,
83, 195–213, 2002.

Kawashima, S. and Takahashi, Y.: An improved simula-
tion of mesoscale dispersion of airborne cedar pollen
using a flowering-time map, Grana, 38, 316–324,
https://doi.org/10.1080/001731300750044555, 1999.

Knox, R.: Grass pollen, thunderstorms and asthma, Clin.
Exp. Allergy, 1993, 354–359, https://doi.org/10.1111/j.1365-
2222.1993.tb00339.x, 1993.

Lai, C. K. W., Beasley, R., Crane, J., Foliaki, S., Shah, J., and
Weiland, S.: Global variation in the prevalence and severity of
asthma symptoms: Phase Three of the International Study of
Asthma and Allergies in Childhood (ISAAC), Thorax, 64, 476–
483, https://doi.org/10.1136/thx.2008.106609, 2009.

Lake, I., Jones, N., and Agnew, M.: Climate change and future
pollen allergy in Europe, Environ Health Perspect., 125, 385–
391, 2017.

Lindstrom, S. J., Silver, J. D., Sutherland, M. F., Treloar, A.
B. A., Newbigin, E., McDonald, C. F., and Douglass, J. A.:
Thunderstorm asthma outbreak of November 2016: a natural
disaster requiring planning, Med. J. Australia, 207, 235–237,
https://doi.org/10.5694/mja17.00285, 2017.

McInnes, R. N., Hernming, D., Burgess, P., Lyndsay, D., Osborne,
N. J., Skjøth, C. A., Thomas, S., and Vardoulakis, S.: Mapping
allergenic pollen vegetation in UK to study environmental ex-

Geosci. Model Dev., 12, 2195–2214, 2019 www.geosci-model-dev.net/12/2195/2019/

https://doi.org/10.1111/j.1398-9995.1973.tb01319.x
https://doi.org/10.3390/atmos10010025
https://doi.org/10.1038/srep44535
https://doi.org/0.1007/s00484-010-0361-x
https://doi.org/10.1016/j.atmosenv.2010.12.008
https://doi.org/10.1007/s00484-006-0059-2
https://doi.org/10.1007/s00484-006-0059-2
https://doi.org/10.5194/acp-16-6997-2016
https://doi.org/10.5194/acp-18-7539-2018
https://doi.org/10.1016/j.atmosenv.2019.04.038
https://doi.org/10.1080/09603120701628693
https://doi.org/10.1371/journal.pone.0097925
https://doi.org/10.1023/B:AERO.0000022984.51588.30
https://doi.org/10.1080/001731300750044555
https://doi.org/10.1111/j.1365-2222.1993.tb00339.x
https://doi.org/10.1111/j.1365-2222.1993.tb00339.x
https://doi.org/10.1136/thx.2008.106609
https://doi.org/10.5694/mja17.00285


K. M. Emmerson et al.: Victorian Grass Pollen Emissions Module 2213

posure and human health, Sci. Total Environ., 599, 483–499,
https://doi.org/10.1016/j.scitotenv.2017.04.136, 2017.

Medek, D. E., Beggs, P. J., Erbas, B., Jaggard, A. K., Campbell,
B. C., Vicendese, D., Johnston, F. H., Godwin, I., Huete, A. R.,
Green, B. J., Burton, P. K., Bowman, D. M. J. S., Newnham,
R. M., Katelaris, C. H., Haberle, S. G., Newbigin, E., and Davies,
J. M.: Regional and seasonal variation in airborne grass pollen
levels between cities of Australia and New Zealand, Aerobi-
ologia, 32, 289–302, https://doi.org/10.1007/s10453-015-9399-
x, 2016.

MPC: Melbourne Pollen Count, available at: https://www.
melbournepollen.com.au (last access 29 May 2019), 2019.

Ong, E. K., Singh, M. B., and Knox, R. B.: Grass-Pollen in the
Atmosphere of Melbourne – Seasonal Distribution over 9 Years,
Grana, 32, 58–63, 1995.

Osborne, N., Alcock, I., Wheeler, B., Hajat, S., Sarran, C., Clewlow,
Y., McInnes, R., Hemming, D., White, M., Vardoulakis, S.,
and Fleming, L.: Pollen exposure and hospitalization due to
asthma exacerbations: daily time series in a European city., Int.
J. Biometeorol., 61, 1837, https://doi.org/10.1007/s00484-017-
1369-2, 2017.

Pasken, R. and Pietrowiez, J.: Using dispersion and mesoscale me-
teorological models to forecast pollen concentrations, Atmos.
Environ., 39, 2689–7701, 2005.

Paton-Walsh, C., Guerette, E.-A., Emmerson, K., Cope, M., Ku-
bistin, D., Humphries, R., Wilson, S., Buchholz, R., Jones,
N. B., Griffith, D. W. T., Dominick, D., Galbally, I., Key-
wood, M., Lawson, S., Harnwell, J., Ward, J., Griffiths, A.,
and Chambers, S.: Urban Air Quality in a Coastal City: Wol-
longong during the MUMBA Campaign, Atmosphere, 9, 500,
https://doi.org/10.3390/atmos9120500, 2018.

Puri, K., Dietachmayer, G., Steinle, P., Dix, M., Rikus, L., Lo-
gan, L., Naughton, M., Tingwell, C., Xiao, Y., Barras, V.,
Bermous, I., Bowen, R., Deschamps, L., Franklin, C., Fraser,
J., Glowacki, T., Harris, B., Lee, J., Le, T., Roff, G., Sulaiman,
A., Sims, H., Sun, X., Sun, Z., Zhu, H., Chattopadhyay, M.,
and Engel, C.: Implementation of the initial ACCESS numerical
weather prediction system, Aust. Meteorol. Ocean, 63, 265–284,
https://doi.org/10.22499/2.6302.001, 2013.

Schäppi, G. F., Taylor, P. E., Kenrick, J., Staff, I. A., and
Suphioglu, C.: Predicting the grass pollen count from meteoro-
logical data with regard to estimating the severity of hayfever
symptoms in Melbourne (Australia), Aerobiologia, 14, 14–29,
https://doi.org/10.1007/BF02694592, 1998.

Schueler, S. and Schlunzen, K. H.: Modeling of oak pollen
dispersal on the landscape level with a mesoscale at-
mospheric model, Environ. Model Assess., 11, 179–194,
https://doi.org/10.1007/s10666-006-9044-8, 2006.

Siljamo, P., Sofiev, M., and Ranta, H.: An approach to simulation of
long-range atmospheric transport of natural allergens: an exam-
ple of birch pollen, in: Air Polution Modelling and its Applica-
tions XVII, edited by: Borrego, C. and Norman, A.-L., Springer,
ISBN-10: 0-387-28255-6, 331–340, 2007.

Siljamo, P., Sofiev, M., Filatova, E., Grewling, L., Jager, S.,
Khoreva, E., Linkosalo, T., Jimenez, S. O., Ranta, H., Rantio-
Lehtimäki, A., Svetlov, A., Veriankaite, L., Yakovleva, E.,
and Kukkonen, J.: A numerical model of birch pollen emis-
sion and dispersion in the atmosphere. Model evaluation

and sensitivity analysis, Int. J. Biometeorol., 57, 125–136,
https://doi.org/10.1007/s00484-012-0539-5, 2013.

Silver, J. D., Sims, H., Bannister, A. J., Ebert, E. E., Emmer-
son, K. M., Lampugnani, E. R., Haberle, S. G., Graham, B.,
Suphioglu, C., and Newbigin, E. J.: Statistical modelling of air-
borne grass pollen in south-east Australia, in preparation, 2019.

Skjøth, C. A., Sommer, J., Stach, A., Smith, M., and Brandt,
J.: The long-range transport of birch (Betula) pollen from
Poland and Germany causes significant pre-season concen-
trations in Denmark, Clin. Exp. Aller., 37, 1204–1212,
https://doi.org/10.1111/j.1365-2222.2007.02771.x, 2007.

Skjøth, C. A., Ørby, P. V., Becker, T., Geels, C., Schlünssen, V.,
Sigsgaard, T., Bønløkke, J. H., Sommer, J., Søgaard, P., and
Hertel, O.: Identifying urban sources as cause of elevated grass
pollen concentrations using GIS and remote sensing, Biogeo-
sciences, 10, 541–554, https://doi.org/10.5194/bg-10-541-2013,
2013.

Smart, I. J. and Knox, R. B.: Aerobiology of Grass-Pollen in
the City Atmosphere of Melbourne - Quantitative-Analysis of
Seasonal and Diurnal Changes, Aust. J. Bot., 27, 317–331,
https://doi.org/10.1071/Bt9790317, 1979.

Smart, I. J., Tuddenham, W. G., and Knox, R. B.: Aerobiology of
Grass-Pollen in the City Atmosphere of Melbourne – Effects of
Weather Parameters and Pollen Sources, Aust. J. Bot., 27, 333–
342, https://doi.org/10.1071/Bt9790333, 1979.

Smith, M. and Emberlin, J.: A 30-day-ahead forecast model for
grass pollen in north London, United Kingdom, Int. J. Biomete-
orol., 50, 233–242, https://doi.org/10.1007/s00484-005-0010-y,
2006.

Sofiev, M.: On impact of transport conditions on variability
of the seasonal pollen index, Aerobiologia, 33, 167–179,
https://doi.org/10.1007/s10453-016-9459-x, 2017.

Sofiev, M., Siljamo, P., Ranta, H., and Rantio-Lehtimäki, A.: To-
wards numerical forecasting of long-range air transport of birch
pollen: Theoretical considerations and a feasibility study, Int. J.
Biometeorol., 50, 392–402, https://doi.org/10.1007/s00484-006-
0027-x, 2006.

Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Ras-
mussen, A., Rantio-Lehtimäki, A., Severova, E., and Kukko-
nen, J.: A numerical model of birch pollen emission and disper-
sion in the atmosphere. Description of the emission module, Int.
J. Biometeorol., 57, 45–58, https://doi.org/10.1007/s00484-012-
0532-z, 2013.

Sofiev, M., Berger, U., Prank, M., Vira, J., Arteta, J., Belmonte,
J., Bergmann, K.-C., Chéroux, F., Elbern, H., Friese, E., Galan,
C., Gehrig, R., Khvorostyanov, D., Kranenburg, R., Kumar, U.,
Marécal, V., Meleux, F., Menut, L., Pessi, A.-M., Robertson, L.,
Ritenberga, O., Rodinkova, V., Saarto, A., Segers, A., Severova,
E., Sauliene, I., Siljamo, P., Steensen, B. M., Teinemaa, E.,
Thibaudon, M., and Peuch, V.-H.: MACC regional multi-model
ensemble simulations of birch pollen dispersion in Europe, At-
mos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-
15-8115-2015, 2015.

Stanley, R. G. and Linskens, H. F.: Pollen, Biology, Chemistry and
Management, Springer Verlag, Berlin, 1974.

Sugita, S., Gaillard, M.-J., and Broström, A.: Landscape openness
and pollen records: a simulation approach, The Holocene, 9,
409–421, https://doi.org/10.1191/095968399666429937, 1999.

www.geosci-model-dev.net/12/2195/2019/ Geosci. Model Dev., 12, 2195–2214, 2019

https://doi.org/10.1016/j.scitotenv.2017.04.136
https://doi.org/10.1007/s10453-015-9399-x
https://doi.org/10.1007/s10453-015-9399-x
https://www.melbournepollen.com.au
https://www.melbournepollen.com.au
https://doi.org/10.1007/s00484-017-1369-2
https://doi.org/10.1007/s00484-017-1369-2
https://doi.org/10.3390/atmos9120500
https://doi.org/10.22499/2.6302.001
https://doi.org/10.1007/BF02694592
https://doi.org/10.1007/s10666-006-9044-8
https://doi.org/10.1007/s00484-012-0539-5
https://doi.org/10.1111/j.1365-2222.2007.02771.x
https://doi.org/10.5194/bg-10-541-2013
https://doi.org/10.1071/Bt9790317
https://doi.org/10.1071/Bt9790333
https://doi.org/10.1007/s00484-005-0010-y
https://doi.org/10.1007/s10453-016-9459-x
https://doi.org/10.1007/s00484-006-0027-x
https://doi.org/10.1007/s00484-006-0027-x
https://doi.org/10.1007/s00484-012-0532-z
https://doi.org/10.1007/s00484-012-0532-z
https://doi.org/10.5194/acp-15-8115-2015
https://doi.org/10.5194/acp-15-8115-2015
https://doi.org/10.1191/095968399666429937


2214 K. M. Emmerson et al.: Victorian Grass Pollen Emissions Module

Suphioglu, C., Singh, M. B., Taylor, P., Bellomo, R., Holmes, P.,
Puy, R., and Knox, R. B.: Mechanism of grass-pollen-induced
asthma, Lancet, 339, 569–572, https://doi.org/10.1016/0140-
6736(92)90864-Y, 1992.

Taylor, P. E. and Jonsson, H.: Thunderstorm asthma, Curr. Al-
lergy. Asthm. R, 4, 409–413, https://doi.org/10.1007/s11882-
004-0092-3, 2004.

US National Allergy Bureau: NAB pollen counts, available at: https:
//www.aaaai.org/global/nab-pollen-counts/reading-the-charts
(last access: 1 May 2019), American Academy of Allergy,
Asthma and Immunology, 2019.

Viner, B., Westgate, M., and Arritt, R.: A model to predict diurnal
pollen shed in maize, Crop Sci., 50, 235–245, 2010.

Wood, S.: Generalized Additive Models: An Introduction with R,
Chapman and Hall/CRC, 2006.

Wozniak, M. C. and Steiner, A. L.: A prognostic pollen emissions
model for climate models (PECM1.0), Geosci. Model Dev., 10,
4105–4127, https://doi.org/10.5194/gmd-10-4105-2017, 2017.

Wozniak, M. C., Solmon, F., and Steiner, A. L.: Pollen
Rupture and Its Impact on Precipitation in Clean Con-
tinental Conditions, Geophys. Res. Lett., 45, 7156–7164,
https://doi.org/10.1029/2018gl077692, 2018.

Zhang, R., Duhl, T., Salam, M. T., House, J. M., Flagan, R. C.,
Avol, E. L., Gilliland, F. D., Guenther, A., Chung, S. H., Lamb,
B. K., and VanReken, T. M.: Development of a regional-scale
pollen emission and transport modeling framework for investi-
gating the impact of climate change on allergic airway disease,
Biogeosciences, 11, 1461–1478, https://doi.org/10.5194/bg-11-
1461-2014, 2014.

Zink, K., Pauling, A., Rotach, M. W., Vogel, H., Kaufmann, P., and
Clot, B.: EMPOL 1.0: a new parameterization of pollen emission
in numerical weather prediction models, Geosci. Model Dev., 6,
1961–1975, https://doi.org/10.5194/gmd-6-1961-2013, 2013.

Ziska, L. H. and Beggs, P. J.: Anthropogenic climate change and
allergen exposure: The role of plant biology, J. Allergy Clin.
Immun., 129, 27–32, https://doi.org/10.1016/j.jaci.2011.10.032,
2012.

Geosci. Model Dev., 12, 2195–2214, 2019 www.geosci-model-dev.net/12/2195/2019/

https://doi.org/10.1016/0140-6736(92)90864-Y
https://doi.org/10.1016/0140-6736(92)90864-Y
https://doi.org/10.1007/s11882-004-0092-3
https://doi.org/10.1007/s11882-004-0092-3
https://www.aaaai.org/global/nab-pollen-counts/reading-the-charts
https://www.aaaai.org/global/nab-pollen-counts/reading-the-charts
https://doi.org/10.5194/gmd-10-4105-2017
https://doi.org/10.1029/2018gl077692
https://doi.org/10.5194/bg-11-1461-2014
https://doi.org/10.5194/bg-11-1461-2014
https://doi.org/10.5194/gmd-6-1961-2013
https://doi.org/10.1016/j.jaci.2011.10.032

	Abstract
	Introduction
	Observations and characteristics of grass pollen
	Treatment of pollen in VGPEM1.0
	Pollen emissions framework
	Immediate timing (I)
	The gross timing (G)
	Enhanced vegetation index (EVI)
	The spatial function (S)
	Pollen production--loss model
	Statistical models

	Statistical evaluation

	Results and discussion
	Verification of meteorology
	Observed and modelled pollen correlations with meteorology
	Verification of pollen source methodologies

	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

