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Abstract. A 10-year reanalysis of the PacIOOS Hawaiian
Island Ocean Forecast System was produced using an in-
cremental strong-constraint 4-D variational data assimilation
with the Regional Ocean Modeling System (ROMS v3.6).
Observations were assimilated from a range of sources:
satellite-derived sea surface temperature (SST), salinity
(SSS), and height anomalies (SSHAs); depth profiles of tem-
perature and salinity from Argo floats, autonomous Seaglid-
ers, and shipboard conductivity–temperature–depth (CTD);
and surface velocity measurements from high-frequency
radar (HFR). The performance of the state estimate is exam-
ined against a forecast showing an improved representation
of the observations, especially the realization of HFR surface
currents. EOFs of the increments made during the assimila-
tion to the initial conditions and atmospheric forcing com-
ponents are computed, revealing the variables that are influ-
ential in producing the state-estimate solution and the spatial
structure the increments form.

1 Introduction

The Pacific Integrated Ocean Observing System (PacIOOS,
2018) has produced daily forecasts of the ocean state sur-
rounding the Hawaiian Islands since 2009. To facilitate the
forecasts a data assimilation procedure is used to incorporate
recent observational data into the model to produce the opti-
mal initial state from which to forecast. A number of model-
ing studies have been performed with older versions of this
model to examine various features of the modeling frame-
work, such as the state estimation (Matthews et al., 2012),
nested models (Janeković et al., 2013), and the vorticity bud-

get (Souza et al., 2015). In this work, we perform an extended
reanalysis from 2007 to 2017 in order to produce a consistent
dataset for further studies of the dynamics around Hawai‘i.

The PacIOOS forecast system uses the time-dependent
incremental strong-constraint four-dimensional variational
data assimilation (I4D-Var) scheme (Courtier et al., 1994;
Moore et al., 2004) within the Regional Ocean Modeling
System (ROMS) (Moore et al., 2011c; Powell et al., 2008;
Matthews et al., 2012) to best reduce the residuals between
the model and observations, while maintaining a physically
consistent solution. The class of methods known as 4D-Var
are state-estimation techniques that create a quadratic cost
function to be minimized over a defined time window utiliz-
ing observations at the time they occur in a physically con-
sistent manner to adjust the initial state, boundary conditions,
and atmospheric forcing to represent the measurements. The
I4D-Var scheme is used in operational centers around the
world and solves for increments to the model state, boundary
conditions, and atmospheric forcing using the model physics
as a constraint. The combination of I4D-Var within ROMS
has been used in previous studies of various regions (Pow-
ell et al., 2008; Broquet et al., 2009; Zhang et al., 2010;
Matthews et al., 2012; Souza et al., 2015). The details of the
model and the observations used within this study are pro-
vided in Sect. 2.

Our model domain covers the Hawaiian Island
Archipelago (Fig. 1), a dynamically active region for
both the ocean and atmosphere. The North Equatorial Cur-
rent (NEC), flowing from the east, splits upon encountering
the island of Hawai‘i, with the bulk transport traveling
around the south of the island and continuing west, while the
North Hawaiian Ridge Current (NHRC) follows the ridge of
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Figure 1. Model domain and bathymetry, with mean currents la-
beled from Lumpkin and Flament (2013).

the other islands in the chain to the north. In the atmosphere,
there are persistent trade winds from the northeast that,
combined with steep mountainous terrain on the islands,
cause wind wakes in lee of the peaks, particularly on the
islands of Hawai‘i and Maui. This introduces strong tem-
perature gradients, increases the seasonal variability (Sasaki
and Klein, 2012), and drives currents such as the Hawaiian
Lee Countercurrent (HLCC) (Smith and Grubišić, 1993; Xie
et al., 2001; Chavanne et al., 2002).

There are two main objectives to this study: to assess the
skill and performance of the state-estimation model and to
analyze the increments made to the initial, boundary, and at-
mospheric forcing terms. For the first objective, we compare
the state-estimate solution with a free-running forecast over
the decadal time period and examine how the performance
changes over time utilizing observations derived from satel-
lites and it situ measurements. In addition, PacIOOS operates
seven high-frequency radar stations sites across the Hawai-
ian Islands. The first station was constructed in 2010, with
the remaining six becoming operational over the period from
2011 to 2015. These instruments produce high-resolution
(both spatially and temporally) surface current velocities in
the vicinity of the islands of O‘ahu and Hawai‘i. The use of
HFR observations within a state-estimation scheme has been
shown to produce a significantly improved representation of
surface currents (Souza et al., 2015; Kerry et al., 2016). The
impact of the radar stations will be a key focal point. The
performance assessment is achieved through the statistics
produced by the state estimation in Sect. 3, followed by a
comparison with observations in Sect. 4. The forecast skill,
a measure of the accuracy for a forecast system, is computed
with reference to a persistence assumption (Sect. 5).

Section 6 focuses on the second objective of the paper, to
examine the increments to the initial state and atmospheric

forcing to determine how the model is adjusted. By evalu-
ating the empirical orthogonal functions (EOFs) of these in-
crements we determine the spatial patterns in the variability.
Since physical modes are not always independent (Simmons
et al., 1983), the interpretation of EOF modes must be under-
taken with some caution. As such the resulting modes will
not necessarily represent a physical phenomenon, but will
highlight the variable spatial patterns made over time by the
I4D-Var algorithm.

2 Numerical model and data assimilation system

2.1 Model configuration

The Regional Ocean Modeling System (ROMS) version 3.6
is used to simulate the physical ocean around the Hawaiian
Islands. ROMS is a free-surface, hydrostatic, primitive equa-
tion model using a stretched coordinate system in the verti-
cal to follow the underwater terrain. In order to allow vary-
ing time steps for the barotropic and baroclinic components,
ROMS utilizes a split-explicit time stepping scheme (for
more details on ROMS, see Shchepetkin and McWilliams,
1998, 2003, 2005).

The Hawaiian Island domain covers 164–153◦W longi-
tude and 17–23◦ N latitude, with bathymetry provided by the
Hawaiian Mapping Research Group (HMRG, 2017), shown
in Fig. 1. The grid has 4 km horizontal resolution with 32
vertical s levels configured to provide a higher resolution in
the more variable upper regions. The configuration model,
including the method for assimilating surface HFRs and the
associated vertical stretching scheme, is identical to the one
first presented in Souza et al. (2015).

Tidal forcing is produced using the OSU Tidal Prediction
Software (OTPS) (Egbert et al., 1994), which is based on the
Laplace tidal equations from the TOPEX/Poseidon Global
Inverse Solution (TPXO). Tidal constituents included in this
simulation are the eight main harmonics, M2, S2, N2, K2,
K1,O1, P1, andQ1, as well as two long-period and one non-
linear constituent: Mf, Mm, and M4. To avoid any long-term
drifting of the tidal phases related to constituents we do not
consider, the tidal harmonics are updated each year to define
the phases in terms of the start of that year.

Lateral boundary conditions are taken from the HYbrid
Coordinate Ocean Model (HYCOM) (Chassignet et al.,
2007) and are applied daily. Within ROMs, we apply the
boundary differently for each variable; Chapman (Chapman,
1985) conditions are applied to the free surface, Flather
(Flather, 1976) conditions for transferring momentum from
2-D barotropic energy out of the domain, and 3-D momen-
tum and tracer variables are clamped to match HYCOM. A
sponge layer of 12 grid cells (48 km) linearly relaxes the vis-
cosity by a factor of 4 and diffusivity by a factor of 2 close
to the boundary to account for imbalances between HYCOM
and ROMS.
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From 2007 to 2009, atmospheric forcing fields (exclud-
ing the wind) are provided by the National Center for Envi-
ronmental Prediction (NCEP) reanalysis fields (Kistler et al.,
2001). For the wind forcing, a combination of two different
forcings is utilized: (i) a 1/2◦ resolution CORA/NCEP wind
product (Milliff et al., 2004) that combines QuikScat mea-
surements with NCEP wind fields and (ii) the CORA/NCEP
winds blended with the results from a 1/12◦ resolution
PSU/NCAR mesoscale model (MM5; Yang et al., 2008a)
of the Hawaiian islands (Van Nguyen et al., 2010). The
MM5 model was forced at its boundaries with the global
NCEP fields; hence, it is a consistent dynamical downscal-
ing of the global fields. The MM5 model domain is smaller
than the ocean grid domain, extending only to 160.5◦W in
the lee. Therefore, for (ii), we must blend the modeled and
CORA/NCEP winds to generate a consistent field for the en-
tire region with 1/12◦ winds where available and 1/2◦ winds
everywhere else.

To blend the two, we convert the MM5 winds to anoma-
lies by subtracting a 30-day mean centered about the record
of interest. We compute the mean for the same period from
the CORA/NCEP winds. The difference between the two
means provides a bias estimate. The bias is removed from
the MM5 anomalies and the CORA/NCEP mean is added.
Within a 1◦ box around the boundary of the MM5 data, we
taper the anomalies to zero with a cosine filter to avoid abrupt
changes to the field. This step ensures that the mean of the
CORA/NCEP field is preserved, while its structure and vari-
ability is greatly enhanced by the MM5.

From July 2009, atmospheric forcing is provided lo-
cally by a high-resolution Weather Regional Forecast (WRF)
model (WRF-ARW, 2017). WRF supplies information about
surface air pressure, surface air temperature, longwave and
shortwave radiation, relative humidity, rainfall rate, and 10 m
wind speeds. The ocean model is forced using these data ev-
ery 6 h, taken from the atmospheric model with 6 km resolu-
tion across the entire domain.

Prior to the experiment, a 6-year non-assimilative model
was run using the same initial state, boundary conditions,
and atmospheric forcing. The variability of the model is used
to produce an estimate of the background error covariances
used within I4D-Var, as well as the mean sea surface height
to use with sea level anomaly observations.

The cost function of the I4D-Var method penalizes for the
increments made to the initial conditions, the boundary con-
ditions, and the forcing and for the deviations of the model
state from the observations. A detailed derivation of the cost
function can be found in Kerry et al. (2016), Penenko (2009),
Weaver et al. (2003), Stammer et al. (2002), and Talagrand
and Courtier (1987). To formulate the solution, we must pro-
vide estimates of the uncertainty matrices in both the model
and observations. The model uncertainty matrix, P, is esti-
mated using the variability of the 6-year run described above,
while the observation uncertainty matrix, R, is assumed to be
diagonal (i.e., observations are independent). The implemen-

tation of I4D-Var in ROMS is covered extensively in Moore
et al. (2011a, b, c).

2.2 Experiment setup

The reanalysis covers a period of 10 years from July 2007 to
July 2017. The period of assimilation for the I4D-Var cycles
is 4 days, which corresponds to the limit of the linearity as-
sumption within the domain (Matthews et al., 2011). The at-
mospheric forcing is adjusted every 6 h, while the boundaries
are every 12 h. An analysis of these adjustments is performed
in Sect. 6.

During each I4D-Var cycle, a minimization procedure is
applied. The nonlinear model is first integrated forward to
estimate the background state (the first outer loop). Then
the tangent-linear and adjoint models are integrated in mul-
tiple inner loops to minimize the cost function (J ). After the
last inner loop the nonlinear model is updated (see Fig. 1
of Moore et al., 2011c). Prior methodological experiments
yielded that for our setting a sufficient reduction in J (and
an acceptable computational cost) can be achieved using a
single outer loop with 13 inner loops (Souza et al., 2015).

Several 4- and 8-day forecasts are performed from the end
of each cycle using the assimilated state as initial conditions,
and the short-range (1–4 days) and midrange (5–8 days) fore-
casts are evaluated for skill.

2.3 Observations

Observational data used within this study include satellite
measurements of the ocean surface of temperature, height,
and salinity, in situ depth profiles of temperature and salinity,
and surface velocities from high-frequency radar. Observa-
tions within one Rossby radius (∼ 80 km) of the domain’s
boundary are neglected. It should be emphasized that no ob-
servations were withheld from the assimilation for the pur-
pose of validation. The I4D-Var method seeks to represent
the observations by exploiting the linearized model dynam-
ics. Therefore, all available observations are used to constrain
this representation.

2.3.1 Satellite-derived measurements

Sea surface temperature (SST) observations are available
from two sources at different time periods: initially we used
the Global Ocean Data Assimilation Experiment High Res-
olution Sea Surface Temperature (GHRSST) level 4 OSTIA
Global Foundation Sea Surface Temperature Analysis (Naval
Oceanographic Office, 2005), referred to as OSTIA for this
work. The data are distributed by the Physical Oceanogra-
phy Distributed Active Archive Center (PO.DAAC) using
optimal interpolation to combine data from the Advanced
Very High Resolution Radiometer (AVHRR), the Advanced
Along Track Scanning Radiometer (AATSR), the Spinning
Enhanced Visible and Infrared Imager (SEVIRI), the Ad-
vanced Microwave Scanning Radiometer-EOS (AMSRE),
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the Tropical Rainfall Measuring Mission Microwave Imager
(TMI), and in situ data. This distribution provides a highly
smoothed daily gridded global dataset at the surface at a 6 km
spatial resolution, accurate between 0.2 and 0.5 ◦C in the do-
main.

Beginning in April 2008, we switched to using the
GHRSST level 4 K10_SST global 1 m sea surface temper-
ature analysis dataset (Naval Oceanographic Office, 2008)
produced by the Naval Oceanographic Office and referred to
as NAVO for this work. Also distributed by PO.DAAC, this
product combines, in a weighted average, data from AVHRR,
AMSRE, and the Geostationary Operational Environmental
Satellite (GOES) imager. This distribution provides a daily
gridded global dataset at 1 m of depth at a 10 km spatial res-
olution, accurate to 0.4 ◦C in the domain.

Sea surface height (SSH) observations are derived us-
ing sea level anomaly data from the Archiving, Validation
and Interpretation of Satellite Oceanographic data (AVISO)
delayed-time along-track information. The data come from
multiple altimeter satellites measuring the anomaly with re-
spect to a 20-year mean SSH, homogenized against one of
the missions to ensure consistency. Each track has approxi-
mately 7 km spatial resolution and will usually make multi-
ple passes through our domain each day. To convert from sea
level anomaly to sea surface height we add the mean SSH
field taken from the 6-year model run described above, to
which we add the barotropic tidal prediction from TPXO.
The accuracy of the swaths depends on the source satellite
and ranges from 5 to 7 cm. We use the AVISO product that
has been fully filtered and quality controlled until May 2016.
At the time of the experiment, the delayed time data were un-
available beyond May 2016, so the near-real-time data were
used.

Sea surface salinity (SSS) data are taken from Aquarius
mission daily L3 gridded dataset (NASA Aquarius project,
2015) distributed by PO.DAAC. The satellite uses a combi-
nation of radiometers and scatterometers to estimate the sur-
face salinity mapped to a coarse 1◦ resolution. Errors for this
product are around 0.2 ppt. Data for this product are available
from August 2011 until June 2015.

2.3.2 In situ measurements

Depth profiles of temperature and salinity are obtained
from threes sources: the Hawai‘i Ocean Time-Series (HOT)
shipboard conductivity–temperature–depth (CTD) casts, the
global network of Argo floats, and autonomous Seagliders
operated by the University of Hawai‘i.

The HOT project conducts monthly cruises to the deep wa-
ter station ALOHA (A Long-term Oligotrophic Habitat As-
sessment; located at 23◦45′ N, 158◦00′W; see Fig. 1) in order
to develop continuous datasets of physical and biochemical
ocean parameters. CTD stations of temperature and salinity
are concentrated in the region around the station, although
some are also established along the ship route.

HOT also conducts regular Seaglider missions departing
from station ALOHA. In addition, PacIOOS conducts occa-
sional Seaglider surveys in areas close to the south coast of
O‘ahu. The buoyancy-driven autonomous underwater vehi-
cles take profiles and transects at depth of temperature and
salinity.

Observations from the global Argo float network are avail-
able from the Argo array network (USGODAE, 2016). The
free-drifting floats profile temperature and salinity during as-
cension and descension every 10 days of depths down to
2000 m (Oka and Ando, 2004). Argo measurements tend to
occur in the model domain at a rate of about one to two pro-
files per day.

Representational errors for HOT CTDs, Argo floats, and
Seagliders are defined by the variance of observational data
from all available sources across our domain sorted into
depth bins. These profiles resemble a typical temperature–
salinity profile, with a peak temperature error of 0.8 K and
peak salinity error of 0.15 ppt occurring in the mixed layer at
a depth around 100 m.

2.3.3 High-frequency radar measurements

HFR measurements of surface currents are available from
PacIOOS at seven sites around the Hawaiian islands: five
around the southwest of O‘ahu and two on the east coast of
Hawai‘i. Data are available from the first site in October 2010
with the other sites coming online at various times, the most
recent being October 2015. The range for the HFRs on O‘ahu
extend approximately 150 km from the coast, while the two
Hawai‘i sites are focused on currents around the northeast of
the island and have a shorter range. At the range limits, HFR
data are less reliable due to the higher noise level of the re-
turns. Figure 2 shows the percentage availability of data in
the region. HFR measurements from any return location that
is missing more than 20 % of its data over the 4-day assimi-
lation period are ignored. Both spatially and temporally, the
resolution for all sites is significantly higher than the model
resolution. The HFR data are low-pass filtered at 3 h to re-
move the high-frequency signals that may not be resolved
by the model (atmospheric forcing fields are every 6 h). We
then provide the spatial field of data every 3 h. The associ-
ated error is calculated individually for each spatial point as
the accuracy of the measurements is determined by the levels
of interference, which increases with range. For each obser-
vation point we calculate the power spectral density and cal-
culate the noise as per Zanife et al. (2003), with a minimum
of 7 cm s−1. At the extreme, errors may reach 17 cm s−1.

The numbers of observations for each 4-day cycle from all
sources are shown in Fig. 3. Sea surface temperature mea-
surements from both OSTIA and NAVO are consistently the
most available observation source, and by the end of the time
period HFR is supplying a similar quantity. In situ measure-
ments, which include both temperature and salinity for each
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Figure 2. Composite image of percentage coverage for all radar sites (situated at green dots) when all are operational. Where two sites
overlap the greater value is taken to indicate the level of coverage at each point.

Figure 3. Number of observations used within data assimilation run. Note that there tend to be orders-of-magnitude more satellite or remotely
sensed observations than in situ.

of the instruments, provide a smaller amount of data by an
order of magnitude.

3 Assimilation statistics

In this section we examine the state estimate to quantify the
performance during our time period.

3.1 Cost function reduction

I4D-Var minimizes the residuals between the model and ob-
servations over each 4-day cycle. We calculate the percentage

reduction between the initial and final cost function for each
cycle to assess how the assimilation performs over time. Ad-
ditionally, the I4D-Var algorithm reports the individual con-
tributions by the state variables considered by the data as-
similation to the total cost function. Hence we can examine
the cost function in detail for those observation types that are
most critical for its reduction. However, it should be noted
that for this decomposition we do not distinguish between
observation sources.

Figure 4 shows the time series of the total reduction and
the percentage reduction in the cost function for each of the
variables we observe: sea surface height, temperature, salin-
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Figure 4. Time series of percentage reduction in the I4D-Var cost function; in the left column are pre-HFR observations and in the right
column are post-HFR observations, with the mean value given in parentheses. Dashed lines mark the limit of 0, below which there is no
reduction in the cost function for that variable. (a) Total cost function reduction for all observations; (b) sea surface height observations,
(c) temperature observations; (d) salinity observations; (e) HFR observations.

ity, and HFR. A value of 0 means the final cost function is the
same as the initial and no reduction has occurred. The plot is
split into two distinct time periods, before and after the HFR
observations, in order to assess changes in the relative con-
tributions of each variable to the overall reduction.

The total cost function of all data (Fig. 4a) is on average
halved for each cycle, with an improvement from 49 % of the
original value to 55 % when HFR observations are available.
Looking at the breakdown in Fig. 4b–e, we see that the fi-
nal cost function associated with the other observed variables
(sea surface height, temperature, and salinity) is reduced by
a smaller percentage than before HFR was included. Given
that the structure of the cost function is determined by the
type and number of observations, this change in contribution
to the cost function reduction can be expected when adding a
large number of HFR measurements to the data assimilation.

Salinity measurements tend to contribute the least im-
provement, ranging from 34 % (pre-HFR) to 16 % (post-
HFR). Salinity data are the least numerous (Fig. 3) and SSS
fields taken from Aquarius are subject to high noise levels
(0.2 ppt) and coarse spatial resolution. The mid-2014 drop in
cost function reduction for salinity data coincides with the
loss of two Seagliders. After the cessation of Seaglider mis-
sions salinity data were only available through Aquarius (un-
til mid-2015) and sporadic Argo profiles.

The cost function associated with HFR measurements is
reduced by 60 % of the initial value, meaning the model is
closer to the HFR observations after the assimilation.

3.2 Optimality

Another measure of performance is the theoretical minimum
value of the cost function (Jmin). For a linear system and as-
suming that the error matrices P and R have been determined
correctly, Jmin is a chi-squared variable whose degrees of
freedom are given by the number of assimilated observations
(Nobs) (Bennett, 2002). The expected value of Jmin is then
given by

〈Jmin〉 =
Nobs

2
. (1)

Using above the equation, an optimality value (γ ) can be de-
fined:

γ =
2 · Jmin

Nobs
, (2)

which should reach a value of 1 with a standard deviation of
√

2/Nobs.
This optimality value provides a simple representation of

how consistently the error matrices (P and R) are specified,
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Figure 5. (a) Gantt chart of remotely sensed observations used in the study. (b) Optimality of I4D-Var data assimilation with the dashed line
representing the theoretical minimum.

since the error covariances normalize the cost function. Fig-
ure 5 shows a time series of the calculated optimality value
for the model run, in addition to a timeline of the availabil-
ity of certain observations for reference. Over the full time
period the mean optimality is 0.95. However, there are large
significant deviations over the course of the time period. In
the pre-HFR period the optimality is low, suggesting that the
error bounds on observations are too wide. Since SST is the
dominant source of observations before HFR, the prescribed
errors associated with SST may be too large.

Post-HFR, the optimality value increases, suggesting the
errors in this period are underestimated. A large optimality
value arises when the cost function is large (i.e., large dif-
ferences between the model and observations). There were
two anomalous cycles in 2011; the first coincides with the
introduction of a second radar site. From 2012 onwards the
optimality value is generally good, if highly variable. The in-
crease in optimality given the available observations points to
an underestimation of HFR errors or at the least a persistent
difference between the model and HFR observations.

3.3 Error consistency

The consistency of the assimilation can be assessed by com-
paring the error matrices P and R specified a priori with the
observation and background error covariances determined a
posteriori (Desroziers et al., 2005). Using the difference be-
tween the observation j (yj ) and the modeled background
value (xb) mapped to the observation location by the opera-

torHj ,

dob
j = yj −Hj (x

b), (3)

and the difference between xb and the analysis value (xa)
mapped to the observation location,

dab
j =Hj (x

a)−Hj (xb), (4)

one can compute the expected a posteriori background error:

(̃σ b
i )

2
=

1
pi

pi∑
j=1
(Hj (xa)−Hj (xb))(yj −Hj (xb)), (5)

where i refers to the observation type and pi is the number
of observations of that type.

Similarly, using the difference between the observation j
and the modeled analysis value (xa) mapped to the observa-
tion,

doa
j = yj −Hj (x

a), (6)

the expected a posteriori observation error can be calculated:

(̃σ b
i )

2
=

1
pi

pi∑
j=1
(yj −Hj (xa))(yj −Hj (xb)). (7)

For a detailed description of the above diagnostics the
reader is referred to Desroziers et al. (2005, 2009). If the
variances in P and R are correctly specified a priori, they
will be consistent with the a posteriori errors defined above.
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Figure 6. Time series of spatially averaged background (blue) and observation (green) errors, with thick lines showing a priori values and
thin lines the posterior calculated using Eqs. (5) and (7). (a) Sea surface height; (b) sea surface temperature; (c) sea surface salinity; and
(d) HFR.

Figure 6 shows both the a priori and a posteriori errors for
the remotely sensed data. The observation a priori values are
calculated as the mean error of the observations in each cy-
cle, while the background a priori values are defined as the
variability of a free-running nonlinear model. If the a poste-
riori errors are typically larger than the a priori, it implies the
initial errors in P and R are underestimated. Conversely, if
they are smaller the initial errors are likely overestimated.

Figure 6a shows that sea surface height errors are consis-
tent, while sea surface temperature, shown in Fig. 6b, sug-
gests the a priori errors are overestimated. The a priori obser-
vation errors for NAVO SST observations are defined with a
minimum error of 0.4 K, but the a posteriori errors are more
typically around 0.25 K. The a priori background errors also
appear overestimated.

Sea surface salinity observation errors (Fig. 6c) are slightly
underestimated but generally consistent, as are the back-
ground errors. The HFR observation errors (Fig. 6d) also
appear to be underestimated, with most a priori errors close
to the minimum value of 7 cm s−1. The a posteriori errors
suggest that a typical value of around 12–15 cm s−1 would
be more appropriate. The a priori background errors are rea-
sonably consistent with the a posteriori; if anything, they are
slightly overestimated.

This error consistency analysis supports the conclusions in
Sect. 3.2 that the SST observation errors are overestimated
and HFR values are underestimated. It is worth noting that
these diagnostics are only estimates used to characterize the
errors and are not the true posterior error.

4 Comparison with observations

Because I4D-Var relies on the model physics to represent ob-
servations through time, it should provide better forecasts.
Time-invariant methods (3D-Var, optimal interpolation) that
perturb the state at single times may better reduce the time-
fixed cost function, but can add nonphysical structures that
generate noisy forecasts.

In this section, we examine the state-estimate solution by
comparing the model to observations. For reference, the ob-
servations are also compared against the forecast starting
from the same time as each state-estimate cycle. The ini-
tial and boundary as well as atmospheric and tidal forcings
are initially the same for both runs; however, the initial and
boundary conditions and atmospheric forcing are altered as
part of the state-estimate solution.

For comparing fields we use the root mean squared
anomaly (RMSA) and the anomaly correlation coefficient
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Figure 7. Time series of root mean squared anomalies (RMSAs) between remotely sensed observations and two model realizations: the state
estimate (orange) and the forecast (blue). (a) Sea surface height; (b) sea surface temperature; (c) sea surface salinity; and (d) HFRs.

(ACC), defined as

RMSA(x,y)=

√√√√ 1
N

N∑
i=1

((xi − x)− (yi − y))
2 (8)

and

ACC(x,y)=
∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)
2
∑N
i=1(yi − y)

2
, (9)

where N is the number of observations and x represents the
model values at the same location and time as the obser-
vations y. The RMSA provides a measure of the residual
between the model and observations, while the ACC deter-
mines the strength of the relationship between the two. We
can calculate values for a single spatial point throughout time
or for all spatial points at a single time; however, we require
at least 20 available observation values to get a representa-
tive statistic. The gridded satellite products are ideally suited
to this analysis, while the depth profiles from in situ mea-
surements are binned into 50 m depth layers to ensure a min-
imum number of values. Here it must be noted that our val-
idation is limited to data that have been employed for the
assimilation. The I4D-Var scheme uses the linearized model
dynamics to produce the covariance between the model and
the observations. This allows the model to optimally repre-
sent the observations in time and space rather than replicate
them. As such, the desire is to use every available observation
to constrain this representation. Unlike time-invariant statis-
tical methods, we do not withhold any observations because
they are sampling the dynamical subspaces of a system of
unknown dimension. Since the observations covary in space
and time, some particular observations may not have a sig-

nificant impact on the cost function and their representation
may suffer. We seek to identify these results.

4.1 Remotely sensed observations

Figure 7 shows the RMSA between the observations and
the models for each source of remotely observed data. The
state-estimate solution reduces the RMSA compared with the
forecast by 1.58 cm (17 %), 0.07 K (24 %), 0.01 ppt (3 %),
and 8.39 cm s−1 (37 %) for sea surface height, sea surface
temperature, sea surface salinity, and HFR, respectively. In
Fig. 7a the RMSA of the state-estimate solution is close to
the typical observational error of 7 cm, while in Fig. 7b we
see the RMSA is comfortably less than the 0.4 K represen-
tative error. Sea surface salinity is only marginally improved
by the state-estimate solution, but is slightly over the pre-
scribed observational error of 0.2 ppt. The RMSA of the cur-
rents associated with HFR observations, shown in Fig. 7d, is
improved greatly by the state estimation; however, the mean
value of 14 cm is around double the typical error prescribed
a priori of 7 cm. As shown in the previous sections, this error
was underestimated.

The ACC is also improved by the state estimate for all
variables, as shown in Fig. 8. For sea surface height, temper-
ature, and salinity the improvement is small due to a signif-
icant agreement in the forecast with gains of 0.03, 0.02, and
0.01, respectively. The improvement in HFR is much more
significant, with an average correlation improvement from
0.35 to 0.68. As shown in Fig. 8d the free-running forecast
model can diverge from the observations enough to become
negatively correlated over a cycle, while the state-estimate
solution is consistently positively correlated.
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Figure 8. Time series of anomaly correlation coefficients (ACC) between remotely sensed observations and two model realizations; the state
estimate (orange) and the forecast (blue). (a) Sea surface height; (b) sea surface temperature; (c) sea surface salinity; and (d) HFRs.

Figure 9. Spatial maps of RMSA for SST observation sources for the forecast (a, c) and the state estimate (b, d). (a, b) OSTIA data
(2007–2008); (c, d) NAVO data (2008–2017). The typical error of representativeness is around 0.4 K.

Figure 9 shows the spatial RMSA between the forecast
and analyses model solutions and the observations for both
sources of sea surface temperature observations: OSTIA and
NAVO. In both cases there is a clear reduction in the RMSA,
with the largest source of error in the areas leeward of the
islands, most notably the island of Hawai‘i. This is due to
higher heat flux variability from a reduction in cloud cover

(Yang et al., 2008b; Matthews et al., 2012). Even in this peak
area, the state-estimate solution is around the observational
error of representativeness of 0.4 K, meaning the model is
performing well with regards to SST.

Both RMSA and ACC between the experiments and HFR
observations are shown in Fig. 10 for the island of O‘ahu.
The RMSA of the free-running forecast is reasonably uni-
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Figure 10. Spatial maps of HFR statistics for south O‘ahu for the forecast (a, c) and the state estimate (b, d). (a, b) RMSA; (c, d) ACC.

form across the region covered by the HFR, around 20–
25 cm s−1, with some varying values around the extent of
the radar coverage. The inclusion of HFR observations in the
state-estimate solution leads to significantly reduced values
of 12–15 cm s−1, a reduction of almost half. The ACC is also
significantly improved from a weak correlation to a consis-
tently strong positive one.

As discussed in Souza et al. (2015), there are several
reasons the model can differ from surface current observa-
tions: the discretization of the model, imperfect stratification,
differing barotropic-to-baroclinic tide conversion at Kaena
Ridge, or mixing parameters that do not capture the real
baroclinic mixing. This may lead to a different location of
the currents in the model from those observed by the HFR;
however, the model does a good job of reducing these errors
(Janeković and Powell, 2012). The HFRs located on the is-
land of Hawai‘i have a smaller coverage region, but the level

of improvement from the forecast to the state-estimate solu-
tion is consistent with the O‘ahu results shown here.

4.2 Subsurface observations

The in situ observation sources are Argo floats, Seagliders,
and HOT CTDs, which also show an improvement in the
state estimate over the forecast. The subsurface temperature
RMSA values are reduced by an average of 0.03 K and salin-
ity by 0.01 ppt. The average RMSA is within the represen-
tative errors for both variables at 0.8 K and 0.15 ppt, respec-
tively. However, there are several occasions when the RMSA
value for a cycle exceeds that limit when there are very few
in situ observations available.

Figure 11 shows the RMSA and ACC profiles for tem-
perature and salinity for each source of subsurface observa-
tion. For all three sources, the greatest RMSA between the
models and observations is along the thermocline where mi-
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Figure 11. RMSA (solid) and ACC (dashed) profiles of subsurface temperature (a) and salinity (b) for Argo floats, Seagliders, and HOT
CTDs for the forecast (blue) and the state estimate (orange). Data were binned into 50 m intervals.

nor differences in thermocline depth lead to temperature dif-
ferences. The state estimate improves the RMSA in this re-
gion by 10–15 %. The thermocline location is also the source
of the lowest correlation between the observations and the
model, which is improved by the state estimate by ∼ 5 %.
There is a high RMSA for Seagliders at the base of their pro-
files (close to 1000 m). In this instance the state estimate does
not result in an improvement of the forecast. Many of the
glider missions operated in the shallow waters off the south
coast of O‘ahu where processes are at much finer scale than
can be resolved at 4 km resolution. As such, the observational
representation errors were higher.

For subsurface salinity (Fig. 11b), the improvements made
by the state-estimate solution occur almost exclusively above
500 m for Argo floats and HOT CTDs. As with tempera-
ture the largest improvement is at the top of the thermo-
cline. There are some low ACC values lower down in the
profile between both models and the observations, but both
the forecast and state estimate perform equally at this depth.
Seagliders produce the biggest improvement in subsurface
salinity model performance, with the state-estimate solution
up to 20 % better than the forecast for both RMSA and ACC.
The peak improvement is at the top of the thermocline, but
there are improvements throughout the profile.

5 Forecast skill

In this section we quantify the model skill by using a skill
score evaluated as the improvement against a reference field
(Murphy, 1988). For the reference, we take the model value
at the spatial location of each observation at the time of ini-
tialization for each 8-day cycle and assume persistence of
this value throughout the 8-day cycle (persistence assump-
tion). The skill score (SS) for the state-estimate analysis and
forecast is then defined using the ratios of RMSAs with re-
spect to the observations:

SSa = 1−
RMSA(xa,y)

RMSA(x0,y)
, (10)

SSf = 1−
RMSA(xf,y)

RMSA(x0,y)
, (11)

where the superscripts a, f, and 0 refer to the analysis, free-
running forecast, and persistence, respectively, and y indi-
cates the observations. Under this measure, a SS of 1 rep-
resents a perfect fit between the model and observations,
while a value of zero indicates where the model and persis-
tence values perform exactly the same. If the model is bet-
ter than persistence, then the skill score will lie in the range
0< SS< 1 and the degree of improvement over persistence
is determined by how close to 1 the score is. Conversely, a
negative SS means the model is further from the observations
than persistence.
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Figure 12. Mean skill metric for remotely sensed observations as a function of forecast length. Solid lines: skill (see Eqs. 10 and 11); dashed
lines: standard deviation of skill. (a) Sea surface height; (b) sea surface temperature; (c) sea surface salinity; (d) HFRs; and (e) subsurface
temperature.

For this verification we wish to examine the effect of fore-
cast length on the skill. Starting with the same initial condi-
tions as each state-estimate cycle we produce an 8-day fore-
cast, the length of two state-estimate cycles. The RMSA is
calculated every 3 h for each 8-day forecast, the correspond-
ing state-estimate cycles, and the persistence field from the
start of the forecast.

Figure 12 shows the mean SS over all cycles for remotely
sensed observations. For SSH, SST, and HFR, the skill for
both the state-estimation and free-running forecast is positive
throughout, indicating that both models are successful over
persistence in representing those variables. SSS, however, is
close to zero and slightly negative, meaning the models pro-
vide no better information than persistence. SST values are
consistently the highest, with a reduction in skill versus per-
sistence for both models once per day. This is expected as

initial conditions are used for persistence values and the di-
urnal cycle will move ocean temperatures close to this per-
sistence value once per day. The state-estimate skill for HFR
has a consistent value of 0.5 regardless of the forecast day,
while the skill of the free-running forecast decreases within
the first 12 h and is closer to 0.2 for the rest of the forecast pe-
riod. This decrease in skill is driven by the fact that the radials
are dominated by the semidiurnal baroclinic and barotropic
tides.

6 Analysis of increments

During each I4D-Var 4-day window, the initial model field
and time-varying boundary and surface forcings are adjusted
to minimize the residuals. The initial condition increments
form a single record for each cycle, while the boundary and
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Figure 13. EOF1 and PC1 of initial condition increments for temperature, east–west velocity, and north–south velocity (all averaged 0–
100 m) and of forcing perturbations applied to surface heat flux. The EOFs were calculated using the routines described in Dawson (2016).

surface forcings are perturbed every time they are applied
to the model. The perturbations applied to the boundary ex-
hibit only a minor influence on the model (not shown) due
to the mean advection speed (≈ 20 cm s−1) and sponge layer
dampening near the boundaries. We focus our analysis on the
increments of the initial conditions and the surface forcing.

Because we are analyzing the increments (rather than
the state) to the initial conditions and forcing fields, the
mean increment should be zero (unless there is a bias in
the model), and we are looking to examine the variability.
Over the entire reanalysis period, the mean biases between
the model and observations for the different types are temper-
ature (−0.0048 K), salinity (0.0049 ppt), SSH (−7 mm), and
HFR (0.06 cm s−1). A consistent pattern or principal compo-
nent may suggest a repeated correction to account for miss-
ing or misrepresented physics in the model.

Over the 10-year reanalysis, there are 917 analysis cycles
with 16 surface forcing adjustments (four per day) per cy-
cle. We calculated the empirical orthogonal functions (EOFs)
(Hannachi, 2004) of the increments applied to the forcing and
the initial conditions to analyze the dominant spatial patterns
of the adjustments.

For each cycle, the initial perturbation of the primary
model prognostic variables are examined: sea surface height,
temperature, salinity, east–west velocity, and north–south ve-
locity. With the exception of sea surface height, each variable
is averaged over the upper 100 m to cover the mixed layer
depth in the domain (Matthews et al., 2012). The increments
for salinity and sea surface height as a percentage of the ini-
tial conditions are insignificant (< 1 %), while temperature
increments (2–10 %) and the two velocity fields (10–20 %)
are significant enough to analyze.

The assimilation was configured to optimize the surface
forcing increments every 6 h (to avoid overadjustment). The
time of day potentially impacts forcing variables, particu-
larly surface heat flux, so we calculate EOFs on the incre-
ments for each of the four distinct times of day they occur
(00:00, 06:00, 12:00, 18:00 UTC). Due to the size of the

model grid, the number of records, and the computational
resources available the EOF calculation is limited to a 4-
year period, with approximately 1500 records. Several dif-
ferent periods were examined with no significant differences
in the structure of the modes or their percentage of variance
explained. The time of day does impact the percentage of
variance explained by each mode, most notably for surface
heat flux for which the effect of diurnal solar heating occurs.
However, the overall locations and magnitudes of the peaks
and troughs as well as the temporal evolution of PCs do not
exhibit significant differences for each time of day, so we
present one of the modes for each considered variable.

The four key surface forcing terms are surface heat flux,
surface salinity flux, east–west wind stress, and north–south
wind stress. Of these, increments in surface salinity flux are
quite small compared to their initial value, while increments
in surface heat flux (10 %–15 % of initial value) and the wind
stresses (15 %–20 % of initial value) are significant.

For surface heat flux and near-surface temperature, we ob-
serve that the EOF1 modes represent 63 % and 20.8 % of the
variability, respectively, with a consistent sign over the re-
gion (Fig. 13). This mode essentially accounts for the bias
between our ocean model and the WRF atmospheric model
used to force the surface. Unfortunately, WRF was not inte-
grated loosely coupled to the ROMS using the ROMS SST
field; rather, it was run using persistent estimates of daily
SST during its integration. It must be noted, however, that the
monopole structure of the EOF1 does not represent a con-
stant offset between ROMS and WRF since the actual per-
turbation of surface heat flux and increment applied to near-
surface temperature are given by the products of the respec-
tive EOF1 and the PC1. As can be seen in the lower panels
of Fig. 13, the temporal evolution of the PC1 for both surface
heat flux and near-surface temperature adjustments is domi-
nated by high-frequency, nonphysical variance.

The EOF1 modes of the near-surface velocity increments
explain 26.1 % and 20.8 % of the variance, respectively. Both
modes exhibit a strong impact south of the main Hawaiian
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Figure 14. Spatial EOF patterns and principal components (PCs) of wind stress perturbations for the period prior to the assimilation of HFR
measurements (June 2007–September 2010).

Islands. The structure of the wind stress curl in this region
results in the spin-up of cyclonic and anticyclonic eddies to
the north and south of the lee side of each island, respectively
(Chavanne et al., 2002). As a consequence, a zone of strong
current shear is created between the North Equatorial Cur-
rent and the Hawaiian Lee Counter Current (Lumpkin and

Flament, 2013) (see also Fig. 1). The EOF1 modes of the
near-surface velocity increments are responsible for adjust-
ing the state estimate for the significant eddy activity in the
lee of Hawai‘i.

The EOFs of surface wind stress increments are confined
to relatively small regions of the model domain (Figs. 14
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Figure 15. Spatial EOF patterns and principal components (PCs) of wind stress perturbations for the period including the assimilation of
HFR measurements (January 2011–January 2014).

and 15). A significant change occurs after the HFR obser-
vations come online. During the period prior to the availabil-
ity of the HFR data (June 2007–September 2010), the wind
stress was primarily adjusted in the lee regions where the
winds are forced between islands (e.g., Kaiwi, ‘Alenuihāhā
Channels, and to a smaller degree over the Kaua‘i Channel;
Fig. 14). The wind stress curl in these regions plays an im-

portant role as a vorticity source to the ocean (Souza et al.,
2015). Hence the adjustment of wind stress in the channels
between the islands is critical for a reliable representation of
ocean conditions. The magnitude and sign of the PCs of the
wind stress adjustments for this period are driven by day-
to-day variability (Fig. 14, lower panels). Also, the PCs of
the east–west wind stress and north–south wind stress are
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largely uncorrelated, aggravating an interpretation of the ad-
justments in terms of a larger-scale atmospheric pattern or
wind stress curl.

With the integration of the HFR measurements (Octo-
ber 2010), the dominant wind stress increments occur across
the shallow region close to the south coast of O‘ahu (Fig. 15).
The first mode for both east–west and north–south wind
stress exhibits a monopole structure adjusting the wind stress
uniformly across the area covered by the HFR and its vicin-
ity. The second modes have an east–west dipole structure that
will either increase or decrease the wind stress shear around
the HFR region. Similarly to the pre-HFR period, the PCs
of the wind stress increments are dominated by day-to-day
variability and do not represent a physical mode.

7 Conclusions

We have presented a 10-year reanalysis of the PacIOOS
Hawaiian Island Ocean Forecast System and assessed
the performance of the state-estimate solution and free-
running forecasts. Using a time-dependent incremental
strong-constraint four-dimensional variational data assimila-
tion (I4D-Var) scheme, we show that the model represents
the observational data well over the time period. The state-
estimate solution reduces the RMSA compared to the fore-
cast by 3 % (salinity) to 37 % (surface velocities). A limi-
tation of the model–observation comparison is given by the
fact that in the absence of a sufficient number of independent
observations, only assimilated data could be used for the val-
idation.

The largest reduction of the cost function of the state-
estimate solution occurs when minimizing the residuals to
HFR data, with SST also accounting for a significant im-
provement. On average, the assimilation achieves the near-
optimal solution; however, the variability is heavily influ-
enced by the HFR observations. The analysis suggests that
the observational errors associated with HFR are too low and
results could be improved by redefining these errors. This is
supported by the increase in variability and upward trend of
optimality towards the end of the time period during which
HFR observations are most numerous.

The increments made by the reanalysis have revealed that
sea surface height and salinity initial conditions are not sig-
nificantly adjusted by the I4D-Var procedure, whereas tem-
perature and velocity account for a significant change from
the forecast field. For the atmospheric forcing, surface salin-
ity is insignificant, but the adjustments made to surface heat
flux and wind stresses alter the forcings by up to 20 %. This
corresponds to cost function statistics that point to HFR and
temperature as the two dominant observation sources.

The dominant EOF mode for adjustments of surface heat
flux and near-surface temperature exhibits a monopole struc-
ture, indicating a slight bias correction between the ocean
and atmospheric model. The leading modes of wind stress

increments are concentrated in the region south of O‘ahu.
The wind stress heavily influences the surface currents and
adjustments are mostly made as a consequence to HFR data.
Additional analysis reveals that wind stress adjustments in
the channels between the islands dominated the increments
in the period prior to the radar-based measurements of sur-
face currents.

The reanalysis has provided the testing for improvements
to the PacIOOS operational forecast system. The data are be-
ing used to update the back catalog available to the public
at http://www.pacioos.hawaii.edu (last access: 22 December
2018) and will influence the future results from daily fore-
casts. Analysis of the I4D-Var increments has provided a
greater understanding of the variability in the region and will
provide the basis for a move towards ensemble forecasting in
the region.

Code availability. The specific ROMS Fortran source for this
package is under the MIT license and is available from
https://doi.org/10.5281/zenodo.1493617 (Powell et al., 2018).
Model initial conditions and boundary forcing come from the HY-
brid Coordinate Ocean Model (http://hycom.org, last access: 22 De-
cember 2018).
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servations are distributed through the PacIOOS data portal at
http://pacioos.hawaii.edu (last access: 22 December 2018). Satel-
lite measurements come from two sources; sea surface tempera-
ture and salinity are provided by the Physical Oceanography Dis-
tributed Active Archive Centre at http://podaac.jpl.nasa.gov (last
access: 22 December 2018), and surface height anomalies are pro-
vided by the Copernicus Marine Environment Monitoring Service
at http://marine.copernicus.eu (last access: 22 December 2018). In
situ measurements used are available from three sources: Argo mea-
surements through the Global Ocean Data Assimilation Experiment
at http://usgodae.org (last access: 22 December 2018), Seaglid-
ers through the School of Ocean and Earth Science and Technol-
ogy at the University of Hawai‘i at Mānoa at http://hahana.soest.
hawaii.edu/seagliders (last access: 22 December 2018), and CTDs
through the Hawai‘i Ocean Time-Series project at http://hahana.
soest.hawaii.edu/hot (last access: 22 December 2018). Reanalysis
output is produced as 3-hourly snapshots of the 3-D field tem-
perature, salinity, and velocities interpolated onto a z grid from
the native s grid, as well as the 2-D sea surface height field
for the full time period. These data are archived through the Pa-
cIOOS data server at http://oos.soest.hawaii.edu/thredds/idd/ocn_
mod_hiig.html?dataset=roms_hiig_reanalysis (last access: 22 De-
cember 2018).
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