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Abstract. The analytic wave solutions obtained by Matsuno
(1966) in his seminal work on equatorial waves provide a
simple and informative way of assessing the performance of
atmospheric models by measuring the accuracy with which
they simulate these waves. These solutions approximate the
solutions of the shallow-water equations on the sphere for
low gravity-wave speeds such as those of the baroclinic
modes in the atmosphere. This is in contrast to the solutions
of the non-divergent barotropic vorticity equation, used in the
Rossby–Haurwitz test case, which are only accurate for high
gravity-wave speeds such as those of the barotropic mode.
The proposed test case assigns specific values to the wave
parameters (gravity-wave speed, zonal wave number, merid-
ional wave mode and wave amplitude) for both planetary and
inertia-gravity waves, and suggests simple assessment crite-
ria suitable for zonally propagating wave solutions. The test
is successfully applied to a spherical shallow-water model in
an equatorial channel and to a global-scale model. By adding
a small perturbation to the initial fields it is demonstrated that
the chosen initial waves remain stable for at least 100 wave
periods. The proposed test case can also be used as a resolu-
tion convergence test.

1 Introduction

A cornerstone of global-scale model assessment is the
Rossby–Haurwitz test case, originally used by Phillips
(1959) as a qualitative way of assessing his shallow-water
model. Phillips initialized his model with an analytic wave
solution of the non-divergent barotropic vorticity equation
obtained by Haurwitz (1940), and examined the spatiotem-
poral smoothness of the simulated fields at later times. Us-
ing this procedure he concluded that the emergent noise in

his model was due to a small but significant divergence field
missing from the initial fields. Even though the solutions of
the non-divergent barotropic vorticity equation are not solu-
tions of the shallow-water equations (SWEs), Phillips’ pro-
cedure was adopted by Williamson et al. (1992) as a standard
test case for shallow-water models and has been extensively
used ever since (Jablonowski et al., 2009; Mohammadian and
Marshall, 2010; Bosler et al., 2014; Ullrich, 2014; Li et al.,
2015, are only five recent examples).

However, there are two known issues with the original
Rossby–Haurwitz test case that limit its usefulness (Thuburn
and Li, 2000). The first is the generation of small-scale fea-
tures via a potential enstrophy cascade, which requires ad-
equate dissipation mechanisms to remove enstrophy at the
grid scale (in order to mimic a continuous cascade to sub-grid
scales). The second is the instability of the initial wave num-
ber 4 used in the Rossby–Haurwitz test case. In contrast to
Hoskins (1973), who found that wave numbers smaller than
or equal to 5 are stable, Thuburn and Li (2000) show that the
Rossby–Haurwitz wave number 4 is in fact also unstable.

Recently, Shamir and Paldor (2016) proposed a similar
procedure to that of Phillips (1959) where instead of us-
ing the solutions of the non-divergent barotropic vorticity
equation, the initial fields are the analytic wave solutions of
the linearized SWEs on the sphere derived in Paldor et al.
(2013). These solutions fully account for the small diver-
gence field and can be computed on any grid given the lat-
itudes and longitudes. In particular, they include the fast
propagating inertia-gravity (IG) waves that are completely
absent from the non-divergent barotropic vorticity equation.
Consequently, the procedure proposed by Shamir and Paldor
(2016) provides a more quantitative assessment than the orig-
inal procedure from Phillips (1959) while it is just as easy to
implement.
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Both solutions obtained by Haurwitz (1940) and Paldor
et al. (2013) approximate the solutions of the SWEs in the
asymptotic limit of high gravity-wave speeds. For most prac-
tical purposes they are sufficiently accurate for gravity-wave
speeds of about 200–300 m s−1 or higher, which are typical
of the barotropic mode in Earth’s atmosphere and oceans.
However, the typical speeds of gravity waves of baroclinic
modes in the (tropical) atmosphere are about 20–30 m s−1

(Wheeler and Kiladis, 1999). Thus, the abovementioned pro-
cedures are only relevant for assessing the accuracy with
which the barotropic wave mode is simulated. In order to
assess the accuracy of the baroclinic wave modes we pro-
pose, in the present work, to use the analytic wave solutions
of the linearized SWEs on the equatorial β-plane obtained by
Matsuno (1966) that approximate the solutions of the SWEs
on the sphere in the asymptotic limit of low gravity-wave
speeds. (De-Leon and Paldor, 2011; Garfinkel et al., 2017).

In addition to being on two opposite ends of the spectrum
of gravity-wave speed the solutions obtained by Matsuno
(1966) differ from those obtained by both Haurwitz (1940)
and Paldor et al. (2013) in their meridional extent. While the
former become negligibly small outside a narrow equatorial
band, the latter two have non-negligible amplitudes in the
vicinity of the poles. Thus, while the Rossby–Haurwitz test
case is only relevant to global-scale models, the test case pro-
posed in the present study is applicable to both global-scale
and tropical models.

A homonymous, but unrelated, test case is the baro-
clinic wave test case developed in Jablonowski (2004) and
Jablonowski and Williamson (2006) and independently in
Polvani et al. (2004), and its variants in Lauritzen et al.
(2010) and Ullrich et al. (2014). This test case is concerned
with the non-linear generation of synoptic-scale eddies in
multilayer models via baroclinic instability. In contrast, the
test case proposed here is concerned with linear wave prop-
agation in (non-linear) single-layer models. In particular,
while the term baroclinic usually implies the use of multi-
layer models, here this term is used to denote a single thin
layer model of homogeneous density where the gravity-wave
speeds are similar to those observed in baroclinic modes in
the atmosphere.

The idea of using Matsuno’s solutions as a test case in a
similar fashion to that of the Rossby–Haurwitz test case is
most likely not original, but has never been standardized.
Thus, the purpose of the present work is to standardize the
Matsuno test case similar to the way that Williamson et al.
(1992) standardized the Rossby–Haurwitz test case. We start
with a short description of the analytic expressions derived
by Matsuno (1966) in Sect. 2. The proposed test procedure,
including the choice of wave parameters and assessment cri-
teria, is described in Sect. 3. In Sect. 4 we demonstrate the
usefulness of the proposed test case using both an equatorial
channel spherical shallow-water model, and a global-scale
model. In addition, we examine the smoothness and stabil-
ity of the initial waves in a similar fashion to that used in

Thuburn and Li (2000) and demonstrate the possibility of us-
ing the proposed test case as a resolution convergence test.
Finally, concluding remarks are given in Sect. 5.

2 The analytic solutions

The proposed test case is based on the analytic solutions of
the SWEs on the equatorial β-plane obtained by Matsuno
(1966). These solutions have the form of zonally propagating
waves, i.e.,u(x,y, t)v(x,y, t)

8(x,y, t)

= Re


 û(y)v̂(y)

8̂(y)

ei(kx−ωt)
 , (1)

where x and y are the local Cartesian coordinates in the zonal
and meridional directions, respectively; t is time; u and v are
the velocity components in the zonal and meridional direc-
tions, respectively; 8 is the geopotential height; k is the pla-
nar zonal wave number (which has dimensions of m−1); ω
is the wave frequency; û(y), v̂(y) and 8̂(y) are the latitude-
dependent amplitudes; and i =

√
−1 is the imaginary unit. In

accordance with the sign convention used in Matsuno (1966)
we assume that k is non-negative and let ω take any real
value. Note, however, that the sign in front of ω in Eq. (1)
is the opposite to that in the theory of Matsuno (1966). The
convention chosen here is more intuitive as it implies that
positive values of ω correspond to waves that propagate in
the positive x direction, i.e., eastward.

The unknown wave frequencies and latitude-dependent
amplitudes are derived from the (well-known) energies and
eigenfunctions of the (time-independent) Schödinger equa-
tion of the quantum harmonic oscillator. The resulting fre-
quencies are given by the solutions of the following cubic
equation:

ω3
n,k −

[
gHk2

+
2�
√
gH

a
(2n+ 1)

]
ωn,k −

2�gHk
a

= 0, (2)

for n=−1,0,1,2, . . ., where �= 7.29212× 10−5 rad s−1,
a = 6.37122× 106 m and g = 9.80616 m s−2 are the Earth’s
angular frequency, mean radius and gravitational accelera-
tion, respectively, and H is the mean layer’s depth (thick-
ness).

For n≥ 1 Eq. (2) has three distinct real roots correspond-
ing to a slowly westward propagating Rossby wave, a fast
eastward propagating inertia-gravity (EIG) wave and a fast
westward propagating inertia-gravity (WIG) wave. For n= 0
one of the three roots, the one corresponding to a westward
propagating gravity wave with ω =−

√
gHk, leads to infi-

nite zonal wind and is thus considered a physically unac-
ceptable solution. The remaining two roots correspond to
the lowest (i.e., n= 0) EIG wave and the mixed Rossby–
gravity (MRG) wave. For n=−1 Eq. (2) has one real root
ω =
√
gHk, which correspond to the equatorial Kelvin wave
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(see Matsuno, 1966). The existence of the latter two waves
on a sphere is discussed in Garfinkel et al. (2017) and Paldor
et al. (2018).

For given values of the zonal wave number, k, and merid-
ional mode number, n, the roots of the cubic equation can
be obtained in a closed analytic form using the solutions of
the general cubic equation as follows (e.g., Abramowitz and
Stegun, 1964):

ωn,k,j = Re
{
−

1
3

(
1j +

10

1j

)}
, for j = 1,2,3 (3)

where j stands for the three roots, and where

10 = 3
[
gHk2

+
2�
√
gH

a
(2n+ 1)

]
, (4a)

1j =
[14+

√
12

4− 413
0

2

]1/3
exp

(
2πj

3
i

)
, (4b)

14 =−
54�gHk

a
. (4c)

Given the definitions in Eq. (4), the explicit expressions
for the frequencies of the Rossby, WIG and EIG waves are
obtained by sorting the values in Eq. (3) as follows:

Rossby : ωn, k,R =− min
j=1,2,3

|ωn,k,j |, (5a)

Westward inertia gravity : ωn, k,WIG = min
j=1,2,3

ωn,k,j , (5b)

Eastward inertia gravity : ωn, k,EIG = max
j=1,2,3

ωn,k,j . (5c)

Having found (one of) the wave frequencies for a
given combination of n and k, the corresponding latitude-
dependent amplitudes can be written as

v̂n = AĤn

(
ε1/4 y

a

)
exp

(
−

1
2

(
ε1/4 y

a

)2
)

(6a)

ûn,k =
gHε1/4

ia
(
ω2
n,k − gHk

2
)[−√n+ 1

2

(
ωn,k
√
gH
+ k

)
v̂n+1

−

√
n

2

(
ωn,k
√
gH
− k

)
v̂n−1

]
(6b)

8̂n,k=
gHε1/4

ia
(
ω2
n,k − gHk

2
)[−√n+ 1

2

(
ωn,k +

√
gHk

)
v̂n+1

+

√
n

2

(
ωn,k −

√
gHk

)
v̂n−1

]
, (6c)

for n= 1,2,3, . . . (the cases n=−1,0 require special treat-
ment), where ε = (2�a)2/gH is Lamb’s parameter, A is an
arbitrary amplitude (that has dimensions of m s−1) and Ĥn
are the normalized Hermite polynomials of degree n defined
by the following three-term recurrence relation (Press et al.,
2007):

Ĥ−1(x)= 0, (7a)

Ĥ0(x)= π
−1/4, (7b)

Ĥn+1(x)= x

√
2

n+ 1
Ĥn−

√
n

n+ 1
Ĥn−1. (7c)

It should be noted that the chosen normalization for the
latitude-dependent amplitudes in Eq. (6) is different from the
one used in Matsuno (1966). We use the above normalization
for convenience, as it guarantees that v̂ is independent of both
k or ω. Furthermore, the use of the normalized version of
the Hermite polynomials also leads to slightly different pre-
factors in front of v̂n+1 and v̂n−1 compared with Matsuno
(1966). However, they are generally more computationally
stable. Finally, the outer parentheses in Eq. (6a) denote the
argument of Ĥn and the exponential function, and not multi-
plicative factors. In other words, the independent variable in
this equation is (ε1/4y/a), and not simply y.

While the solutions obtained by Matsuno (1966) apply for
the equatorial β-plane, the proposed test case is intended
for use in spherical models. As is shown in Garfinkel et al.
(2017), the SWEs on the equatorial β-plane approximate the
SWEs on the sphere to zero-order in powers of 1/ε1/4. Thus,
the solutions obtained by Matsuno are only accurate in the
asymptotic limit ε→∞. For the fixed values of Earth’s an-
gular frequency and mean radius, this implies that the solu-
tions obtained by Matsuno are only accurate for sufficiently
low gravity-wave speeds

√
gH .

In practice, in order to use the solutions of Matsuno (1966)
in spherical models, the local Cartesian coordinates x and y
in the above Eqs. (1) and (6) have to be replaced by the longi-
tude λ and latitude φ of the geographical coordinate system.
Recall that the transformation from the Cartesian system to
the spherical system is (x,y)→ a(cosφ0λ,φ), where φ0 is
the central latitude at which the planar approximation is ap-
plied. Likewise, the planar wave number k in Eqs. (1)–(6) has
to be replaced by its spherical counterpart, ks, using the trans-
formation k→ ks/a cosφ0. Thus, for the equatorial β-plane
where φ0 = 0, the transformation is simply (x,y)→ a(λ,φ)

and k→ ks/a. In particular, the reader should note that the
planar wave number k has units of m−1, while the spherical
wave number ks is dimensionless.

3 The proposed test procedure

The general procedure of the proposed test case is similar to
the Rossby–Haurwitz procedure in that the model in ques-
tion is initialized with velocity and height fields correspond-
ing to a particular wave solution and the time evolution of
that wave is then examined. The initial wave fields in this
case are taken from the analytic expressions in Sect. 2. The
specific choice of wave parameters and assessment criteria in
the present work are discussed below, separately. As is often
the case, these choices represent compromises between con-
flicting factors, e.g., adherence to observations vs. adherence
to asymptotic validity of the analytic solutions or rigorous
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testing vs. simplicity. In any case, these choices may be the
subject of discourse as deemed appropriate by the commu-
nity.

3.1 Wave parameters

The wave parameters consist of the speed of gravity waves,
√
gH , the wave number and wave mode, k and n, the wave

amplitude, A, and the wave type. Any given combination of
these parameters completely specifies a unique wave using
the expressions in Eqs. (1)–(6). We consider all other param-
eters, including the spatiotemporal resolution and the form
of diffusion/viscosity terms, to be modeling choices left to
the developers. This approach is aimed at testing the mod-
els in their intended mode of operation. However, as noted in
Polvani et al. (2004), different choices of the form of diffu-
sion/viscosity terms correspond to different sets of equations
and may not converge to the same solutions.

The choice of gravity-wave speed
√
gH is inspired by the

observed speed of gravity waves of the baroclinic modes
in the atmosphere. In practice, we keep g fixed to Earth’s
gravitational acceleration and set the speed of gravity waves
by letting H = 30 m, which is within the range of observed
equivalent depths in the equatorial atmosphere (Wheeler and
Kiladis, 1999). As mentioned in Sect. 2, the analytic so-
lutions obtained by Matsuno (1966) on the equatorial β-
plane are only accurate approximations of the SWEs on the
sphere in the asymptotic limit of low gravity-wave speeds.
The above value was found to be sufficiently accurate, us-
ing trial and error, in the sense that it yields stable solutions
for at least 100 wave periods in the simulations described in
Sect. 4.

In addition to the speed of gravity waves, the accuracy of
Matsuno’s solutions also depends on the wave number and
wave mode. For a given value of

√
gH , these solutions be-

come asymptotically accurate in the limits ks, n→ 0 (but
ks 6= 0) (De-Leon and Paldor, 2011). Also, the spatial vari-
ability and the required spatial resolution both increase with
the wave number or wave mode, so both of these consid-
erations suggest that reasonable choices for the wave num-
ber and wave mode consist of small to moderate values.
The proposed wave number and wave mode are ks = 5 (i.e.,
k = 5/am−1) and n= 1, i.e., within the range of dominant
values observed in the equatorial atmosphere (Wheeler and
Kiladis, 1999), but other choices may work just as well pro-
vided ks and n are not too large.

The proposed test case is based on the solutions of the lin-
ear SWEs but is intended to be used in non-linear models.
Therefore, the wave-amplitude should be sufficiently small
so as to satisfy the linearization condition. The proposed am-
plitude of v̂ in Eq. (6) is A= 10−5 m s−1, chosen by trial and
error so as to enable stable solutions for at least 100 wave
periods in the simulations of Sect. 4.

In general, there are two qualitatively different wave types,
Rossby and IG, which differ in the magnitude of their di-

vergence and vorticity fields. The former is more solenoidal
(non-divergent), whereas the latter is more irrotational. In
order to assess the performance of the models in these two
qualitatively different limits we suggest using one of each.
As Rossby waves are exclusively westward propagating, we
choose the EIG wave of the two IG waves as the second case
to cover the two directions of longitudinal propagation.

For these chosen values of
√
gH , k and n, the wave pe-

riods (T = 2π
ω

) are T = 18.5 d for the Rossby wave and
T = 1.9 d for the EIG wave.

3.2 Assessment criteria

For sufficiently small wave amplitudes we expect the spa-
tiotemporal structure of the simulated solutions to be that of
zonally propagating waves, i.e., q = q̂(φ)ei(kλ−ωt) (where q
stands for any of the dependent variables u, v or8), with fre-
quency and latitude-dependent amplitudes corresponding to
the initial wave. In this case, it is desirable to assess the accu-
racy of the zonal and meridional structures of the waves in-
dependently. A fast and simple way of doing so is using Hov-
möller diagrams, where the temporal change in any direction
is isolated by intersecting the fields along a fixed value of the
other direction. This results in the following two diagrams:

i. A time–longitude diagram is obtained by intersecting
the fields at a certain latitude. The contour lines in the
time–longitude plane are the set of points satisfying
kλ−ωt = constant (for some real constant). Thus, the
expected pattern for this diagram is that of straight lines
with slopes that equal the inverse of the wave’s phase
speed k/ω. In order to avoid small fluctuations in the
vicinity of latitudinal zero crossings, we recommend us-
ing latitudinal intersects at or near local extrema.

ii. A latitude–time diagram is obtained by intersecting the
fields at a certain longitude. For any two wave fronts
with an equal phase k(λ2−λ1)= ω(t2−t1). Thus, hold-
ing λ fixed while varying t from t1 to t2 is equiva-
lent to holding t fixed and varying λ from λ1 to λ2 =

λ1+ω/k(t2− t1). The resulting pattern is similar to that
of a latitude–longitude diagram, but provides an esti-
mate of the time evolution at a particular longitude (as
opposed to a latitude–longitude snapshot at a particular
time).

Likewise, for zonally propagating waves it is also desirable
to isolate the errors in the phase speed and spatial structure.
As discussed in Shamir and Paldor (2016), the frequently
used spherical l2 error entangles the two, and is therefore of
lesser use for assessing the accuracy with which the model
simulates a propagating wave. Thus, for a more quantitative
assessment we suggest using the relative difference between
the root-mean-square of the analytic solution and the simu-

Geosci. Model Dev., 12, 2181–2193, 2019 www.geosci-model-dev.net/12/2181/2019/



O. Shamir et al.: The Matsuno baroclinic wave test case 2185

lated solutions, i.e.,√
I [q2] −

√
I [q2

a ]√
I [q2

a ]
, (8)

where the quantities q and qa (which are scalars in the case
of geopotential and vectors in the case of velocity) corre-
spond to the simulated and analytic solutions, respectively,
and where

I [q] =
1

4π

2π∫
0

π/2∫
−π/2

q(λ,φ)cosφdφdλ. (9)

Henceforth we refer to the quantity in Eq. (8) as the “struc-
ture error” as, in contrast to the l2 error, it is unaffected by
phase speed errors (i.e., phase shifts in λ).

4 Results

In this section we demonstrate the usefulness of the Mat-
suno test case by applying the proposed procedure to both an
equatorial channel finite-difference model and a global-scale
spectral model. We then examine the stability of the selected
waves/modes in a similar fashion to that used in Thuburn and
Li (2000) for the wave number 4 Rossby–Haurwitz wave.
Finally, we demonstrate the possibility of using the analytic
solutions obtained by Matsuno as a resolution convergence
test.

4.1 Demonstration using an equatorial channel
finite-difference model

The model is a spherical version of the Cartesian model used
in Gildor et al. (2016), in which the integration forward in
time is carried out using the conservation form of the SWEs

∂U

∂t
+

1
a cosφ

∂

∂λ

(
U2

h

)
+

1
a

∂

∂φ

(
UV

h

)
−

2UV tanφ
ah

− 2�sinφV =−
g

2a cosφ
∂h2

∂λ
(10a)

∂V

∂t
+

1
a cosφ

∂

∂λ

(
UV

h

)
+

1
a

∂

∂φ

(
V 2

h

)
−
(U2
−V 2) tanφ
ah

+ 2�sinφU =−
g

2a
∂h2

∂φ
(10b)

∂h

∂t
+

1
a cosφ

[
∂U

∂λ
+
∂(V cosφ)

∂φ

]
= 0, (10c)

where U = hu, V = hv and h is the total layer thickness.
The numerical scheme employs a standard finite-difference
shallow-water solver in which the time-differencing follows
a leapfrog scheme (center differencing in both time and

space). The computations were carried out on an Arakawa C-
grid. The model contains provisions for a temporal Robert–
Asselin filter, but the filter’s coefficient was set to zero in the
simulations of the present section. In addition, the model in-
cludes no diffusion/viscosity terms.

The computational domain is −180◦ ≤ λ≤ 180◦ and
−30◦ ≤ φ ≤ 30◦. The boundary conditions are periodicity at
the zonal boundaries λ=±180◦ and vanishing meridional
velocity at the channel’s boundaries φ =±30◦. The corre-
sponding values of h and U at the boundaries are determined
by the differential equations. For the chosen wave parame-
ters the amplitude of the meridional velocity v̂ in Eq. (6) has
an e-folding latitude of 11◦, and its amplitude at φ =±30◦

decays to 4×10−3 of its maximal value; therefore, the veloc-
ity outside the computational domain can be comfortably ne-
glected. The grid spacing and time step are1λ=1φ = 0.5◦

and 1t = 600 s, which were found to yield stable solutions
for at least 100 wave periods.

Figure 1 shows the initial u, v, 8, ξ , and δ fields (where ξ
and δ are the relative vorticity and divergence, respectively)
of the chosen Rossby wave mode (Fig. 1a–e), and the result-
ing latitude–time (Fig. 1f–j) and time–longitude (Fig. 1k–
o) Hovmöller diagrams of the simulated solution. The ini-
tial fields were obtained using the analytic expressions from
Sect. 2 and the wave parameters from Sect. 3.1. The sim-
ulated solutions were obtained using the abovementioned
equatorial channel model. The chosen intersects used in the
calculation of the Hovmöller diagrams are indicated by white
dashed lines superimposed on the initial fields, and are also
provided in the figure’s caption. For the sake of legibility the
time domain shown in each panel is only the last wave pe-
riod of the simulation, i.e., 99T ≤ t ≤ 100T , where T is the
wave period. The fields are normalized on their global max-
imum at t = 0. Thus, white regions correspond to times at
which the simulated solution exceeds the initial wave am-
plitude, momentarily. With this in mind, recall that the pat-
terns in the latitude–time diagrams are similar to those in
latitude–longitude diagrams, and can therefore be used for
comparison with the initial fields. In general, the initial wave
structure is preserved and the dominant slope in the time–
longitude diagrams corresponds to the analytic slope indi-
cated by dashed white lines (Fig. 1k–o). There are, however,
some noticeable deviations: a slight east–west tilt can be ob-
served in the latitude–time diagrams (Fig. 1f–j), but most
egregiously, the divergence field is less regular than the other
four. We return to this last point at the end of Sect. 4.3. The
phase of the simulated patterns in the latitude–time diagrams
fit the expected patterns considering the westward propaga-
tion of the Rossby mode at λ=−18◦ in 1 wave period after
99 wave periods.

Similarly, Fig. 2 shows the initial u, v, 8, ξ , and δ fields
of the chosen EIG wave mode (Fig. 2a–e), and the result-
ing latitude–time (Fig. 2f–j) and time–longitude (Fig. 2k–o)
Hovmöller diagrams of the simulated solution. Note that un-
der the normalization used here the initial v field is indepen-

www.geosci-model-dev.net/12/2181/2019/ Geosci. Model Dev., 12, 2181–2193, 2019



2186 O. Shamir et al.: The Matsuno baroclinic wave test case

Figure 1. (a–e) The initial u, v,8, ξ , and δ Rossby wave fields, obtained using the analytic expressions from Sect. 2 and the wave parameters
from Sect. 3.1. (f–j) Latitude–time Hovmöller diagrams of the simulated solutions, obtained by intersecting the fields at λ=−18◦ (also
indicated by the white vertical dashed lines in a–e). (k–o) Time–longitude Hovmöller diagrams of the simulated solutions, obtained by
intersecting u at φ = 0◦ and all other fields at φ = 9◦ (also indicated by the white horizontal dashed lines in a–e). The simulated solutions
were obtained using the equatorial channel finite-difference model. The fields are normalized on their global maximum at t = 0. The wave
period for the chosen wave parameters is T = 18.5 d. Contour levels range from −1.0 to +1.0 in intervals of 0.2.

dent of the wave type and is therefore identical to the one
in Fig. 1. In contrast to Fig. 1 the patterns in the latitude–
time diagrams of the simulated solutions are noticeably out
of phase. However, considering the agreement between the
dominant slope in the time–longitude diagrams and the ana-
lytic slope indicated by the dashed white lines (Fig. 2k–o), it
is reasonable to say that this phase shift only results from a
small phase speed error that accumulates over time. In addi-
tion, in contrast to the Rossby wave in Fig. 1, the divergence
field in this case is just as regular as the other four fields.

The structure error defined in Eq. (8) is shown in Fig. 3
for both Rossby (Fig. 3a) and EIG (Fig. 3b) waves as a func-
tion of time. In both cases the structure error fluctuates about
a mean value of less than 1 % and there is no visible trend
throughout the simulation time of 100 wave periods. Recall
that the structure error defined in Eq. (8) is insensitive to
phase differences.

4.2 Demonstration using a global-scale spectral model

To demonstrate the applicability of the Matsuno wave as
a test case for global-scale models we use the Geophysi-
cal Fluid Dynamics Laboratory’s (GFDL’s) spectral trans-

formed shallow-water model which uses spherical har-
monics as its basis functions (https://www.gfdl.noaa.gov/
idealized-spectral-models-quickstart/). The chosen spectral
resolution was T85, i.e., a triangular truncation where both
the highest retained wave number and the total wave num-
ber equal 85. The chosen time step was 1t = 600 s, as in the
equatorial channel model. The model contains provisions for
hyper-diffusion terms as well as a temporal Robert–Asselin
filter, but the coefficients of both were set to zero for the sim-
ulations described below.

Figure 4 shows the initial u, v, 8, ξ , and δ fields (where
ξ and δ are the relative vorticity and divergence, respec-
tively) of the chosen Rossby wave mode (Fig. 4a–e), and
the resulting latitude–time (Fig. 4f–j) and time–longitude
(Fig. 4k–o) Hovmöller diagrams of the simulated solution.
The initial fields were obtained using the analytic expres-
sions from Sect. 2 and the wave parameters from Sect. 3.1.
The simulated solutions were obtained using the abovemen-
tioned GFDL global-scale spectral model. The chosen inter-
sects used in the calculation of the Hovmöller diagrams are
indicated by white dashed lines superimposed on the initial
fields, and are also provided in the figure’s caption. For the
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Figure 2. (a–e) The initial u,v,8, ξ , and δ EIG wave fields, obtained using the analytic expressions from Sect. 2 and the wave parameters
from Sect. 3.1. (f–j) Latitude–time Hovmöller diagrams of the simulated solutions, obtained by intersecting the fields at λ=−18◦ (also
indicated by the white vertical dashed lines in a–e). (k–o) Time–longitude Hovmöller diagrams of the simulated solutions, obtained by
intersecting v at φ = 9◦, δ at φ = 0◦ and all other fields at φ = 15◦ (also indicated by the white horizontal dashed lines in a–e). The
simulated solutions were obtained using the equatorial channel finite-difference model. The fields are normalized on their global maximum
at t = 0. The wave period for the chosen wave parameters is T = 1.9 d. Contour levels range from −1.0 to +1.0 in intervals of 0.2.

Figure 3. The structure error defined in Eq. (8) for both the
Rossby (a) and EIG (b) waves as a function of time. Blue: cal-
culated for the velocity vector u= (u,v). Red: calculated for the
geopotential 8.

sake of legibility the time domain shown in each panel is only
the last wave period of the simulation, i.e., 99T ≤ t ≤ 100T ,
where T is the wave period. The fields are normalized on
their global maximum at t = 0. Thus, white regions corre-
spond to times at which the simulated solution exceeds the
initial wave amplitude, momentarily. With this in mind, re-
call that the patterns in the latitude–time diagrams are simi-
lar to those in latitude–longitude diagrams, and can therefore
be used for comparison with the initial fields. Indeed, the pat-
terns in the latitude–time diagrams of the simulated solutions
agree quite accurately with those of the initial wave structure,
but are noticeably out of phase. Nevertheless, considering the
agreement between the dominant slope in the time–longitude
diagrams and the analytic slope indicated using the dashed
white lines (Fig. 4k–o), it is reasonable to say that this phase
shift results from a small phase speed error that accumulates
over time. In addition, the divergence field is less regular than
the other four fields. We return to this point at the end of
Sect. 4.3.

Similarly, Fig. 5 shows the initial u, v, 8, ξ , and δ fields
of the chosen EIG wave mode (Fig. 5a–e), and the result-
ing latitude–time (Fig. 5f–j) and time–longitude (Fig. 5k–
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Figure 4. (a–e) The initial u, v,8, ξ , and δ Rossby wave fields, obtained using the analytic expressions from Sect. 2 and the wave parameters
from Sect. 3.1. (f–j) Latitude–time Hovmöller diagrams of the simulated solutions, obtained by intersecting the fields at λ=−18◦ (also
indicated by the white vertical dashed lines in a–e). (k–o) Time–longitude Hovmöller diagrams of the simulated solutions, obtained by
intersecting u at φ = 0◦ and all other fields at φ = 9◦ (also indicated by the white horizontal dashed lines in a–e). The simulated solutions
were obtained using GFDL’s global-scale spectral model. The fields are normalized on their global maximum at t = 0. The wave period for
the chosen wave parameters is T = 18.5 d. Contour levels range from −1.0 to +1.0 in intervals of 0.2.

o) Hovmöller diagrams of the simulated solution. Note that
under the normalization used in the present paper the ini-
tial v field is independent of the wave type and is therefore
identical to the one in Fig. 4. As in Fig. 4, the patterns in
the latitude–time diagrams of the simulated solutions are no-
ticeably out of phase, but the dominant slope in the time–
longitude diagrams (Fig. 5k–o) agrees well with the analytic
slope, indicating that the observed phase shift results from a
small phase speed error that accumulates over time.

Finally, the structure error in Fig. 6 fluctuates about a mean
value of less than 1 % and there are no visible trends through-
out the 100 wave period simulations. Recall that the structure
error defined in Eq. (8) is insensitive to phase differences.

4.3 Smoothness and stability

In this section we examine the generation of small-scale fea-
tures and the stability of the proposed wave solutions in a
similar fashion to that used in Thuburn and Li (2000) for the
original Rossby–Haurwitz wave number 4.

In Thuburn and Li (2000), the generation of small-scale
features and the potential enstrophy cascade is observed

by examining the potential vorticity field, which generates
tongues that wrap up around themselves and break the ini-
tial east–west symmetry. For the small wave amplitude A=
10−5 m s−1 used in the present work, the potential vorticity is
dominated by the planetary vorticity which is 5–6 orders of
magnitude (depending on the wave) larger than the relative
vorticity. Thus, instead of the potential vorticity we examine
the relative vorticity (as well as the geopotential). Figures 1–
2, as well as Figs. 4–5, show the evolution of these two fields
between t = 99T and t = 100T , where T is the wave period
in each case. Clearly, both fields remain regular throughout
the simulations and do not develop small-scale features such
as those observed in Thuburn and Li (2000). Recall that the
simulations in the present work were carried out without any
diffusion/viscosity terms. Thus, the simulations remain sta-
ble for at least 100 wave periods with no need to remove
potential enstrophy at the grid scale.

In order to examine the stability of the chosen initial waves
we repeat the simulations of the previous section with an
added perturbation (white noise) to the initial fields. We
demonstrate the stability of the waves using only the global-
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Figure 5. (a–e) The initial u, v, 8, ξ , and δ EIG wave fields, obtained using the analytic expressions from Sect. 2 and the wave parameters
from Sect. 3.1. (f–j) Latitude–time Hovmöller diagrams of the simulated solutions, obtained by intersecting the fields at λ=−18◦ (also
indicated by the white vertical dashed lines in a–e). (k–o) Time–longitude Hovmöller diagrams of the simulated solutions, obtained by
intersecting v at φ = 9◦, δ at φ = 0◦ and all other fields at φ = 15◦ (also indicated by the white horizontal dashed lines in a–e). The
simulated solutions were obtained using the GFDL global-scale spectral model. The fields are normalized on their global maximum at t = 0.
The wave period for the chosen wave parameters is T = 1.9 d. Contour levels range from −1.0 to +1.0 in intervals of 0.2.

Figure 6. The structure error defined in Eq. (8) for both the
Rossby (a) and EIG (b) waves as a function of time. Blue: cal-
culated for the velocity vector u= (u,v). Red: calculated for the
geopotential 8.

scale model, which was found to yield more stable results
when adding the perturbation.

Figures 7 and 8 show the initial fields of the perturbed
Rossby (Fig. 7a–e) and EIG waves (Fig. 8a–e), respectively,
and the resulting latitude–time (Figs. 7f–j and 8f–j) and time–
longitude (Figs. 7k–o and 8k–o) Hovmöller diagrams of the
simulated solution, obtained using the GFDL global-scale
spectral model. The initial perturbation in these figures con-
sist of a uniformly distributed random white noise with an
amplitude of 5 % of the field’s amplitude added to each of
the fields u, v, and 8. Specifically, let q stand for any of the
variables u, v or 8, then the initial perturbation is given by

q = qa+ 0.05max
λ, φ
|qa|(2R− 1) , (11)

where qa is the analytic solutions obtained as in Sect. 2, and
R is a uniformly sampled random array with elements in
(0,1) whose dimensions are the same as qa (in the present
work a differentR was drawn for each of the three variables).

Overall, the perturbed waves seem to be stable. The u,
v and 8 fields are almost as regular as those of the non-
perturbed waves, except for the zero contour. The small-scale
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Figure 7. Same as Fig. 4, but for the perturbed Rossby wave.

features in the vorticity field of the perturbed Rossby wave
smooth out with time, in contrast to the potential vorticity
field of the Rossby–Haurwitz wave number 4. Conversely,
the perturbed Rossby wave divergence field is completely
eroded. The vorticity and divergence fields of the perturbed
EIG wave are not as regular as those of the non-perturbed
wave. However, they too become smoother with time and
the initial wave remains the most dominant wave throughout
the entire 100 wave period simulation. The structure error in
Fig. 9 is similar to the previous ones in Figs. 3 and 6. These
results are quite surprising, as we would expect a sufficiently
large perturbation to excite other modes, regardless of the
waves’ stability.

Both the non-perturbed Rossby wave in Sect. 4.1 and 4.2,
and the perturbed Rossby wave in the present section indicate
that the divergence field is more sensitive than the other four
fields of the Rossby wave. An immediate suspect in this re-
gard is the divergence field amplitude, which is small for the
chosen Rossby wave. For reference, the meridional wind am-
plitude for the chosen waves parameters (of both the Rossby
and EIG waves) is 6.4× 10−6, whereas the Rossby wave di-
vergence field amplitude is 2.6× 10−12. Conversely, the di-
vergence field amplitude is only 1 order of magnitude smaller
than the vorticity field amplitude, which is 2.7× 10−11. Re-
gardless of the cause, the fact that all other four fields remain

quite regular while the divergence field is completely eroded
suggests that the small but significant divergence field de-
scribed by Phillips (1959) is in fact a small and insignificant
divergence field.

4.4 Convergence test for the linear shallow-water
models

In addition to the test cases proposed by Williamson et al.
(1992) a resolution convergence test of linearized SWEs in
which the simulations are compared to higher-order simula-
tions is also useful for ensuring that the errors decrease with
the increase in resolution. In this section we demonstrate that
Matsuno’s analytic wave solutions can be used for this pur-
pose. We use the equatorial channel model which can be eas-
ily turned into a linear shallow-water model.

Figure 10 shows the structure error in absolute value as a
function of the grid spacing 1=1λ=1φ, from 1= 2.5◦

to 1= 0.25◦ every 0.25◦. For each resolution, the initial
non-perturbed waves were integrated for 100 wave periods.
As an estimate of the structure error at each resolution we
use the time-series averages (indicated by dots). The error
bars were estimated using the standard deviations of the en-
tire time series. As the resolution increases from1= 2.5◦ to
1= 0.25◦, the structure error time-series average decreases
from about 2 % to less than 1 %, and the standard devi-
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Figure 8. Same as Fig. 5, but for the perturbed EIG wave.

Figure 9. Same as Fig. 6, but for the perturbed Rossby (a) and
EIG (b) waves.

ation decreases from about 2 % to about 0.5 %. The time
step across all resolutions in this figure was held fixed at
1t = 100 s. Note that all of the results of the previous sec-
tions were obtained for 1= 0.5◦ and 1t = 600 s. This time
step was found to yield convergent results for1= 0.5◦ in the
sense that decreasing the time step by a factor of 2 yields no
improvements. Nevertheless, for the convergence test in the
present section we have further decreased the time step to
1t = 100 s in order to allow a further increase in the spatial
resolution by another 0.25◦. This has also enabled a compar-
ison with the results of the previous sections, thus ensuring
that the simulations remain stable. Needless to say, for any
time step one can expect to encounter numerical instabilities
at some (high) spatial resolution.

5 Concluding remarks

As vertical resolutions in atmospheric and oceanic models
increase it is essential to assess the accuracy with which they
resolve baroclinic wave modes, typified by low gravity-wave
phase speeds, in addition to the barotropic mode. To this
end we propose to use a similar procedure to that used in
the Rossby–Haurwitz test case but with different initial con-
ditions. Instead of using the analytic solutions obtained by
Haurwitz (1940), which are only accurate for high gravity-
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Figure 10. Structure error in absolute value as a function of the grid
spacing 1=1λ=1φ, from 1= 2.5◦ to 1= 0.25◦ every 0.25◦.
The points correspond to the time averaged structure error over 100
wave periods, and the error bars are determined from the standard
deviation. Blue: calculated for the velocity vector u= (u,v). Red:
calculated for the geopotential 8.

wave speeds such as those of the barotropic mode, we pro-
pose the use of the analytic solutions obtained by Matsuno
(1966), which are accurate for lower gravity-wave speeds
such as those of the baroclinic modes.

While the solutions from Matsuno (1966) apply for the
equatorial β-plane, they approximate the solutions of the
SWEs on the sphere for the speeds of gravity waves found in
the baroclinic modes in the atmosphere, and as demonstrated
in the present work can be accurately simulated in both equa-
torial channel and global-scale models in spherical coordi-
nates. In addition, unlike the original Rossby–Haurwitz wave
number 4, the chosen initial waves of the present test case
remain stable for at least 100 wave periods, which for the
chosen Rossby wave correspond to about 1850 d.

While the solutions of the SWEs obtained by Matsuno
(1966) account for the small divergence field missing from
the non-divergent Rossby–Haurwitz waves, the results of the
present study suggest that this missing divergence field is in-
significant.

Ideally, we expect the proposed test case to stand on an
equal footing alongside the Rossby–Haurwitz test case, but
in the words of Williamson et al. (1992): “The test will only
become standard to the extent that the community finds it
useful”.

Code availability. A Python module for evaluating the initial con-
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