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Abstract. Improving predictive understanding of Earth sys-
tem variability and change requires data–model integration.
Efficient data–model integration for complex models re-
quires surrogate modeling to reduce model evaluation time.
However, building a surrogate of a large-scale Earth system
model (ESM) with many output variables is computation-
ally intensive because it involves a large number of expen-
sive ESM simulations. In this effort, we propose an efficient
surrogate method capable of using a few ESM runs to build
an accurate and fast-to-evaluate surrogate system of model
outputs over large spatial and temporal domains. We first
use singular value decomposition to reduce the output di-
mensions and then use Bayesian optimization techniques to
generate an accurate neural network surrogate model based
on limited ESM simulation samples. Our machine-learning-
based surrogate methods can build and evaluate a large sur-
rogate system of many variables quickly. Thus, whenever
the quantities of interest change, such as a different objec-
tive function, a new site, and a longer simulation time, we
can simply extract the information of interest from the surro-
gate system without rebuilding new surrogates, which signif-
icantly reduces computational efforts. We apply the proposed
method to a regional ecosystem model to approximate the
relationship between eight model parameters and 42 660 car-
bon flux outputs. Results indicate that using only 20 model
simulations, we can build an accurate surrogate system of the
42 660 variables, wherein the consistency between the surro-
gate prediction and actual model simulation is 0.93 and the
mean squared error is 0.02. This highly accurate and fast-to-
evaluate surrogate system will greatly enhance the computa-

tional efficiency of data–model integration to improve pre-
dictions and advance our understanding of the Earth system.

1 Introduction

Improving predictive understanding of Earth system variabil-
ity and change requires data–model integration. For exam-
ple, Bilionis et al. (2015) improved the Community Land
Model (CLM) prediction of crop productivity after model
calibration, Müller et al. (2015) improved the CLM predic-
tion of methane emissions after parameter optimization, and
Fox et al. (2009) and Lu et al. (2017) improved the terrestrial
ecosystem model predictive credibility of carbon fluxes after
uncertainty quantification. However, data–model integration
methods are usually computationally expensive, involving a
large ensemble of model simulations, which prohibits their
application to complex Earth system models (ESMs) with
lengthy simulation time. To reduce computational costs, sur-
rogate modeling is widely used (Razavi et al., 2012; Gong et
al, 2015; Ray et al., 2015; Huang et al., 2016; Lu et al., 2018;
Ricciuto et al., 2018). The surrogate model, which is a set
of mathematical functions, approximates the actual simula-
tion model based on pairs of simulation model input–output
samples and then replaces the simulation model in the data–
model integration. As ESM evaluation is expensive, it is de-
sired to use a limited number of ESM simulation samples to
build an accurate surrogate. As the surrogate model needs to
be calculated many times in data–model integration, it is re-
quired to build a fast-to-evaluate surrogate. In this study, we
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use very few simulation model runs to build an accurate and
quickly evaluated surrogate system of a large-scale problem
based on advanced machine-learning methods.

In Earth system modeling, we usually need to build a sur-
rogate system of many output variables over large spatial and
temporal domains. ESMs tend to be simulated on a regional
or global scale with many grid cells for several years, pro-
ducing a large number of output variables. In addition, ESMs
are used to solve versatile scientific problems, so the quan-
tities of interest (QoIs) often change. Moreover, the devel-
opment of a surrogate requires expensive ESM runs, and a
large number of runs are often needed to capture the complex
model input–output relationship. Therefore, it is reasonable
to build a surrogate system for all possible model outputs to
reduce the efforts of rerunning ESMs for a new surrogate de-
velopment when the QoIs change. In this way, whenever we
simulate the outputs in a new site or for additional sites at a
different time or for a longer period, we can simply extract
the information of interest from the large surrogate system
without spending extra efforts to build new surrogates, which
significantly reduces computational costs.

Building and evaluating a surrogate system of a large num-
ber of model outputs can be very computationally intensive
for almost all the surrogate methods. Polynomials and artifi-
cial neural networks are widely used for surrogate modeling
(Razavi et al., 2012; Viana et al., 2014). Polynomial meth-
ods, such as polynomial regression and radial basis functions,
need to solve polynomial coefficients in the surrogate con-
struction and to calculate matrix multiplications in the sur-
rogate evaluation. Using a pth-order polynomial to approx-
imate a model with d parameters, M = (p+ d)!/(p!d!) co-
efficients need to be solved; i.e., the number of coefficients
increases factorially fast with the parameter size and poly-
nomial order. When d = 40, a second-order polynomial in-
volves 861 coefficients and a third-order polynomial involves
12 341 coefficients. ESMs have many uncertain parameters,
and a high-order polynomial is usually needed to approxi-
mate complex ESMs, which can easily lead to a prohibitive
number of model evaluations, up to∼ 105, necessary to com-
pute the polynomial coefficients. To reduce the computa-
tional costs, some regularization techniques such as Bayesian
compressive sensing have been used (Sargsyan et al., 2014;
Ricciuto et al., 2018). These regularization techniques can
use a few samples to solve a large number of coefficients (i.e.,
an underdetermined system) by iteratively minimizing the L1
norm of the coefficient vector. But they usually perform min-
imization once for one model output, so for a large model
output problem, significant computing effort is required. To
reduce the computing burden in building polynomial-based
surrogates, we need to reduce the output dimensions.

Reducing the model output dimensions also improves
computational efficiency in the evaluation of the polynomial-
based surrogates. For example, evaluating the third-order
polynomial-based surrogate of the model with 40 parameters
and 300 000 outputs for one parameter sample, we need to

calculate two matrix multiplications for which matrix A has
the size [1, M], B has the size [M , Nout], M = 12341, and
Nout = 300000. The surrogate evaluation takes about 90 s
and most time is spent on loading the huge matrix. When
Nout is reduced to 20, the surrogate evaluation is quickly
reduced to less than a second. Note that an ESM can eas-
ily have more than 40 parameters and more than 300 000
model outputs. Even using the most advanced supercomput-
ers with GPUs, the data storage and loading are still a bottle-
neck. Thus, reducing model output dimensions is necessary
for quickly building and evaluating polynomial-based surro-
gates.

Surrogate modeling assisted by a neural network (NN)
also suffers from high computational costs when applied to a
large-scale problem with many QoIs. To approximate a com-
plex ESM with many outputs, a complicated NN with many
wide hidden layers is usually needed to capture the complex
relationship between the model inputs and outputs because
each spatial and temporal output variable is driven by differ-
ent meteorological forcing such as air temperature, humid-
ity, wind speed, precipitation, and radiation. The full con-
nections between nodes in the input layer and the first hid-
den layer, between nodes of the hidden layers, and between
nodes in the last hidden layer and a large number of nodes
on the output layer involve a large number of NN weights
and biases that need to be solved. For the same example dis-
cussed above, to approximate the model with 40 parameters
and 300 000 model outputs, an NN with two hidden layers
and each layer having 100 nodes has over 30 million weights
and biases. Calculation of these weights and biases requires
many samples to train the NN for a good fit. Each training
sample involves one model evaluation. However, ESM sim-
ulation is time consuming, which usually takes several hours
or days and can be up to months or even years. A limited
sample size is not enough to train a deep and wide NN for
convergence, and a simple NN trained by a small sample size
may not capture underlying Earth systems accurately. Thus,
reducing model output dimensions is needed to advance NN-
based surrogate modeling. A small output size reduces the
width of the output layer and also simplifies the relationship
between the model inputs and outputs so that a simple NN
architecture can be appropriate and a small sample size can
be sufficient to accurately train the simple NN. In addition,
a simple NN can also be evaluated fast with small weight
matrix multiplications.

In this work, we propose using singular value decompo-
sition (SVD) to reduce model output dimensions and to im-
prove the computational efficiency of both building and eval-
uating the surrogates. ESM outputs usually show periodic
changes along time and strong correlations between loca-
tions, which promises a fast decay of singular values. So,
we can use a small number of singular value coefficients
to capture a great amount of output information, enabling a
significant output dimension reduction. We use the NN for
surrogate modeling because, compared to polynomial meth-
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ods, NNs have shown less difficulty in fitting highly nonlin-
ear and discontinuous functions that are usually observed in
ESM response surfaces. For example, carbon flux state vari-
ables, such as gross primary productivity (GPP), are strongly
affected by vegetation-related parameters. When the parame-
ter samples cause zero vegetation growth, GPP has zero val-
ues, whereas when the parameter samples cause high vege-
tation growth, GPP has large positive values. This leads to a
discontinuous GPP response surface jumping from zeros to
nonzeros.

NNs can theoretically fit any functions, but their prac-
tical performance strongly depends on the NN’s architec-
tures and hyperparameters. An NN has many hyperparam-
eters such as the number of layers, number of nodes in each
layer, type of activation functions, and learning rate of the
stochastic gradient descent optimization. A slight change in
the hyperparameter value can result in dramatically different
NN performance. Development of a high-performing NN is
time-intensive and usually requires trial-and-error tuning by
machine-learning experts. In this work, we use Bayesian op-
timization techniques to optimize the NN architecture and
hyperparameters to produce an accurate NN model for the
training data. Bayesian optimization searches the hyperpa-
rameter space to iteratively minimize the validation errors of
the NN by balancing exploration and exploitation (Shahriari
et al., 2016). Research has suggested that Bayesian hyperpa-
rameter optimization of NNs is more efficient than manual,
random, or grid search with better overall performance on
test data and less time required for optimization (Bergstra
et al., 2011; Snoek et al., 2012). Bayesian optimization in-
volves a large ensemble of NN fittings, and it is a sequential
model-based optimization; thus, fast training of the NN mod-
els is important. Our proposed SVD method can simplify the
NN architecture to advance the NN training and improve the
Bayesian optimization performance.

In this effort, we propose an SVD-enhanced, Bayesian-
optimized, and NN-based surrogate method and aim to build
an accurate and fast-to-evaluate surrogate system of a large-
scale model using few model runs to improve computa-
tional efficiency in surrogate modeling and thus advance the
data–model integration. We apply the method to a simpli-
fied land model in the Energy Exascale Earth System Model
(sELM) to improve the model predictive capability of car-
bon fluxes. We build a surrogate system of 42 660 model
output variables, which are annual GPPs at 1422 locations
simulated for 30 years. The sELM is a regional-scale ter-
restrial ecosystem model that simulates terrestrial water, en-
ergy, and biogeochemical processes in terrestrial surfaces.
Simulation of sELM is important for improving our under-
standing of ecosystem responses to climate change. How-
ever, sELM requires lengthy times for hydrologic and carbon
cycle equilibration, and these high computational costs limit
the affordable number of simulations in data–model integra-
tion, thus resulting in poor model performance. The proposed
machine-learning-assisted surrogate method makes sophis-

ticated data–model integration computationally feasible and
promises an improvement of the sELM predictions.

The major contributions of this work are the following:
(1) using SVD to reduce model output dimensions to im-
prove computational efficiency in both building and evalu-
ating an accurate surrogate of a large-scale ESM; (2) using
Bayesian optimization techniques to quickly generate an ac-
curate NN-based surrogate; and (3) applying the proposed
method to build a large surrogate system of a regional-scale
ESM to advance data–model integration. To our knowledge,
the method of using SVD to enhance surrogate modeling is
novel and we have not seen the application of Bayesian op-
timization to improve NN-based surrogates in Earth system
modeling.

The paper is organized as follows. In Sect. 2, we first de-
scribe the sELM, the model parameters, and the QoIs we
build surrogates for; following that, we introduce the SVD,
NNs, and Bayesian optimization methods. In Sect. 3, we ap-
ply the methods to the sELM and analyze the surrogate ac-
curacy. In Sect. 4, we discuss strategies to improve surrogate
accuracy and investigate our method’s performance in the ap-
plication of these strategies. In Sect. 5, we end this paper by
drawing our conclusions.

2 Materials and methods

2.1 Description of sELM and related parameters

We developed a simplified version of Energy Exascale Earth
System (E3SM) land model (ELM), or sELM, to simulate
carbon cycle processes relevant for Earth system models in
a computationally efficient framework. This framework al-
lows us to perform large regional ensembles that are compu-
tationally infeasible using offline land surface models such
as ELM. The sELM is a combination of model elements
from the Data Assimilation Linked Ecosystem Carbon model
(DALEC; Williams et al., 2005) and the Community Land
Model version 4.5 (CLM4.5; Oleson and Lawrence, 2013).
The sELM consists of five process-based submodels that
simulate carbon fluxes between five major carbon pools us-
ing 49 overall parameters. Based on previous sensitivity anal-
ysis using ELM (Ricciuto et al., 2018), this study considers
the most sensitive eight parameters associated with four out
of the five submodels. We summarize all five process-based
submodels and their interactions below and in Fig. 1.

The sELM consists of five major submodels: photosynthe-
sis, autotrophic respiration, allocation, deciduous phenology,
and decomposition. Photosynthesis is driven by the aggregate
canopy model (ACM) from the DALEC, which itself is cali-
brated against the soil–plant–atmosphere model (Williams et
al., 2005). ACM predicts GPP as a function of carbon diox-
ide concentration, leaf area index, maximum and minimum
daily temperature, and photosynthetically active radiation.
Here the GPP predicted by ACM is modified by BTRAN,
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Figure 1. Schematic of sELM, with processes shown using blue boxes with dependencies on environmental data; eight uncertain parameter
inputs are listed in orange ovals, and model state variables are indicated by green shapes. Parameters are input to one or more processes as
indicated by blue arrows. Model state variables may be outputs for some processes and input for other processes as indicated by red arrows.

which reduces GPP when soil water is insufficient to support
transpiration. Because sELM does not predict soil moisture,
BTRAN is calculated in a full ELM simulation and is fed
into sELM as an input. ACM shares one parameter, the ratio
of leaf carbon to nitrogen (leaf C : N), with the autotrophic
respiration model and employs an additional parameter, the
specific leaf area at the top of the canopy (slatop).

The remaining four submodules are based on ELM. The
autotrophic respiration model computes the growth and
maintenance respiration components and is controlled by
four parameters, the leaf C : N, the ratio of fine root car-
bon to nitrogen (froot C : N), the base rate of maintenance
respiration (br_mr), and temperature sensitivity for mainte-
nance respiration (q10_mr). The allocation model partitions
carbon to several vegetation carbon pools following those in
ELM: leaves, fine roots, live stem, dead stem, live coarse
roots, and dead coarse roots. In the allocation model, we
only consider one parameter, the ratio of fine root to leaf
allocation (froot_leaf). The deciduous phenology model is
used to predict the timing of budbreak and senescence. It
considers two parameters, the critical day length to initi-
ate autumn senescence (crit_dayl) and the number of accu-
mulated growing degree days needed to initiate spring leaf-
out (crit_onset_gdd). The last submodel is a decomposition
model that simulates heterotrophic respiration and the de-
composition of litter into soil organic matter using the con-
verging trophic cascade framework as in the CLM4.5 (Ole-
son and Lawrence, 2013). Because this study focuses on
plant carbon uptake, no uncertain parameters are considered
in the decomposition model. In sELM, nutrient feedbacks are
not represented explicitly; however, a constant nitrogen lim-

itation factor is included to downregulate photosynthetic up-
take.

The sELM can simulate several carbon state and flux vari-
ables, as shown in Fig. 1 with green shapes. GPP, which rep-
resents the total plant carbon uptake, is considered in this
study. Here we use sELM to predict annual GPP in decidu-
ous forest systems in the eastern region of the United States
for 30 years between 1981 and 2010. The carbon state vari-
ables are spun up to steady state by cycling the GSWP3 in-
put meteorology (Kim, 2017) from 1981–2010 for five cy-
cles, and the sixth cycle is used as the output for our sur-
rogate modeling study. The region of interest covers 1422
land grid cells (locations) as shown in Fig. 2. Given 30 out-
puts at each location (annual values over 30 years), a total
of 42 660 GPP variables are simulated. The model uses one
plant functional type, and phenological drivers such as air
temperature, solar radiation, vapor pressure deficit, and CO2
concentration are used as boundary conditions. One regional
sELM run takes about 24 h on a single processor, which is
much faster than ELM but still computationally too expen-
sive to be directly used in model–data integration studies.
To improve the computational efficiency of generating the
sELM simulation samples to develop the surrogate model,
we use high-performance computing to perform an ensemble
of 2000 sELM model simulations in parallel. The 2000 pa-
rameter input samples are randomly drawn from the param-
eter space defined in Fig. 3. The numerical ranges of these
parameters are designed to reflect their average values and
broad uncertainties associated with the temperate deciduous
forest plant functional type. The output samples are sELM-
simulated GPPs at the 1422 locations for 30 years. In the sur-
rogate modeling, some of the 2000 input–output samples are
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Figure 2. Locations of interest for which we build surrogates of
GPP (g C m−2 d−1) variables; a total of 1422 locations are consid-
ered. The figure shows the sELM-simulated annual GPP based on
one parameter sample.

used for developing the surrogate and some of them are used
to evaluate the surrogate accuracy, as discussed in Sect. 3.

2.2 Efficient surrogate modeling methods

In this section, we introduce our SVD-enhanced, Bayesian-
optimized, and NN-based surrogate methods. We first de-
scribe the SVD for reducing data dimensionality, then intro-
duce the NN techniques for building a surrogate model, and
last depict the Bayesian optimization algorithm for produc-
ing a high-performing NN-based surrogate.

2.2.1 Singular value decomposition for data
compression

We build a surrogate system of model outputs by fitting a
data matrix whose columns are output variables and rows are
output samples. For a model with 100 000 output variables,
the columns of this matrix span a 100 000-dimensional space.
Encoding this matrix on a computer takes quite a lot of mem-
ory and evaluating this matrix takes a large number of calcu-
lations. We are interested in approximating this matrix with
some low-rank matrix but retaining most of its information
to reduce data transfer and accelerate matrix calculation.

Singular value decomposition (SVD) decomposes a ma-
trix A with size m×n into three other matrices: A= USVT ,
where U is an m×m orthogonal matrix, V is an n× n or-
thogonal matrix, and S is an m× n diagonal matrix saving
singular values in descending order on the diagonal. Trun-
cated SVD keeps the K largest singular values and corre-
sponding K column vectors of U and K row vectors of VT

to form Ã= UK SKVT
K . The K-rank matrix Ã has proven

to be the best approximation of A in minimizing the Frobe-
nius norm of the difference between A and Ã under the con-
straint of rank (Ã)=K . In addition, the total of the first K

singular values divided by the sum of all the singular values
is the percentage of information that those singular values
contain (i.e., the percentage of the total variance explained
by those singular values). For example, if we want to keep
90 % of the data information, we just need to compute sums
of K largest singular values until we reach 90 % of the sum
and discard the rest. By dropping all but a few singular val-
ues and then recomputing the approximated matrix, the SVD
technique compresses the data information and reduces data
dimensions. When the matrix A shows strong correlations
between columns (variables), a low-rank matrix Ã can make
a very accurate approximation of A.

In this study, we use SVD to reduce training data di-
mensions. The training data matrix A [m,n] for surrogate
construction contains model output sample information; n

columns are output variables (e.g., the 42 660 temporal and
spatial GPPs in this work) and m rows are the samples of
these variables (e.g., the sELM simulation results of the
42 660 GPPs for the m parameter samples), usually with
n�m for expensive ESMs with many outputs. In imple-
mentation, we first perform truncated SVD to get low-rank
matrices UK [m, K], SK [K, K], and VT

K [K, n] with K � n;
we then use the low-dimensional dataset (VT

KAT )T with re-
duced size m×K as training data to build the surrogate model
of the K largest singular value coefficients. Next, we evaluate
the surrogate model at q new data points to get results Ynew
with size q ×K . Lastly, we transform the predicted values
back to the original size q×n through YnewVT

K to obtain the
surrogate approximation of the n variables at the q new data
points.

2.2.2 Neural networks for surrogate modeling

Artificial neural networks (NNs) consist of fully connected
hierarchical layers with nodes that can be flexibly used for
function approximation (Yegnanarayana, 2009). The first
layer is the input layer and each node in the input layer rep-
resents one model input variable. The last layer is the output
layer and each node in the output layer represents one model
output variable. The layers between input and output layers
are hidden layers that are used to approximate the relation-
ship between model inputs and outputs. When the relation-
ship is complex, a complicated NN with many wide hidden
layers is usually needed. The input layer first assigns model
parameter values to its nodes. Then each node in the first
hidden layer takes multiple weighted inputs, applies the ac-
tivation function to the summation of these inputs, and cal-
culates the node’s value. Next, the second hidden layer takes
the values on the first hidden layer nodes as inputs and calcu-
lates its nodes’ values in the same way. This process moves
forward until we get values of all nodes in the output layer,
i.e., obtaining NN predictions for the given model parameter
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Figure 3. We consider eight uncertain parameter inputs whose ranges are shown as axis limits. The 20 training and 1000 testing data are
randomly drawn from the parameter space.

input values. The nodes in each layer are fully connected to
all the nodes in its previous and subsequent layers. Each of
these connections has an associated weight and bias. A com-
plicated NN results in a large number of weights. By tuning
these weights and biases based on some training data, we
improve the NN approximation of the underlying simulation
model.

NN uses the stochastic gradient descent (SGD) method to
optimize its weights and biases (Bottou, 2012). SGD opti-
mizes variables by minimizing some loss function based on
the function’s gradients to these variables. The loss function
is usually defined as the mean squared error (MSE) between
the NN predictions and model simulations for the same set
of model parameter samples in the training data. SGD iter-
atively updates the optimized variables at the end of each
training epoch. In the process, the learning rate, which spec-
ifies how aggressively the optimization algorithm jumps be-
tween iterations, greatly affects the algorithm’s performance
and has to be tuned. A small learning rate will take a long
time to reach the optimum, causing a slow convergence,
whereas a big learning rate will bounce around the optimum,
causing unstable results and a difficult convergence. Using
SGD to optimize a complex NN with many weights requires

a great amount of computational effort and has difficulty in
convergence. First, many training data are required to tune
a large number of weights. Small training data can easily
cause overfitting; i.e., the NN “perfectly” fits the training data
but performs badly on new data, thus deteriorating the NN
prediction accuracy. In addition, a large number of weights
involves massive matrix calculations in evaluating the loss
function, slowing down the training process. Furthermore, a
complicated NN has difficulty in convergence and can easily
get stuck in local minima. In this work, we use SVD to reduce
the model output dimensions so as to decrease the number of
nodes in the output layer and simplify the NN architecture,
thus reducing the size of the weights, enabling a reasonable
NN training from small training data, and ultimately improv-
ing the computational efficiency.

2.2.3 Bayesian algorithms for NN hyperparameter
optimization

NN involves a lot of hyperparameters that dramatically af-
fect its performance such as the number of layers, the number
of nodes in each layer, and the learning rate of the SGD al-
gorithm. Hyperparameter optimization is needed to produce
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a high-performing NN. This requires optimizing an objec-
tive function f (x) over a tree-structured configuration space
x ∈X, where some leaf variables (e.g., the number of nodes
in the third hidden layer of an NN) are only well defined
when branch variables (e.g., a discrete choice of how many
layers to use) take particular values. In addition, the opti-
mization not only optimizes discrete and continuous vari-
ables, but also simultaneously chooses which variables to op-
timize. When the NN is used for surrogate modeling, the ob-
jective function is the NN accuracy of predicting some val-
idation data. In this case, the f (x) does not have a simple
closed form but can be evaluated at any arbitrary query point
x in the configuration space. For such an optimization prob-
lem, a sequential search method is needed, in addition to in-
efficient grid search and random search approaches (Bergstra
and Bengio, 2012). The sequential search method starts with
some random points in the search space and then iteratively
evaluates new points based on NN predictions of previously
evaluated points. After N evaluations, we choose the optimal
combination of the hyperparameters resulting in the highest
NN prediction accuracy. Among the sequential search algo-
rithms, Bayesian optimization is able to take advantage of
full information provided by the history of the optimization
to improve the search efficiency.

Bayesian optimization first prescribes a prior belief over
the possible objective functions and then sequentially up-
dates this prior distribution to posterior distributions as points
are evaluated via Bayesian posterior updating. The prior and
posterior distributions are the probabilistic model that ap-
proximates the unknown objective function we are optimiz-
ing. With this probabilistic model, we can sequentially in-
duce an acquisition function that leverages the uncertainty in
the posterior to guide exploration of new data points for up-
dating the model. The acquisition function evaluates the util-
ity of candidate points for the next evaluation of f (x), and
therefore the next iteration point xn+1 is selected by maxi-
mizing the acquisition function. As more data information is
incorporated to exploit the objective function, we get closer
to finding the best estimate of the optimizer.

Dependent on the choice of the probabilistic model, we
have different Bayesian optimization algorithms (Shahriari et
al., 2016). The Gaussian process approach, using the Gaus-
sian process as a probabilistic model and expected improve-
ment as an acquisition function, has been widely used for pa-
rameter optimization (Bardenet and Kegl, 2010; Niranjan et
al., 2010). However, this approach has a few disadvantages
when applying it to optimize NN hyperparameters. First, it
does not work well for categorical variables such as the type
of activation functions in NN. Secondly, it selects a new set
of parameter points based on the best evaluation data. How-
ever, NN usually involves randomization during the train-
ing process. So, running NN with the same parameter values
can lead to different performance, which suggests that our
best point could be just lucky output for the specific setting
of randomness. Thirdly, the Gaussian process itself involves

several hyperparameters such as the kernel of the covariance
function; a good choice of these hyperparameters can sig-
nificantly affect the optimization, but the selection of them
is difficult. Lastly, the calculation of the Gaussian process
is rather slow, especially for a large number of parameter
searches (Snoek et al., 2012).

In this work, we use a tree-structured Parzen estimator
(TPE) for NN hyperparameter optimization (Bergstra, et
al., 2013). TPE first performs a few iterations of random
search, and then it divides collected parameter points into
two groups. The first group contains points that give the best
scores after evaluation, which can be the top 10 %–25 % of
all the points, and the second group has all other points. Next,
TPE finds a set of parameters that are more likely to be in the
first group and less likely to be in the second group through
the following steps: (1) estimate the likelihood probability
for each of the two groups based on Parzen window den-
sity estimators (Archambeau et al., 2006); (2) sample a bunch
of candidate points using the likelihood probability from the
first group; and (3) select the point having the largest prob-
ability ratio of being in the first group to the second group
as the next iteration point. Lastly, we continue the searching
until we hit the maximum evaluation and choose the optimal
parameter combination that gives the best NN accuracy on
the validation data.

The TPE algorithm exhibits significant improvement over
classic hyperparameter optimization methods. TPE works
well for all types of NN hyperparameter variables; it consid-
ers a set of top parameters to avoid the influence of NN ran-
domization, its implementation is straightforward and has no
associated hyperparameters for specification, and the calcu-
lation of TPE is computationally fast (Bergstra et al., 2011).

3 Results

In this section, we present the results of building the sur-
rogate system of 42 660 GPP variables for sELM. First, we
demonstrate that our method using SVD can efficiently build
and evaluate a large surrogate system by comparing the re-
sults with and without application of SVD. We then inves-
tigate the influence of NN’s architecture on surrogate per-
formance and show that our method using hyperparameter
optimization can quickly generate an accurate NN. Last, we
evaluate surrogate accuracy on large-scale spatial and tem-
poral GPPs.

We consider three sets of data: the training data for fit-
ting the NN, the validation data to detect overfitting in the
NN training and to select the best-performing NN in the hy-
perparameter optimization, and the test data to evaluate the
NN prediction accuracy. Each dataset contains pairs of pa-
rameters and GPP samples. The parameter samples are ran-
domly drawn from the parameter space defined in Fig. 3. To
assess the effectiveness of our proposed surrogate method for
a small dataset, we consider only 20 training data (Fig. 3).
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The validation data are chosen as 0.3 fractions of the train-
ing data. The NN model will not train on the validation data
but evaluate the loss function on them at the end of each
epoch. In each epoch, the training data are shuffled, and the
validation data are always selected from the last 0.3 frac-
tion. Precisely, we only use 14 samples to tune NN weights.
Attributed to shuffling, these 14 samples can be a different
subset from the 20 training data in each epoch, and thus we
sufficiently explore the limited 20 data for building the sur-
rogates. We use 1000 test data (Fig. 3) to evaluate the NN
prediction accuracy, which makes a reasonable assessment
of our proposed method within an affordable computational
cost. Note that the 1000 test data are not needed for build-
ing the surrogates but are used to demonstrate the effective-
ness and efficiency of our method. When using our method
to build the surrogates of the 42 660 GPPs, only 20 sELM
model simulations are used.

We define the loss function as the mean squared error
(MSE) between the NN predictions and the sELM simula-
tions based on the parameter samples for training. We use
Adam algorithm (Kingma and Ba, 2015) for stochastic opti-
mization of NN and run it for 800 epochs to minimize the loss
function and update NN weights. Adam has been shown as
a superior stochastic optimization algorithm in training NN
(Basu et al., 2018). There is no right answer for the optimal
number of epochs. A small number of epochs could result in
underfitting and a large number of epochs may lead to over-
fitting. Here we consider a large number of epochs and in the
meantime use early stopping to avoid overfitting. During the
training, when there is no improvement of loss functions for
the validation data in 100 epochs, we stop the training and
choose the weights at the epoch resulting in the smallest loss
function of the validation data as the optimal weights and the
associated NN as the best-trained NN under the given setting.

We then use the trained NN to predict the 1000 test data
and compare the predictions with the corresponding sELM
simulation results to evaluate the NN accuracy. We define
two metrics for evaluation: the MSE and the coefficient of
determination. The MSE computes the expected value of the
squared prediction errors; the smaller the MSE value, the
better the prediction. The coefficient of determination, also
called R2 score, measures how well the unobserved data are
likely to be predicted by the NN model. Denoting ŷi as the
NN prediction of the ith sample and yi as the corresponding
sELM simulation, the R2 score estimated over Ns samples is

defined as R2
= 1−

∑Ns
i=1(yi−ŷi )

2∑Ns
i=1(yi−yi )

2
, where y = 1

Ns

∑Ns
i=1yi . The

best possible value of R2 is 1.0, indicating that the NN can
perfectly predict the test data. The R2 score can be negative,
indicating the model is arbitrarily poor. A constant model
gets an R2 score of 0.0. Compared to MSE, the R2 score
considers the variability of the data, which provides a more
reasonable measure.

3.1 SVD reduces data dimensionality and improves
surrogate efficiency

We consider two scenarios when building the surrogate sys-
tem of the 42 660 GPP outputs: Case I involves building the
surrogates of reduced data after SVD, and Case II involves
building the surrogates of all GPPs directly. In Case I, we
first apply SVD to reduce the training data dimensionality,
then build surrogates of the singular value coefficients, and
last transfer the surrogate system back to the original QoIs
(i.e., the 42 660 GPP variables).

The goal of this study is to develop a surrogate method
that builds an accurate surrogate system with small training
data to reduce the computational costs of simulating expen-
sive ESMs. To demonstrate the effectiveness and efficiency
of our method, we compare the surrogate performance of the
two cases in predicting the 1000 test data from two aspects:
(1) for the same number of training data, the predictive ac-
curacy of the two surrogates, and (2) the number of training
data used to achieve similar predictive accuracy.

Figure 4 shows the singular value decay of decomposi-
tion of the training data matrix having 20 samples and 42 660
GPP variables. The figure indicates that the singular values
decay very fast. The first two singular values drop about 1
magnitude, and the first five singular values can capture 97 %
of the information from the training data matrix. To choose a
suitable number of singular value coefficients (Nsvd) to com-
press the training data and build a surrogate for, we consider
a series of Nsvds, where Nsvd = 1, 5, 10, 15, and 20, and in-
vestigate their impact on NN performance. To make a fair
comparison, the same NN architectures are used for all Nsvd
cases. We consider a simple NN with two hidden layers, and
each hidden layer has 10 nodes. Figure 5 shows the predic-
tion performance of the NNs based on the 20 training data.
The figure indicates that with consideration of only one sin-
gular value coefficient, the averaged MSE of the predictions
is about 0.053, and the NN model can fit the sELM simula-
tion data well with the R2 score of 0.83. When five singular
value coefficients are considered, the NN prediction accuracy
improves with the MSE of 0.02 and the R2 score of 0.93.
After Nsvd = 5, the MSE and R2 score have minor changes,
suggesting that for the limited 20 training data, Nsvd = 5 is a
good choice to compress the GPPs and build a surrogate for.
At this time, the surrogate error becomes dominant compared
to the SVD approximation error, and including more than
five singular value coefficients would barely improve the NN
prediction unless more training data are included to reduce
the surrogate error. In the following, we consider Nsvd = 5
in Case I and compare its surrogate prediction performance
with Case II, which builds surrogates for all GPPs directly.

In Case I, our method is able to use 20 training data to
build a highly accurate surrogate of 42 660 GPP variables
with a small MSE of 0.02 and a high R2 score of 0.93. The
detailed NN performance is explained in Fig. 6a, where the
training and validation loss decays in building the surrogates
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Figure 4. Singular value decay and the information contained in
the first largest singular values. The top five singular values contain
97 % of the information from the training data matrix with 42 660
GPP variables and 20 samples.

Figure 5. Performance of the NNs trained by 20 data with consid-
eration of the different number of singular value coefficients after
SVD.

of the five singular value coefficients are plotted. The figure
indicates that the loss functions of the two datasets have sim-
ilar decay, decreasing dramatically at the first 10 epochs and
then slowly decreasing to the end of training. The closely
overlapped two lines in Fig. 6a suggest that the trained NN
captures the relationship between sELM inputs and outputs
pretty well and can give reasonable predictions of GPPs for
a given parameter sample.

To make a fair comparison, we use the same NN architec-
ture in Case II as in Case I except that the output layer of NN
in Case II has all 42 660 GPPs and the output layer in Case I
has only five singular value coefficients. Figure 6b indicates
that the simple NN with 20 hidden nodes is not sophisticated
enough to capture the complex relationship between the eight
inputs and 42 660 outputs. As we can see in Fig. 6b, both
training and validation losses are relatively high, suggesting
an underfitting. The validation loss is always larger than the
training loss, suggesting that the fitted NN does not gener-
alize well and may result in poor performance in predicting
new data. Figure 7 shows R2 scores of Case II in predicting

the 1000 test data. The figure indicates that the simple NN
trained by 20 data in Case II has a very poor prediction accu-
racy with the R2 score of only 0.05, close to a constant model
performance with a zero R2 score. However, with the same
NN trained by the same 20 data, our SVD-based surrogate
method can achieve a high prediction accuracy with the R2

score of 0.93. This demonstrates our method’s capability of
using a few training samples to build an accurate surrogate
model, greatly reducing the computational costs of generat-
ing expensive model simulation data.

On the other hand, the poor performance in Case II sug-
gests that a wider and deeper NN is needed when we con-
sider the large outputs directly. We thus increase the number
of nodes in each hidden layer to 100 and use this complex NN
with a total of 200 hidden nodes to approximate the relation-
ship of the eight inputs and 42 660 outputs in Case II. This
complex NN dramatically increases its number of parame-
ters (including weights and biases) to 4.3 million from 255 in
Case I. To fit this wide NN and calibrate its large parameters,
20 training data are too few to get a reasonable fit. No matter
how we adjust the NN hyperparameters, we cannot get a sta-
ble solution in training. We then increase the number of train-
ing data to 50, and Fig. 6c shows that the increased number of
data greatly decreases the training and validation losses; the
validation loss is slightly higher than the training loss, imply-
ing a good fit. Figure 7 indicates that the complex NN with
200 hidden nodes trained by 50 data in Case II significantly
improves the prediction accuracy with the R2 score of 0.73.
However, Case II’s predictive performance is still worse than
Case I, which has the R2 score of 0.93. We keep increasing
the number of training data (Ntrain) to 100 and 200 in Case II.
Figure 6d and e indicate that the increase in the number of
training data brings the validation loss closer and closer to the
training loss, making the fitted NN represent the underlying
sELM better and better. Figure 7 shows that the nicely fitted
NNs trained by large Ntrains lead to a high prediction accu-
racy. With Ntrain = 100, the R2 score is about 0.89, and with
Ntrain = 200, the R2 score is up to 0.95. However, compared
to Case I using 20 training data to get a predictive R2 score
of 0.93, Case II uses nearly 200 data to get similar accuracy,
increasing the computational costs 10-fold. Note that each
training data point involves one sELM simulation, and one
regional sELM run takes about 24 h on one processor. Thus,
our SVD-based surrogate method greatly improves compu-
tational efficiency in accurate surrogate modeling.

Our method, in the means of simplifying NN architec-
ture through data compression, not only reduces the num-
ber of training data but also decreases the training time. Us-
ing 20 data to train a simple NN with 255 parameters, our
method takes about 4 s. In comparison, the traditional surro-
gate method without data compression requires great effort
in training the complex NN with 4.3 million parameters. As
shown in Fig. 7, Case II takes 270 s to fit the NN based on
50 training data and 967 s for the 200 training data, show-
ing a linear increase in computing time. The long training
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Figure 6. Changes of loss function values along epochs for training and validation data (a) in Case I, which builds surrogates of the five
singular value coefficients with a simple NN (two hidden layers; each layer has 10 nodes, N1 =N2 = 10) based on 20 training data (Ntrain =
20), and (b–e) in Case II, which builds surrogates of all outputs with different NN architectures and different training data size.

Figure 7. Comparison of NN performance between Case I (building
surrogates of five singular value coefficients after SVD based on
20 training data; Nsvd = 5; red dashed line) and Case II (building
surrogates for all outputs directly with different numbers of training
data; red solid line). Each training data point represents one sELM
simulation. The right y axis shows the time in training the NN in
Case II. The time for training the NN in Case I is 4 s.

time leads to high computational costs in NN hyperparame-
ter optimization for which a massive amount of NN training
is involved in searching the wide hyperparameter space for a
high-performing NN model, as discussed in Sect. 3.2.

3.2 NN’s hyperparameter optimization improves
surrogate accuracy

NN has a large number of hyperparameters. Here we adjust
five hyperparameters and use Case I to investigate their
influence on surrogate prediction accuracy. The five hyper-
parameters are the following: the number of hidden layers
(L) for which we consider the three most hidden layers; the
number of nodes in hidden layer 1 (N1), in hidden layer 2
(N2), and in hidden layer 3 (N3); and the learning rate (lr) of
the Adam optimization algorithm. We consider the following
choices: L= {2,3}, N1 = {10,20,40,60,80,100}, N2 =

{10,20,40,60,80,100}, N3 = {0,10,20,40,60,80,100},
and lr= U [0.001,0.1]. The first four hyperparameters are
discrete variables and the last one, lr, is a continuous variable
with uniform distribution. The choice of L determines the
selection of N3, showing a tree-like structure. We use a
tree-structured Parzen estimator (TPE) to search the five-
hyperparameter space and find a set of values that gives the
best-performing NN. We fix the activation function as ReLU
(Agarap, 2018), which has been widely used and shown to
produce good NN predictions.

We use TPE to evaluate 100 sets of hyperparameters and
the one giving the best validation score, i.e., the smallest
MSE on validation data, is chosen as the optimal hyperpa-
rameter. Results indicate that the combination of N1 = 10,
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Figure 8. Different sets of NN hyperparameters result in different R2 scores in evaluating the 1000 test data. Nl is the number of nodes in
hidden layer l, where l = 1, 2, and 3; lr is the learning rate of the Adam algorithm for NN weight optimization.

N2 = 10, N3 = 0, and lr= 0.08 gives the best validation
score. To investigate the impact of hyperparameters on NN
prediction accuracy, we show the 100 sets of hyperparame-
ters and their resulting R2 scores in predicting the 1000 test
data in Fig. 8. The figure indicates that different hyperparam-
eter values result in dramatically different NN performance.
The prediction R2 scores range from 0.66 to 0.93, and 32
hyperparameter sets have R2 scores over 0.90. The selected
optimal NN producing the smallest MSE on the validation
data also gives the best prediction performance on the test
data with the R2 score of 0.93. It is desired that the best NN
model chosen by validation data gives the best predictions;
however, in practice it is not always the case, especially when
the prediction data deviate a lot from the validation data. Ex-
trapolation is always a difficulty in surrogate modeling, and
research is ongoing to improve extrapolation accuracy.

Although NNs perform significantly different with a dif-
ferent combination of hyperparameters, the TPE algorithm
can efficiently find high-performing NNs based on previous
sample information. As shown in Fig. 8, good-performing
NNs prefer simple architectures with two hidden layers; e.g.,
most blue lines have N3 of 0. After TPE finds a good archi-
tecture of N1 = 10 and N2 = 10, it samples around this archi-
tecture in the hyperparameter space to fine tune the learning
rate until it finds the most suitable lr of 0.08. This work con-
siders five hyperparameters with limited choices; increasing
the dimensions and possible choices of the hyperparameters
would make the search more thorough and could produce a
better-performing NN. Our surrogate method with SVD can
accelerate the optimization process by reducing the NN train-
ing time.

3.3 Evaluation of surrogate accuracy on large-scale
spatial and temporal data

Using only 20 expensive sELM runs, we quickly build an
accurate surrogate system of 42 660 GPPs at 1422 locations
for 30 years. Therefore, for a data–model integration prob-
lem with QoIs within given spatial and temporal ranges, we
can directly extract the information of interest from the surro-
gate system to advance the analysis. The best-performing NN
generated from our method gives an overall accurate predic-
tion of the 42 660 GPPs with averaged MSE of 0.02 and R2

scores of 0.93. When using the subset of the surrogate system
for data–model integration studies, it is desired to analyze the
surrogate accuracy at individual locations for specific times.

Figure 9 shows averaged R2 scores over 30 years at 1422
locations. The figure indicates that the surrogate accuracy is
not uniformly good for all the locations. We observe that
most locations have R2 scores above 0.9, with the best R2

score of 0.96, and about 100 locations have R2 scores below
0.90 with the smallest R2 score of 0.79. We highlight the lo-
cations having zero GPP simulations in blue circles and find
that these locations generally have poor predictions with low
R2 scores. Referring to Fig. 2, where we label the locations
column-wise from south to north and from west to east, we
identify the locations with zero GPPs as mostly located in
the north where the temperature is relatively low and annual
GPPs tend to be zero for parameter samples.

We pick three locations to closely evaluate the surrogate
accuracy (Fig. 9). Location 1046 has the best prediction with
the highest R2 score, location 1345 has the worst prediction
accuracy, and location 428 performs best among the loca-
tions with zero GPP simulations. Figure 10 shows annual
GPP simulations based on sELM and the NN-based surro-
gate in evaluating the 1000 test data for 30 years at the three
locations. It can be seen that NN has difficulty fitting zero
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Figure 9. Averaged R2 scores over 30 years at 1422 locations in evaluating the 1000 test data based on 20 training samples; the blue circles
identify the locations having zero GPP simulations.

Figure 10. Simulations of annual GPPs (g C m−2 d−1) from sELM and the NN-based surrogate model in evaluating 1000 test data for
30 years at three locations, with the NN trained by 20 data using our method.

GPP data. At location 1046 where the annual GPPs are rela-
tively high with positive values, NN produces a great fit with
a high R2 score of 0.96 and a small MSE of 0.013. Location
1046 (Fig. 2) is close to the lake where the variance in atmo-
spheric drivers (e.g., temperature) is moderated. This reduced
variance leads to a smooth response surface of GPP for which
NN can easily build an accurate surrogate. In contrast, loca-
tion 1345 has a large number of simulated GPPs less than 1.0,
including many zero GPPs. NN shows difficulty in predicting
these small GPPs, resulting in a relatively poor performance
with the R2 score of 0.79. Location 1345 is in the north and
has the lowest mean annual temperature, so most parameter
samples cause low vegetation growth and small GPP values.
Moreover, location 1345 is far away from the lakes and has a
large variation in atmospheric drivers. Since this location has
a climate that is at the extreme end of the range for decidu-
ous forests, the model response is expected and reasonable.
However, this leads to a strong nonlinear response surface
that leads to difficulty in surrogate modeling. In comparison,
although location 428 is in the north with some small GPPs
including zero values, it is also close to the lake, which has a

small variance in atmospheric drivers. Thus, the NN predic-
tion performance in location 428 is not bad with the R2 score
of 0.91.

Figure 11 plots the averaged R2 scores over all locations
for 30 years. The R2 scores have small fluctuations between
0.93 and 0.94, displaying a uniformly good fit among the
simulated years. So, when using the surrogate model at any
specific year for a data–model analysis, we should be able
to obtain a good approximation. In this study, we are con-
sidering annual GPPs. Although the variation of atmospheric
drivers between years has an impact on surrogate accuracy,
its influence is less strong compared to monthly GPPs, so a
uniformly good fit among years is expected.

Building a surrogate of the discontinuous response sur-
face, e.g., vegetation turns from alive to dead as the GPP
jumps from nonzero to zero, is a difficulty for almost all
the state-of-the-art surrogate methods. Research has shown
that NNs, because of their layered architecture and nonlin-
ear activation function, can show a better performance com-
pared to other surrogate approaches (Luo and Lu, 2014;
Razavi et al., 2012). To improve the surrogate accuracy for
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Figure 11. Averaged R2 scores over 1422 locations at 30 years in
evaluating the 1000 test data.

strong nonlinear and discontinuous problems, one strategy is
using physics-informed domain decomposition methods to
build surrogate models separately in different response sur-
face regimes. This strategy requires the surrogate methods
to be strongly connected to the simulation model, and the
methods are generally problem-specific, requiring expert in-
teraction. Another strategy is increasing the number of train-
ing data to explore complex problems. This strategy requires
an increase in computational costs for expensive model sim-
ulations. In the following Sect. 4, we investigate these two
strategies and discuss their influence on surrogate accuracy.

4 Discussion

ESMs are complex, with response surfaces that always dis-
play strong nonlinearity and discontinuity, creating a chal-
lenge for surrogate modeling. In this section, we consider the
strategies of physics-informed learning and an increase in the
number of training data to improve surrogate accuracy. We
conduct two corresponding experiments to investigate our
method’s performance in the application of these two strate-
gies. In experiment I, we divide the parameter space into two
parts, producing zero GPPs and nonzero GPPs, and we use
20 training data to build surrogates of the 42 660 GPPs in the
regime, generating nonzero GPP samples. In experiment II,
we build the surrogates of the 42 660 GPPs in the original
parameter domain (Fig. 3) but with an increasing number of
training data (200 and 1000).

We use the results of Case I as a baseline to investigate
our method’s performance in the two experiments. Figure 12
shows averaged R2 scores over 30 years at the 1422 locations
in experiment I. The figure indicates that without zero GPPs
our method can produce a very accurate surrogate at all lo-
cations with a uniformly high R2 score of 0.98. Building the
surrogates in the subdomain without zero GPPs not only sig-
nificantly improves the prediction accuracy in locations orig-
inally having a poor fit in Case I, but also further improves
the prediction accuracy in locations that already have a good
fit in Case I. For example, the R2 score is dramatically im-

Figure 12. Averaged R2 scores over 30 years at 1422 locations in
evaluating the 1000 test data based on 20 training data in experi-
ment I in which the samples are generated in a subdomain of the
parameter space without zero GPP simulations. The averaged R2

score is 0.98.

proved from 0.79 to 0.97 at location 1345, from 0.96 to 0.99
at location 1046, and from 0.91 to 0.98 at location 428. As
shown in Fig. 13, the NN almost perfectly reproduces sELM
simulations at these three locations. Experiment I indicates
that physics-informed domain decomposition can be a good
strategy to improve surrogate accuracy. For smooth problems
(e.g., no sharp jumps from nonzeros to zeros in response sur-
faces), our method can build a very accurate surrogate model
based on a few training data.

Figure 14 shows averaged R2 scores over 30 years at 1422
locations based on 200 and 1000 training data in experi-
ment II. The figure indicates that an increase in the num-
ber of training data greatly enhances NN prediction accuracy.
Adding 10-fold additional data from Ntrain = 20 to Ntrain =

200, the overall R2 score improves from 0.93 to 0.98; fur-
ther increasing Ntrain to 1000, the averaged R2 score is up to
0.993 with the worst value of 0.96. Although we observe sim-
ilar nonuniform performance among locations in Fig. 14 as in
Fig. 9, where the locations with zero GPPs have smaller R2

scores than others, increasing Ntrain significantly improves
the accuracy at all locations, especially those originally hav-
ing poor fits in Case I. For example, when Ntrain = 200, most
blue-circled locations have R2 scores above 0.95, and for
Ntrain = 1000, the R2 scores at these blue-circled locations
are above 0.985 in comparison to the values below 0.9 when
Ntrain = 20. In the examination of the three individual loca-
tions by comparing Figs. 10 and 15, we see that at location of
1046, an increase in Ntrain enables the NN to perfectly predict
sELM simulations with negligible MSEs. Even for location
428 with zero GPPs, more training data can capture the dis-
continuous behavior better with R2 score of 0.99 and MSE of
0.003 when Ntrain = 1000. The worst location is at 1345 for
all cases due to its highly changed atmospheric drivers. Even
so, the increase in Ntrain can still dramatically enhance the
NN’s capability to simulate the difficult response surface. Ex-
periment II indicates that increasing the number training data
is able to significantly improve the surrogate accuracy. Our
method scales well with the increase in the number of train-
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Figure 13. Simulations of annual GPPs (g C m−2 d−1) from sELM and the NN-based surrogate model in evaluating 1000 test data for
30 years at three locations in experiment I in which the samples are generated in a subdomain of the parameter space without zero GPP
simulations.

Figure 14. Averaged R2 scores over 30 years at 1422 locations in evaluating the 1000 test data based on 200 and 1000 training samples; the
blue circles identify the locations having zero GPP simulations.

ing data and greatly improves prediction accuracy as Ntrain
increases.

The analysis of the two experiments suggests that our
method is data-efficient for continuous problems. To improve
the surrogate accuracy in discontinuous and highly nonlinear
problems, we can use the physical-informed domain decom-
position to focus on the continuous and smooth regions of the
response surface. If the discontinuity is the inherent feature

of the underlying function for which we need a surrogate,
an increase in the number of training data would be a good
solution for surrogate accuracy improvement.

Building a surrogate system of many GPP variables over
large spatial and temporal domains provides great flexibility
and the possibility for subsequent predictive analytics tasks.
For example, the surrogate model can be used for analyz-
ing sensitivities of model parameters to any set of spatial
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Figure 15. Simulations of annual GPPs (g C m−2 d−1) from sELM and the NN-based surrogate model in evaluating 1000 test data for
30 years at three locations, with the NN trained by 200 and 1000 data.

and temporal GPP variables, as well as for parameter opti-
mization and uncertainty quantification based on single-site,
multiple-site, single-year, or multiple-year GPP observations
using any defined objective functions. In addition, with the
newly collected observations from additional sites or further
time periods, we can use the same surrogate system for anal-
ysis as long as the QoIs are within the surrogate simulation
ranges. In a future study, we will pursue data–model integra-
tion using the constructed surrogate system.

5 Conclusions

In this work, we develop an SVD-enhanced, Bayesian-
optimized, and NN-based surrogate method to improve the
computational efficiency of large-scale surrogate modeling
to advance model–data integration studies in Earth system
model simulations. Our method is data-efficient in that only
20 model simulations are needed to build an accurate sur-
rogate system. This is a promising result because large Earth
system model ensembles are always computationally infeasi-
ble, and 20 is a reasonable and affordable number of simula-
tions to consider. In addition, our method is general purpose
and can be efficiently applied to a wide range of Earth sys-
tem problems with different spatial scales (local, regional, or
global) for different simulation periods. It is supereffective

for smooth problems and scaled well for highly nonlinear
and discontinuous problems.

We apply our surrogate method to a regional ecosystem
model. The results indicate that using only 20 model runs,
we can build an accurate surrogate system of 42 660 spatially
and temporally varied GPPs with the R2 score of 0.93 and
MSE of 0.02. For locations with robust vegetation growth
across the ensemble, our method can almost perfectly pre-
dict the model simulations with the R2 score of 0.96. For
locations with low vegetation growth for some parameter
samples and large variation in atmospheric drivers that cause
discontinuous response surfaces, using physics-informed do-
main decomposition or an increase in the number training
samples, our method can produce accurate predictions with
the R2 scores of 0.97 and 0.96, respectively. This applica-
tion demonstrates our method’s capability to accurately re-
produce expensive model simulations based on a few parallel
model runs.

Code availability. The sELM is presented in its 1.0 version,
which is realized in the Python language. It is an open-source
computer code that can be accessed freely from https://github.
com/dmricciuto/OSCM_SciDAC/tree/master/models/simple_ELM
(Ricciuto, 2019). The source code for surrogate modeling using
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machine-learning techniques can be provided upon request via
lud1@ornl.gov.
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