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Abstract. Demeter is a community spatial downscaling
model that disaggregates land use and land cover changes
projected by integrated human–Earth system models. Deme-
ter has not been intensively calibrated, and we still lack good
knowledge about its sensitivity to key parameters and param-
eter uncertainties. We used long-term global satellite-based
land cover records to calibrate key Demeter parameters. The
results identified the optimal parameter values and showed
that the parameterization substantially improved the model’s
performance. The parameters of intensification ratio and se-
lection threshold were the most sensitive and needed to be
carefully tuned, especially for regional applications. Further,
small parameter uncertainties after calibration can be inflated
when propagated into future scenarios, suggesting that users
should consider the parameterization equifinality to better ac-
count for the uncertainties in Demeter-downscaled products.
Our study provides a key reference for Demeter users and
ultimately contributes to reducing the uncertainties in Earth
system model simulations.

1 Introduction

Land use and land cover change (LULCC) represents one of
the most important human impacts on the Earth system (Hib-
bard et al., 2017). Besides its socioeconomic effects, LULCC
is directly linked to many natural land surface processes,
such as land surface energy balance and the carbon and wa-
ter cycle (e.g., Piao et al., 2007; Law et al., 2018; Sleeter et

al., 2018; Pongratz et al., 2006), and indirectly affects the cli-
mate system (e.g., Dickinson and Kennedy, 1992; Findell et
al., 2017; Costa and Foley, 2000). Thus, LULCC has been
considered a key process in simulating Earth system dynam-
ics, and LULCC inputs at appropriate time steps and spatial
resolutions are required to match the setup of Earth system
models (ESMs) and the nature of the spatial heterogeneity
of Earth system processes (Brovkin et al., 2013; Lawrence et
al., 2016; Prestele et al., 2017).

While recent historical LULCC information can be ob-
tained by ground investigation or satellite remote sensing
(Friedl et al., 2002; Hansen et al., 2000; Loveland et al.,
2000; Zhang et al., 2003), projections of future LULCC
largely rely on mathematical models that bring socioeco-
nomic and other diverse sectoral information together in a
coherent framework to simulate the interactions between nat-
ural and human systems. However, these integrated models
project LULCC at subregional level, i.e., the basic spatial
units that have uniform properties for every sector (e.g., agri-
cultural, energy, and water, etc.), typically ranging from a few
hundred to millions of square kilometers (Edmonds et al.,
2012). For example, the Global Change Assessment Model
(GCAM) has been widely used to explore future societal and
environmental scenarios under different climate mitigation
policies, which provides LULCC projections at the regional–
agroecological or water basin level (Edmonds et al., 1997;
Edmonds and Reilly, 1985; Kim et al., 2006). ESMs divide
the Earth’s surface into a number of grid cells and the forc-
ing data have to be available at the same spatial resolution
to drive the ESMs (Taylor et al., 2012). Therefore, spatial
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downscaling of subregional LULCC has become a critical
step for linking models like GCAM and ESMs to investigate
the effects of LULCC on processes in the natural world and
further the interactions between human and natural systems
(Hibbard and Janetos, 2013; Lawrence et al., 2012).

There have been a few spatial disaggregation studies
for LULCC, e.g., the Global Land Use Model (Hurtt et
al., 2011) and a dynamic global land use model (Meiyap-
pan et al., 2014), with various geographical and socioe-
conomic assumptions. In previous studies, we have de-
veloped a new simple and efficient LULCC downscal-
ing model, named Demeter (version 1.0.0), to bridge
GCAM and ESMs (Le Page et al., 2016; Vernon et al.,
2018; West et al., 2014) and made it available online at
https://doi.org/10.5281/zenodo.1214342. Compared to other
models, Demeter makes minimal assumptions on socioeco-
nomic impacts. Instead, it uses a few parameters to implic-
itly characterize the spatial patterns of land use changes (see
introductions in Sect. 2.1). Demeter has been successfully
applied at both global (Le Page et al., 2016) and regional
(West et al., 2014) levels for downscaling GCAM-projected
land use and land cover changes and has been further de-
veloped with an extensible output module that streamlines
the production of specific output formats required by various
ESMs (Vernon et al., 2018). However, Demeter’s parame-
ters (discussed in Sect. 2.1), which include many geographic
patterns of long-term land cover changes such as intensifica-
tion and expansion, are difficult to determine by either liter-
ature review or simple mathematical calculations. Therefore,
Demeter’s parameter values were empirically determined,
and a complete analysis of Demeter’s parametric sensitivity
and uncertainties, as well as a rigorous model calibration,
has not been conducted to help minimize the propagation
of downscaling errors. In recent years, a growing number
of long-term global remote-sensing-based LULCC datasets
have been made available (e.g., the Land Cover project of
the European Space Agency (ESA) Climate Change Initia-
tive, MODIS Land Cover product collection 6), so it has
become possible to use these datasets to calibrate Demeter
parameters. The major objective of this study is to develop
a framework for calibrating the key parameters of Demeter,
testing and quantifying the parameter sensitivities and uncer-
tainties, and demonstrating how the parameter uncertainties
would affect downscaled products.

2 Method

2.1 Demeter

Demeter is a land use and land cover change downscaling
model, which is designed to disaggregate projections of land
allocations generated by GCAM and other models. For ex-
ample, GCAM projects land cover areas in each of its spatial
units (e.g., regional agroecological zones, referred to here as

regional AEZs) for each land cover type, and Demeter uses
gridded observational land cover data (e.g., satellite-based
land cover product) as the reference spatial distribution for
land cover types and allocates the GCAM-projected land area
changes to grid level at a target spatial resolution, following
some user-defined rules and spatial constraints (Fig. S1). Be-
low we briefly summarize the key processes of Demeter, and
the detailed algorithms can be found in three earlier publica-
tions (Le Page et al., 2016; Vernon et al., 2018; West et al.,
2014).

Demeter first reconciles the land cover classes defined in
the parent model and the reference dataset to user-defined
unified final land types (FLTs). Downscaled land cover types
will be presented in FLTs. For example, if Demeter reclas-
sifies the 22 GCAM land cover types and the 16 Interna-
tional Geosphere–Biosphere Programme (IGBP) land cover
types from the reference dataset into seven FLTs (forest,
shrub, grass, crops, urban, and sparse), the seven FLTs will
be the land types represented in Demeter’s outputs by de-
fault. Demeter then harmonizes the GCAM-projected land
cover areas and the reference dataset at the first time step
(or “base year”) to make sure they are consistent with the
GCAM spatial units and allocates the projected land cover
changes by intensification and extensification. Intensification
is the process of increasing a particular land cover in a grid
cell in which it already exists, while extensification creates
new land cover in grid cells in which it does not yet ex-
ist but is in proximity to an existing allocation. The order
of transitions among land cover types is defined by “tran-
sition priorities” during the processes of intensification and
extensification. A parameter (r , from 0 to 1) is defined as
the ratio of intensification, and thus 1− r of the land cover
change is for extensification. Proximal relationships are de-
fined by spatial constraints that determine the probability that
a grid cell may contain a particular land use or land cover
class. The current Demeter setup includes three spatial con-
straints: kernel density (KD), soil workability (SW), and nu-
trient availability (NA). KD measures the probability density
of a land cover type around a given grid cell, and SW and NA
are normalized scalars (0–1) for agricultural suitability. For
each land cover type and grid cell, KD is calculated by the
spatial distance (D) at the runtime, and SW and NA are es-
timated from the Harmonized World Soil Database (HWSD,
FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). A suitability index
(SI) from 0 to 1 is defined as the weighted average of the
three spatial constraints to assess how suitable a grid cell is
to receive a land cover type:

SI= (wK×KD+wS×SW+wN×NA)/(wK+wS+wN), (1)

where wK, wS, and wN are the weights for KD, SW, and NA,
respectively, and the sum of them is 1. In the process of ex-
tensification, Demeter ranks candidate grid cells based on
their suitability indices and selects the most suitable candi-
date grid cells following a user-defined threshold percentage
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(τ ) for extensification. In other words, τ determines the num-
ber of grid cells to be selected and used for the tentative and
actual conversion of land cover types.

2.2 Calibrate Demeter with historical land cover
record and sensitivity analysis

As indicated above, users should define a few parameters,
including the treatment order, the transition priorities for al-
locating the land cover changes, the intensification ratio r ,
the selection threshold τ , the radius for calculating kernel
density D, and weights for the spatial constraints (wK, wS,
and wN), in order to use Demeter for downscaling projected
land cover change. These parameters were determined em-
pirically in previous studies. Here we calibrated these pa-
rameters for Demeter using a time series of global land
cover records from the Land Cover project of the Euro-
pean Space Agency Climate Change Initiative (referred to
as CCI-LC products hereafter). The CCI-LC products have
been generated by critically revisiting all algorithms required
for the generation of a global land cover product from var-
ious Earth observation (EO) instruments, thus providing a
globally consistent land cover record over 2 decades (1992–
2015). The CCI-LC products are available at 300 m spa-
tial resolution with an annual time step and classify the
global land cover into 38 groups. We reclassified the CCI-
LC products into the seven default FLTs (Table S1) and re-
sampled them into 0.25◦ resolution with the official software
tools, following the description of CCI-LC products in the
user guide (http://maps.elie.ucl.ac.be/CCI/viewer/download/
ESACCI-LC-Ph2-PUGv2_2.0.pdf, last access: 18 April
2019). Figure 1 shows large interannual global changes for
the seven FLT areas, especially for the forests and croplands,
which have decreased and increased over 0.6 million km2

over the past 2 decades, respectively. We used the gridded
0.25◦ CCI-LC over the 24-year period as observational data
(below referred to “LC-grid-obs”) and aggregated them into
GCAM’s regional AEZ level to produce a synthetic GCAM-
projected land cover change (below referred to “LC-AEZ-
syn”). In this way, we can apply Demeter to LC-AEZ-syn to
calibrate Demeter with the LC-grid-obs by tuning the param-
eters of Demeter.

A preliminary sensitivity analysis of Demeter indicated
that the downscaled results are less sensitive to treatment
order and transition priorities (Le Page et al., 2016), and
thus we used the default treatment order, i.e., from least to
greatest: urban, snow, sparse, crops, forest, grass, shrub. We
decided the transition priorities by sorting the probabilities
of transitioning one FLT to another based on the 24-year
CCI-LC record (Table 1). To calibrate the other six param-
eters (r , τ , wK, wS, wN, and D), we sampled their values at
equal intervals (Table 2) and generated all possible combi-
nations (23 100 in total) for a Monte Carlo ensemble Deme-
ter downscaling experiment using LC-AEZ-syn as the input.
The Monte Carlo experiment generated 23 100 sets of down-

Figure 1. Interannual changes in global final land type (FLT) areas
over 1992–2015 relative to 1992, as indicated by the ESA CCI-LC
product.

scaled 0.25◦ global land use and land cover areas, which were
compared against LC-grid-obs to calculate their similarities
to the observational data, ranked by their discrepancies from
the least to greatest to determine the likelihood of the pa-
rameters. We calculated the discrepancies as the root mean
square error (Ey) between the downscaled and observed land
cover areas for each year,

Ey =

√√√√ 1
G

1
L

G∑
g

L∑
l

(
Ady,l,g −Aoy,l,g

)2
, (2)

and the average of the discrepancies over the years (E):

E =
1
Y

Y∑
y

Ey, (3)

where g is the index for G grid cells over the globe
(G= 265 852), l is the index for the L FLTs (L= 8), and
y is the index for Y years. We chose 1992, 2000, 2005, 2010,
and 2015 to be consistent with the GCAM time steps, and
thus Y = 5. Ady,l,g and Aoy,l,g are the downscaled and ob-
servational land cover areas for grid cell g, FLT l, and year
y. The unit for Ey and E is km2.

To test the model sensitivity to these key parameters,
we conducted a sensitivity analysis using the results from
the Monte Carlo experiment. The first-order and total-order
Sobol sensitivity indices were used to identify the model sen-
sitivity to each of the six parameters (Saltelli et al., 2004). Let
θi denote the ith parameter (i = 1, . . .,n, here n= 6), and ε
is the model outputs (i.e., the discrepancies between down-
scaled and observed land cover areas); the first-order Sobol
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Table 1. Transition priorities by analyzing the 24-year global land cover records from the Land Cover CCI project of the European Space
Agency Climate Change Initiative. The rows and columns represent the origins and destinations of the transitions, respectively. The smaller
numbers indicate higher transition priorities.

Final land types (origins) Final land types (destinations)

Forest Shrub Grass Crops Urban Snow Sparse

Forest 0 2 3 1 4 5 6
Shrub 2 0 3 1 4 5 6
Grass 1 2 0 3 5 6 4
Crops 2 3 1 0 5 6 4
Urban 1 4 3 2 0 6 5
Snow 2 3 4 1 5 0 6
Sparse 2 3 4 1 5 6 0

index (Si) is defined as

Si =
Var[E(ε|θi)]

Var(ε)
. (4)

Here Var and E are the statistical variance and expectation.
And the total-order Sobol index (ST,i) is defined as the sum
of sensitivity indices at any order involved parameter θi ,
where Si,j,k,...,n denotes the nth-order sensitivity index.

ST,i = Si +

n∑
j=1,j 6=i

Si,j +

n∑
j,k=1,j,k 6=i

Si,j,k (5)

+ . . .+

n∑
j,k,...,n=1,j,k,...,n6=i

Si,j ...,n

The first-order Sobol index represents the contribution to the
output variance of the main effect of θi , and therefore it mea-
sures the effect of varying θi alone; the total-order Sobol in-
dex measures the contribution to output variance of θi and
includes all variance caused by its interactions with other
parameters. Larger Sobol indices indicate higher parameter
sensitivities.

2.3 Propagate the parameter uncertainties to GCAM
LULCC downscaling

We selected parameter combinations that produced the
smallest 5 % and 10 % of E values based on their rankings
from the Monte Carlo experiment and used them as “ac-
ceptable” parameters to represent the parameter uncertainties
after calibration (Fig. 2). We used Demeter with these pa-
rameters to downscale the GCAM-projected LULCC at a 5-
year time step from 2005 to 2100 under a reference scenario
to examine the uncertainties of land cover areas for each
FLT to demonstrate how different downscaled LULCC can
be induced by uncertain parameters. The reference scenario
is a business-as-usual case with no explicit climate mitiga-
tion efforts that reaches a high radiative forcing level of over
7 W m−2 in 2100. We only saved the downscaling results in
2005, 2010, 2050, and 2100 considering the size of the output

files and computational cost. Finally, we calculated the stan-
dard deviation across the downscaled land cover areas for
each FLT driven by different parameter combinations, which
indicates the parameter-induced model uncertainties.

3 Results

3.1 Parameter estimation and sensitivity

The Monte Carlo Demeter experiment driven by the 23 100
ensemble parameter sets produced diverse downscaled
LULCC realizations. As shown in Fig. 2a, the disagree-
ments between the downscaled FLT fraction and the refer-
ence record, measured by the average root mean square error
(E, Eq. 3) for all the FLTs and grid cells over the five years
(1992, 2000, 2005, 2010, and 2015), are mainly distributed
between 8 and 17 km2 (about 1 %–3 % of the area of a 0.25◦

grid cell).
Figure 3 shows the relationship between the values of

the six parameters and their corresponding E values result-
ing from the Monte Carlo experiment. We found that the
E values are significantly correlated with all six parameters
(p < 0.01). The intensification ratio (r) has the strongest lin-
ear correlation with the E values (R2

= 0.64), followed by
the selection threshold (τ ) (R2

= 0.24). Overall, the param-
eters wK and τ are positively correlated with E values (pos-
itive slopes of the trend lines), while wN, wS, r , and D hold
negative correlations, indicating that smaller wK and τ , and
larger wN, wS, r , and D, are associated with smaller E val-
ues.

Figure 4 shows the first-order and total-order Sobol indices
calculated with the parameter ensemble and the associated
E values. As indicated by the first-order Sobol indices, the
intensification ratio r directly contributes about 59 % to the
variability of the E values, followed by the selection thresh-
old τ and kernel radius D, which directly contribute 29 %
and 1 % to the variability of the E values. The other param-
eters (wN, wS, and wK) have few direct contributions to the
E variability. The total-order Sobol indices showed a simi-
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Table 2. Key parameters and their sampling range and steps for calibration in this study.

Name Definition Min Max Sampling step

wN Weight of soil nutrient availability for calculating suitability index 0 1 0.2
wS Weight of soil workability for calculating suitability index 0 1 0.2
wK Weight of kernel density for calculating suitability index 0 1 0.2
r Intensification ratio 0 1 0.1
τ Selection threshold 0 1 0.1
D Kernel radius 10 100 10

Figure 2. (a) Histogram of E values, i.e., the global average discrepancies between the downscaled and observed land cover areas with
the 23 100 ensemble parameter sets; the vertical dashed line in (a) shows the interval of the “acceptable” 5 % parameters, as described in
Sect. 2.3. (b) The probability density of each of the acceptable 5 % parameters, as shown by the violin plots; the black lines across the six
parameters show all the acceptable 5 % parameter sets, and the red line indicates the global optimal parameter values; the box plots and
horizontal bar inside the violin plots indicate the interquartile ranges and the mean of the parameter values, respectively. (c) Same as (b) but
showing the “best” 10 % parameter sets. Note that the values of D were divided by 100 for the purpose of illustration in (b) and (c).

lar order of parameter importance; r and its interactions with
other parameters contributed about 70 % of the E variabil-
ity, τ contributed about 40 %, D contributed about 3 %, and
wN, wS, and wK contributed 2 % each. It is clear that the
downscaling error is most sensitive to the intensification ra-
tio, followed by the selection threshold, but not sensitive to
the kernel radius and the weighting factors of the spatial con-
straints.

We identified the “best” parameters, which are associated
with the lowestE, and marked them as the red line in Fig. 2b.
We also selected acceptable parameters that have E values
lower than the 5 % quantile in Fig. 2a (hereafter referred to
as the “top 5 % parameters”) and thus have a similar per-

formance as the best parameters (differences of E < 1 %);
we used them to represent the uncertainty of the parameters
shown as the probability density distributions in Fig. 2b. The
best wN, wS, wK, r , τ , and D are 0, 0.6, 0.4, 1, 0.6, and 100,
respectively. All the parameters are constrained with the cal-
ibration compared to their uniform prior distributions. The
intensification ratio r has been constrained into a small range
(0.9–1.0 and mostly 1.0) from 0 to 1.0. Constraints on the
other parameters are relatively weaker:wN,wS, andwK have
been narrowed to the ranges of 0–0.8, 0.2–1.0, and 0–0.8 and
primarily distributed in 0–0.4, 0.2–0.6, and 0–0.4 (the first
and third quantiles), respectively; τ and D have been con-
strained into the range of 0.2–1.0 and 30–100 with the first
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Figure 3. Relationships between the six Demeter parameters and the global average discrepancies between the downscaled and observed
land cover areas (E values) resulted from the Monte Carlo ensemble experiment. Box plots shows the distributions of the E values, and the
solid lines show the linear trends.

Figure 4. Sobol sensitivity indices for the six Demeter parameters.
Higher indices indicate higher sensitivities.

and third quantiles being 0.2–0.8 and 40–90, respectively.
This analysis again indicates that r is the most sensitive pa-
rameter, and therefore its posterior distribution can be signif-
icantly narrowed through the calibration. In addition, we also
selected the acceptable parameters that have E values lower
than the 10 % quantile (top 10 % parameters), as shown in
Fig. 2a and c. Similar distributions of the top 10 % parame-
ters are found as those of the top 5 % parameters, with some
small extension on the ranges of 5 % parameters.

3.2 Performance of Demeter in downscaling LULCC

Demeter generally performs well in downscaling synthetic
land use and land cover change with small disagreements
with the reference data. For all FLTs, the disagreements be-
tween the downscaled FLT fraction and the reference record
in 1992 (i.e., E1992 in Eq. 2) are close to zero since we
used it as the harmonization year. The disagreements in
2000 (E2000) are mainly distributed in a range between 5
and 15 km2 (about 1 %–2 % of a 0.25◦ grid cell), with the
median about 10 km2 and the mean slightly above 12 km2

(Fig. 5h). The disagreements increase over years at a rate of
about 1 km2 per 5-year time step and reach 13–24 km2 (me-
dian: 15 km2; mean: 18 km2) in 2015. Overall, the average
disagreements over the five years (E) are mainly distributed
in 8–17 km2 (also shown in Fig. 2a), with a median of about
10 km2 and a mean of about 12 km2.

The errors for each of the FLTs follow the same increas-
ing trend over the years. Forest and crops have the largest
disagreements between the downscaled and reference distri-
butions with the errors primarily located in the range of 20–
40 km2 on average over the five time steps (Fig. 5a, d). The
errors for sparse lands are relatively smaller, which mainly
fall into the range of 10–20 km2 (Fig. 5g), followed by grass,
shrub, and urban, with the errors mainly distributed in 0–
10 km2 on average over the five years. Errors for snow are
near zero since there was little areal change for this FLT in
the CCI-LC record (Fig. 1), and little LULCC allocation was
needed in the downscaling process over the years.
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Figure 5. Possibility densities for the E values between downscaled and observational final land type areas for 1992, 2000, 2005, 2010,
2015, and the mean of the five time steps. The box plots and horizontal bar inside the violin plots indicate the interquartile ranges and the
mean of the parameter values, respectively. Note that the E values for snow are close to 0 and thus not visible in the figure.

Figure 6. Comparison between the observed and downscaled final land types with optimal parameters over the 265 852 0.25◦ grid cells in
2015. The blue solid lines show the 1 : 1 line, and the red dashed lines show the 95 % confidence intervals.

Figure 6 shows the comparison between reference grid-
ded CCI-LC FLTs and the downscaled FLTs driven by the
best parameters (see Sect. 3.1) among the 265 852 0.25◦ grid
cells in 2015. Except for urban, the downscaled land cover
of other FLTs matches the reference record very well (all R2

are above 0.98). The R2 is 1 for snow due to little change
in snow and ice area in the CCI-LC record. Figure 7 demon-
strates the spatial distribution of FLT fraction from the ref-
erence data and the best downscaled results, together with
their differences, using crops as an example. We find that the

downscaled results have successfully reproduced the spatial
pattern of crops from the reference data, and similar con-
clusions can be drawn for other FLTs (see Figs. S2–S6; fig-
ure for snow was not shown because of little change for this
FLT). However, the misallocation of land cover change takes
places in most regional AEZs, especially where LULCC was
significant (e.g., Brazil, eastern China, temperate Africa, and
northern Eurasia; Figs. 7 and S1–S5) over the study years,
likely due to the application of an improper global ratio of
intensification. For example, the North China Plain has expe-
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Figure 7. Spatial pattern of the observed and downscaled crop den-
sities (measured by percentage fraction of the grid cell) and their
differences in 2015. The grey dotted lines show the boundaries of
the GCAM regional AEZs.

rienced extensive urbanization by converting a large area of
cropland into urban development during the past few decades
(Liu et al., 2010). However, since the calibrated intensifica-
tion ratio is high (Fig. 2), Demeter tends to underestimate
urban expansion and thus overestimate cropland area that
should be urbanized. Similarly, cropland has been largely ex-
panded and thus applying a high intensification ratio could
not capture such changes.

3.3 Uncertainty propagation

While applying the acceptable parameters (top 5 % and 10 %)
in downscaling GCAM projections of LULCC under the ref-
erence scenario, we found that these well-constrained param-
eters induced considerable uncertainties in the downscaled
results. For each grid cell, we calculated the standard devi-

ation (σ ) of the downscaled land cover areas with different
parameters for each FLT. Figure 8 shows the mean σ of the
265 852 0.25◦ grid cells over the globe for 2005, 2010, 2050,
and 2100, as well as the spatial variability of σ (calculated
as the standard deviation over the grid cells and shown as
the shaded area in Fig. 8). As shown by the grey lines and
shading in Fig. 8, the uncertainty of the top 5 % parame-
ters has a minor effect on downscaled urban and snow areas,
since GCAM projected little areal change in urban and snow.
Downscaled sparse areas were slightly affected by the choice
of parameters, indicated by small mean σ (about 2 km2 per
grid cell). However, the other FLTs, including forest, shrub,
grass, and crops, have larger σ values, which also showed an
increasing trend over time. The global mean σ for forest and
shrub reached about 3 to 4 km2 per grid cell and about 6 to
8 km2 for grass and crops in 2100. The spatial variability of
σ was also larger for these FLTs; for example, the standard
deviation of σ reached over 15 km2 per grid cell in 2100 for
crops, and the maximum σ can be over 350 km2 per grid cell
in some grid cells (Fig. S7). Similar results can be found by
using the top 10 % parameters but with slightly higher mag-
nitudes (red lines and shaded areas in Figs. 8 and S8).

4 Discussion

To date, there have been only a handful of methods for down-
scaling projected global land use and land cover change.
For example, Hoskins et al. (2016) fitted a statistical model
relating coarse-scaled spatial patterns in land cover classes
to finer-scaled land cover and other explaining variables.
Many more studies have used a complex land use model-
ing approach (e.g., Houet et al., 2017; Hoskins et al., 2016;
Meiyappan et al., 2014; Hurtt et al., 2011; Souty et al., 2012)
that combines a variety of socioeconomic processes to pro-
vide global-scale land use allocations. Our results demon-
strated that Demeter is an effective tool for downscaling
global land use and land cover change, although it adapts a
relatively simpler approach. However, choices of parameter
values are critically important for a simple model, since it is
possible that some complicated processes are simplified and
represented by a single parameter. Although an uncalibrated
Demeter can lead to noticeable errors and uncertainties in
downscaled land cover areas, our results have shown the ef-
fectiveness of the calibration efforts in minimizing downscal-
ing errors and constraining uncertainties.

A central purpose of our study is to make suggestions
for setting up parameters for Demeter’s global applications,
shown as the global optimal values in Fig. 2. Interestingly,
we found that the parameters of intensification ratio (r) and
selection threshold (τ ) strongly affected the downscaled re-
sults, while the weights of the spatial constraints and kernel
radius showed small impacts on the results. This indicates
that the selected spatial constraints (soil workability and nu-
trient availability) and spatial autocorrelation (measured by
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Figure 8. The mean (shown as the solid lines) and standard deviations (σ , shown as the shaded area) for the downscaled final land type
(FLT) areas when propagating the parameter uncertainties into the GCAM-projected land use and land cover change downscaling in the 21st
century. The black and red colors represent using the top 5 % and 10 % parameters, respectively.

kernel density) provide loose constraints on land allocation
in the downscaling process, and therefore users should focus
more on the quality of other parameters such as r and τ to
which the model is more sensitive. In addition, the intensi-
fication ratio has been strictly constrained to a range close
to 1.0, suggesting that the intensification of land cover, espe-
cially cropland, may be the major contributor to global land
use and land cover change; thus, spatial constraints on ex-
tensification are not very effective. We also noticed that the
optimal weight for soil nutrient availability for calculating
the suitability indices is zero (Fig. 2). A possible reason is
that soil nutrient availability has a similar spatial distribu-
tion as cropland in CCI-LC data, thus providing little addi-
tional information on constraining the downscaling processes
(Fig. S10). This result suggests that users could ignore the in-
put of soil nutrient availability if it is not available or difficult
to collect, and the quantification of the downscaling uncer-
tainty is not required.

There have been a number of numerical methods for model
calibration, such as gradient methods (Ypma, 1995), evo-
lutionary algorithms (Ashlock, 2006), and data assimilation
techniques (Kalnay, 2002). Our calibration method is rela-
tively simpler, and the sampling steps are relatively coarse.
As a result, it is possible that the calibrated parameters can
be further improved with a more rigorous calibration strat-
egy, although these biases should be small since the sam-
pling bins are narrow and the sensitive parameters are well

constrained (Fig. 2). However, our method has a few advan-
tages for this particular global land use and land cover change
downscaling model calibration problem. First, we sampled
the whole parameter space, and thus our Monte Carlo down-
scaling experiments can represent the parameter uncertain-
ties well. Second, the other methods mentioned above typi-
cally adjust model parameters and run the model iteratively
to find the parameters to hit the local or global minimum cost
function value (Chong and Zak, 2013); this can be very time-
consuming due to the size of the datasets and the difficulty
of algorithm parallelization. The Monte Carlo ensemble runs
of Demeter in our method can be easily parallelized, and it is
thus computationally efficient. Finally, the saved downscaled
results from the global Monte Carlo downscaling experiment
can be reused for regional applications. Our study provided
an optimal set of Demeter parameters. It is worth noting that
these parameters are optimized to minimize the average dis-
crepancies between the downscaled and historically observed
land cover areas at the global scale, and they may thus need
to be recalibrated when Demeter is applied to a particular re-
gion. For example, the best estimate of the intensification ra-
tio is 1 for a global downscaling experiment, probably due to
the fact that intensification is a more common phenomenon
than extensification for land use and land cover change in the
past 2 decades as recorded by the CCI-LC data. However,
this high intensification ratio for crops may be more realis-
tic for regions with a long-term agricultural history (e.g., In-
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dia), while it should become lower for the United States (US)
where cropland extensification happened rapidly in the past
century. We extracted grid cells in the conterminous US (grid
cells between 25 and 50◦ N and between 125 and 65◦W) and
India (grid cells between 7 and 33◦ N and between 68 and
98◦ E) and used them together with the same method as the
global calibration to determine the optimal parameters for the
US and India, which clearly showed that the intensification
ratio remained 1 for India but moved towards lower values
for the US (Fig. S9). Therefore, we recommend future effort
to examine reginal parameterization for Demeter’s applica-
tions at specific regional AEZ levels. Since some of the key
parameters have a clear physical definition (e.g., the intensi-
fication ratio) and while the global optimal values could be
used as a starting point, it would be helpful to review local
historical land use change to infer these parameters when ap-
plying Demeter to a specific region.

In addition, although the downscaled urban land use can
capture most of the variability in reality, it is clear that Deme-
ter’s performance for urban is not as good as that for other
land cover types (Fig. 6). On the other hand, accurate pro-
jection of the spatial extent and pattern of urbanization is be-
coming more important for a better understanding of its en-
vironmental, ecological, and socioeconomic impacts in such
an era of rapid urbanization (Georgescu et al., 2012; Jones
et al., 1990; Merckx et al., 2018; Zhang et al., 2018). Thus,
future effort should be made to improve the downscaling ac-
curacy of urban land use. The relatively larger errors could
be due to the limited consideration of complex urbanization
processes and the lack of specific parameterization of the ur-
ban land cover type. While incorporating a better representa-
tion of urbanization in Demeter can be more complicated, it
is possible to improve the model performance by further pa-
rameterizing the model with more historical urban data. For
example, global satellite-observed nightlights have been used
for mapping urban areas (Elvidge et al., 2009; Li and Zhou,
2017b; Zhou et al., 2014) and producing a global record of
annual urban dynamics (1992–2013) (Li and Zhou, 2017a),
which will be particularly useful for the future calibration of
Demeter on urban dynamics.

Model calibration can usually provide several sets of pa-
rameters to allow the calibrated model to give similar results,
which is called equifinality (Beven and Freer, 2001). As a
result, the calibrated parameters become another source of
uncertainty in model-simulated results. Equifinality also ex-
ists in our calibrations. We observed noticeable growing un-
certainties in downscaled land cover areas while propagat-
ing the parameter uncertainties into the Demeter downscal-
ing practices with GCAM-projected LULCC in the 21st cen-
tury. Therefore, while calibration can remarkably reduce the
uncertainty of the parameters, it may be better to use sets
of constrained parameters rather than a single set of “best”
parameters in the practice of Demeter for the purpose of ac-
counting for parameter uncertainty and providing more reli-
able land use and land cover change downscaling. Moreover,

it is worth noting that the calibrated parameters are tuned for
FLTs, which we believe have covered most land cover types
and are directly useful in most cases. When users need to
consider more FLTs in their global applications, the optimal
values introduced in this study can be used as a starting point
for further tuning.

5 Conclusions

We developed a Monte Carlo ensemble experiment for
Demeter, a land use and land cover change downscaling
model of GCAM, analyzed the model’s sensitivity to its key
parameters, and calibrated the parameters to minimize the
mismatch between model-downscaled and satellite-observed
land use and land cover change in the past 2 decades. We
identified the optimal parameter values for global applica-
tions of Demeter and showed that the parameterization of
Demeter substantially improved the model’s performance in
downscaling global land use and land cover change. The in-
tensification ratio and selection threshold turned out to be
the most sensitive parameters and thus need to be carefully
tuned, especially when Demeter is used for regional applica-
tions. Further, the small uncertainty of parameters after cal-
ibration can result in considerably larger uncertainties in the
results when propagating them into the practice of downscal-
ing GCAM projections, suggesting that Demeter users con-
sider parameterization equifinality to better account for the
uncertainties in Demeter-downscaled land use and land cover
changes.
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at https://doi.org/10.5281/zenodo.2634584 (Chen et al., 2019a).

Data availability. The ESA-CCI data were downloaded from https:
//www.esa-landcover-cci.org/ (last access: 3 April 2017). Other
data, e.g., input and configuration files for Demeter experiments
in this paper, are available at https://doi.org/10.25584/data.2019-
04.715/1505616 (Chen et al., 2019b).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-12-1753-2019-supplement.

Author contributions. MC conceived the study, and all the authors
contributed to designing the study. MC led the data acquisition and
performed the experiment and analysis with technical assistance
from CRV; MC wrote the paper with input from all the coauthors.

Geosci. Model Dev., 12, 1753–1764, 2019 www.geosci-model-dev.net/12/1753/2019/

https://github.com/JGCRI/gcam-core
https://doi.org/10.5281/zenodo.1214342
https://doi.org/10.5281/zenodo.2634584
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://doi.org/10.25584/data.2019-04.715/1505616
https://doi.org/10.25584/data.2019-04.715/1505616
https://doi.org/10.5194/gmd-12-1753-2019-supplement


M. Chen et al.: Demeter v1.0.0 1763

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This research was supported by the U.S. De-
partment of Energy, Office of Science, as part of research in the
MultiSector Dynamics, Earth and Environmental System Modeling
Program.

Review statement. This paper was edited by David Lawrence and
reviewed by two anonymous referees.

References

Ashlock, D.: Evolutionary Computation for Modeling and Opti-
mization, Springer-Verlag, New York, 2006.

Beven, K. and Freer, J.: Equifinality, data assimilation, and uncer-
tainty estimation in mechanistic modelling of complex environ-
mental systems using the GLUE methodology, J. Hydrol., 249,
11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.

Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule,
P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van
den Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D., Kato,
E., de Noblet-Ducoudré, N., Pacifico, F., Pongratz, J., and
Weiss, M.: Effect of Anthropogenic Land-Use and Land-Cover
Changes on Climate and Land Carbon Storage in CMIP5 Pro-
jections for the Twenty-First Century, J. Clim., 26, 6859–6881,
https://doi.org/10.1175/JCLI-D-12-00623.1, 2013.

Chen, M., Vernon, C. R., Huang, M., Calvin, K. V., and Kraucu-
nas, I. P.: IMMM-SFA/chen_et_al_gmd_2019: Chen et al. 2019,
GMD supporting code, https://doi.org/10.5281/zenodo.2634584,
2019a.

Chen, M., Vernon, C. R., Huang, M., Calvin, K. V., and Krau-
cunas, I. P.: IMMM-SFA/chen_et_al_gmd_2019: Chen et al.
2019, GMD supporting data, https://doi.org/10.25584/data.2019-
04.715/1505616, 2019b.

Chong, E. K. P. and Zak, S. H.: An introduction to optimization, 4th
edn., John Wiley & Sons, Inc., Hoboken, NJ, 2013.

Costa, M. H. and Foley, J. A.: Combined Effects of Deforestation
and Doubled Atmospheric CO2 Concentrations on the Climate of
Amazonia, J. Climate, 13, 18–34, https://doi.org/10.1175/1520-
0442(2000)013<0018:CEODAD>2.0.CO;2, 2000.

Dickinson, R. E. and Kennedy, P.: Impacts on regional climate
of Amazon deforestation, Geophys. Res. Lett., 19, 1947–1950,
https://doi.org/10.1029/92GL01905, 1992.

Edmonds, J. and Reilly, J.: Global Energy: Assessing the Future,
Oxford University Press, New York, 1985.

Edmonds, J., Wise, M., Pitcher, H., Richels, R., Wigley, T., and
Maccracken, C.: An integrated assessment of climate change
and the accelerated introduction of advanced energy tech-
nologies, Mitig. Adapt. Strateg. Glob. Chang., 1, 311–339,
https://doi.org/10.1007/BF00464886, 1997.

Edmonds, J. A., Calvin, K. V, Clarke, L. E., Janetos, A. C., Kim,
S. H., Wise, M. A., and McJeon, H. C.: Integrated Assessment
Modeling, in Encyclopedia of Sustainability Science and Tech-
nology, edited by: Meyers, R. A., Springer New York, New York,
NY, 5398–5428, 2012.

Elvidge, C. D., Sutton, P. C., Tuttle, B. T., Ghosh, T., and Baugh,
K. E.: Global urban mapping based on nighttime lights, Glob.
Mapp. Hum. Settl., 129–144, 2009.

FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil
Database (version 1.2), FAO, Rome, Italy and IIASA, Lax-
enburg, Austria, 2012.

Findell, K. L., Berg, A., Gentine, P., Krasting, J. P., Lint-
ner, B. R., Malyshev, S., Santanello, J. A., and Shevliakova,
E.: The impact of anthropogenic land use and land cover
change on regional climate extremes, Nat. Commun., 8, 989,
https://doi.org/10.1038/s41467-017-01038-w, 2017.

Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X.
Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal,
S., Schneider, A., Cooper, A., Baccini, A., Gao, F., and
Schaaf, C.: Global land cover mapping from MODIS: algo-
rithms and early results, Remote Sens. Environ., 83, 287–302,
https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.

Georgescu, M., Moustaoui, M., Mahalov, A., and Dudhia,
J.: Summer-time climate impacts of projected megapoli-
tan expansion in Arizona, Nat. Clim. Chang., 3, 37–41,
https://doi.org/10.1038/nclimate1656, 2012.

Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg,
R.: Global land cover classification at 1 km spatial resolution us-
ing a classification tree approach, Int. J. Remote Sens., 21, 1331–
1364, https://doi.org/10.1080/014311600210209, 2000.

Hibbard, K. A. and Janetos, A. C.: The regional nature of global
challenges: a need and strategy for integrated regional modeling,
Clim. Change, 118, 565–577, https://doi.org/10.1007/s10584-
012-0674-3, 2013.

Hibbard, K. A., Hoffman, F. M., Huntzinger, D., and West, T. O.:
Changes in land cover and terrestrial biogeochemistry, in: Cli-
mate Science Special Report: Fourth National Climate Assess-
ment, Volume I, edited by: Wuebbles, D. J., Fahey, D. W., Hib-
bard, K. A., Dokken, D. J., Stewart, B. C., and Maycock, T. K.,
U.S. Global Change Research Program, Washington, DC, USA,
277–302, 2017.

Hoskins, A. J., Bush, A. , Gilmore, J. , Harwood, T. , Hudson, L.
N., Ware, C., Williams, K. J. and Ferrier, S.: Downscaling land-
use data to provide global 30′′ estimates of five land-use classes,
Ecol. Evol., 6, 3040–3055, https://doi.org/10.1002/ece3.2104,
2016.

Houet, T., Grémont, M., Vacquié, L., Forget, Y., Marriotti, A., Puis-
sant, A., Bernardie, S., Thiery, Y., Vandromme, R., and Grand-
jean, G.: Downscaling scenarios of future land use and land
cover changes using a participatory approach: an application to
mountain risk assessment in the Pyrenees (France), Reg. En-
viron. Chang., 17, 2293–2307, https://doi.org/10.1007/s10113-
017-1171-z, 2017.

Hurtt, G., Chini, L., Frolking, S., Betts, R., Feddema, J., Fischer,
G., Fisk, J., Hibbard, K., Houghton, R., Janetos, A., Jones,
C., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Ri-
ahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson,
A., Thornton, P., van Vuuren, D., and Wang, Y.: Harmoniza-
tion of land-use scenarios for the period 1500–2100: 600 years
of global gridded annual land-use transitions, wood harvest,
and resulting secondary lands, Clim. Change, 109, 117–161,
https://doi.org/10.1007/s10584-011-0153-2, 2011.

Jones, P. D., Groisman, P. Y., Coughlan, M., Plummer, N., Wang,
W.-C., and Karl, T. R.: Assessment of urbanization effects in time

www.geosci-model-dev.net/12/1753/2019/ Geosci. Model Dev., 12, 1753–1764, 2019

https://doi.org/10.1016/S0022-1694(01)00421-8
https://doi.org/10.1175/JCLI-D-12-00623.1
https://doi.org/10.5281/zenodo.2634584
https://doi.org/10.25584/data.2019-04.715/1505616
https://doi.org/10.25584/data.2019-04.715/1505616
https://doi.org/10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2
https://doi.org/10.1029/92GL01905
https://doi.org/10.1007/BF00464886
https://doi.org/10.1038/s41467-017-01038-w
https://doi.org/10.1016/S0034-4257(02)00078-0
https://doi.org/10.1038/nclimate1656
https://doi.org/10.1080/014311600210209
https://doi.org/10.1007/s10584-012-0674-3
https://doi.org/10.1007/s10584-012-0674-3
https://doi.org/10.1002/ece3.2104
https://doi.org/10.1007/s10113-017-1171-z
https://doi.org/10.1007/s10113-017-1171-z
https://doi.org/10.1007/s10584-011-0153-2


1764 M. Chen et al.: Demeter v1.0.0

series of surface air temperature over land, Nature, 347, 169–172,
https://doi.org/10.1038/347169a0, 1990.

Kalnay, E.: Atmospheric modeling, data assimilation and pre-
dictability, Cambridge University Press, 2002.

Kim, S. H., Edmonds, J., Lurz, J., Smith, S. J., and Wise, M.: The
ObjECTS Framework for Integrated Assessment: Hybrid Mod-
eling of Transportation, The Energy Journal, International Asso-
ciation for Energy Economics, 63–92, 2006.

Law, B. E., Hudiburg, T. W., Berner, L. T., Kent, J. J., Buotte, P.
C., and Harmon, M. E.: Land use strategies to mitigate climate
change in carbon dense temperate forests, P. Natl. Acad. Sci.
USA, 115, 3663–3668, 2018.

Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin,
K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-
Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova,
E.: The Land Use Model Intercomparison Project (LUMIP) con-
tribution to CMIP6: rationale and experimental design, Geosci.
Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-
2016, 2016.

Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O’Neill,
B. C., Oleson, K. W., Levis, S., Lawrence, D. M., Kluzek,
E., Lindsay, K., and Thornton, P. E.: Simulating the Biogeo-
chemical and Biogeophysical Impacts of Transient Land Cover
Change and Wood Harvest in the Community Climate System
Model (CCSM4) from 1850 to 2100, J. Clim., 25, 3071–3095,
https://doi.org/10.1175/JCLI-D-11-00256.1, 2012.

Le Page, Y., West, T. O., Link, R., and Patel, P.: Downscaling land
use and land cover from the Global Change Assessment Model
for coupling with Earth system models, Geosci. Model Dev., 9,
3055–3069, https://doi.org/10.5194/gmd-9-3055-2016, 2016.

Li, X. and Zhou, Y.: A Stepwise Calibration of Global DMSP/OLS
Stable Nighttime Light Data (1992–2013), Remote Sens., 9, 637,
https://doi.org/10.3390/rs9060637, 2017a.

Li, X. and Zhou, Y.: Urban mapping using DMSP/OLS stable
night-time light: a review, Int. J. Remote Sens., 38, 6030–6046,
https://doi.org/10.1080/01431161.2016.1274451, 2017b.

Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., Li, R.,
Yan, C., Yu, D., Wu, S., and Jiang, N.: Spatial patterns and driv-
ing forces of land use change in China during the early 21st cen-
tury, J. Geogr. Sci., 20, 483–494, https://doi.org/10.1007/s11442-
010-0483-4, 2010.

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu,
Z., Yang, L., and Merchant, J. W.: Development of a global
land cover characteristics database and IGBP DISCover from
1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330,
https://doi.org/10.1080/014311600210191, 2000.

Meiyappan, P., Dalton, M., O’Neill, B. C., and Jain,
A. K.: Spatial modeling of agricultural land use
change at global scale, Ecol. Modell., 291, 152–174,
https://doi.org/10.1016/j.ecolmodel.2014.07.027, 2014.

Merckx, T., Souffreau, C., Kaiser, A., Baardsen, L. F., Backeljau,
T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli,
N., De Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A.
T., Govaert, L., Hendrickx, F., Higuti, J., Lens, L., Martens, K.,
Matheve, H., Matthysen, E., Piano, E., Sablon, R., Schön, I., Van
Doninck, K., De Meester, L., and Van Dyck, H.: Body-size shifts
in aquatic and terrestrial urban communities, Nature, 558, 113–
116, https://doi.org/10.1038/s41586-018-0140-0, 2018.

Piao, S., Friedlingstein, P., Ciais, P., de Noblet-Ducoudré, N., Labat,
D., and Zaehle, S.: Changes in climate and land use have a larger
direct impact than rising CO2 on global river runoff trends, P.
Natl. Acad. Sci. USA, 104, 15242–15247, 2007.

Pongratz, J., Bounoua, L., DeFries, R. S., Morton, D. C., Anderson,
L. O., Mauser, W., and Klink, C. A.: The Impact of Land Cover
Change on Surface Energy and Water Balance in Mato Grosso,
Brazil, Earth Interact., 10, 1–17, https://doi.org/10.1175/EI176.1,
2006.

Prestele, R., Arneth, A., Bondeau, A., de Noblet-Ducoudré, N.,
Pugh, T. A. M., Sitch, S., Stehfest, E., and Verburg, P.
H.: Current challenges of implementing anthropogenic land-
use and land-cover change in models contributing to cli-
mate change assessments, Earth Syst. Dynam., 8, 369–386,
https://doi.org/10.5194/esd-8-369-2017, 2017.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitiv-
ity Analysis in Practice: A Guide to Assessing Scientific Models,
Wiley, 2004.

Sleeter, B. M., Liu, J., Daniel, C., Rayfield, B., Sherba, J., Haw-
baker, T. J., Zhu, Z., Selmants, P. C., and Loveland, T. R.: Ef-
fects of contemporary land-use and land-cover change on the
carbon balance of terrestrial ecosystems in the United States,
Environ. Res. Lett., 13, 45006, https://doi.org/10.1088/1748-
9326/aab540, 2018.

Souty, F., Brunelle, T., Dumas, P., Dorin, B., Ciais, P., Crassous,
R., Müller, C., and Bondeau, A.: The Nexus Land-Use model
version 1.0, an approach articulating biophysical potentials and
economic dynamics to model competition for land-use, Geosci.
Model Dev., 5, 1297–1322, https://doi.org/10.5194/gmd-5-1297-
2012, 2012.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of
CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.

Vernon, C.: IMMM-SFA/demeter: Demeter – Version 1.0.0,
https://doi.org/10.5281/zenodo.1214342, 2019.

Vernon, C. R., Le Page, Y., Chen, M., Huang, M., Calvin, K. V,
Kraucunas, I. P., and Braun, C. J.: Demeter – A Land Use and
Land Cover Change Disaggregation Model, J. Open Res. Softw.,
6, 15, https://doi.org/10.5334/jors.208, 2018.

West, T. O., Le Page, Y., Huang, M., Wolf, J., and Thomson, A. M.:
Downscaling global land cover projections from an integrated as-
sessment model for use in regional analyses: results and evalua-
tion for the US from 2005 to 2095, Environ. Res. Lett., 9, 64004,
https://doi.org/10.1088/1748-9326/9/6/064004, 2014.

Ypma, T.: Historical Development of the Newton–
Raphson Method, SIAM Rev., 37, 531–551,
https://doi.org/10.1137/1037125, 1995.

Zhang, W., Villarini, G., Vecchi, G. A., and Smith, J. A.:
Urbanization exacerbated the rainfall and flooding caused
by hurricane Harvey in Houston, Nature, 563, 384–388,
https://doi.org/10.1038/s41586-018-0676-z, 2018.

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J.
C. F., Gao, F., Reed, B. C., and Huete, A.: Monitoring vegetation
phenology using MODIS, Remote Sens. Environ., 84, 471–475,
https://doi.org/10.1016/S0034-4257(02)00135-9, 2003.

Zhou, Y., Smith, S. J., Elvidge, C. D., Zhao, K., Thomson, A.,
and Imhoff, M.: A cluster-based method to map urban area from
DMSP/OLS nightlights, Remote Sens. Environ., 147, 173–185,
https://doi.org/10.1016/j.rse.2014.03.004, 2014.

Geosci. Model Dev., 12, 1753–1764, 2019 www.geosci-model-dev.net/12/1753/2019/

https://doi.org/10.1038/347169a0
https://doi.org/10.5194/gmd-9-2973-2016
https://doi.org/10.5194/gmd-9-2973-2016
https://doi.org/10.1175/JCLI-D-11-00256.1
https://doi.org/10.5194/gmd-9-3055-2016
https://doi.org/10.3390/rs9060637
https://doi.org/10.1080/01431161.2016.1274451
https://doi.org/10.1007/s11442-010-0483-4
https://doi.org/10.1007/s11442-010-0483-4
https://doi.org/10.1080/014311600210191
https://doi.org/10.1016/j.ecolmodel.2014.07.027
https://doi.org/10.1038/s41586-018-0140-0
https://doi.org/10.1175/EI176.1
https://doi.org/10.5194/esd-8-369-2017
https://doi.org/10.1088/1748-9326/aab540
https://doi.org/10.1088/1748-9326/aab540
https://doi.org/10.5194/gmd-5-1297-2012
https://doi.org/10.5194/gmd-5-1297-2012
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.5281/zenodo.1214342
https://doi.org/10.5334/jors.208
https://doi.org/10.1088/1748-9326/9/6/064004
https://doi.org/10.1137/1037125
https://doi.org/10.1038/s41586-018-0676-z
https://doi.org/10.1016/S0034-4257(02)00135-9
https://doi.org/10.1016/j.rse.2014.03.004

	Abstract
	Introduction
	Method
	Demeter
	Calibrate Demeter with historical land cover record and sensitivity analysis
	Propagate the parameter uncertainties to GCAM LULCC downscaling

	Results
	Parameter estimation and sensitivity
	Performance of Demeter in downscaling LULCC
	Uncertainty propagation

	Discussion
	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Review statement
	References

