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Abstract. In general terms, earthquakes are the result of brit-
tle failure within the heterogeneous crust of the Earth. How-
ever, the rupture process of a heterogeneous material is a
complex physical problem that is difficult to model deter-
ministically due to numerous parameters and physical condi-
tions, which are largely unknown. Considering the variability
within the parameterization, it is necessary to analyze earth-
quakes by means of different approaches. Computational
physics may offer alternative ways to study brittle rock fail-
ure by generating synthetic seismic data based on physical
and statistical models and through the use of only few free
parameters. The fiber bundle model (FBM) is a stochastic
discrete model of material failure, which is able to describe
complex rupture processes in heterogeneous materials. In
this article, we present a computer code called the stochasTic
Rupture Earthquake MOdeL, TREMOL. This code is based
on the principle of the FBM to investigate the rupture pro-
cess of asperities on the earthquake rupture surface. In order
to validate TREMOL, we carried out a parametric study to
identify the best parameter configuration while minimizing
computational efforts. As test cases, we applied the final con-
figuration to 10 Mexican subduction zone earthquakes in or-
der to compare the synthetic results by TREMOL with seis-
mological observations. According to our results, TREMOL
is able to model the rupture of an asperity that is essentially
defined by two basic dimensions: (1) the size of the fault
plane and (2) the size of the maximum asperity within the

fault plane. Based on these data and few additional parame-
ters, TREMOL is able to generate numerous earthquakes as
well as a maximum magnitude for different scenarios within
a reasonable error range. The simulated earthquake magni-
tudes are of the same order as the real earthquakes. Thus,
TREMOL can be used to analyze the behavior of a single as-
perity or a group of asperities since TREMOL considers the
maximum magnitude occurring on a fault plane as a function
of the size of the asperity. TREMOL is a simple and flexi-
ble model that allows its users to investigate the role of the
initial stress configuration and the dimensions and material
properties of seismic asperities. Although various assump-
tions and simplifications are included in the model, we show
that TREMOL can be a powerful tool to deliver promising
new insights into earthquake rupture processes.

1 Introduction

Rupture models of large earthquakes suggest significant het-
erogeneity in slip and moment release over the fault plane
(e.g., Aochi and Ide, 2011). In order to characterize the seis-
mic source rupture complexity, two main models have been
proposed: the asperity model (Kanamori and Stewart, 1978)
and the barrier model (Das and Aki, 1977). Asperities are de-
fined as regions on the fault rupture plane that have larger slip
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and strength in comparison to the average values on the fault
plane (Somerville et al., 1999). Asperities also have larger
stress drop than the background area (Madariaga, 1979; Das
and Kostrov, 1986). Understanding the physical features in
the fault zone that produce these high-slip regions is still a
challenge.

The most common method for studying seismic asperi-
ties is waveform slip inversion. However, information ob-
tained from this method is highly variable due to the inher-
ent nature of the inversion process (see review in Scholz,
2018). The slip inversion results depend on the type of data
(such as strong ground motion and geodetic and/or seismic
data at different distances) and the inversion technique used.
Somerville et al. (1999) used average slip to define asperi-
ties. In their criterion, asperities include fault elements for
which slip is 1.5 times or more larger than the average slip.
By using this criterion, it is possible to estimate the as-
perity area from a finite-fault slip model. Considering the
stress drop for a circular crack model (Aco) (Eshelby, 1957),
the stress drop on an asperity (Ao,) can be estimated as
Aoy = (Aefr/ Aa) Ao, where Acpr and A, are the rupture ef-
fective area and the asperity area, respectively (Madariaga,
1979). The Acfr/A, factor (or its reciprocal value) depends
on different features with the most relevant one being the
type of earthquake. For example, Somerville et al. (1999)
found that on average the total area covered by asperities
represents 22 % of the total rupture area for inland crustal
events. Murotani et al. (2008) showed that A,/Aef is ap-
proximately equal to 20 % for plate-boundary events. Sim-
ilarly, for subduction events, the value of A,/ Aegr iS approx-
imately equal to 25 % (Somerville et al., 2002; Rodriguez-
Pérez and Ottemoller, 2013). The previous average values
were determined considering values that range from 0.09 to
0.35. This last condition means, for instance, that the recip-
rocal fraction A,/Aefr can deviate from these average val-
ues as well (for example, 0.09 to 0.35 for the proportions
mentioned above), which leads to great stress contrasts (fac-
tors of 2.8 to 11) (Iwata and Asano, 2011; Murotani et al.,
2008). Mai et al. (2005) proposed another definition of asper-
ities based on the maximum displacement, Dpax. They de-
fined “large-slip” and “very-large-slip” asperities as regions
where the slip D lies between 0.33Dpax < D < 0.66 Dpax
and 0.66Dpx < D, respectively. They found that approxi-
mately 28 % of the rupture plane is occupied by large-slip
asperities, whereas very-large-slip areas constitute only 7 %
of the fault plane. Furthermore, different authors agree that
the rupture area of the asperity scales with the seismic magni-
tude (Somerville et al., 1999; Murotani et al., 2008; Iwata and
Asano, 2011; Rodriguez-Pérez and Ottemdéller, 2013, among
others). The estimation of seismic magnitude is an essen-
tial feature for characterizing the energy of an earthquake.
In fact, an accurate magnitude estimation is indispensable to
conduct both deterministic and probabilistic seismic hazard
assessments.
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Earthquakes are the most relevant example of self-
organized criticality (SOC) (Bak and Tang, 1989; Olami
etal., 1992). The concept of SOC can be visualized by imag-
ining a natural system in a marginally stable state, wherein
phases of instability may occur that place the system back
into a meta-stable state (Barriere and Turcotte, 1994). A pop-
ular model representing this process was proposed by Bak
and Tang (1989) and is well-known as the “sand pile model”.
Some models have been proposed to explain the statisti-
cal behavior of earthquake patterns based on the SOC con-
cept: e.g., Caruso et al. (2007), Barriere and Turcotte (1994),
Olami et al. (1992), and Bak and Tang (1989). The failure
properties of solids have been modeled by simple stochas-
tic discrete models, which are based on the SOC framework.
The fiber bundle model, FBM, is one of those models that has
been used to reproduce many basic properties of the failure
dynamic within solids (Chakrabarti and Benguigui, 1997).
Additionally, the FBM has been successfully applied to stud-
ies of brittle failure of rocks (Hansen et al., 2015; Monterru-
bio et al., 2015; Turcotte and Glasscoe, 2004; Moreno et al.,
2001).

2 The fiber bundle model

The FBM is a mathematical tool to study the rupture process
of heterogeneous materials that was originally introduced by
Peirce (1926). Over the years the FBM has been widely used
to study failure in a wide range of heterogeneous materials
(Hansen et al., 2015; Pradhan and Chakrabarti, 2003). Re-
gardless of the specific FBM type, there are three basic as-
sumptions that all FBMs have in common (Daniels, 1945;
Andersen et al., 1997; Kloster et al., 1997; Vizquez-Prada
et al.,, 1999; Phoenix and Beyerlein, 2000; Pradhan et al.,
2010; Monterrubio-Velasco et al., 2017).

1. A discrete set of cells (or fibers) is defined on a d-
dimensional lattice. In seismology, the bundle can rep-
resent a fault system or seismic source wherein each
fiber is a section of the fault plane (Moreno et al., 2001)
or individual faults (Lee and Sornette, 2000).

2. A probability distribution defines the inner properties of
each cell (fiber), such as lifetime or stress distribution.

3. A load-transfer rule determines how the load is dis-
tributed from the ruptured cell to its neighbor cells.
The most common load-transfer rules are (a) equal load
sharing (ELS), in which the distributed load is equally
shared to the other cells within the material or bundle,
and (b) local load sharing (LLS) whereby the transferred
load is only shared with the nearest neighbors.

TREMOL is based on the probabilistic formulation of the
FBM, with the failure rate of a set of fibers given by Eq. (1):

www.geosci-model-dev.net/12/1809/2019/



M. Monterrubio-Velasco et al.: The stochastic rupture earthquake model TREMOL v0.1 1811

(Gémez et al., 1998; Moral et al., 2001).

dUu ()
TR —U®K(o(1)), ey

where U (¢) is the number of fibers that remain unbroken at
time ¢. The hazard rate K(o(¢)) is a function of the fiber
stress o (t). Experimental results show that the hazard rate of
materials under constant load can be well-described by the
Weibull probability distribution function. This behavior can
be summarized in Eq. (2) (Coleman, 1958; Phoenix, 1978;
Phoenix and Tierney, 1983; Vazquez-Prada et al., 1999;
Moreno et al., 2001; Biswas et al., 2015):

oY
K(o(t)) =1y O'_() , )

where vg is the reference hazard rate, and o the reference
stress. The Weibull exponent, p, quantifies the nonlinear-
ity (Yewande et al., 2003). If op = vg = 1, the expression
in Eq. (2) can be simplified to K (o (t)) = o (¢)”. From the
probabilistic formulation, two equations arise (Egs. 3 and 4),
which are applied in our algorithm to define the system dy-
namics. The details of these two equations are described be-
low.

a) Goémez et al. (1998) and Moral et al. (2001) developed
arelation to compute the expected rupture time (dimen-
sionless) of the fibers following Eqgs. (1) and (2). This
expected rupture time interval is defined as 6; (Eq. 3)
and can be applied to any load-transfer rule:

1
Ok =

=5
PRAC
i=1

where N is the total number of cells, and o; is the load

in the ith cell. The dimensionless cumulative time, T, is
the sum of &;.

3

b) The failure probability, F;, which is a function of the
load o; in each cell, is (Moreno et al., 2001)

Fy =80/ (1). )

The dynamic values 6; and F; are updated with each
time step due to rupture processes and the resulting load
transfer.

A suitable FBM algorithm to simulate earthquakes should
consider a complex stress field, physical properties of ma-
terials, stress transfer between faults (at short and long dis-
tances), and dissipative effects. Using the FBM we assume
that earthquakes can be considered analogous to character-
istic brittle rupture of a heterogeneous material (Kun et al.,
20064, b).

The previous basic concepts about the FBM were consid-
ered for the development of the TREMOL code, with the pur-
pose of modeling the behavior of seismic asperities. In the
next section, we describe the details of this code.

www.geosci-model-dev.net/12/1809/2019/

3 The TREMOL code

Since the main objective of TREMOL is to simulate the rup-
ture process of seismic asperities based on the principles of
the FBM, we model two materials with different mechanical
properties interacting with each other.

In order to introduce the features of TREMOL we describe
three main stages during the application of TREMOL.

1. Preprocessing
In this stage we have to assign the following input data:

- the size of the fault plane,

- the size of the maximum asperity within the fault
plane, and

- other parameters (load-transfer value m, strength
value y, initial load values o, and load threshold
Oth)-

2. Processing
TREMOL uses the data from the preprocessing stage to
carry out the FBM algorithm, and by applying Eqgs. (3)
and (4) the rupture process is computed in the fault
plane studied. The asperity size of each earthquake is
used by TREMOL to also compute the magnitude of
each synthetic earthquake.

3. Post-processing
In this stage, TREMOL summarizes the results that are
computed in the processing stage and computes the
equivalent rupture area (km?). In general, TREMOL
output generates a synthetic catalog of earthquakes,
which consists of the following:

- total number of earthquakes that can occur in the
fault plane studied,

- size of the asperity of each earthquake, and

- magnitude of each earthquake.

In the next sections we describe with more detail each one
of the three main stages during the application of TREMOL.
An overview of the entire simulation process is shown in
Fig. 1.

3.1 Preprocessing: input data and initial conditions

In TREMOL, a fault plane is modeled as a rectangle (£2),
which is divided into Ny x Ny cells. Each cell is defined by its
position (i, j), where i € [1,...,Nx] and j € [1,...,Ny]. In
the fault plane Q2 earthquakes can occur with different mag-
nitudes. Additionally, it is possible to assign to each fault
plane an asperity region (Rasp).

To define each fault plane (£2) and its respective asperity
region (Ragp) it is necessary to assign specific properties to
their cells. Particularly, it is necessary to define three proper-
ties (or values) for each cell of €2 and Ragp: aload o (i, j), a
strength value y (i, j), and a load-transfer value 7 (i, j).

Geosci. Model Dev., 12, 1809-1831, 2019
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TREMOL

Definition of input parameters
- Size of the domain Q
- Size of the asperity and effective area

- Algorithm parameters such as strength and
load-transfer value

Preprocessing

Generation of domain Q with N, x N,
Generation of asperity size and domain R,

Location of R, via coordinates

of the epicenter

Each cell is defined as either
background or aspertiy cell

First step of the simulation (k =1, 6 =0):

- Uniform distribution of stress load/
rupture probability to each cell

- Strength allocation to background and
asperity cells (plus variation therein)

FBM algorithm

Workflow

Synthetic catalog
Statistical analysis
(e.g., GR law, MOL, Hurst exponents, etc.)

Generation of output plots and files

Post-processing

Figure 1. TREMOL flowchart. At the beginning (preprocess) the
algorithm initiates a domain 2 with Nx x Ny cells in which every
cell is either part of an asperity or of the background or fault plane.
Afterwards (first time step, kK = 1) a uniform distribution allocates a
random stress load and rupture probability to all cells. In addition,
asperity cells obtain a random strength value from a uniform dis-
tribution. Next (time step k > 2) the failure process starts following
the FBM algorithm. After every failure the stress of the broken cell
is redistributed via the LLS rule and the number of time steps (k) in-
creases by 1 until the target number of time steps is reached. If the
final number of time steps has been reached the simulation stops.
At the end, all information about the entire failure process is saved
in a database or a synthetic catalog that can be used for statistical
analysis. Further details about the algorithm are given in Sect. 3.

— The load o (i, j). At the beginning of each realization,
TREMOL randomly assigns a value of the load o (7, j)
to each cell of 2 using a uniform distribution function
(0 <a(i, j) < 1). This assumption simulates a hetero-
geneous stress field. Moreover, a load threshold o, = 1
is necessary to create a limit at which a cell must fail
(Moreno et al., 2001). At the end of this step any cell
within €2 must have a load value between 0 and 1.

Geosci. Model Dev., 12, 1809-1831, 2019

During rupture == After rupture

=

. Failed or broken cell Diagonal neighbors
Aop = ofi,)+op
Orthogonal neighbors
Aco = 0(i,j)+00

Figure 2. Schematic representation of the considered local load
rule. The broken cell with load, oF, distributes the largest load frac-
tion, o (Eq. 5), to its four orthogonal neighbor cells. The remaining
load, op (Eq. 6), is transferred to its four diagonal neighbor cells.
Afterwards, the load of the broken cell drops to zero, o = 0. Asper-
ity cells cannot receive any new load.

Ny [cells]
Ny [cells]

N, [cells] N, [cells]

Oth Yth

00 02 04 06 08 L0 1 3 4 5

Load Strength

(a) (b)

Figure 3. (a) Spatial distribution of the random initial loads o (i, j).
Rasp represents a rectangular fault plane of Nx = Ny = 100 cells.
The color bar indicates the load and the threshold load of oy, = 1.
(b) Spatial distribution of the strength y (i, j). Two main regions
can be distinguished in this figure: (1) the asperity region defined as
the inner rectangle and (2) a background area or fault plane. While
the asperity contains strength values in the range of 3 to 5, the rest
of the fault plane has a strength value of 1.

— The strength value y (i, j). This parameter represents an
analogy to the concept of hardness or strength. In our
model, the algorithm will find it difficult to break a cell
if this cell has a value y > 1 since the strength threshold
before failure is set as yi, = 1 (see a detailed explana-
tion in Sect. 3.2). As a result, a strength y > 1 may sim-
ulate a hard material that needs to be weakened before it
can fail. This process can be regarded as similar to ma-
terial fatigue or creep failure. The strength value for all

www.geosci-model-dev.net/12/1809/2019/
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cells in Rasp, namely yaqp, is chosen in a discrete inter-
val of Up = [Yref — 1, YRef + 1], where Up is an integer
uniformly distributed and yRer is an assigned reference
value.

— The load-transfer value m (i, j). This parameter repre-
sents the percentage of load that can be distributed from
a ruptured cell to its neighbors. In this study, the load
in the ruptured cell is called or(i, j). TREMOL uses
a local load sharing (LLS) rule considering the eight
nearest neighbors. According to previous studies, such
as Monterrubio-Velasco et al. (2017), TREMOL redis-
tributes the majority of the load to the four orthogonal
neighbors. The load that is transferred to these orthog-
onal neighbors is called op, and it is defined according
to Eq. (5):
0.980r (i, j)mr(i, j)
1 )
where 7t is the load-transfer value of the failed cell. Ad-
ditionally, a small proportion of the load is transferred

to the four diagonal neighbors. The value of this load is
called op(i, j), and it is defined according to Eq. (6):

0.0205(@, )7, j)
; )

oo(i,j) = &)

Q)

op(i, j) =

The assumption of Egs. (5) and (6) is in agreement with
what is expected for the maximum shear stress direc-
tions with respect to the main stress orientation that
gives rise to both synthetic and antithetic faulting (e.g.,
Stein and Wysession, 2008). Figure 2 is a schematic
representation of the load distribution process from the
failed cell, op(i, j) (in red), to its nearest neighbors.

In order to differentiate the parameters of the asperity
from the rest of the fault plane €2, we define A (i, j) and
Yasp(i, j) that refer only to the cells within Ragp. For the
rest of the fault plane €2, we are using the same parameters
defined previously: 7 (i, j) and y (i, j). Figure 3a shows an
example of the randomly distributed initial load throughout
the fault plane. Figure 3b displays an example of differences
between the strength of the asperity and the rest of the fault
plane.

3.2 Main computational processes

Once the initial information for the entire domain 2 is de-
fined, the core algorithm of TREMOL will realize a transfer,
accumulation, and rupture process. While the cells interact
with each other, there are two basic failure processes depend-
ing on the load of the cell in comparison with the threshold
load (Moreno et al., 2001).

— Normal event. If all cells within the system have a load
o (i, j) < om, a normal event is generated, and the cell
that will fail is randomly chosen considering the indi-
vidual failure probability of each cell, F (i, j) (Eq. 4).

www.geosci-model-dev.net/12/1809/2019/

— Avalanche event. If one or more cells have a load value
o (i, j) > ow, an avalanche event is generated, and the
cell that fails is the one with the greatest o (i, j) value.

Due to the integrated strength property some extra rules
for rupture are necessary. The requirement for failure is
y (i, j) = 1. On the other hand, if a cell with y(i, j) > 1 is
chosen, its strength is reduced by one unit. This strength con-
dition enables us to simulate a material weakening process
during the load-transfer process. Additionally, this condition
offers the possibility to produce large load accumulations lo-
cally, which are more likely to generate larger ruptures.

When a cell within Ragp breaks it becomes inactive until
the end of the simulation, which means it cannot receive any
further load. The large load concentration within the asperity
usually produces a very short time interval (Eq. 3), with the
result that there is physically not enough time available to
reload the stress on an asperity right after its rupture. On the
contrary, a cell outside of the asperity region remains active
after its failure but its load drops to zero. The simulation ends
when all the cells within the asperity have become inactive.

3.3 Output data and post-processing

After every execution TREMOL outputs a catalog detail-
ing where the position (x, y) of the failed cell, the rupture
time (Eq. 12), the avalanche event or normal event identi-
fication, the mean load, and many other values are saved
for each time step. We cluster avalanche events considering
the time and space criterion. We assume a;—1 = (X;j_1, Yi—1)
and a; = (x;, y;) are two consecutive avalanche events gen-
erated in chronological order. If their Euclidean distance is
Ar; < rq (Where ry = \2/5), then a@; and a;_; will belong to
the same cluster. This clustering algorithm is applied to all
generated avalanche events. Lastly, we extract a new catalog
that shows the size of each cluster, the position of the first
element of each cluster related to the nucleation point, and
the time when it was initiated. This database is our simulated
seismic catalog. Note that the cluster size is given in nondi-
mensional units. However, we use an equivalence between 2
and an effective area A.fr in order to obtain a physical rupture
area. Finally, each cell can represent an area in square kilo-
meters. This step is necessary in order to compute an equiv-
alent magnitude, which is comparable with real earthquake
magnitudes. For this purpose, we use three magnitude—area
relations. In particular, we use Eqgs. (7), (8), and (9) obtained
by Rodriguez-Pérez and Ottemoller (2013) for Mexican sub-
duction earthquakes:

log o As = —4.393 +0.991 M, )
log oA = —5.518 + 1.137M,,, (8)
logjpAa = —6.013 + 1.146 M, 9)

where A, is the asperity area (kmz). Equation (7) was ob-
tained from asperities defined by the average displacement
criterion (Somerville et al., 1999). Equations (8) and (9) were

Geosci. Model Dev., 12, 1809-1831, 2019
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Figure 4. Results of one realization by TREMOL. (a) The spatial distribution of avalanches. Patches of the same color indicate one temporal-
consecutive Avalanche cluster (synthetic earthquake). (b) Logarithmic representation of the inter-event rate with time. The red dots represent
the inter-event rate when the asperity rupture occurs. The blue dots indicate foreshocks.

computed from asperities defined by the maximum displace-
ment criterion for a large asperity and a very large asperity,
respectively (Mai et al., 2005).

Furthermore, we define the inter-event rate Avy as analo-
gous to the rupture velocity:

Ary
Avp = —, (10)
Ady,
where Ary is the inter-event Euclidean distance between the
k event located at (xi, yx) and kK — 1 event in (xg—1, yk—1)-

Ar =/ (o — X0 + Ok — v’ (1n
The inter-event time Ay is computed following
Adj = 6k — Sk—1, (12)

where & is given by Eq. (3). Figure 4a shows an example
of the final spatial distribution of rupture clusters for a par-
ticular example. Each cluster is indicated by the same color
and represents a simulated earthquake. Figure 4b shows the
related inter-event rate. The inter-event rate largely increases
when the asperity rupture occurs.

In the post-processing step we additionally computed the
rupture duration of the largest simulated earthquake, Dayal,
using the rupture velocity and the effective fault dimensions
obtained from finite-fault models (Table 5).

We used Eq. (13) (Geller, 1976) to compute Dayal:

Lyax | 169/Witax X Lvtax
where
Ve
~ . 14
p 0.72 (14)

Using these considerations, we can assign a physical
unit of time (s) to the largest simulated earthquake, Agyn =
LMax X WhMax-
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The flowchart in Fig. 1 and the pseudo-codes 1, 2, and
3 summarize the algorithm of TREMOL. A summary of all
required parameters to execute the TREMOL code are shown
in Table 1.

4 Sensitivity analysis
4.1 Methods: parametric study

We performed a sensitivity analysis of the three asperity pa-
rameters (Vasp, Sa—Asp» and 7,gp) in order to identify the best
combination that produces the best approximation to real
data, such as the maximum rupture area, Agyn, and its re-
lated magnitude Mjyy. In order to investigate the influence of
every single parameter, we statistically determined how the
results vary with different parameter configurations.

4.1.1 Percentage of transferred load, 7,5, — methods

To explore the influence of m,s,, we analyzed 12 values
(0.67 < ma5p < 1.0, with increments of 0.3). The minimum
masp = 0.67 assigns the same value to an asperity cell and to
a background cell. On the other hand, .5, = 1.0 means that
the load in a failed asperity cell is fully transmitted to the
neighbors (ideal case with no dissipative effects). Note that
7asp = 1 does not represent real physical conditions since
dissipative effects are ignored completely. On the other hand,
if wap = 0.67 (case 1) the asperity cells would transfer as
much load as the cells in the background. The objective is to
generate a load concentration within the asperity that corre-
sponds to the largest magnitude. If the asperity cells trans-
fer as much load as the background cells, no such load con-
centration can be obtained. As a result, we can expect that
the mean Agy, for m,s, = 0.67 (case 1) is the lowest value in
comparison to all other cases.

The input data of this experiment are summarized in Ta-
ble 2. We assigned a strength to the asperity (Rasp) Yasp =
4+ 1 and a value of ypyg =1 to the rest of the fault plane.

www.geosci-model-dev.net/12/1809/2019/
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Table 1. TREMOL preprocessing: input parameters and their definition.

Parameter  Definition

Neell number of cells in 2

Trasp percentage of transferred load to neighbor cells in the asperity domain
Yasp strength at each (i, j) cell in the asperity domain

Sa—Asp ratio of asperity area computed by TREMOL

Sa ratio of asperity area computed by finite-fault model

Aeff effective area (km?2) computed by finite-fault model

A, asperity area (km?) computed by finite-fault model

Algorithm 1 Basic FBM. Main algorithm of TREMOL which applies the Algorithm 3 in regards to the initial conditions

procedure and to the rupture procedure, respectively.

k=0;n,=0;Tp=0
-1
so=(:,06.0)7)  (Ee3)
while k < k4, do
k=k+1
for all (7,7) € {2 do
F(i,5) = 0(i,§)P6) (Eq. 4)
end for
(l,m)={(,7) €| o(i,j) = max(o)}
(I, m*) = selection(l,m) (Algorithm 2)
if o(l*,m*) > oy, then
nag=ny+1
rupture(l,m)
if ny =1 then
S(ny)=0
else
S(ng)=5(ny)+1
end if
tna) =Ty S(nag) =0; B (ny) =1 Ey(na)=m
else
if n4 # 0 then
Ny=mn,
S(Na)=8(na)
T(J\v_q) = f(nA = 1)
na=0; S(na)=0
end if
find (p,q) sample of F (7, 5)
rupture(p,q)
end if
end while

These values are chosen after experimental trials, which
have shown that the difference is large enough to sim-
ulate a significant strength difference with low computa-
tional effort. To define the effective area and the asper-
ity size, we chose the values computed for the earthquake
of 20 March 2012, M, = 7.4, in Rodriguez-Pérez and Ot-
temoller (2013): Aefr = 2944.2km? and S, =0.26. We de-
fined the size of €2 consisting of N¢e;j = 10000 cells in total.
We carried out 50 simulations per 7r,p configuration. In ad-
dition, we modified the random seed to have different initial
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load configurations, oy;, j), to ensure that the results over m,gp
are independent of the initial load conditions oy; ).

4.1.2 Strength parameter, y,s, — methods

To perform the parametric study of yasp, we configured two
asperities embedded in 2. In this experiment, the total size
is €2 =200 x 100 cells. Afterwards, we located each asperity
in the center of the two sub-domains €’ of 100 x 100 cells.
Figure 5 shows a schematic representation of the domains 2
and ' used in this experiment.

Geosci. Model Dev., 12, 1809-1831, 2019
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Algorithm 2 Identification of the next rupture cell. The algorithm of TREMOL which identifies the next cell whose percentage

of load will be transferred.

selection(l,m)
if o(l,m) > oy, then
if y(I,m) =1 then
return(l,m)
else
y(I,m)=~(,m)—1

(I',m')={(i,7) € Q| ~(i,7) = L and o(i,5) = max(c)}

return(l’,m’)
end if
else
find (I",m") sample of F'(i, )
ify(I",m") =1 then
return(l*,m*)
else

A(Fm* )y =", m*) -1

(I',m*)={(,j) € Q| ~(i,7) =1and o(i,j) = max(o) }

return(l”,m™)
end if

end if

Algorithm 3 Failure of a cell. The algorithm of TREMOL which computes the failure process in the model.

rupture(p,q)

o(p.q) =m(p,q)o(p.q)

for (r,s) € {(1,0),(0,1),(=1,0),(0,—1)} do
olp+rs+q)=0cp+rs+q)+ono(p.q)

end for

for (r,s) € {(1,1),(1,—-1),(—1,1),(—1,—1)} do
op+r,s+q)=o(p+r.s+q)+opo(p.q)

end for
if (p,q) € Qasp then

o(p.q) =—1
else

o(p.q)=0
end if .
be=(T.,06.0)  (Ead
Ty = Z‘lk:l ]

The separation between the two asperities remains con-
stant. We chose a value of a5, =0.90 to produce a large
contrast between the asperity and the rest of the fault plane
(mr = 0.67) (Monterrubio-Velasco et al., 2017). In order to
analyze the influence of y,sp (and S, asp), the asperity on the
right-hand side (Asp. 2) has varying strength values, while
the strength of the left asperity (Asp. 1) remains constant. Fi-
nally, the maximum ruptured area and magnitude generated
in each Q" are computed.

In order to explore how the system behaves when yugp
changes, we analyzed six different values of yusp = [2£1, 5+
1,721,9+ 1,11+ 1,14+ 1] (cases 13 to 18). The input
data used in this test are summarized in Table 3. We de-

Geosci. Model Dev., 12, 1809-1831, 2019

fined the same asperity size for both: S3; = Sip =0.22. In
Fig. 6, we show an example of the spatial configuration of
this analysis. The background strength is considered to be
Yokg = 1 = constant, and the color bar indicates the y (i, j)
values.

4.1.3 Asperity size, S;_asp — methods

The modification of the S, asp parameter was based on the
same configuration as described in the previous section. We
analyzed six different values of the asperity size S, (cases 19
to 24). In Fig. 7 we show an example of the asperity con-
figuration in which the left asperity (Asp. 1) has a constant
size Sy», while the size of the right one (Asp. 2) increases. In

www.geosci-model-dev.net/12/1809/2019/
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Table 2. Input data in order to carry out cases 1 to 12.

Data Value

Number of 1

asperities

Tasp 0.67 (case 1), 0.70 (case 2), 0.73 (case 3),

0.76 (case 4), 0.79 (case 5), 0.82 (case 6),
0.85 (case 7), 0.88 (case 8), 0.91 (case 9),
0.94 (case 10), 0.97 (case 11),

and 1.0 (case 12).

Number of 50

realizations

Neenl 10000

Yasp 441

b4 0.67

y 1

Oth 1

Sa 0.26

At 2944.2 (km?)
P N,' =100 cells
©

o
o

o

—

1

Z>\

Y

N, =200 cells

Figure 5. Schematic configuration for the parametric study of yasp
and S, Asp- The size of the domain €2 is € = 200 x 100 cells. Each
asperity is located within the center of the two sub-domains Q' of
100 x 100 cells. The strength parameter yasp and degree of hetero-
geneity for each asperity can be varied according to the material
properties.

this experiment, we considered yusp = 531 and masp = 0.90.
The main data related to these six cases are summarized in
Table 4.

4.2 Model validation — methods

We evaluated the capability of the model to reproduce the
characteristics of 10 Mexican subduction earthquakes (eight
shallow thrust subduction events, ST, and two intra-slab sub-
duction events, IN). The input data of the effective area,
Aeft, and the asperity ratio size, S, are given from waveform
slip inversions and seismic source studies (Aeff = Lefr X Weft
and S; = A,/ Aesr) shown in the database of Mexican earth-
quake source parameters by Rodriguez-Pérez et al. (2018).
This database includes results from two different method-
ologies: spectral analysis and finite-fault models. From the
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Table 3. Main input data in order to carry out cases 13 to 18.

Data Value

Number of asperities 2

Yasp 24 1(case 13),5 =+ 1(case 14),
7+ 1(case 15),9 + 1(case 16),
11+ 1(case 17), 14 + 1(case 18)

Neell 20000
ﬂasp 0.90
Tbkg 0.67
Vbkg 1
Oth 1
Sat 0.22
S 0.22
Actf 2944.2 (km?)
10
9
8
0
r7
20 —
Fe "™
> oy
= 40 ~
lg >
60
L4
0 20 40 60 80 100 120 140 160 F3

Nx

1

Figure 6. Example of the strength configuration y (7, j) for the sen-
sitivity analysis of yasp. Two asperities with the same size S aAsp =
0.22 are defined and embedded in €2 following the schema in Fig. 5.
The conservation parameters are masp = 0.90 and 7asp = 0.67. The
color bar indicates different y (i, j) values. The left asperity (Asp. 1)
contains constant properties, while the right asperity (Asp. 2) has
variable strength values.

latter, the database provides estimations of effective fault di-
mensions, rupture velocity, source duration, number of asper-
ities, stress, and radiated seismic energy on the asperities and
background areas. Slip solutions were obtained with teleseis-
mic data for events with 6.4 < M, < 8.2.

The number of cells was N¢ejp = 10000 for a domain €2 of
100 x 100 cells. We modeled the size of 2 proportionally to
the size of Legr and Wegr for each scenario according to the
following equations, Egs. (15) and (16):

Geosci. Model Dev., 12, 1809-1831, 2019
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Table 4. Main input data in order to carry out cases 19 to 24.

Data Value

Number of asperities 2

Neenl 20000

Tasp 0.90

Yasp 5+1

TTbkg 0.67

Vbkg 1

Oth 1

S22 0.22 (case 19),0.28 (case 20),

0.34 (case 21), 0.40(case 22),
0.46 (case 23), 0.52 (case 24)

Sal 0.22

20

(i, ))

= 40

60

100 120 140 160
Nx

1

Figure 7. An example configuration of different asperity sizes,
Sa—Asp- The color bar indicates the strength y (i, j) values used dur-
ing the test.

NeenL
Nx _ cell Leeff ’ (15)
West
W,
Ny _ eff Nx , (16)
Lest

where N, and Ny are the number of cells in the x axis and
y axis, respectively. As an example, Fig. 8 presents the size
and aspect ratio of Ev. 3 and Ev. 5 (Table 5).

In some cases, the number of asperities computed in
Rodriguez-Pérez et al. (2018) is greater than 1. However, as
a first approximation we simplified the problem by modeling
only one asperity per earthquake.

In order to study how the asperity size S, affects the max-
imum ruptured area, we randomly modified the size as

Sa—aAsp = Sa + (o - (82/2)), (I7)
where 0 <« < 1 is a random value. We introduce this as-

sumption because we want to avoid a preconceived final size.

Geosci. Model Dev., 12, 1809-1831, 2019

Cells N
Cells N
w
(=]
y(ij)

0 20 40 60 1.0
Cells N

Cells N
(a) (b)

Figure 8. Example of the domain configuration €2, considering L
and Wegr. (a) Example configuration of event 3 and (b) example
configuration of event 5. The required data can be found in Table 5.

In future trials it may be useful to consider the inner uncer-
tainties of finite-fault models. The asperity aspect ratio fol-
: . Q _ Nusa
lows the same proportion as the effective area, o = ﬁzdi
(Fig. 8).
We carried out 50 realizations per event (Table 5), chang-
ing the size S,_asp in each one (Eq. 17).

4.2.1 Modeling the rupture area and magnitude of 10
subduction earthquakes — methods

In this case the number of cells is Ncepp = 10000 (100 x 100).
We carried out 50 executions per event and in each execution
we randomly changed the size S, asp following Egs. (15),
(16), and (17). The input data of the 10 modeled earthquakes
in Table 5 are summarized in Table 6.

4.2.2 Case study (Oaxaca, My = 7.4, 20/03/2012):
using different effective areas Ag for the same
event — methods

As reported in Rodriguez-Pérez et al. (2018) for some events,
there are several solutions that allow us to analyze the vari-
ability in the estimated source parameters (see parameters of
events 7, 7a, and 7b in Table 5). In this study, we applied
TREMOL to study how the ruptured area and the assessed
magnitude change when we use different input data to model
the same earthquake. The data related to these three events
are summarized in Table 7.

4.2.3 Assessing a future earthquake in the Guerrero
seismic gap: rupture area and magnitude —
methods

We apply our method for the estimation of possible future
earthquakes, in particular to compute the expected magni-
tude, since TREMOL may offer new insights for future haz-
ard assessments. We carried out a statistical test to assess the
size of an earthquake that may occur in the Guerrero seismic
gap (GG) region.

As input parameters, we used the area found by Singh and
Mortera (1991): Legr = 230km x Wegr = 80 km. We defined
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Table 5. The finite-fault source parameters used in this work. Wegr and Legr are the effective fault dimensions (width and length, respectively,
according to Mai and Beroza, 2000). A, is the asperity area, Ac¢r is the effective rupture area (Wegr X Legr). Duration is the rupture duration
computed from the slip inversion, N, is the number of asperities, and V; is the rupture velocity. Ratio is the aspect ratio of the fault area. The
type of the event is labeled ST for shallow thrust and IN for intra-slab events.

Ev. Date My, Legt Wesr  Ratio Sa = Duration Vi Type N, Reference
ID (km) (km) Areal/ Aetf (s) (kmS™h
1 07/06/1982 7.0 34.47 17.81 1.94 0.23 - 32 ST 1 Rodriguez-Pérez and Zuniga (2016)
2 19/09/1985 81 158.62 115.04 1.38 0.31 - 26 ST 2 Mendoza (1989)
3 30/04/1986 6.8 38.31 37.16 1.03 0.26 22 25 ST 1 Rodriguez-Pérez and Otteméller (2013)
4 14/09/1995 7.4 68.80 46.61 1.48 0.23 32 25 ST 1 Rodriguez-Pérez and Otteméller (2013)
5 09/10/1995 8.0 169.65 59.25 2.86 0.27 92 28 ST 2 Rodriguez-Pérez and Ottemoller (2013)
6 18/04/2002 6.7 23 13.88 1.66 0.24 30 22 ST 2 Rodriguez-Pérez and Ottemoller (2013)
7 20/03/2012 7.4 54.94 53.59 1.03 0.26 30 27 ST 1 Rodriguez-Pérez and Ottemoller (2013)
Ta 7.4 51.42 55.47 0.93 0.21 - 1.8 ST 1 USGS
7b 74 4003 4460 0.839 0.21 - 20 ST 1 Wei(2012)
8 11/04/2012 6.5 21.95 21.84 1.04 0.23 15 2.8 ST 1 Rodriguez-Pérez and Ottemoller (2013)
08/09/2017 82 12595 71.13 1.77 0.34 - 20 IN 3 USGS
10 19/09/2017 7.1 34.47 36.12 0.95 0.32 - 22 IN 1 USGS
Table 6. Main data used for Ev. 1 to Ev. 10. Table 8. Main data for assessing a future earthquake in the Guerrero
seismic gap (GG event).

Data Value

Number of asperities 1 Data Value

Neell 10000 Number of asperities 1

Tasp 0.90 Neell 10000 (cells)

Yasp 5+1 Tasp 0.90

Tbkg 0.67 Yasp 541

Ybkg 1 TThkg 0.67

Oth 1 Ybkg 1

Sa see Table 5 Oth 1

Sa—Asp Eq. (17) Sa—Asp Eq. (17)

Acff see Table 5 Sa 0.25

Aett 18400 (km?)

Table 7. Main data for the case study Ev. 7 test, Ev. 7a test, and
Ev. 7b test.

Data Value

Number of asperities 1

Neell 10000 (cells)

Tasp 0.90

Yasp 5£1

TThkg 0.67

Vbkg 1

Oth 1

Sa—Asp Eq. (17)

Sa see Table 5 (Ev. 7, 7a, and 7b)
Aeff see Table 5 (Ev. 7, 7a, and 7b)

the asperity size ratio S, as proposed by Somerville et al.
(2002) for regular subduction zone events (SB) based on av-
erage slip, S; = 0.25. Singh and Mortera (1991), Astiz et al.
(1987), and Astiz and Kanamori (1984) proposed a proba-
ble maximum magnitude for this region of M, ~ 8.1 —8.4.
Therefore, using the effective rupture area (Legr, Wesr, and
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Sa), we executed the algorithm as in previous sections. The
input data related to this analysis are summarized in Table 8.
Likewise, we want to estimated the duration D,y, of the
event. To compute this value, we used a mean of the V; from
Table 5.

5 Results
5.1 Results: parametric study
5.1.1 Percentage of transferred load, 7,5,

Figure 9 shows the mean (black dots) of the maximum rup-
tured area Agyy, including the upper and lower limits of the
standard deviations (blue squares), after the execution of all
12 cases (Table 2) with 50 realizations. The value of Agyy is
related to the largest produced cluster in 2. There are two
dominant tendencies identifiable.

Geosci. Model Dev., 12, 1809-1831, 2019
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Figure 9. Mean of the maximum rupture area (kmz), Asyn, for dif-
ferent values of masp depicted as black circles. The minimum and
maximum limits of the rupture area are represented by blue squares.
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Figure 10. Mean and standard deviation of the maximum magni-
tude over 50 realizations depending on 7ygp.

1. If masp < 0.76, the mean of the maximum ruptured area
increases continuously more than 1 order of magnitude
from 15 to ~ 500km?, i.e., an increase of 3333 %. The
standard deviation of Agy, for mysp = 0.7 is ~ 35 km?
(100 % error).

2. If masp > 0.76 (cases 4 to 12), the Ay, values remain es-
sentially constant (= 500 km?). Likewise, the upper and
lower limit vary around the same order. The standard
deviation for this interval is ~ 100 km? (20 % error).

Using the mean of Agy, obtained in each case, we com-
puted the corresponding magnitude. The results are given as
the mean and standard deviation of the maximum magnitude
in Fig. 10 for all 12 cases (see Table 2). Due to the fact that
ruptured area and magnitude are correlated (see Eqs. 7, 8, and
9), the pattern in Fig. 10 is very similar to the one in Fig. 9.

Overall, there are three aspects observable.

1. If wasp >0.76 (cases 4 to 12), the mean magnitudes show
a steady value (~ 7.2).

Geosci. Model Dev., 12, 1809-1831, 2019
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2. If 0.70 < masp < 0.76, a transition with an increasing
trend with the largest standard deviation is visible.

3. If mysp = 0.67 (case 1), the mean of the maximum mag-
nitude is the lowest.

In this experiment, the initial value of S, = 0.26 remains con-
stant; i.e., the asperity size does not increase randomly (red
line in Fig. 11). After executing all configurations, we com-
puted the ratio of S;—Asp = Asyn/Aetr, relating to the largest
ruptured area. We show the mean and standard deviation of
this ratio S, asp in Fig. 11. We observed that the ratio of
Sa—asp 18 always A~ 0.10 lower than S,.

5.1.2 Strength parameter, y,sp

For each value of y,sp (Table 3), we performed 50 executions
while changing the initial strength parameter of the asperity
Yasp (Fig. 3b). Likewise, we computed the maximum mag-
nitude obtained for each . Figure 12 indicates the mean
and standard deviation of the computed maximum magnitude
with a dependence on yasp. The upper subplot (blue markers)
shows the results for the left (constant) asperity (Asp. 1). The
lower subplot (red markers) shows the results for the right
(variable) asperity (Asp. 2).

We observe in Fig. 12 that the mean magnitude remains
essentially independent for y,sp > 5+ 1. Additionally, the er-
ror bars slightly decrease, while y,gp increases. Another ob-
servation is that when y,sp =21 the average of the max-
imum magnitude is the lowest in both asperities. Moreover,
there is a transition zone for 241 < y,5p <5+ 1. We ob-
served that y,sp > 541 has a limited influence on the re-
sults of the maximum magnitude. The maximum magnitude
of yasp = 14 & 1 is approximately 0.3 magnitudes larger than
the one of y,p =5 £ 1.

5.1.3 Asperity size, S;_Asp

Figure 13 shows the mean magnitude and standard devia-
tion as a function of asperity size. The first asperity with the
fixed size indicates a relatively constant magnitude of ap-
proximately 7.4. Conversely, the second asperity with vari-
able size produces only a slight increase in magnitude. The
magnitude of S, Asp =0.52 is approximately 0.5 magni-
tudes larger than the one of S, asp = 0.22.

5.2 Results: model validation

5.2.1 Modeling 10 Mexican subduction zone

earthquakes

Based on the observations described in the previous sec-
tion, we used yasp =5 £ 1 and m,sp = 0.90 in order to val-
idate the model. We chose yasp =541 because it repre-
sents the strength interval of 5+ 1 < Yasp < 14 £ 1 with less
computational cost. We chose m,sp = 0.90 because it rep-
resents the relatively constant magnitude for the parameter

www.geosci-model-dev.net/12/1809/2019/
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Figure 11. Mean and standard deviation of the ratio Ssyn = Asyn/Aett Over 50 realizations for different values of 7asp. The red line indicates

the asperity ratio S; computed for event 7 (Table 5).
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Figure 12. Statistical results of ysp for a configuration similar to Fig. 6. Markers represent the mean value, while the error bars indicate the
standard deviation for all 50 executions considering different initial strength configurations. The red markers correspond to the results of the
left asperity (Asp. 1) and blue markers to the results of the right asperity (Asp. 2) (Fig. 6). The strength of the left asperity is kept constant,

whereas the strength of the right asperity is variable.

range 0.76 < m,p < 0.90. In addition, masp = 0.90 enables
us to obtain the best approximation to the ratios of Sy—Asp.
Both parameter choices ensure an appropriate reproduction
of the asperity rupture area, the maximum magnitude, and
least computational payload.

Figure 14 depicts a comparison between the (real) asper-
ity area Areq) (Table 5) and the area of the largest simulated
earthquake, Agy,. We plot the mean (blue dots), the minimum
(green triangles), and the maximum (red triangles) of all 50
realizations for each real earthquake event. Black squares
represent the real asperity size. The results in Fig. 14 point
out that Agyy is almost identical to Aye, from Table 5 for the

www.geosci-model-dev.net/12/1809/2019/

majority of earthquakes. Only three events show significant
differences between synthetic and realistic maximum rupture
area. Even in these cases, however, A ey 18 located within the
upper and lower limit of Agyn.

Figure 15 shows the statistical results of the synthetic max-
imum magnitude, Msy,, determined for all 10 events. The
real magnitudes from Table 5 are given as red markers. Black
circles indicate the mean of Mgy, of 50 realizations using
Eq. (7), whereas blue and green markers indicate the mag-
nitude following the Egs. (8) and (9), respectively. The error
bars represent the standard deviation. We observed that the
statistical parameters computed with TREMOL fit the mag-
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Figure 13. Statistical results of S,_agp for a configuration similar to Fig. 7. The markers indicate mean and standard deviation for 50
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asperity.
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Figure 14. Comparison between the real asperity area Are, and the synthetic values (mean and standard deviation) of the largest ruptured
event Agyn. Black squares depict the real asperity area from Table 5, whereas blue circles indicate the mean area of 50 executions. Red and

green triangles represent the maximum and minimum Agyn.

nitudes shown in Table 5. However, the computed magni-
tudes depend on the scale relation employed (Egs. 7, 8, and
9). Figure 16 includes the mean of the three scale relations.
Overall, the mean magnitude Msyn and the expected magni-
tude M, show similar values. Given that the difference be-
tween the mean and the expected value (Table 5) is lower
than AM, < 0.5 for the 10 events, we can confirm that the

Geosci. Model Dev., 12, 1809-1831, 2019

results of assessing the magnitude by means of TREMOL us-
ing a randomly modified asperity size, Sa—asp (Eq. 17), are
reasonable.

Figure 17 shows the real ratio size S, from Table 5 (black
squares) in comparison to the mean of the largest simulated
earthquake, Ssyn (blue squares). The standard deviation is
represented as error bars. The results indicate that in most of
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Figure 16. Statistical results of the maximum magnitude for the events from Table 5. Red squares represent the magnitudes from Table 5,
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the cases the computed Sgy, range fits the expected S, well.
Note that for events 3, 7, and 8 the mean values are lower than
the reported S,, while Sy, is overestimated for events 2, 5,
and 9. For events 1, 4, 6, and 10 the estimated value of Sgyn
coincides with the expected one. However, the error bars en-
compass the expected values in all cases (Fig. 17). Moreover,
if we compare Fig. 17 with Fig. 11 we observe that the em-
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ployed strategy of randomly increasing asperity size (using
Eq. 17) generates rupture areas similar to the ones proposed
by Rodriguez-Pérez et al. (2018).

We also computed an equivalent rupture duration, Dayal,
using the equation proposed by Geller (1976) to calculate the
rise time (Egs. 13 and 14). Rodriguez-Pérez and Ottemoller
(2013) determined the rupture velocity V; (Ev. 3-8), which is
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Figure 17. Proportion of simulated ruptured area occupied by the largest avalanche, Sgyn, in comparison with the real ratio size Sy from
Table 5. The real ratio size S, from Table 5 is represented by black squares and the mean of the largest simulated earthquake, Sgyn, by blue

squares. The standard deviation is represented as error bars.

a useful parameter in order to validate our results. Figure 18
shows the results of this analysis. In red we plot the values
Vi calculated by Rodriguez-Pérez and Otteméller (2013) and
in blue the Day, based on Eq. (13) with V; provided by Ta-
ble 5. The equivalent D ay, using Egs. (13) and (14) is printed
in black. In cases in which we have the reference values,
Vi, computed by Rodriguez-Pérez and Ottemdller (2013), we
observe that the reference values are always larger than the
modeled Dy, values.

However, it is worth noting that V; is the mean rupture time
that considers the rupture of the whole effective area (Aefr).
For the simulated rupture duration, Daya1, we only consider
the rupture length of the largest rupture cluster Agyy. As a re-
sult, smaller values than those proposed in Rodriguez-Pérez
and Ottemoller (2013) are expected. Nevertheless, the rup-
ture duration shows a clear dependency on the magnitude.

5.2.2 Case study (Oaxaca, M, = 7.4, 20/03/2012)

In the cases in which several effective rupture areas were pro-
posed by different studies (see Table 5), it is possible to as-
sess which set of parameters is better in order to simulate
an event by means of TREMOL. We tested TREMOL by
using three different combinations of Legr, Wegr, and S, ac-
cording to results for Ev. 7 in Table 5. A comparison of these
three combinations is visualized in Fig. 19: panel (a) shows
the comparison of the ruptured areas, Area and Agyy; panel
(b) shows the mean and standard deviation of the maxi-
mum magnitude, Msy,, in comparison to the reference mag-
nitude; and panel (c) shows the ratio Sgy, of the simulated
events compared to S,, the real scenarios. Although the three
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combinations express similar results, the closest approxima-
tion between real and synthetic data is generated based on
Rodriguez-Pérez and Ottemoller (2013) (Ev. 7).

5.2.3 Assessing a future earthquake in the Guerrero
seismic gap: rupture area and magnitude

In Fig. 20a, we compare the mean of maximum ruptured
area, Agyp, including error bars with the reference area, A,.
The rupture area computed in TREMOL shows a possible
range from 4000 to 7000 km?. This interval is based on a
considered size of S; = 0.25. In the subplot of Fig. 20b, we
estimated the duration Dyy, of the rupture event. The results
in Fig. 20b indicate that the duration Dyy, is similar to that
of the other events of magnitude M, = 8. The duration may
range from 80 to 110s, while a rupture duration between 90
and 100 s is most likely. Figure 20c shows the mean of the
estimated magnitude using Eqgs. (7), (8), and (9). TREMOL
outputs a possible range of 8.1 < M, < 8.5, which matches
the proposed value by Singh and Mortera (1991), Astiz et al.
(1987), and Astiz and Kanamori (1984) of M, &~ 8.1 — 8.4.

6 Discussion

6.1 Discussion: parametric study

6.1.1 Percentage of transferred load, m.sp

In the results, there were two dominant tendencies visible:

(1) 7asp < 0.76 and (2) 0.76 < magp. If 7map < 0.76 the mean
of the maximum ruptured area increased continuously more

www.geosci-model-dev.net/12/1809/2019/



M. Monterrubio-Velasco et al.: The stochastic rupture earthquake model TREMOL v0.1 1825

100
® Rodriguez and Ottméller (2013)
n W Vr(Eq.13)
¢ Vr(Eq.14)

80
o

Y 60
=
0

H #

]
5

40
(a]

[ |
u n
n
20
' ‘ u
| } [] .
v ]
1]
Ev.1 Ev.2 Ev.3 Ev.4 Ev.5 Ev.6 Ev.7 Ev.8 Ev.9 Ev.10

Figure 18. Equivalent rupture duration Day,) (s) calculated via the rupture velocity by using the size of the largest rupture cluster. Red
squares represent the reference values proposed by Rodriguez-Pérez and Ottemoller (2013), while blue squares and black circles depict the
synthetic rupture duration computed by means of V; based on Egs. (13) and (14), respectively.

.ﬂ
2
®»

‘‘‘‘‘‘‘‘

,..
g
-
om
me
: N h
N
]
——
e

Magnitude
~
8

Maximum ruptured area [km?]
"
5

Estimated mag,
Eq.(7)
Eq.@)
Eq.9)

"
5
4
m
<
N

Ev.7 Ev.7a Ev.7b Evi7a Ev.7b

(@) ®)

o
®

°
@
—

Ratio of ruptured area
°
e <

°
N

?

Ev.7 Ev.7a Ev.7b

(©

Figure 19. A comparison between the data from Table 5 and the results by TREMOL for events 7, 7a, and 7b. (a) Maximum ruptured area,
Agyn; (b) mean maximum magnitude, Mgyn; (¢) ratio of maximum event size, Ssyn.

to the unstable properties obtained for that range. The sec-
ond tendency, however, offers the possibility to determine a

than 1 order of magnitude from 15 to ~ 500 km?, ie., an
increase of 3333 %. Therefore, the range of m,s is both

crucial and sensitive. A parameter increase of only 15 %
affects the size of the biggest earthquake within the sys-
tem by 3333 %. Considering the large standard deviation of
~ 35km? (100 % error) a parameter configuration based on
Tasp < 0.76 would be unsuitable for further simulations due
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stable conservation parameter that can be freely chosen in
the range of 0.76 < m,sp < 1.0. The stable state of maximum
rupture area is caused by a self-organized critical avalanche
size of Acrit & 500km? based on a grid of 100 x 100 cells
with Aefr = 2944.2km? and S, = 0.26. As soon as Agi; iS
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duration, (c) average of the mean magnitude considering three scale relations in Egs. (7), (8), and (9).

achieved by the system, the largest avalanche will stop in-
creasing in size, whereas other avalanches within the system
will be favored to grow. On the other hand, this means that
TREMOL breaks the asperity in patches rather than com-
pletely during one unique rupture event (see Figs. 4 and 11).
This last condition is reasonable considering that the algo-
rithm of FBM used in TREMOL favors clustering the rupture
of cells. Therefore, it is reasonable that some cells remain
outside of a unique rupture group because they do not sat-
isfy the failure conditions. As a consequence, we think that
it is necessary to define an initial area greater than the ex-
pected area of the asperity where the asperity rupture can oc-
cur. This result also justifies the proposed Eq. (17), wherein
the size of the asperity increases randomly up to 50 % larger
than the value proposed by Rodriguez-Pérez et al. (2018). Fu-
ture studies may be useful to better determine the influence
of Acrit.

The parametric study indicates that the largest rupture 7,
is produced as long as it is within the range 0.76 < ma5p <
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1.0. So even though as m,g, increases, large rupture clusters
are generated because a large amount of load is transferred
to the neighboring cells, thereby producing critical local load
concentrations in the system, the particular lower bound is
critical. In our simulation short-range interactions convert to
long-range processes through the avalanche mechanism in
TREMOL vO0.1. The explicit interaction range is given by the
parameter 7 and the local load sharing rule, since this pro-
duces a load concentration in neighboring cells, promoting
ruptures in a local manner (short range). However, the long
range is also captured in a more implicit way.

As mentioned in Sect. 3.2, the algorithm searches for a cell
to fail that fulfills two different criteria based on the stress
and the strength values of the cells. This property results in
long-range interactions since the randomness of the initial
stress distribution allows cells at large distances to be acti-
vated after a sufficient amount of subsequent steps.

www.geosci-model-dev.net/12/1809/2019/
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6.1.2 Strength parameter, yasp

The parameter y,sp quantifies the “hardness” of the asper-
ity in comparison to the background material. Its value is
given as yasp = Vref & 1. The value yier = 2 indicates that the
strength in the asperity is twice as big as in the background
area. The explored range of yrer (2, 5, 7, 9, 11, 14) is based
on an experimental trial. Figure 12 presents the mean of the
maximum magnitude of an event as a function of y,sp with
two tendencies being visible.

1. There is an unstable transition zone of 2 £ 1 < yuep <
541 where the maximum rupture has a strong variation.
Therefore, a strength value within this range should be
avoided.

2. There is a stable zone of 5+ 1 < yusp < 14 £ 1, where
Yasp can be freely chosen. However, due to computa-
tional costs it is recommended to use the lowest value of
Yasp = J £ 1, since the number of necessary time steps
to activate the whole asperity increases strongly with the
applied asperity strength (see Algorithm 1).

Moreover, as yusp increases the simulation requires a larger
number of iterations to break a cell in the asperity, thus im-
plying a larger computational cost. Our selection (yer = 5)
ensures a “stable” maximum magnitude in the lowest compu-
tational time. Figure 21 visualizes the magnitude, the number
of steps required to activate the whole asperity, and the com-
putational time in seconds for one execution as a function of
Yref. In this sense, we considered a value of yef = 5 to be ad-
equate from a computational point of view and also to ensure
relatively constant values of maximum magnitude.

6.1.3 Asperity size, Sa_asp

The results of Fig. 13 indicate that asperity size has a signif-
icant influence on the maximum magnitude. We emphasize
the importance of these results because they show that the
parameter S, asp is critical to control the generated magni-
tude. At the same time, these results provide the appropriate
range of values that TREMOL requires to do a reasonable
assessment of the maximum rupture area and magnitude of
an earthquake.

6.2 Discussion: model validation

The model validation by means of 10 different subduction
earthquakes showed that TREMOL is capable of repro-
ducing rupture area and magnitude appropriately — by
means of only few input data — in comparison to the results
from inversion studies. The computed rupture duration by
TREMOL differs from the reference values. The reason
may be that the calculation of the rupture duration is based
on the largest (critical) rupture area that is not equal to the
available asperity area (see Figs. 11 and 6.1.1). Nevertheless,
the rupture duration shows a clear dependency on the
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to “activate” the whole asperity for one execution as a function of
Vref-

magnitude. Since TREMOL only requires few input data,
it is a powerful tool to simulate future earthquakes, such
as those that might take place in the Guerrero gap region.
The determination of the magnitude of an earthquake based
on the asperity area depends on the scale relation used. We
considered it more appropriate that the relation used be
related to the tectonic regime to be modeled. For example,
other possible relations to be applied for a subduction
earthquake regimen could be Strasser et al. (2010) and
Blaser et al. (2010). However, if the user wants to include
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another empirical relation it is possible to add it in the script
TREMOL _singlets/postprocessing/calcuMagniSpaceTime
Singlets.jl, such as in the example presented by Wells and
Coppersmith (1994). It is worth mentioning that the relation
proposed by Wells and Coppersmith (1994) was analyzed
as part of our tests. However, we found that the magnitude
values are lower than the ones reported by Egs. (7), (8), and
(9). Blaser et al. (2010) discussed similarities and differences
with Wells and Coppersmith (1994) in detail. Nevertheless,
the rupture area is not model sensitive (Fig. 14), so in order
to compare real data and simulations it is more appropriate
to use the rupture area.

After validating the capability of the model, constraining
the input parameters, and analyzing the results, we consider
the conceptual basis of TREMOL to be expandable to model
other tectonic regimes. For example, the FBM may be ap-
plied to study the rupture process in active fault systems
and its effect on aftershock production. Likewise, a three-
dimensional version can be developed to simulate mainshock
rupture and its aftershocks as reported in Scholz (2018), who
tested a first prototype of a 3-D version.

6.3 TREMOL: advantages and disadvantages

The algorithm of TREMOL enables the model to store stress
history and to simulate static fatigue due to an included
strength parameter y. The vast majority of asperity param-
eters have already been examined in previous inversion stud-
ies and are usually accessible from online databases.

The range of values found in the sensitivity analysis are
not unique for the Mexican examples. In fact, the parameters
7, ¥, and o are generic for any simulation of similar types
of earthquakes. The only information that needs to be de-
fined beforehand for a unique earthquake is the effective area
size and the asperity area, which may come from finite-fault
models.

Dynamic deterministic modeling of aftershock series is
still a challenge due to both the physical complexity and un-
certainties related to the current state of the system. In seis-
micity process simulations the lack of knowledge of some
important features, such as the initial stress distribution or
the strength and material heterogeneities, generates a wide
spectrum of uncertainties. One way to address this issue may
be to consider a simple distribution such as a uniform distri-
bution. We think that the validity of this assumption is given
by the comparison of the simulated results with real data.
It is possible that other distributions might also give simi-
lar results. However, the intention of TREMOL v0.1 is to
propose a model that can be used to assign values to the un-
known properties mentioned before, including different dis-
tributions. Therefore, we encourage users to try other distri-
butions and investigate their effects.

The FBM, on the other hand, produces similar statistical
and fractal characteristics as real earthquake series, and its
parameters can be regarded as analogous to physical vari-
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ables. Likewise, the FBM is able to simulate failure through
static fatigue, creep failure, or delayed rupture (Pradhan and
Chakrabarti, 2003; Moreno et al., 2001).

One disadvantage of TREMOL is that its output is highly
dependent on the input, which is based on information from
kinematic models and therefore contains inherent uncertain-
ties from inversion studies (see Table 5). TREMOL may be
able to compensate for some errors, but how far this possi-
bility can be exploited needs to be investigated in the future.
Further steps in the advance of the model have just started,
which includes the analysis of a machine-learning approach
(Monterrubio-Velasco et al., 2018) that will exploit all the
possibilities of this technique.

There are still issues that will likely be addressed in future
tests, as outlined below.

1. For our validations, we used earthquakes for which a
suitable amount of information is available. How can
the technique be applied to other events for which little
information is available through, for instance, far-field
recordings of seismicity?

2. For our validation study, we used a simplified geome-
try of the real complex asperity geometries. However,
other irregular asperity geometries may be introduced
in future works.

3. The FBM is a pure statistical model and therefore gives
only hints about underlying physical processes. So far, it
does not take into consideration physical effects such as
pore fluid pressure, soil amplification, stress relaxation
of the upper mantle, reactivation of existing faults, vol-
canic activity, and many more. One strength of the FBM
is that an endless number of information layers can be
included into the model that would allow us to include
physical properties and topography as well.

4. As it currently stands, TREMOL is not able to simulate
complete seismic cycles. Rate-and-state friction models
such as by Lapusta et al. (2000) and Lapusta and Rice
(2003) have the ability to reload stress. TREMOL is still
in an early stage of development and thus lacks a reload-
ing feature.

Additional setbacks of TREMOL are that (1) the number of
time steps needs to be adjusted manually for every grid res-
olution and case scenario, and (2) it is based on a sequen-
tial algorithm. In order to save the stress history within every
cell of the system, a consecutive algorithm is necessary that
changes the state of the system with every time step. This
limits the integration of a parallel domain, but a parallel dis-
tributed memory is a good approach to solve the problem
of large domains. As a result high-performance computing
facilities are required when very large grid sizes are used
(Monterrubio-Velasco et al., 2018).

Overall, the results of TREMOL are promising. However,
the results also point out the need for further modifications
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of the algorithm and more intensive studies. Likewise, many
questions are still left to be answered due to the model’s
early development stage. In the very near future, however,
TREMOL may be a true alternative to classical approaches in
seismology. The simple integration of layers of information
makes TREMOL a simple model that can be easily modi-
fied to simulate the most complex scenarios. At the moment,
TREMOL cannot compete with state-of-the-art and widely
accepted rate-and-state friction-based models, but it is a to-
tally different, complementary, and promising approach that
can provide important insights into earthquake physics and
hazard assessment from a completely different perspective.
The development of TREMOL and similar models should
therefore be strongly encouraged and supported.

7 Conclusions

In this study, we present an FBM-based computer code called
the stochasTic Rupture Earthquake MOdeL, TREMOL, in
order to investigate the rupture process of seismic asperities.
We show that the model is capable of reproducing the main
characteristics observed in real scenarios by means of few
input parameters. We carried out a parametric study in order
to determine the optimal values for the three most important
initial input parameters.

— Trasp- as long as the fault plane has a conservation param-
eter of mpry = 0.67, the conservation parameter of the
asperity must be 1,5 > 0.76 to ensure a realistic maxi-
mum rupture area.

— Yasp- the best strength interval for the asperity is 5+ 1 <
Yasp < 14 & 1. However, due to computational costs it
is recommended to use the lowest value of ysp =5+
1, since the number of necessary time steps to activate
the whole asperity increases strongly with the applied
asperity strength (see Algorithm 1).

— Sa_Asp- the generated magnitude can be controlled by
parameter S, Asp. This parameter is dependent on the
earthquake of interest and follows results with data from
inversion studies.

We also carried out a validation study employing 10 subduc-
tion earthquakes that occurred in Mexico. TREMOL proved
that it is able to reproduce those scenarios with an appropri-
ate tolerance.

A big advantage of our algorithm is the low number of
free parameters (Legr, Wegr, and S,) to obtain an appropriate
rupture area and magnitude assessment. Our code TREMOL
allows its users to investigate the role of the initial stress con-
figuration and the material properties over the seismic as-
perity rupture. Both characteristics are key factors for un-
derstanding earthquake dynamics. The strengths of our FBM
model are the simplicity of implementation, the flexibility,
and the capability to model different rupture scenarios (i.e.,
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asperity configurations) with varying mechanical properties
within the asperities and/or background area or fault plane.
Although we simplified the expected complex asperity ge-
ometries, irregular asperity geometries may be introduced
in future works. Another advantage is the analysis of earth-
quake dynamics from the point of view of deformable mate-
rials that break under critical stress. The results of TREMOL
are promising. However, various assumptions and simplifi-
cations require further experiments and modifications of the
algorithm to cover various tectonic settings. Likewise, the
machine-learning application by Monterrubio-Velasco et al.
(2018) needs to be incorporated into the model to determine
the optimal parameter ranges for different fault types and
tectonic regimes. Although many questions are still left to
be answered due to the model’s early development stage,
TREMOL proved to be a powerful tool that can deliver
promising new insights into earthquake triggering processes.
Our future work will investigate complex asperity config-
urations, earthquake doublets, and stress transfer in three-
dimensional domains.

Code availability. The TREMOL code is freely available
at the home page (https://doi.org/10.5281/zenodo.1884981,
Monterrubio-Velasco, 2018b), from its GitHub repository
(https://github.com/monterrubio-velasco), or by request to
the  author  (marisol.monterrubio@bsc.es,  marisolmonter-
rub@gmail.com). In all cases, the code is supplied in a manner
to ease the immediate execution under Linux platforms. User’s
manual documentation is provided in the archive as well.
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