
Geosci. Model Dev., 12, 1847–1868, 2019
https://doi.org/10.5194/gmd-12-1847-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

OceanMesh2D 1.0: MATLAB-based software for two-dimensional
unstructured mesh generation in coastal ocean modeling
Keith J. Roberts, William J. Pringle, and Joannes J. Westerink
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,
156 Fitzpatrick Hall, Notre Dame, IN, USA

Correspondence: Keith J. Roberts (krober10@nd.edu)

Received: 14 August 2018 – Discussion started: 28 September 2018
Revised: 9 April 2019 – Accepted: 24 April 2019 – Published: 10 May 2019

Abstract. OceanMesh2D is a set of MATLAB functions with
preprocessing and post-processing utilities to generate two-
dimensional (2-D) unstructured meshes for coastal ocean cir-
culation models. Mesh resolution is controlled according to
a variety of feature-driven geometric and topo-bathymetric
functions. Mesh generation is achieved through a force bal-
ance algorithm to locate vertices and a number of topological
improvement strategies aimed at improving the worst-case
triangle quality. The placement of vertices along the mesh
boundary is adapted automatically according to the mesh size
function, eliminating the need for contour simplification al-
gorithms. The software expresses the mesh design and gener-
ation process via an objected-oriented framework that facili-
tates efficient workflows that are flexible and automatic. This
paper illustrates the various capabilities of the software and
demonstrates its utility in realistic applications by producing
high-quality, multiscale, unstructured meshes.

1 Introduction

Many phenomena in the coastal ocean, such as tides,
tsunamis, and storm surges, can be accurately modeled
by the shallow water equations. Unstructured meshes are
often used for numerical simulations of the coastal ocean
because they can resolve the large range of horizontal length
scales necessary for accurate hydrodynamic predictions
and can conform well to complicated shoreline boundaries.
The accuracy and the associated computational expense
of the mesh are in direct conflict, which makes the mesh
design process challenging. Computational work is gov-
erned by the distribution of vertices (mesh resolution) and

accuracy is determined, in part, by the representation of
relevant geometrical and bathymetric features that may
influence the simulation. Due to this balance between
accuracy and computational work, the prescription of the
mesh resolution often leads to a highly subjective mesh
generation process, which is often handled through soft-
ware based on a graphical user interface (GUI), e.g., the
Surface-water Modeling System (https://www.aquaveo.com/
software/sms-surface-water-modeling-system-introduction,
last access: 8 May 2019), Blue Kenue
(https://nrc.canada.ca/en/research-development/
products-services/software-applications/
blue-kenuetm-software-tool-hydraulic-modellers, last
access: 8 May 2019), and Delft’s Flexible Mesh suite (https:
//www.deltares.nl/en/software/delft3d-flexible-mesh-suite/,
last access: 8 May 2019). Although GUIs allow the user
to carefully edit detailed aspects of the mesh, they do
not promote automation, objectivity, or reproducibility.
To address this issue, the ocean modeling community has
developed approaches and tools to support the automated
generation of unstructured meshes for coastal circulation
problems (Hagen et al., 2002; Bilgili et al., 2006; Gorman
et al., 2006, 2008; Lambrechts et al., 2008; Conroy et al.,
2012; Engwirda, 2017; Candy and Pietrzak, 2018; Avdis
et al., 2018; Remacle and Lambrechts, 2018). Most works
have either tried to minimize topo-bathymetric interpolation
error on the mesh (e.g., Gorman et al., 2006) or construct
the mesh based on resolving relevant physical processes in
the domain and/or preserving the geometry of the shoreline
boundary (e.g., Conroy et al., 2012; Engwirda, 2017). An
iterative a posteriori method that aims to keep the local

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://www.aquaveo.com/software/sms-surface-water-modeling-system-introduction
https://www.aquaveo.com/software/sms-surface-water-modeling-system-introduction
https://nrc.canada.ca/en/research-development/products-services/software-applications/blue-kenuetm-software-tool-hydraulic-modellers
https://nrc.canada.ca/en/research-development/products-services/software-applications/blue-kenuetm-software-tool-hydraulic-modellers
https://nrc.canada.ca/en/research-development/products-services/software-applications/blue-kenuetm-software-tool-hydraulic-modellers
https://www.deltares.nl/en/software/delft3d-flexible-mesh-suite/
https://www.deltares.nl/en/software/delft3d-flexible-mesh-suite/

1848 K. J. Roberts et al.: OceanMesh2D 1.0

truncation error constant throughout the mesh has also been
employed (Hagen et al., 2002).

Modern interpreter-based programming environments
such as MATLAB and Python are attractive for many users to
develop mesh generators because they include a plethora of
built-in or community-developed functions, toolboxes, and
packages that are freely available. For instance, a simple
and easily adaptable mesh generator based on the concept of
force equilibrium and written in a few dozen MATLAB lines
is DistMesh2D (Persson and Strang, 2004). The simplicity
of the force equilibrium algorithm makes it attractive as a
general-purpose mesh generator by allowing users and devel-
opers to adapt it for various applications (e.g., Engsig-Karup
et al., 2008; Liu, 2009; Nguyen et al., 2010; Wang et al.,
2014). However, due to the general nature of DistMesh2D,
it tends to be computationally inefficient for the large and
highly multiscale geophysical domains that are encountered
in coastal ocean hydrodynamic modeling problems. Addi-
tionally, there are a number of preprocessing steps that must
be performed to prepare the geospatial data for meshing and
a number of post-processing steps to make sure the mesh
is amenable for simulation. For instance, one must obtain a
shoreline boundary that will lead to a mesh that is practical
to simulate with. By integrating the tools to preprocess the
geospatial data into the mesh generator directly, it reduces
the time spent performing these essential tasks and largely
automates the mesh development process.

In a related previous work, the Advanced Mesh gen-
erator (ADMESH; Conroy et al., 2012) implemented a
DistMesh2D-based coastal ocean mesh generator in MAT-
LAB. In this work, we build on many of the ideas described
in ADMESH with the following primary improvements: (a) a
focus on computational efficiency to enable the software to
become practically useful even for large geophysical datasets
(e.g., ∼ 1 km resolution global topo-bathy) in the MATLAB
scripting language; (b) the inclusion of preprocessing and
post-processing workflows; (c) a greater variety of mesh size
functions and flexibility in their application, which offers
more control over mesh resolution placement; and, critically,
(d) code written in an open-source environment for the ben-
efit of the community. The codes place emphasis on facili-
tating automatic mesh design workflows that lead to the cre-
ation of meshes and the necessary model inputs for a nu-
merical simulation. These mesh generation workflows (i.e.,
a user-specified MATLAB control script) are typically repre-
sented by a few lines of MATLAB code and take from min-
utes to an hour to generate relatively large, multiscale, high-
fidelity meshes (potentially global to channel scale) and their
auxiliary components automatically.

The software is written in an objected-oriented framework
that is divided into a set of stand-alone classes. Special effort
has been made to ensure that only open-source functions are
required to generate a mesh. Further, in its current state the
software contains a number of post-processing functions spe-
cific to the ADvanced CIRCulation model (ADCIRC; Luet-

tich and Westerink, 2004), but these can be adapted to other
solvers in the future. The rest of this paper is structured as
follows: we begin by introducing the framework and organi-
zation of the code, followed by a detailed description of each
of the four stand-alone classes.

1.1 Example problems

To demonstrate the overall workflow and the design of the
classes, three examples located along the East Coast and
Gulf Coast of the United States of America are documented
(Fig. 1). The first example produces a mesh of the Ja-
maica Bay estuary in New York (JBAY), demonstrating the
utility of the software in incorporating high-resolution (∼
1/9 arcsec or approximately 3 m horizontal resolution) light
detection and ranging (lidar) datasets with fine-resolution
(∼ 15 m) triangular elements nearshore. The second example
meshes the Galveston Bay in Texas (GBAY), demonstrating
the utility of a new mesh size function that can be used to tar-
get resolution along deep-draft marine navigation and tidal
channels. The third example demonstrates how the software
can produce truly multiscale unstructured meshes in less than
1 h by building a mesh of the western Atlantic Ocean with
focused refinement around Puerto Rico and the US Virgin Is-
lands (PRVI). See Table 1 for details on the various options
and/or parameters that were used to generate these example
meshes.

2 Architecture overview

The automated generation of geophysical-use unstructured
meshes often requires a number of user-defined parameters
and a variety of geospatial data as inputs. As a result, the
mesh is strongly related to the algorithms and data that were
used to create it. These task- and object-specific proper-
ties of the mesh generation process provide the motivation
behind the development of an objected-oriented program-
ming (OOP) approach. In this software, the use of OOP leads
to automation and promotes the usage of efficient workflows.

OceanMesh2D is composed of four classes (geodata,
edgefx, meshgen, and msh; see Fig. 2) and a utilities directory
containing various stand-alone functions. The geodata class
is used as a preprocessor to mesh generation and creates an
appropriate meshing boundary from user-supplied geospatial
datasets and inputs. The edgefx class enables the user to build
standardized mesh size functions with a variety of parameters
and constraints. The meshgen class is associated with mesh
generation, inheriting various options from the geodata and
edgefx classes. The msh class is a data storage class for the
mesh and related attributes. Additional technical information
can be found in the user guide (Roberts and Pringle, 2018a).

Although each individual class is stand-alone, there is a
specific workflow that is typically followed to build coastal
ocean meshes with the OceanMesh2D software (Fig. 2). The

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1849

Table 1. The parameters (defined in Sect. 3.3) that are used to generate the three example meshes for this paper, which were released with
the tool kit. The final mesh quality (defined in Sect. 3.1.1) and the number of iterations in the mesh generator to achieve this are noted.

Region Meshing parameters Mesh quality Iterations

h0 (m) hmax (m) αR αwl αslp αg αch 1t (s) qE qEmin 3 qL3σ > 0.75

JBAY 15 1000 3 – – 0.15 – 2 0.97 0.60 38
GBAY 60 1000 3 – – 0.25 0.10 – 0.97 0.53 71
PRVI 10 & 30 & 1000a 10 000 5 30 15 0.2 – 0b 0.97 0.45 30

a Different values of h0 are used for each separate mesh size function domain as indicated in Fig. 1 (PRVI); b setting 1t = 0 invokes the automatic time step
selector option (see Sect. 3.3.7).

Figure 1. The geographical location and triangulation of the three meshes used as examples in this work. The minimum mesh sizes (h0)
are annotated in black text, and the names of the digital elevation models (DEMs) used in the construction of the mesh size functions are
annotated in red text on each panel. The color map indicates topographical data (bathymetric data were removed for the production of this
figure) in the DEMs, which are freely available through the NOAA bathymetric data viewer website (https://coast.noaa.gov/dataviewer, last
access: 8 May 2019).

structure of this workflow enables the user to create numer-
ous instances of the geodata and edgefx classes that can
be subsequently passed to the meshgen class. Numerous in-

stances of the geodata and edgefx classes can be combined
to seamlessly mesh high-resolution insets contained within
wider-coverage geospatial datasets. The ability to incorpo-

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

https://coast.noaa.gov/dataviewer

1850 K. J. Roberts et al.: OceanMesh2D 1.0

Figure 2. Description of the four classes and the standard workflow
in OceanMesh2D. The black arrows indicate that multiple instances
of the geodata and edgefx classes can be generated and used as in-
puts to the meshgen class (see Sect. 3.1.4).

rate datasets over a wide range of scales is particularly use-
ful and pragmatic given the finite computational memory
and highly variable horizontal resolution of available high-
resolution topo-bathymetric data.

3 Component design

In the following section, each of the four classes that com-
prise OceanMesh2D are described.

3.1 Mesh generation: meshgen class

Mesh generation is achieved through the use of the
DistMesh2D algorithm with a number of modifications to
help improve the quality of the final triangulation, the speed
of the mesh generation, and the memory footprint of the over-
all application. It is noted that the architecture of the Ocean-
Mesh2D software could additionally support other mesh gen-
eration packages besides DistMesh2D, such as JIGSAW-
GEO (Engwirda, 2017). In its current state, the class is a
wrapper function around the DistMesh2D algorithm that au-
tomatically uses classes that describe the meshing domain
and the mesh size functions. However, it can be used as a
stand-alone 2-D mesh generator with a polygonal boundary
and mesh size function.

For coastal mesh generation, a key advantage of using
the DistMesh2D smoothing-based algorithm over Delaunay
refinement and/or frontal Delaunay mesh generation algo-
rithms is that the boundary is implicitly defined through a
signed distance function. While the boundary of the meshing
domain is stored as a set of linear segments, these segments
do not represent the boundary of the final mesh as all ver-
tices can move during mesh generation in accordance with

the mesh size function. The final mesh boundary that approx-
imates the shoreline is thus dependent on the mesh size func-
tion and post-processing strategies that we employ to ensure
that there are no self-intersecting boundaries or small dis-
connected portions of the mesh. Thus, the need for shoreline
approximation preprocessing (e.g., Gorman et al., 2007) to
define the mesh boundary as required by Delaunay refine-
ment and/or frontal Delaunay mesh generation approaches
(Gorman et al., 2008) is eliminated. In this section, we docu-
ment the mesh improvement strategies that occur during the
execution of the DistMesh2D algorithm that lead to a high-
quality approximate representation of the domain and are in
congruence with mesh size functions.

3.1.1 Termination criterion

In the DistMesh2D algorithm, the vertices of the mesh are al-
lowed to move iteratively to achieve a force equilibrium state
in which the edges of the triangulation are in balance with
an external force. After some number of meshing iterations,
the algorithm must then terminate. Persson and Strang (2004)
proposed a termination criterion based on convergence to a
configuration of vertices in which negligible movement of
the mesh vertices would occur with additional meshing itera-
tions. In practice, our studies have found that a configuration
of vertices with negligible movement is difficult to achieve
within hundreds of meshing iterations for coastal ocean mesh
domains because of the complex shoreline boundary and
mesh size functions. Thus, we propose an alternative termi-
nation criterion based on element quality.

The notion of what constitutes a high-quality mesh is ap-
plication dependent. Mesh quality can be viewed as a com-
bination of geometric element measures, application depen-
dencies, and numerics (Shewchuk, 2002). A geometric mea-
sure of triangle equilateral-ness can be calculated through

qE = 4
√

3AE

(
3∑
i=1

(
λ2

E

)
i

)−1

, (1)

where AE is the area of the triangle and (λE)i is the length of
the ith edge of the triangle. qE = 1 corresponds to an equi-
lateral triangular element and qE = 0 indicates a triangle that
degenerates to a line. A mesh with a sufficiently high mini-
mum bound on qE is often desired (Shewchuk, 2002; Persson
and Strang, 2004; Engwirda, 2017). However, we find that a
minimum bound on qE is a strict measure for large domains
with millions of elements and complex shoreline features,
which is difficult to achieve within the modified DistMesh2D
algorithm (Fig. 3). Instead, we use the following termination
criterion:

qL3σ ≡ qE− 3σqE > 0.75, (2)

where the overline and σ denote the mean and standard devi-
ation, respectively, and qL3σ is the “three-sigma lower con-
trol limit” element quality used as a proxy for the minimum
element quality.

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1851

Figure 3. The geometric triangle quality q, Eq. (1), as a function of iterations in the mesh generation process for the three mesh examples
(Fig. 1 and Table 1). The dotted and solid lines indicate the progression of quality metrics with the mesh improvement strategies turned off
and on, respectively, during mesh generation. At the end of mesh generation, a secondary round of mesh improvement strategies is applied
and the resulting quality after this step is indicated by the colored asterisk. In each panel, the dotted vertical black line demarcates when the
mesh generation process finished.

Upon termination through the above criterion the major-
ity of triangles are of adequate quality. Moreover, in the ap-
proach used here, a number of mesh-cleaning steps are per-
formed after this mesh generation termination criterion has
been met (Sect. 3.1.3) in order to improve a typically small
number of the worst quality (Fig. 3).

3.1.2 Mesh improvement strategies during mesh
generation

Approximately every 10 meshing iterations the qL3σ element
quality starts to saturate. The termination criteria can be met
more quickly by relying on the following mesh improve-
ment strategies that are conducted every 10 iterations (except
item 4, which is executed every meshing iteration):

1. edges in the mesh that are greater than 2 times the length
as given by the mesh size function (at the midpoint of
the edge) are bisected;

2. edges that are half as short as their intended length are
deleted;

3. a vertex not on the mesh boundary that is connected to
less than or equal to four vertices is deleted (this is also
performed when the termination criterion is satisfied);
and

4. triangles with exceedingly thin angles (< 5◦) and large
angles (> 175◦) are removed every iteration.

Improvement strategies one and two add and delete vertices
when they are part of edges that are too long and short, which
produces a set of new edges that more closely approximate
the mesh size function. Improvement strategy three directly
reduces the occurrence of low vertex-to-vertex connectivity
(valency of three or four), for which a valency of six is ideal
(Canann et al., 1993). Note that improvement strategy one

also helps to reduce high vertex-to-vertex connectivity in-
directly by avoiding steep transitions in the element size at
which valencies greater than six tend to develop. The fourth
improvement strategy removes triangles with small and large
angles, allowing neighboring vertices to form a triangulation
that has a better geometric quality.

We demonstrate the benefit of using these mesh improve-
ment strategies through the three example meshes (Fig. 1, Ta-
ble 1). The time evolution of the geometric quality demon-
strates the direct benefit of these mesh improvement strate-
gies. Figure 3 illustrates that in all three examples the mesh
improvement strategies lower the number of iterations neces-
sary to achieve the termination criterion. Further, the rate at
which qL3σ increases is accelerated when mesh improvement
strategies are enabled. Note that in the subsequent iteration
after each improvement cycle (10 iterations), a slight degra-
dation in the geometric quality (Fig. 3) can occur as edges
and vertices are decimated. For the development of large
multiscale meshes, 20–50 iterations can often save 5–20 min
for the problems to reach the termination criterion. Based on
the termination criterion and the improvements listed here,
we generally find that complex coastal ocean meshes are gen-
erated in approximately 30–100 iterations. Thus, the maxi-
mum allowed number of iterations is commonly set to 100,
which typically takes a few minutes to half an hour to com-
pute depending primarily on the geometric complexity of the
boundary and the ratio of domain size to minimum element
size.

3.1.3 Mesh improvement strategies after mesh
generation

After mesh generation has terminated, a secondary round of
mesh improvement strategies is applied that is focused to-
wards improving the geometrically worst-quality triangles
that often occur near the boundary of the mesh and can make
simulation impossible (e.g., Fig. 4a). Low-quality triangles

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

1852 K. J. Roberts et al.: OceanMesh2D 1.0

Figure 4. Mesh triangulation within the JBAY example before and after different stages of the Make_Mesh_Boundaries_Traversable function
enabling mesh traversability. (a) After initial mesh generation (before entry to function); (b) after deleting offending exterior elements;
(c) after deleting offending interior elements; (d) after exit of function once all offending exterior and interior elements are deleted and
traversability is obtained. The thick blue line indicates the mesh boundary at each stage, and red patches indicate the elements that are
deleted between stages (subplots).

can occur near the mesh boundary because the geospa-
tial datasets used may contain features that have horizontal
length scales smaller than the minimum mesh resolution. To
handle this issue, a set of algorithms is applied that itera-
tively addresses the vertex connectivity problems. The ap-
plication of the following mesh improvement strategies re-
sults in a simplified mesh boundary that conforms to the user-
requested minimum element size.

Topological defects in the mesh can be removed by ensur-
ing that it is valid, defined as having the following properties:

1. the vertices of each triangle are arranged in counter-
clockwise order;

2. conformity (a triangle is not allowed to have a vertex of
another triangle in its interior); and

3. traversability (the number of boundary segments is
equal to the number of boundary vertices, which guar-
antees a unique path along the mesh boundary).

Properties one and two are handled with the fixmesh.m func-
tion that was provided with the original DistMesh2D pack-
age. Property three (traversability) is often not satisfied upon
termination of the mesh generator because a simplification
of the shoreline was not applied. Fragmented patches of tri-
angles may appear near the shoreline boundary, destroying
traversability (Fig. 4).

A function, called Make_Mesh_Boundaries_traversable,
was developed to iteratively remove patches of elements that
are either disconnected from the major portion of the mesh
or are not disconnected but prevent traversability. The for-
mer set of offending elements is defined as being “exterior”
disjoint components of the mesh. Exterior disjoint compo-
nents of the mesh are defined as follows: starting from a ran-
dom seed element in the mesh, the total area of a connected
set of elements (i.e., elements that share an edge) is smaller
than a user-defined threshold µco. The user-defined thresh-
old can be defined in terms of either the total mesh area frac-
tion or an absolute area cutoff (by default we set µco = 0.25,

which is equivalent to a 25 % total mesh area fraction cutoff).
These patches are identified and removed through the use of
a breadth-first search (BFS) (Fig. 4a and b). The latter set
of offending elements is defined as being “interior” elements
of the mesh that interfere with the traversability of the mesh
boundary path. First, an offending vertex that has more than
two connecting boundary edges is identified. One of the ele-
ments connected to this vertex is chosen to be deleted based
on a hierarchy: first, triangles that have two boundary edges
and, second, triangles with the lowest quality, qE (Fig. 4b
and c). Offending exterior and interior elements are deleted
iteratively until traversability is achieved (Fig. 4c and d).

After ensuring traversability, three additional functions,
depicted visually in Fig. 5, are applied to the mesh in the
following order to improve mesh quality.

1. Fix_single_connec_edge_elements. Elements that share
an edge with only one other element (singly connected
elements) poorly approximate geospatial datasets and
are thus removed from the mesh iteratively (Fig. 5a
and d).

2. bound_con_int. This bounds the vertex-to-vertex con-
nectivity (e.g., Fig. 5b and e) in the mesh to a user-
defined value in order to improve mesh quality and gra-
dation and also increase solution accuracy and compu-
tational speed (Massey, 2015).

3. direct_smoother_lur. This provides additional improve-
ment to the mesh quality by moving non-boundary ver-
tices based on a single-step implicit operation (Balen-
dran, 1999) (Fig. 5c and f). The application of this
function significantly enhances the statistical distribu-
tion of qE (Fig. 3).

3.1.4 Multiscale meshing approach

The DistMesh2D algorithm uses memory inefficiently for the
development of multiscale regional and global meshes of the

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1853

Figure 5. The mesh improvement strategies that are applied in sequence from left to right after mesh generation, with the red ovals denoting
areas of change in the connectivity along with the function’s name that performs the operation. (a–c) Various regions in the mesh before the
improvement strategy and (d–f) after improvement. Panels (a) and (d) indicate the deletion of elements that share an edge with only one
other element (singly connected elements); (b) and (e) illustrate the reduction of the vertex-to-vertex connectivity to an upper bound of six
using the algorithms documented in Massey (2015); and (c) and (f) illustrate the single-step implicit smoothing operation (Balendran, 1999)
that is used to maximize the overall mesh quality.

Figure 6. An example of the multiscale meshing technique applied to a set of domains around the New York–Long Island area. The green
boxes are specified by the user. The minimum resolution of the outermost green box in each panel is different: (a) 1 km, (b) 500 m, and
(c) 35 m. Notice how the regions of overlap gradually transition into each other.

coastal ocean because it requires a uniform vertex spacing
to initialize. The memory inefficiency becomes especially
problematic when employing high-resolution elements lo-
cally to fully incorporate the information contained in high-
resolution geospatial datasets while using coarser mesh reso-
lution elsewhere. To reduce the memory overhead when con-
structing regional coastal meshes using the DistMesh2D al-
gorithm, the meshgen class has been specifically developed
to allow the user to pass multiple instances of the bound-
ary description (geodata) and mesh size (edgefx) classes to
the meshgen class, an approach that we term “multiscale
meshing”. Instances of these classes are defined within axis-
aligned bounding boxes (rectangles) that reflect the avail-

able geospatial dataset coverage and can be partially or fully
nested any number of times with largely disparate mesh sizes
between nests. Examples of the multiscale meshing tech-
nique are shown in Fig. 1 (PRVI) and Fig. 6 in which the
mesh sizes seamlessly transition between the different DEM
extents.

Only minor modifications to the DistMesh2D algorithm
were involved in enabling the multiscale meshing capa-
bility. The nested domains are evaluated in a loop inside
DistMesh2D in a hierarchical order from comparatively
coarser- to fine-resolution minimum mesh sizes. The hier-
archical evaluation of the force function enables vertices of
the mesh to move between the nested boxes so long as the

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

1854 K. J. Roberts et al.: OceanMesh2D 1.0

outer box fully encloses the inner box. Since the finest lo-
cal meshing boundary and mesh size function take precedent
within each nested box, it enables many variable-resolution
geospatial datasets to be included into the mesh generation
process simultaneously. In order for the multiscale meshing
capability to work, it requires smooth mesh size transitions
between nests. A routine (smooth_outer.m) was developed
to ensure that a smooth resolution transition occurs between
nested boxes by using a marching method (Persson, 2006)
that has been adapted for structured grids.

In contrast to the development of nested coastal circula-
tion models (Deleersnijder et al., 2010; Nash and Hartnett,
2014; Debreu et al., 2012; Brown et al., 2016; Pringle et al.,
2018) the application of the multiscale meshing capability
allows for the construction of a single seamless unstructured
mesh with mesh size transitions that are bounded by the user-
defined allowable limit, while the resolution is not signifi-
cantly altered away from the boundaries of their nests. The
multiscale approach is beneficial over traditional structured
grid nesting approaches employed by ocean models because
it avoids the need for an explicit coupling paradigm in the nu-
merical solver as well as issues associated with interpolation
and smoothing at the interfaces between disparate-resolution
grids that ultimately reduce numerical accuracy.

3.2 Geospatial data: geodata class

The geodata class is a preprocessor to the mesh generator. It
is used to create an appropriate mesh boundary description
from user-supplied input files. The geodata class also stores
the region of the digital elevation model (DEM) that overlaps
the desired meshing domain efficiently in memory. These
DEM data are used in the construction and computation of
a number of mesh size functions (see edgefx class) and msh
methods. The following section describes the methodologies
to prepare the mesh boundary description.

3.2.1 Projections

Users often want an ability to bound placement needs to
be accurate in mesh resolution sizes in certain parts of a
large coastal modeling domain. In order to accurately enforce
these constraints on the Earth, a projection from the spheri-
cal geometry of the Earth to a planar one is necessary. In this
software, the mesh is generated and output in the World Ge-
ographic Coordinate System (WGS84). For the formation of
some mesh size functions that rely on bathymetric gradients
and distances, we use a simple relationship between WGS84
degrees and planar meters to calculate the underlying grid
spacing:

δ∗lon = δlon
πRE

180
cosφ, δ∗lat = δlat

πRE

180
, (3)

where δlon and δlat define the DEM resolution in WGS84 de-
grees between meridians and parallels, respectively, RE is

the mean radius of the Earth (≈ 6378 km), δ∗lon and δ∗lat are
the distances between meridians and parallels in meters, and
φ is the latitude in radians. To enforce mesh resolution con-
straints, we use the Haversine formula to convert between
WGS84 and meters. An assumption is made that the length in
geographic degrees forms a horizontal (i.e., latitude parallel)
edge starting at the point at which it is defined. The distance
between the start and end point of this edge is converted to
great circle distances using the Haversine method, and then
we invert the Haversine formula and solve for WGS84 de-
grees by assuming that the distance between latitudes is zero:

hd = 2arcsin
(

secφ sin
(
h∗

2RE

))
, (4)

where h∗ is the length of the edge in meters, and hd is the
length of the edge in WGS84 degrees. The assumption that
the edge length extrudes along a latitude parallel is reason-
able in practice because the mesh size function constraints
matter mostly in areas of relatively high mesh refinement,
and in these locations the variation in φ is small.

3.2.2 Automatic mesh boundary definition

Since a coastline is often approximated by a series of piece-
wise linear segments, the mesh boundary is often unbounded
on the ocean side and is not a polygon (i.e., the first point
does not equal the last). Thus, users often have to turn their
segments that represent the shoreline into a closed polygon
for any meshing algorithm to work properly. To make this
process automatic, we enable the user to specify the meshing
region as a rectangular box, bbox. The mesh domain is then
defined as the intersection of the area enclosed by the bbox
and the area enclosed by the shoreline polygon. The bound-
ary of the meshing domain is implicitly defined through the
use of a signed distance function, d, whereby the distance to
the nearest coastline point is zero (Persson and Strang, 2004).
Note that a negative value of the signed distance function in-
dicates a point within the mesh boundary, and a positive value
of the signed distance function indicates a point outside the
mesh boundary.

In addition to defining the meshing boundary, the signed
distance function is also used to form mesh size functions
(see Sect. 3.3) and is used during the execution of the
DistMesh2D meshing algorithm. To ensure the calculation
of the signed distance is computationally efficient, the calcu-
lation relies on a combination of the MATLAB class version
of the approximate nearest-neighbor (ANN) method (Arya
and Mount, 1993; Mount and Arya, 2006) (to obtain the ab-
solute distance) and a points-in-polygon test function (in-
poly.m; Engwirda, 2017) (to get the sign). The ANN method
has high computational efficiency with a negligible memory
footprint in comparison to the dsegment.m function available
in DistMesh2D. Further, the inpoly.m function is several hun-
dred times quicker (O(logN) vs. O(n2)) than MATLAB’s
built-in inpolygon.m function.

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1855

In our methodology, the shoreline polygon is internally
partitioned into mainland and island polygons (this catego-
rization is defined below). New vertices are added to the
shoreline polygon so that it conforms to the user-requested
minimum mesh resolution (h0) inside the bbox. Vertices are
decimated outside bbox to save both memory and time dur-
ing the mesh generation process since the calculation of the
signed distance function is proportional to the number of
shoreline vertices.

1. The segments of shoreline polygon that intersect with
bbox are read into memory.

2. The segments of shoreline polygon are classified into
three types: mainland, inner, or outer.

a. The mainland category contains segments that are
not totally enclosed inside the bbox.

b. The inner (i.e., islands) category contains polygons
totally enclosed inside the bbox.

c. The outer category is the union of the mainland,
inner, and bbox.

3. New vertices are added on these segments so that no two
consecutive vertices along it are further than h0

2 apart.
This is necessary for an accurate re-projection of the
points that exit the meshing domain during the execu-
tion of the DistMesh2D algorithm (Persson and Strang,
2004).

4. All segments are smoothed using an n-point moving av-
erage. Simultaneously, small islands that have an area
less than (p ·h0)

2 are removed, where n and p are user-
specified integers (n= 5, p = 4 by default).

As an example, the following steps are applied to a shoreline
extracted from a National Centers for Environmental Infor-
mation (NCEI) post-Sandy DEM (JBAY in Fig. 1), leading
to a classification of shoreline points that is crucial for cor-
rect automatic meshing of the complicated coastal domain it
describes without human intervention (Fig. 7).

The capability to use geometric contours extracted directly
from geospatial datasets in the mesh generation process with-
out the need for shoreline simplification algorithms or exter-
nal shoreline datasets improves workflow efficiency and au-
tomation. Further, by using a geometric contour, the resulting
shoreline boundary in the mesh is consistent with the topo-
bathymetric dataset that is subsequently interpolated onto
the mesh vertices. Since many coastal mesh generators rely
on the Global Self-consistent Hierarchical High-resolution
Shorelines (GSHHS) dataset (Wessel and Smith, 1996), we
consider the automatic geospatial data processing algorithms
to represent a significant step forward towards more compre-
hensive coastal modeling efforts. For example, the GSHHS
dataset is largely insufficient for meshes with a desired reso-
lution finer than 100 m as it often misses critical connections
between water bodies (Fig. 8).

Figure 7. Example of boundary treatment in and around New York,
United States; the bounding box of the mesh domain, bbox, is indi-
cated by the thick dashed black line, the meshing domain is hatched
in blue, and the categorization of land boundary types is indicated
according to the colored lines.

3.3 Automatic mesh size function: edgefx class

The careful placement of mesh resolution is critical to cre-
ate meshes that lead to accurate but efficient simulations.
There are a number of heuristics used to design unstructured
meshes for shallow water flow applications. A review of
some common resolution heuristics utilized in coastal ocean
modeling can be found in Greenberg et al. (2007). We have
considered a variety of constraints involved in the formation
of the mesh size functions by integrating and adapting past
work on the topic. The various mesh size functions are de-
tailed in this section.

Mesh resolution is distributed in the domain according to a
mesh size function. The mesh size functions are constructed
on a structured grid that relates every point in the meshing
domain to a desired mesh size h or, more precisely, a tri-
angular edge length (hence edgefx). Defining the mesh size
function on a structured grid has advantages over an unstruc-
tured one (Conroy et al., 2012; Engwirda, 2017) in relation to
computational efficiency when storing, querying, interpolat-
ing, and performing calculations. Further, bathymetric data
are often defined on structured grids, and in these cases, com-
puting the mesh size function directly on the same grid can
minimize seabed interpolation error for the mesh size func-
tion calculation. Given these factors, we calculate our mesh
size functions on Cartesian grids defined in geographical co-
ordinates (i.e., WGS84). A major drawback to this approach
is that the entire domain must be uniformly refined, which
becomes particularly severe for relatively large meshing do-
mains. This impacts the scalability of the subsequent mesh

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

1856 K. J. Roberts et al.: OceanMesh2D 1.0

Figure 8. (a) The GSHHS fine (i.e., GSHHS_f) shoreline centered around New York, USA; (b) a shoreline extracted from mosaicking NCEI
post-Sandy DEM tiles with the GRASS GIS software.

generation process for regional and global coastal mesh gen-
eration, but the multiscale mesh capability (Sect. 3.1.4) alle-
viates this problem.

Each individual mesh size function is based on shoreline
data and/or the bathymetric datasets that were passed to the
edgefx class constructor. Currently, the software supports a
variety of mesh size functions that are used in the ocean mod-
eling community: wavelength to grid size (Westerink et al.,
1994; Luettich Jr. and Westerink, 2013), topographic length
scale (Greenberg et al., 2007; Lambrechts et al., 2008), Eu-
clidean distance from the shoreline (Persson and Strang,
2004), approximate feature size of the shoreline (Persson,
2006; Koko, 2015), thalweg and/or polyline (Heinzer et al.,
2012), and Courant–Friedrichs–Lewy (CFL) limiting (Bilgili
et al., 2006). Each mesh size function can either be incorpo-
rated or omitted based on the user’s requirements. The mesh
size function is graded using a marching algorithm (Persson,
2006) to ensure that the triangle-to-triangle change in edge
length is bounded below a user-defined percent, αg.

3.3.1 Distance and feature size

A high degree of refinement is often necessary near the
shoreline boundary to capture its geometric complexity. If
mesh resolution is poorly distributed, critical conveyances
may be missed, leading to larger-scale errors in the nearshore
circulation (Greenberg et al., 2007). Thus, a mesh size func-

tion that is equal to a user-defined minimum mesh size h0
along the shoreline boundary, growing as a linear function of
the signed distance d from it, may be appropriate:

hdis = h0−αdd, (5)

where αd is the percent change in mesh size with distance
from the shoreline boundary. Equation (5) is what we call
the distance mesh size function and was originally presented
in the DistMesh2D algorithm (Persson and Strang, 2004).

One major drawback of the distance mesh size function
is that the minimum mesh size will be placed evenly along
straight stretches of shoreline. If the distance mesh size func-
tion generates too many vertices, a feature mesh size func-
tion that places resolution according to the geometric width
of the shoreline should be employed instead (Conroy et al.,
2012; Koko, 2015). In this function, the feature size (e.g.,
the width of channels and/or tributaries and the radius of
curvature of the shoreline) along the coast is estimated by
computing distances to the medial axis of the shoreline ge-
ometry. Here we have implemented an approximate medial
axis method closely following Koko (2015). This involves
finding local extrema in the gradient of the d, which in prac-
tice amounts to defining a medial point as a location where
||∇d||< 0.9 and d < 0 (Koko, 2015). Sometimes due to the
configuration of the mesh size function grid juxtaposed on
the shoreline geometry, medial points inside small channels

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1857

may be lost. These medial points can be recovered by classi-
fying mesh size function grid points as medial points if both
adjacent neighbors (in the north–south or east–west direc-
tions) are outside of the domain but the mesh size function
point under question is within the domain. Once the medial
points are computed, the local feature size hlfs is calculated
as

hlfs =
2(dMA− d)

αR
, (6)

where αR is the user-specified number of desired elements
per local feature size (commonly 2≤ αR ≤ 6), and dMA is
the absolute distance to the nearest medial point. Since the
medial axis is an approximation, the identification of the full
set of medial points depends on the horizontal resolution of
the mesh size function. This implies that the feature mesh
size calculation will work best when computed on a struc-
tured grid with a resolution similar or finer than the horizon-
tal resolution of the supplied geophysical datasets.

To demonstrate the efficacy of the feature mesh size func-
tion, we use a 1/9 arcsec (∼ 3 m) topo-bathy DEM to gen-
erate an approximate 10 m minimum element size mesh of
Jamaica Bay in New York, US (JBAY; Fig. 1), with αR = 3.
Relatively coarse resolution is placed along linear regions of
the sandbar, while the dark patches indicate where higher
resolution is automatically placed around points of high cur-
vature in the coastline and through channels. For example,
two close-ups are shown in which higher resolution is placed
along a narrow constriction and around perpendicular coastal
groins along a beach.

3.3.2 Wavelength

In shallow water theory, the wave celerity, and hence the
wavelength λ, is proportional to the square root of the depth
of the water column. This relationship indicates that more
mesh resolution at shallower depths is required to resolve
waves that are shorter than those in deep water. With this
considered, a mesh size function hwl that ensures a certain
number of elements are present per wavelength (usually of
theM2-dominant semi-diurnal tidal species) can be deduced:

hwl =
λM2

αwl
, (7)

hwl =
TM2

αwl

√
gb, (8)

where λM2 and TM2 are the wavelength and period (≈
12.42 h) of the M2 tidal wave, g is the acceleration due
to Earth’s gravity, b is the bathymetric depth, and αwl is
the user-specified number of elements chosen to resolve the
wavelength. If the M2 wavelength is sufficiently captured,
the diurnal species will also be sufficiently resolved since
their wavelengths are approximately twice as large as theM2.
In general, the wavelength parameter αwl is set to a value
somewhere between 25 and 100 (Westerink et al., 1994;
Le Provost and Lyard, 1997).

3.3.3 Topographic length scale

The distance, feature size, and/or wavelength mesh size func-
tions can lead to coarse mesh resolution in deeper waters that
under-resolve and smooth over the sharp topographic gradi-
ents that characterize the continental shelf break. These slope
features can be important for coastal ocean models in order to
capture dissipative effects driven by the internal tides, trans-
missional reflection at the shelf break that controls the astro-
nomical tides, and trapped shelf waves (Huthnance, 1995).
The scaling of the slope parameter, commonly called the to-
pographic length scale, is usually represented by the follow-
ing:

hslp =
2π
αslp

b

|∇b|
, (9)

where 2π/αslp is the number of elements that resolve the to-
pographic slope, and ∇b is the gradient of the bathymetry
evaluated on a structured grid of horizontal resolution h0.
The 2π factor is a convention introduced by Lyard et al.
(2006) so that αslp can be set to a value similar in magnitude
to αwl, e.g., around 10–30.

Typically the gradient of the bathymetry often contains a
high degree of noise, which results in high mesh refinement
with the application of hslp despite the fact that small features
have marginal effects on shallow water flow, particularly in
deep water (LeBlond, 1991). We would like to filter bathy-
metric features that are not relevant to the underlying shal-
low water processes, like the astronomical tides. Therefore,
we propose low-pass filtering the bathymetry before calcu-
lating the gradient. In this low-pass filter, we propose a filter
cutoff length based on an estimate of the local Rossby radius
of deformation:

LR =

√
gb

f
, (10)

where f is the Coriolis parameter. By local we mean that we
discretely bin values of LR in the meshing domain and apply
a low-pass filter to binned grid points with a cutoff set to LR
at the bin midpoint. For this approach to work correctly, par-
titioning the meshing domain is critical because the mesh-
ing domain often spans large regions of latitude with highly
varying f . Here, the PRVI example (Fig. 1 and Table 1) is
used to demonstrate the effect of the Rossby radius slope fil-
ter (Fig. 9). The mesh with the Rossby radius slope filter fo-
cuses mesh resolution at large and relatively shallow features
such as the continental shelf break, avoiding the placement
of fine resolution over deep and small-scale features that are
not comparable to LR. As a result, the mesh with the filtered
seabed has 27 % fewer vertices in the illustrated region.

3.3.4 Channel thalwegs and polylines

Closer to the shoreline, the width of the nearshore geome-
try through which water must flow eventually becomes the

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

1858 K. J. Roberts et al.: OceanMesh2D 1.0

Figure 9. Mesh resolution (defined as the local element circumradius in meters) in the PRVI example (see Table 1) around the Puerto Rico
and US Virgin Islands inset region, with (a) and without (b) the Rossby radius slope filter applied. The “thermal” color palette from cmocean
(Thyng et al., 2016) is used in this figure.

dominant length scale instead of LR. Thus, constraints im-
posed by continuity normally become more important than
dynamic balances in determining spatial scales in estuar-
ies (LeBlond, 1991). Following this logic, the representation
of the cross-sectional area of the channel that connects the
ocean to the estuary is important in order to simulate an ac-
curate exchange of water.

The predominant conveyance through a watercourse is
often approximated by a series of neighboring points that
connect local minimums in bathymetric depth. These loca-
tions are referred to collectively as a thalweg and are rep-
resented as polylines in the geographic information system
(GIS) framework. The level of mesh refinement near and
around the thalweg can affect the bathymetric representation
in the mesh through aliasing local minimums in bathymetric
depth. Often the associated length scale of these features is
too small to efficiently resolve through the other mesh size
functions. Instead we propose a mesh size function to locally
enhance mesh refinement around thalwegs.

Thalwegs can be located by thresholding upslope area
(O’Callaghan and Mark, 1984) in a DEM with GIS software
such as GRASS. One difficulty with thresholding upslope
area to identify submerged channels is that it may produce
spurious nonphysical channel networks, especially in areas
of flat bathymetry.

Similar to the feature-constraint algorithm (Heinzer et al.,
2012) this mesh size function treats the thalwegs as a set of
connected vertices that forms polylines and operates on the

polylines that intersect with the meshing domain. The mesh
resolution is distributed as follows.

1. A circular region in the mesh size function is formed on
each thalweg point with a diameter, dia, equal to

dia= 2b tan(θ), (11)

where θ is the angle of reslope.

2. In each circular region, the mesh size function is as-
signed resolution by

hch =
b

αch
. (12)

This assumes the thalweg has a cross-sectional area that re-
sembles a V shape with a bank angle of θ (which is set to 60◦

by default) and that the stencil becomes larger as b increases
(Fig. 10). The parameter αch is a user-defined value that is
chosen to scale resolution according to the user’s desire.

As the water column deepens, the horizontal length scale
greatly enlarges, which implies that the dynamical effects
from small-scale features like thalwegs should weaken. This
dynamic is qualitatively captured through Eq. (11) by the en-
largement of the thalweg region in the mesh size function
as the water depth increases. Additionally, the quotient αch
in Eq. (12) alters how the resolution scales with bathymetric
depth to further reflect the fact that the horizontal length scale
tends to grow as the water becomes substantially deeper, thus
reducing the resolution around thalwegs.

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1859

Figure 10. A schematic illustrating the channel mesh size function implementation. The thalweg (deepest part of a channel) is depicted by
the maroon line. Mesh size function grid points (defined at the free-surface vertical contour) that fall within the channel cones (centered
along the thalweg with an assumed bank angle of θ from the vertical) used to estimate the width of the channel are set to follow Eq. (12).

Figure 11. Panels (a) and (c) show the bathymetry and mesh connectivity in the GBAY example (Fig. 1 and Table 1) created without the
thalweg mesh size function enabled; (b) and (d) are with the thalweg mesh size function enabled. The “deep” color palette from cmocean
(Thyng et al., 2016) is used in the palettes in panels (a) and (b).

As an example of this mesh size function, a mesh is built
in and around Galveston Bay, Houston (GBAY; Fig. 1 and
Table 1), a shallow estuary with a heavily trafficked ship-
ping channel along its centerline. In this example, we have
provided the thalweg points by thresholding the Galveston
DEM (Fig. 1) with an upslope area of 10 000 cells using

GRASS GIS. Visually, the mesh generated using the chan-
nel mesh size function clearly captures the bathymetric fea-
ture of the Houston Ship Channel to a higher degree of ac-
curacy (Fig. 11). The channel mesh size function provides a
mechanism to localize high-resolution elements around poly-
lines that can be extracted from GIS software suites. Many

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

1860 K. J. Roberts et al.: OceanMesh2D 1.0

Figure 12. Depiction of mesh resolution interactions between the grade (αg), distance (DIS), and feature (FS) mesh size functions. (a–c) The
resolution with a grade equal to 15 % (αg = 0.15) and (d–f) with a grade equal to 35 % (αg = 0.35). Panels (a) and (d) depict how mesh
resolution is distributed with a distance mesh size function, while panels (b, e) and (c, f) show how the mesh size varies with the feature
mesh size function with αR equal to 3 and 6, respectively. In the title of each panel, the number of vertices n in the triangulation is shown.

mesh generation packages include methods for selective and
ad hoc mesh size variations in order to resolve local seabed
features. In our approach, we try to make the application of
mesh size variation more objective by assuming a channel
width and depth dependence to scale mesh sizes. Further, the
polylines extracted here originate from a DEM and are not
hand drawn to further improve objectivity and model design
reproducibility.

3.3.5 Finalizing the mesh size function

The final mesh size function, h, is determined by applying
the minimum function to the set of individual local mesh size
functions, i.e.,

h=min
[
(hdis or hlfs) ,hwl,hslp,hch

]
. (13)

Note that it is possible to operate on any given subset
of mesh size functions. Following this, h is further re-
fined based on mesh size transition bounds (Sect. 3.3.6),
Courant–Friedrichs–Lewy limiting (Sect. 3.3.7), and global
user-defined maximum (hmax) and minimum (h0) mesh size
bounds.

3.3.6 Mesh size gradation

It is necessary to ensure a mesh size smoothness limit αg
such that for any two adjacent vertices xi , xj connected by
an edge, the local increase in mesh size is bounded above
such that

h
(
xj
)
≤ h(xi)+αg

∥∥xi − xj∥∥ . (14)

This bound on the mesh size gradation is enforced with
the marching method that was introduced in Sect. 3.1.4. A
smoothness criterion is essential to produce a mesh that can

simulate physical processes with a practical time step, as
sharp gradients in mesh resolution typically lead to triangles
with highly skewed angles that result in low numerical accu-
racy (Shewchuk, 2002). In general, a smoother edge length
function is congruent with a higher overall triangle quality
but with more triangles in the mesh. It is important to note
that the rate of mesh resolution increase is bounded above by
the grade; therefore, if the distance parameter in Eq. (5) is
set to a value lower than the grade (αd < αg), then grading
should have no effect on the mesh size function.

Figure 12 demonstrates the relative effects of the distance
and feature mesh size functions and their interaction with the
grade. To illustrate this mesh size function, we built a mesh
over an estuary-like geometry with the distance (αd = 0.15
and αd = 0.35) and feature (αR = 3 and αR = 6) mesh size
functions, each using two different gradation bounds (αg =

0.15 and αg = 0.35). The distance mesh size function fo-
cuses resolution on the mesh boundary, which is often not
necessary to resolve areas that are geometrically simple. Fur-
ther, the use of a distance mesh size function often results in
comparatively larger triangles in the center of the geometry,
especially with a relatively high grade (i.e., 35 %; Fig. 12d).
In shallow estuaries, this can be undesirable as the bathymet-
ric representation of high conveyance channels in the cen-
ter of the estuary will be inaccurate, aliasing the transported
mass and energy. In contrast, the feature mesh size function
places a uniform number of triangles across the widest axis
of the feature (Fig. 12e and f). It focuses mesh resolution on
regions that are narrow and/or where the shoreline has high
curvature. The net result is a comparatively smaller number
of vertices than the distance mesh size function (for αR < 20
in this example). Depending on the selection of αR in the
local feature size equation (Eq. 6), the size of the mesh reso-
lution in the center of the estuary can be bounded even when

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1861

using a relatively high mesh grade (αg > 0.25). This is ad-
vantageous because a higher grade can dramatically lower
the overall vertex count. Conversely, a relatively low grade
(αg < 0.20) can hinder the feature mesh size function from
expanding efficiently and may be somewhat counterproduc-
tive to its purpose.

3.3.7 Courant–Friedrichs–Lewy (CFL) limiting

The computational expense of a computational model and
the associated code is significantly affected by the time step
that must be used to ensure stability and accuracy. For mod-
els that use explicit time stepping schemes, a necessary con-
dition for numerical stability is determined by the Courant–
Friedrichs–Lewy (CFL) condition. Although this is not a suf-
ficient condition, it is a practical way to gauge the success of
a new mesh. The CFL condition states that the Courant num-
ber (Cr) must be less than or equal to a critical value that is
numerical scheme dependent. Additionally, the accuracy of a
numerical scheme is impacted by the Cr as high values tend
to give poorer accuracy even in implicit solvers. For the ap-
plication of solving the shallow water equations the Cr can
be estimated and bounded in the mesh (Bilgili et al., 2006).
We define an estimate of Cr at the vertices of the mesh by
adding the shallow water wave speed with an estimate of the
anticipated flow speed:

Cr =
(u+
√
gH)1t

1X
, (15)

where u is the magnitude of the flow, g is the acceleration due
to gravity,H is the total water depth,1t is the time step, and
1X is the element size or the shortest connected edge to each
vertex. Since the wave speed is a function of depth and1X is
equivalent to the mesh size, h, the user can estimate the CFL
condition a priori for a given1t . Note that to obtain this a pri-
ori estimate of Cr in Eq. (15), we setH ≈ b and approximate
the flow speed with the longwave linear orbital velocity, i.e.,
u≈ η

√
g/b, where η is the wave amplitude, which we set to

1 m by default. Applying these approximations and rearrang-
ing gives the following CFL-limiting condition on the mesh
size:

h≥
(η
√
g/b+

√
gb)1t

Cr
, (16)

where b is set to a minimum of 1 m to allow the CFL condi-
tion to be satisfied overland in the case that inundation were
to occur.

Thus, the user can specify a value of1t to bound the mesh
resolution based on some value of Cr < 1. The aim of CFL
limiting is to help facilitate a mesh to be simulated with a
certain time step when using explicit time stepping numeri-
cal models. However, this often comes with a loss of mesh
resolution that may be critical for resolving important con-
veyances, so the user must consider reasonable values of 1t
based on the minimum edge length. To avoid this choice, we

Figure 13. (a) The effect of CFL limiting on the Courant number Cr
when constructing the JBAY example (Fig. 1 and Table 1) and
(b) without it. The colored bars indicate the vertices with Cr> 0.5
and are shown to assist in the comparison of histograms.

have also implemented an option that automatically selects a
suitable 1t that satisfies the condition Eq. (16) for the hdis
or hlfs (whichever is induced) mesh size functions. The pur-
pose of this is to preserve the nearshore resolution while ap-
plying the CFL limiting to other mesh size functions that may
give higher refinement offshore.

To demonstrate the CFL-limiting option, we return to the
JBAY example (Fig. 1 and Table 1) generated using the fea-
ture mesh size function. In one instance of the mesh, no
CFL limiting is used (TwoCFL); in another instance, CFL lim-
iting with 1t = 2 s (TwCFL) is invoked. In the generation
of TwCLF, the mesh size function is conservatively bounded
by Cr = 0.5 to allow for a buffer of the effects of nonlin-
earities, bathymetric interpolation, and mesh smoothing. Af-
ter the mesh is generated, the NCEI post-Sandy DEM is in-
terpolated onto each vertex using a cell-averaging approach
(see interp method in Sect. 3.4), and the resulting CFL is
calculated by Eq. (15) with 1t = 2 s. The use of the CFL
limiter acts to shift the distribution of Cr to smaller values
(Fig. 13). The maximum Cr decreases from 3.64 to 0.96 and
the mean Cr shifts from 0.68 to 0.36. In the mesh with the
CFL limiting, there are no vertices that violate the CFL con-
dition compared to 10 492 in the mesh without it. CFL lim-
iting thus reduces the number of vertices by locally coarsen-
ing h (TwCFL has 45.6 % fewer vertices than TwoCFL). Again,
the user must be careful when selecting 1t as CFL limiting
may lead to choke points in small channels nearshore, which
are generally the first areas that violate the CFL (Fig. 14).
Depending on the application this may or may not be tolera-
ble.

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

1862 K. J. Roberts et al.: OceanMesh2D 1.0

Figure 14. Selected close-up regions in Jamaica Bay, New York, of the mesh connectivity built with the JBAY example script (Fig. 1 and
Table 1): (a, c) West Pond, Queens; (b, d) Old Howard Beach, Queens. Panels (a) and (b) show the mesh connectivity without invoking the
CFL limiter, and panels (c) and (d) show it when using the CFL-limiting option with 1t = 2 s.

Although the above example demonstrates that the Cr
of all vertices is reduced to under 1 when using the CFL-
limiting mesh size function, the maximum Cr is still 0.96 for
1t = 2 s, which may be too close to the theoretical condition
to simulate without instabilities. Based on our experience we
need to impose a stricter CFL condition such as Cr < 0.5
to ensure numerical stability, accuracy, and to minimize nu-
merical artifacts. To ensure that this more conservative con-
dition is fully satisfied, we propose the CheckTimestep post-
processing function (Algorithm 1). This function iteratively
deletes vertices in the mesh associated with edges that vi-
olate the CFL. With each deletion, the vertices on the outer
fan containing all the connected elements are smoothed using
the Laplacian operator. The algorithm relies on MATLAB’s
implementation of the Bowyer–Watson incremental Delau-
nay triangulation to preserve the mesh connectivity outside
of the modification patch. For example, in the JBAY example
with CFL limiting, CheckTimestep converged after five iter-
ations, resulting in a mesh with approximately 2240 fewer
vertices but one that fully satisfied Cr < 0.5 everywhere for
1t = 2 s. In addition to ensuring the CFL condition is fully

met, CheckTimestep in practice is often used to explore how
the mesh would have to be modified in order to achieve a
stable simulation for a particular 1t .

3.4 Mesh container: msh class

To store the triangulation and related files, the msh data stor-
age class contains triangulation-related attributes and support
for solver-specific input files. While the underlying purpose
of the msh class is to store the mesh data, the OOP framework
enables specific methods to be associated with it. This en-
ables the msh class to act as an intermediary between the nu-
merical solver and the user to assist in the creation of solver-
specific files and perform common data-driven operations on
the mesh.

Substantial effort is often required after the triangulation
is constructed to enable simulation with a coastal ocean
solver such as ADCIRC, FVCOM, SELFE, or SCHISM.
For example, the mesh often needs to be visualized and
quality checked, boundary conditions must be specified, and
seabed topography must be interpolated onto the mesh ver-
tices (Fig. 15). Rather than have each user independently

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1863

Figure 15. Illustration of key msh methods: plot can be used to visualize mesh resolution (a), mesh triangulation, boundary types (b), and
seabed topography (c–e); interp interpolates seabed topography onto the mesh using cell-averaging or built-in griddedInterpolant methods
(c–e); and makens classifies mesh boundary vertices into land and open ocean types automatically using the native geodata class (b).

write their own methods to accomplish these tasks, we be-
lieve it to be more advantageous to place these static or dy-
namic methods inside the msh class that can be edited by
everyone using version control software.

Figure 15 illustrates a few of the key methods associ-
ated with the msh class (see the user guide for a complete

list) that we have implemented, such as the visualization
of mesh triangulation, resolution, seabed topography, and
boundary types. Further, a standardized method for inter-
polating seabed topography, which employs a generalized
cell-averaging approach by default, has been developed. The
method can also be used as a wrapper to the built-in MAT-

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

1864 K. J. Roberts et al.: OceanMesh2D 1.0

Table 2. Wall-clock time in seconds (percent of total) for the steps involved in mesh generation. The preprocessing includes reading and
processing the geospatial data (in geodata) and forming the mesh size functions (in edgefx). The vertex relocation timings include the time
elapsed in the initial point rejection, vertex re-projection back into the meshing domain, vertex movement, and mesh improvement strategies
during mesh generation (Sect. 3.1.2). The cleaning category includes the time spent on mesh improvement strategies after mesh generation
(Sect. 3.1.3).

Mesh generation time

Example Preprocessing time Vertex relocation Triangulation Cleaning Total time

JBAY 13.7 (22.5 %) 24.9 (41.0 %) 18.3 (30.0 %) 3.83 (6.25 %) 60.8
GBAY 23.9 (25.1 %) 34.1 (35.8 %) 31.4 (33.0 %) 5.79 (6.09 %) 95.2
PRVI 1770 (64.1 %) 498 (18.1 %) 316 (11.5 %) 174 (6.31 %) 2760

LAB griddedInterpolant function with nearest, linear, and
various higher-order interpolation methods. Comparison of
the mesh seabed topography using cell-averaging and linear
interpolation methods is shown in Fig. 15c–e. Also included
is a msh method to automatically classify mesh boundary ver-
tices into open ocean, enclosed islands, and mainland types
based on the native geodata class (Fig. 15b).

4 Mesh generation wall-clock time

The total and component-based wall-clock times for gener-
ating each of the three examples presented in this study are
shown in Table 2. Overall, the small examples (JBAY and
GBAY) complete in under 2 min, and the large PRVI exam-
ple takes approximately 45 min. Consistently for all exam-
ples, vertex relocation consumes slightly more time than De-
launay triangulation, and the mesh cleaning (post-processing
improvement strategies) accounts for approximately 6 % of
the total time. The relative balance between mesh genera-
tion and preprocessing times depends on the resolution of the
shoreline and the size of the meshing domain. For example,
in the small domain problems (JBAY and GBAY), the pre-
processing time makes up roughly a quarter of the total time.
In contrast, in the PRVI example, which meshes most of the
northwestern Atlantic ocean using four separate geodata and
edgefx classes, the preprocessing time accounts for 64 % of
the total time.

5 Discussion and conclusions

A self-contained model development tool kit to automate
the generation of two-dimensional (2-D) triangular unstruc-
tured meshes for coastal ocean models was developed. The
overarching goal of the software is to reduce the complexity
and hours spent constructing real-world unstructured meshes
to the degree that it allows one to more carefully and sys-
temically study the impact on the coastal circulation. This
software is expressed as an objected-oriented approach com-
posed of four MATLAB classes. Each class was designed
to simplify the necessary preprocessing and post-processing

procedures for mesh generation, leading to a self-contained
model development tool. While the scripting-based approach
used to generate meshes promotes automation and approxi-
mate reproducibility, the pointers contained within the script
do not adequately describe the provenance attribution of the
geospatial datasets and computing environment used. In the
future, employing formal research data management prac-
tices in the context of geophysical mesh generation (Avdis
et al., 2018; Candy and Pietrzak, 2018) into OceanMesh2D
would be beneficial to heighten reproducibility.

For coastal mesh generation, a key advantage of using
the DistMesh2D smoothing-based algorithm over Delaunay
refinement and/or frontal Delaunay mesh generation algo-
rithms is that the boundary is implicitly defined using a
signed distance function. The implicit definition of the mesh
boundary enables the vertices, including the boundary ver-
tices that represent the highly irregular shoreline boundary,
to move during the mesh generation step in accordance with
the mesh size function. In contrast, Delaunay refinement and
advancing front schemes incrementally modify the triangu-
lation starting from a partitioning of the polygonal boundary
and then propagate into the interior of the meshing domain.
This aspect of front-based mesh generation schemes requires
that the shoreline boundary be simplified in accordance with
the mesh size function before mesh generation commences,
which can be a challenging step.

A set of common coastal-ocean-relevant mesh size func-
tions were built into the mesh size function class (edgefx)
that can handle a variety of user-based constraints and fa-
cilitate the approximate reproducibility of mesh vertex loca-
tions. The implementation of these mesh size functions was
largely borrowed from preexisting literature with some mi-
nor enhancements. We presented a polyline mesh size func-
tion to locally enhance resolution around and near marine
navigation channels and deep-draft channels (i.e., thalwegs).
These features are found by thresholding upslope area calcu-
lated from a digital elevation model (DEM) using GIS soft-
ware. The polyline mesh size functions may have interesting
future applications for the development of overland meshes
that seamlessly mate with ocean meshes. For example, the
user could provide a set of lines that characterize overland

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

K. J. Roberts et al.: OceanMesh2D 1.0 1865

ridges so that the polyline mesh size function can be used to
locally enhance mesh resolution to better capture the local
maximums in topographic heights. Since the representation
of the inter-tidal and floodplain zone in the mesh is critical for
coastal flooding applications, ensuring that overland features
like hills and levees are correctly represented in the mesh is
an important feature. In its current state, the toolbox is able to
constrain piecewise linear segments that may represent, e.g.,
a series of levees; however, if there is a large degree of dis-
parity between the point spacing on the constraints and the
mesh size function, then the resulting mesh will be of poor
quality.

To ensure that a mesh is computationally stable with
a user-requested time step (relevant when simulating with
explicit–semi-implicit numerical models), a CFL-limiting
mesh size function similar to Bilgili et al. (2006) was intro-
duced. In this approach, we estimate the Courant (Cr) num-
ber based on shallow water wave theory and ensure that the
final mesh size function satisfies the CFL condition (Cr < 1).
Although applying CFL limiting to the mesh size function
was shown to help encourage stability by lowering the Cr,
the resulting unstructured mesh may not necessarily satisfy
the CFL condition due to that fact that bathymetric interpo-
lation from the DEM is not easily constrained. Thus, an iter-
ative algorithm to be applied after the mesh was developed
(CheckTimestep) to locally alter the connectivity by decimat-
ing vertices that violate the CFL condition. Depending on
the user choice of time step and the various mesh size con-
straints, the algorithm decimates vertices in certain regions
(e.g., small constricted channels) that may or may not be tol-
erable for the problem at hand. In such regions, anisotropic
mesh elements (e.g., Piggott et al., 2009) that could be gen-
erated using mesh size functions, which include a directional
component, may be more beneficial than isotropic equilateral
elements. Thus, implementing anisotropic mesh size func-
tions into the software, along with the testing of the resultant
meshes in real coastal ocean problems, is an interesting di-
rection for future work.

We emphasized the expensive nature of building large-
scale high-fidelity mesh size functions, which motivates the
use of a multiscale meshing approach. This approach reflects
the often sparse spatial coverage and heterogeneous nature
of freely available digital elevation data that are often used
in the construction of the mesh size functions. Multiscale
meshing allows the user to build (extremely) high-resolution
local mesh size functions that are embedded in larger-scale
ocean domains. The end result is a mesh that seamlessly tran-
sitions from the high-refinement region to coarser elements
outside the region of interest. This is practically useful to
accurately model coastal flooding in small regions (e.g., a
city or a small island – here we show an example of the ap-
proach with the mesh refinement region around Puerto Rico
and the US Virgin Islands) that may be susceptible to storms
and tropical cyclones (TCs) passing over it. For large-scale
TC-driven storm surge events, it has been shown that a large

model domain is essential to capture the pre-event condi-
tions that can alter the modeled severity of the event (Blain
et al., 1994). In forecasting scenarios, the multiscale meshing
approach could be used to mesh around the predicted land-
falling region based on the cone of uncertainty of the path of
the storm to locally higher resolution. This approach could
generate meshes for the prediction of coastal flooding on the
fly as new forecast data become available. Given the local
nature of the mesh refinement in this approach, these meshes
could be computationally more efficient with smaller min-
imum element sizes than preexisting ones, e.g., the US Na-
tional Ocean Service’s (NOS) Hurricane Storm Surge Opera-
tional Forecast System (HSSOFS) mesh (Technology River-
side Inc. and AECOM, 2015), which covers entire swaths of
coastline with medium-level resolution.

The objected-oriented structure of the software enables
each component to be used in isolation and/or under work-
flows different to that presented here. For instance, mesh size
functions constructed through the edgefx class could be used
with other mesh generators to distribute vertices. Further-
more, the ability of OceanMesh2D to automatically adapt
user-supplied shoreline datasets to a mesh size function is
a new feature to the authors’ knowledge. This ability could
be used as a stand-alone feature to produce polygonal bound-
aries that approximate the shoreline with a variety of spatial
constraints for other mesh generator packages or GIS appli-
cations.

Three examples were used for demonstration in this study
(Fig. 1 and Table 1). A further three separate examples are
illustrated in the user guide (Roberts and Pringle, 2018a).
All six examples are released with this version of the Ocean-
Mesh2D package. They can be used to become familiar with
the software, for testing purposes, and as templates for scripts
used to generate the user’s custom mesh.

Code availability. The OceanMesh2D mesh generator toolbox
is hosted on the following GitHub page: https://github.com/
CHLNDDEV/OceanMesh2D (last access: 8 May 2019). The ver-
sion release presented in this paper is available as a Zen-
odo archive: https://doi.org/10.5281/zenodo.1341385 (Roberts and
Pringle, 2018b). The software requires no paid MATLAB toolboxes
to generate meshes; however, some auxiliary functions (e.g., those
that create ADCIRC input files) not used in primary workflows may.
A user guide (Roberts and Pringle, 2018a) and a suite of examples
are available from the main GitHub page. All components of the
OceanMesh2D toolbox are free software released under the GNU
General Public License version 3.0. Full details on the license, in-
cluding the compatible copyright notices of third party routines in-
cluded in the package, are provided in the LICENSE file in the
source distribution.

Data availability. The geospatial datasets required to execute
the three examples presented in this study can be accessed
at the Zenodo archive: https://doi.org/10.5281/zenodo.2605388

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

https://github.com/CHLNDDEV/OceanMesh2D
https://github.com/CHLNDDEV/OceanMesh2D
https://doi.org/10.5281/zenodo.1341385
https://doi.org/10.5281/zenodo.2605388

1866 K. J. Roberts et al.: OceanMesh2D 1.0

(Roberts and Pringle, 2019). Additionally, the PRVI example re-
quires the global shoreline dataset, GSHHS (Wessel and Smith,
1996) (full-resolution ESRI shapefile version), and the SRTM
global land–ocean topography dataset (Sandwell et al., 2014)
(“topo15_compressed.nc”), which are freely accessible at the links
included in the respective references.

Author contributions. KR designed the framework of the software.
KR and WP equally contributed to the coding and development of
the software, design and testing of the provided examples, and the
preparation of the paper and its associated figures. JW provided the
research environment and intellectual discussion necessary for the
software’s development and eventual realization of this paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We would like to thank the two anonymous re-
viewers who helped improve the presentation and quality of this
paper. We thank Darren Engwirda at Columbia University in the
city of New York for his useful functions to perform the points-
in-polygon test and mesh size gradation limiting. Our gratitude
goes to Chris Massey at the US Army Corps of Engineers ERDC
Coastal and Hydraulics Laboratory for his function to bound the
vertex connectivity. The m_map (https://www.eoas.ubc.ca/~rich/
map.html, last access: 8 May 2019) and cmocean (Thyng et al.,
2016) (https://matplotlib.org/cmocean/, last access: 8 May 2019)
toolboxes are widely used in plotting and mapping related routines
within OceanMesh2D, for which we are grateful for the authors’
work. We appreciate the valuable feedback provided by Darren En-
gwirda and Per-Olof Persson at the University of California, Berke-
ley. The authors wish to thank Damrongsak Wirasaet at the Univer-
sity of Notre Dame for many helpful discussions and his comments
on an initial draft that led to an improvement in the quality of this
paper.

Financial support. This research has been supported by the Na-
tional Science Foundation (grant no. ACI-1339738).

Review statement. This paper was edited by James R. Maddison
and reviewed by two anonymous referees.

References

Arya, S. and Mount, D. M.: Approximate Nearest Neighbor Queries
in Fixed Dimensions, in: Proc. 4th Ann. ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 25–27 January 1993,
Austin, Texas, USA, 271–280, 1993.

Avdis, A., Candy, A. S., Hill, J., Kramer, S. C., and Piggott,
M. D.: Efficient unstructured mesh generation for marine re-
newable energy applications, Renewable Energy, 116, 842–856,
https://doi.org/10.1016/j.renene.2017.09.058, 2018.

Balendran, B.: A Direct Smoothing Method for Surface Meshes,
in: Proceedings of the 8th International Meshing Roundtable,
10–13 October 1999, South Lake Tahoe, California, USA, 189–
193, available at: http://imr.sandia.gov/papers/abstracts/Ba142.
html (last access: 8 May 2019), 1999.

Bilgili, A., Smith, K. W., and Lynch, D. R.: BatTri: A two-
dimensional bathymetry-based unstructured triangular grid gen-
erator for finite element circulation modeling, Comput. Geosci.,
32, 632–642, https://doi.org/10.1016/j.cageo.2005.09.007, 2006.

Blain, C. A., Westerink, J. J., and Luettich, R. A.: The influ-
ence of domain size on the response characteristics of a hur-
ricane storm surge model, J. Geophys. Res., 99, 467–479,
https://doi.org/10.1029/94JC01348, 1994.

Brown, J. M., Norman, D. L., Amoudry, L. O., and Souza, A.
J.: Impact of operational model nesting approaches and inher-
ent errors for coastal simulations, Ocean Modelling, 107, 48–63,
https://doi.org/10.1016/j.ocemod.2016.10.005, 2016.

Canann, S. A., Stephenson, M. B., and Blacker, T.: Optismoothing:
An optimization-driven approach to mesh smoothing, Finite Ele-
ments Anal. Design, 13, 185–190, https://doi.org/10.1016/0168-
874X(93)90056-V, 1993.

Candy, A. S. and Pietrzak, J. D.: Shingle 2.0: generalising
self-consistent and automated domain discretisation for multi-
scale geophysical models, Geosci. Model Dev., 11, 213–234,
https://doi.org/10.5194/gmd-11-213-2018, 2018.

Conroy, C. J., Kubatko, E. J., and West, D. W.: ADMESH:An
advanced, automatic unstructured mesh generator for
shallow water models, Ocean Dynam., 62, 1503–1517,
https://doi.org/10.1007/s10236-012-0574-0, 2012.

Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.:
Two-way nesting in split-explicit ocean models: Algorithms,
implementation and validation, Ocean Model., 49-50, 1–21,
https://doi.org/10.1016/j.ocemod.2012.03.003, 2012.

Deleersnijder, E., Legat, V., and Lermusiaux, P. F. J.: Multi-
scale modelling of coastal, shelf and global ocean dynamics,
Ocean Dynam., 60, 1357–1359, https://doi.org/10.1007/s10236-
010-0363-6, 2010.

Engsig-Karup, A. P., Hesthaven, J. S., Bingham, H. B., and Warbur-
ton, T.: DG-FEM solution for nonlinear wave-structure interac-
tion using Boussinesq-type equations, Coast. Eng., 55, 197–208,
https://doi.org/10.1016/j.coastaleng.2007.09.005, 2008.

Engwirda, D.: JIGSAW-GEO (1.0): Locally orthogonal stag-
gered unstructured grid generation for general circulation mod-
elling on the sphere, Geosci. Model Dev., 10, 2117–2140,
https://doi.org/10.5194/gmd-10-2117-2017, 2017.

Gorman, G. J., Piggott, M., Pain, C., de Oliveira, C.,
Umpleby, A., and Goddard, A.: Optimisation based
bathymetry approximation through constrained unstruc-
tured mesh adaptivity, Ocean Model., 12, 436–452,
https://doi.org/10.1016/j.ocemod.2005.09.004, 2006.

Gorman, G. J., Piggott, M. D., and Pain, C. C.: Shoreline approx-
imation for unstructured mesh generation, Comput. Geosci., 33,
666–677, https://doi.org/10.1016/j.cageo.2006.09.007, 2007.

Gorman, G. J., Piggott, M., Wells, M., Pain, C., and Allison, P.: A
systematic approach to unstructured mesh generation for ocean
modelling using GMT and Terreno, Comput. Geosci., 34, 1721–
1731, https://doi.org/10.1016/j.cageo.2007.06.014, 2008.

Greenberg, D. A., Dupont, F., Lyard, F. H., Lynch, D. R.,
and Werner, F. E.: Resolution issues in numerical models of

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

https://www.eoas.ubc.ca/~rich/map.html
https://www.eoas.ubc.ca/~rich/map.html
https://matplotlib.org/cmocean/
https://doi.org/10.1016/j.renene.2017.09.058
http://imr.sandia.gov/papers/abstracts/Ba142.html
http://imr.sandia.gov/papers/abstracts/Ba142.html
https://doi.org/10.1016/j.cageo.2005.09.007
https://doi.org/10.1029/94JC01348
https://doi.org/10.1016/j.ocemod.2016.10.005
https://doi.org/10.1016/0168-874X(93)90056-V
https://doi.org/10.1016/0168-874X(93)90056-V
https://doi.org/10.5194/gmd-11-213-2018
https://doi.org/10.1007/s10236-012-0574-0
https://doi.org/10.1016/j.ocemod.2012.03.003
https://doi.org/10.1007/s10236-010-0363-6
https://doi.org/10.1007/s10236-010-0363-6
https://doi.org/10.1016/j.coastaleng.2007.09.005
https://doi.org/10.5194/gmd-10-2117-2017
https://doi.org/10.1016/j.ocemod.2005.09.004
https://doi.org/10.1016/j.cageo.2006.09.007
https://doi.org/10.1016/j.cageo.2007.06.014

K. J. Roberts et al.: OceanMesh2D 1.0 1867

oceanic and coastal circulation, Cont. Shelf Res., 27, 1317–1343,
https://doi.org/10.1016/j.csr.2007.01.023, 2007.

Hagen, S. C., Horstmann, O., and Bennett, R. J.: An Un-
structured Mesh Generation Algorithm for Shallow Wa-
ter Modeling, Int. J. Comput. Fluid Dynam., 16, 83–91,
https://doi.org/10.1080/10618560290017176, 2002.

Heinzer, T. J., Williams, M. D., Dogrul, E. C., Kadir, T. N., Brush,
C. F., and Chung, F. I.: Implementation of a feature-constraint
mesh generation algorithm within a GIS, Comput. Geosci., 49,
46–52, https://doi.org/10.1016/j.cageo.2012.06.004, 2012.

Huthnance, J. M.: Circulation, exchange and water masses at the
ocean margin: the role of physical processes at the shelf edge,
Prog. Oceanogr., 35, 353–431, https://doi.org/10.1016/0079-
6611(95)80003-C, 1995.

Koko, J.: A Matlab mesh generator for the two-dimensional fi-
nite element method, Appl. Math. Comput., 250, 650–664,
https://doi.org/10.1016/j.amc.2014.11.009, 2015.

Lambrechts, J., Comblen, R., Legat, V., Geuzaine, C., and Remacle,
J.-F.: Multiscale mesh generation on the sphere, Ocean Dynam.,
58, 461–473, https://doi.org/10.1007/s10236-008-0148-3, 2008.

LeBlond, P. H.: Tides and their Interactions with Other Oceano-
graphic Phenomena in Shallow Water (Review), in: Tidal hydro-
dynamics, edited by: Parker, B. B., John Wiley & Sons, Inc., New
York, USA, 357–378, 1991.

Le Provost, C. and Lyard, F.: Energetics of the M2 barotropic
ocean tides: an estimate of bottom friction dissipation
from a hydrodynamic model, Prog. Oceanogr., 40, 37–52,
https://doi.org/10.1016/S0079-6611(97)00022-0, 1997.

Liu, J.: Open and traction boundary conditions for the incom-
pressible Navier–Stokes equations, J. Comput. Phys., 228, 7250–
7267, https://doi.org/10.1016/j.jcp.2009.06.021, 2009.

Luettich, R. A. and Westerink, J. J.: Formulation and Numerical
Implementation of the 2D/3D ADCIRC Finite Element Model
Version 44.XX, Tech. rep., available at: http://www.unc.edu/ims/
adcirc/adcirc_theory_2004_12_08.pdf last access: 8 May 2019),
2004.

Luettich Jr., R. A. and Westerink, J. J.: Continental Shelf Scale Con-
vergence Studies with a Barotropic Tidal Model, in: Quantitative
Skill Assessment for Coastal Ocean Models, edited by: Lynch,
D. R. and Davies, A. M., https://doi.org/10.1029/CE047p0349,
2013.

Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the
global ocean tides: modern insights from FES2004, Ocean Dy-
nam., 56, 394–415, https://doi.org/10.1007/s10236-006-0086-x,
2006.

Massey, T. C.: Locally constrained nodal connectivity refinement
procedures for unstructured triangular finite element meshes,
Eng. Comput., 31, 375–386, https://doi.org/10.1007/s00366-
014-0357-y, 2015.

Mount, D. M. and Arya, S.: ANN: A Library for Approximate Near-
est Neighbor Searching, version 1.1.1, available at: http://www.
cs.umd.edu/~mount/ANN/ (last access: 8 May 2019), 2006.

Nash, S. and Hartnett, M.: Development of a nested coastal circu-
lation model: Boundary error reduction, Environ. Model. Softw.,
53, 65–80, https://doi.org/10.1016/j.envsoft.2013.11.007, 2014.

Nguyen, V.-T., Peraire, J., Khoo, B. C., and Persson, P.-O.:
A discontinuous Galerkin front tracking method for two-
phase flows with surface tension, Comput. Fluids, 39, 1–14,
https://doi.org/10.1016/j.compfluid.2009.06.007, 2010.

O’Callaghan, J. F. and Mark, D. M.: The extraction of drainage
networks from digital elevation data, Comput. Vis. Graph.
Image Proc., 28, 323–344, https://doi.org/10.1016/S0734-
189X(84)80011-0, 1984.

Persson, P. O.: Mesh size functions for implicit geometries
and PDE-based gradient limiting, Eng. Comput., 22, 95–109,
https://doi.org/10.1007/s00366-006-0014-1, 2006.

Persson, P. O. and Strang, G.: A Simple Mesh
Generator in MATLAB, SIAM Rev., 46, 2004,
https://doi.org/10.1137/S0036144503429121, 2004.

Piggott, M. D., Farrell, P. E., Wilson, C. R., Gorman, G. J.,
and Pain, C. C.: Anisotropic mesh adaptivity for multi-scale
ocean modelling, Philos. T. Roy. Soc. A, 367, 4591–4611,
https://doi.org/10.1098/rsta.2009.0155, 2009.

Pringle, W. J., Yoneyama, N., and Mori, N.: Multiscale Coupled
Three-dimensional Model Analysis of the Tsunami Flow Char-
acteristics around the Kamaishi Bay Offshore Breakwater and
Comparisons to a Shallow Water Model, Coast. Eng. J., 60, 200–
224, https://doi.org/10.1080/21664250.2018.1484270, 2018.

Remacle, J.-F. and Lambrechts, J.: Fast and robust mesh generation
on the sphere – Application to coastal domains, Comput.-Aided
Design, 103, 14–23, https://doi.org/10.1016/j.cad.2018.03.002,
2018.

Roberts, K. J. and Pringle, W. J.: OceanMesh2D: User
guide – Precise distance-based two-dimensional auto-
mated mesh generation toolbox intended for coastal
ocean/shallow water, ResearchGate, Computational Hy-
draulics Laboratory, University of Notre Dame, Notre Dame,
https://doi.org/10.13140/RG.2.2.21840.61446/2, 2018a.

Roberts, K. J. and Pringle, W. J.: CHLNDDEV/OceanMesh2D:
OceanMesh2D V1.0, https://doi.org/10.5281/zenodo.1341385,
2018b.

Roberts, K. J. and Pringle, W. J.: Datasets for OceanMesh2D V1.0,
https://doi.org/10.5281/zenodo.2605388, 2019.

Sandwell, D. T., Becker, J. J., Olson, C., and Jackson, A.:
SRTM15_PLUS: Data Fusion of SRTM Land Topography with
Measured and Estimated Seafloor topography, available at: ftp:
//topex.ucsd.edu/pub/srtm15_plus/ (last access: 8 May 2019),
2014.

Shewchuk, J. R.: What Is a Good Linear Finite Element?
– Interpolation, Conditioning, Anisotropy, and Quality Mea-
sures, Tech. rep., in: Proc. of the 11th International Meshing
Roundtable, 15–18 September 2002, Ithaca, New York, USA,
2002.

Technology Riverside Inc. and AECOM: Mesh Development, Tidal
Validation, and Hindcast Skill Asessment of an ADCIRC Model
for the Hurricane Storm Surge Operational Forecast System on
the US Gulf-Atlantic Coast, Tech. rep., National Oceanic and At-
mospheric Administration/Nation Ocean Service, Coast Survey
Development Laboratory, Office of Coast Survey, Fort Collins,
Colorado, https://doi.org/10.7921/G0MC8X6V, 2015.

Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M.,
and DiMarco, S. F.: True colors of oceanography: Guidelines for
effective and accurate colormap selection, Oceanography, 29, 9–
13, https://doi.org/10.5670/oceanog.2016.66, 2016.

Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wek-
erle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Ele-
ment Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an

www.geosci-model-dev.net/12/1847/2019/ Geosci. Model Dev., 12, 1847–1868, 2019

https://doi.org/10.1016/j.csr.2007.01.023
https://doi.org/10.1080/10618560290017176
https://doi.org/10.1016/j.cageo.2012.06.004
https://doi.org/10.1016/0079-6611(95)80003-C
https://doi.org/10.1016/0079-6611(95)80003-C
https://doi.org/10.1016/j.amc.2014.11.009
https://doi.org/10.1007/s10236-008-0148-3
https://doi.org/10.1016/S0079-6611(97)00022-0
https://doi.org/10.1016/j.jcp.2009.06.021
http://www.unc.edu/ims/adcirc/adcirc_theory_2004_12_08.pdf
http://www.unc.edu/ims/adcirc/adcirc_theory_2004_12_08.pdf
https://doi.org/10.1029/CE047p0349
https://doi.org/10.1007/s10236-006-0086-x
https://doi.org/10.1007/s00366-014-0357-y
https://doi.org/10.1007/s00366-014-0357-y
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
https://doi.org/10.1016/j.envsoft.2013.11.007
https://doi.org/10.1016/j.compfluid.2009.06.007
https://doi.org/10.1016/S0734-189X(84)80011-0
https://doi.org/10.1016/S0734-189X(84)80011-0
https://doi.org/10.1007/s00366-006-0014-1
https://doi.org/10.1137/S0036144503429121
https://doi.org/10.1098/rsta.2009.0155
https://doi.org/10.1080/21664250.2018.1484270
https://doi.org/10.1016/j.cad.2018.03.002
https://doi.org/10.13140/RG.2.2.21840.61446/2
https://doi.org/10.5281/zenodo.1341385
https://doi.org/10.5281/zenodo.2605388
ftp://topex.ucsd.edu/pub/srtm15_plus/
ftp://topex.ucsd.edu/pub/srtm15_plus/
https://doi.org/10.7921/G0MC8X6V
https://doi.org/10.5670/oceanog.2016.66

1868 K. J. Roberts et al.: OceanMesh2D 1.0

ocean general circulation model, Geosci. Model Dev., 7, 663–
693, https://doi.org/10.5194/gmd-7-663-2014, 2014.

Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchi-
cal, high-resolution shoreline database, J. Geophys. Res.-Solid,
101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996.

Westerink, J. J., Luettich, R. A., and Muccino, J.: Modelling
tides in the western North Atlantic using unstructured graded
grids, Tellus A, 46, 178–199, https://doi.org/10.1034/j.1600-
0870.1994.00007.x, 1994.

Geosci. Model Dev., 12, 1847–1868, 2019 www.geosci-model-dev.net/12/1847/2019/

https://doi.org/10.5194/gmd-7-663-2014
https://doi.org/10.1029/96JB00104
https://doi.org/10.1034/j.1600-0870.1994.00007.x
https://doi.org/10.1034/j.1600-0870.1994.00007.x

	Abstract
	Introduction
	Example problems

	Architecture overview
	Component design
	Mesh generation: meshgen class
	Termination criterion
	Mesh improvement strategies during mesh generation
	Mesh improvement strategies after mesh generation
	Multiscale meshing approach

	Geospatial data: geodata class
	Projections
	Automatic mesh boundary definition

	Automatic mesh size function: edgefx class
	Distance and feature size
	Wavelength
	Topographic length scale
	Channel thalwegs and polylines
	Finalizing the mesh size function
	Mesh size gradation
	Courant--Friedrichs--Lewy (CFL) limiting

	Mesh container: msh class

	Mesh generation wall-clock time
	Discussion and conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

