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Abstract. Sorption of metals on minerals is a key process
in treatment water, natural aquatic environments, and other
water-related technologies. Sorption processes are usually
simulated with surface complexation models; however, iden-
tifying numeric values for the thermodynamic constants from
batch experiments requires a robust parameter estimation
technique that does not get trapped in local minima. Re-
cently, particle swarm optimization (PSO) techniques have
attracted many researchers as an efficient and effective opti-
mization technique to find (near-)optimum model parameters
in several fields of research. In this work, uranium at low con-
centrations was sorbed on quartz at different pH, and the hy-
droPSO R optimization package was used – the first time – to
calibrate the PHREEQC geochemical model, version 3.1.2.
Results show that thermodynamic parameter values iden-
tified with hydroPSO are more reliable than those identi-
fied with the well-known parameter estimation (PEST) soft-
ware, when both parameter estimation software are coupled
to PHREEQC using the same thermodynamic input data. In
addition, post-processing tools included in hydroPSO were
helpful for the correct interpretation of uncertainty in the
obtained model parameters and simulated values. Thus, hy-
droPSO proved to be an efficient and versatile optimization
tool for identifying reliable thermodynamic parameter values
of the PHREEQC geochemical model.

1 Introduction and scope

Particle swarm optimization technique (PSO) is an evolu-
tionary optimization technique proposed by Eberhart and
Kennedy (1995) and was influenced by the activities of flocks
of birds in search of corn (Kennedy and Eberhart, 1995;
Eberhart and Kennedy, 1995). Both PSO and genetic al-
gorithms (GAs) share a few similarities (Eberhart and Shi,
1998). GAs have evolutionary operators like crossover or se-
lection, while PSO does not have it (Eberhart and Shi, 1998).
Recently, PSO has been implemented in a wide range of ap-
plications, e.g., in the water resources (e.g., Bisselink et al.
2016; Zambrano-Bigiarini and Rojas, 2013; Abdelaziz and
Zambrano-Bigiarini, 2014; Formetta et al., 2014), geother-
mal resources (Ma et al., 2013; Beck et al., 2010), finance
and economics (Das, 2012), structural design (Kaveh and Ta-
latahari, 2009; Schutte and Groenwold, 2003), and applica-
tions of video and image analysis (Donelli and Massa, 2005;
Huang and Mohan, 2007; Abdelaziz et al., 2018). For ex-
ample, the groundwater model MODFLOW2000/2005 was
linked with PSO to estimate permeability coefficients (Sedki
and Ouazar, 2010) and a multi-objective PSO code was used
to derive rainfall–runoff model parameters by introducing the
Pareto rank concept (Gill et al., 2006). Notwithstanding re-
cent popularity, PSO has never been used to calculate the pa-
rameters of a surface complexation model (SCM) simulating
sorption behavior of metal and metalloids on mineral sur-
faces. Hence, this paper attempts to examine the efficiency
and effectiveness of PSO for parameter estimation of a sur-
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face complexation model as the PHREEQC (Parkhurst and
Appelo, 1999).

Nowadays, a number of PSO software codes exist, such
as MADS (Harp and Vesselinov, 2011; Vesselinov and Harp,
2012) and OSTRICH (Matott, 2005), with most of the codes
using the basic PSO formulation developed in 1995. How-
ever, in this paper, we use the latest standard particle swarm
optimization proposed in literature (Clerc, 2012; Zambrano-
Bigiarini et al., 2013), named SPSO2011, as implemented in
the hydroPSO R package (R Core team, 2016) version 0.3-
3 (Zambrano-Bigiarini and Rojas, 2013, 2014). hydroPSO
is an independent R package that includes the newest stan-
dard PSO (SPSO-2011), which was specifically developed to
calibrate a wide range of environmental models. In addition,
the plotting functions in hydroPSO are user-friendly and aid
the numeric and visual interpretation of the optimization re-
sults. The source code, installation files, tutorial (vignette),
and manual are available on https://cran.r-project.org/web/
package=hydroPSO (last access: 12 June 2018).

hydroPSO is used in this article, for the first time,
to estimate the parameters of a surface complexation for
uranium(VI)–quartz system, to properly capture the non-
linear interactions between the model parameters. The aim
of this article is to examine the suitability of hydroPSO as
a global optimization tool for parameter estimation of geo-
chemical models, in particular PHREEQC v3.1.2. To this
end, surface/sorption reaction constants (logK) of the SCM
obtained with hydroPSO will be compared to those previ-
ously obtained with parameter estimation (PEST) software
(Doherty, 2010) by Nair et al. (2014).

PEST and PSO are both model-independent parameter op-
timizers; i.e., they do not require making any change to the
model code. PEST uses the Gauss–Marquardt–Levenberg
method to minimize, in the weighted least squares sense,
the differences between observations and the corresponding
model-simulated values (Abdelaziz and Bakr, 2012; Edet et
al., 2014). PEST is a gradient-based algorithm that initially
calculates the Jacobian matrix and is then used to build and
upgrade parameter set, to enhance the searching ability to
obtain a better objective function value (Doherty, 2010). The
model then iterates adjusting the model parameters on the
basis of a new Marquardt lambda value (Doherty, 2010),
which drives the objective function for faster convergence.
As a local optimizer, PEST is sensitive to the initial condi-
tion (see a complete description in Doherty, 2010). In con-
trast, PSO is global optimizer which randomly initializes a
population of particles within the D-dimensional parame-
ter space. PSO allows initializing the position of each par-
ticle using a random uniform distribution or Latin hypercube
sampling (LHS), while velocities can be initialized at zero,
with two different random distributions, or with two different
LHS strategies (see Zambrano-Bigiarini and Rojas, 2013).
Velocity and position of each particle in the parameter space
are updated in successive iterations following equations spe-
cific to the selected PSO version (see a complete description

in Zambrano-Bigiarini and Rojas, 2013, and Abdelaziz and
Zambrano-Bigiarini, 2014). As a state-of-the-art global opti-
mizer, PSO is less subject get trapped in local minima com-
pared to PEST.

2 Model description

PHREEQC version 3.1.2 (Parkhurst and Appelo, 1999) and
the database of Nuclear Energy Agency thermodynamic
(NEA_2007) (Grenthe et al., 2007), as well as the LLNL
database (Lawrence Livermore National Laboratory) are
used to model sorption of metal species. Both databases were
modified by setting constant values for MUO2(CO3)

2−
3 and

M2UO2(CO3)
0
3 species (M equals Ca, Mg, Sr) obtained from

Geipel et al. (2008) and Dong and Brooks (2006, 2008).
PHREEQC is a geochemical software which is able to sim-
ulate sorption, surface complexation, and other types of re-
actions. SCMs are considered to be able to describe the pro-
cesses at liquid–solid interfaces (Huber and Lützenkirchen,
2009), and have been widely used to simulate the sorption of
metal species from aqueous solution depending on its con-
centration, pH value, ionic strength, and redox conditions
(Davis et al., 2004; Štamberg et al., 2003; Zheng et al., 2003).
A different group of reactions has taken place between aque-
ous species in the bulk solution and the surface of the sor-
bent leads to the formation of surface complexes (Nair et
al., 2014). The surface complexation constants for these re-
actions are indispensable and independent of changes in so-
lution condition or solution complex (Dzombak and Morel,
1990; Hayes et al., 1991; Volesky, 2003).

There are different type of SCMs, such as the gener-
alized two-layer model (GTLM), non-electrostatic model
(NEM), constant capacitance model (CCM), diffuse-layer
model (DLM), and modified triple-layer model (modified
TLM). Here, a GTLM (Dzombak and Morel, 1990) was used
to simulate the sorption behavior of U(VI) on quartz. The
GTLM was used instead of other models because it is rel-
atively simple and can be used in a wide range of chem-
ical conditions. A comprehensive review of the GTLM is
presented in Dzombak and Morel (1990). Quartz is a non-
porous and non-layered mineral, and therefore the actual
area of surface is supposed to be equal to the specific sur-
face area. In this study, the surface of quartz is considered
as a single binding site which takes the charge for every
surface reaction. The sorption reactions and logK values
are related to the aqueous species and thus depend on the
thermodynamic database used. Uranyl carbonate complexes
((UO2)2CO3(OH)3−, UO2(CO3)

2
2−, and UO2(CO3)

4
3−) are

the dominant species under our experimental conditions.
Therefore, the surface complexation reactions for quartz
were calculated with respect to these species.

The sorption of U(VI) on quartz was investigated and dis-
cussed by Huber and Lützenkirchen (2009) without consid-
ering the formation of alkaline metal uranyl carbonates. The
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Table 1. Complexation reactions with their respective logK range values.

Parameter Calibrated
Corresponding reaction ID range values parameter logK

Min Max

Q_xOH+UO2(CO3)
4−
3 +OH− K1 24 26 25.156


 Q_xOUO2(CO3)
5−
3 +H2O

Q_xOH+UO2(CO3)
2−
2 +OH− K2 20 23 21.18


 Q_xOUO2(CO3)
3−
2 +H2O

Q_xOH+UO2CO3 K3 −8 −5 −5.589

 Q_xOUO2CO−3 +H+

Q_xOH+UO2OH+ K4 2 4 3.229

 Q_xOUO2OH+H+

Q_xOH+ (UO2)2CO3(OH)−3 K5 5 8 6.733

 Q_xO(UO2)2CO3(OH)2−3 +H+

Q_xOH+Na+ K6 −7 −4 −5.842

 Q_xONa+H+

Q_xOH is the silanol surface site.

formation of Mg-, Ca-, and Sr–uranyl-carbonato complexes
shows a significant impact on the sorption of uranium on
quartz. This was studied by Nair and Merkel (2011) in batch
experiments adding 10 g of powdered quartz to 0.1 L of water
containing rather low U(VI) concentrations (0.126×10−6 M)
in the absence and presence of Mg, Sr, and Ca (1 mM) at
a pH value between 9 and 6.5 in steps of 0.5. NaHCO3
(1× 10−3 M) and NaCl (1.5× 10−3 M) were used as ionic
strength buffers. The low U concentrations were used to
avoid precipitation of Ca–U carbonates. In the absence of al-
kaline earth elements, the percentage of uranium was sorbed
on quartz approximately 90 % independent from pH. In the
existence of Mg, Sr, and Ca, the percentage of sorption of
uranium on quartz decreased to 50 %, 30 %, and 10 % re-
spectively (Nair and Merkel, 2011). In this paper, the surface
was the generalized two-layer model and was taken from
Dzombak and Morel (1990) with no explicit calculation of
the diffuse-layer composition.

Table 1 displays the parameter ranges used to optimize
the six parameters selected to calibrate PHREEQC, based on
Nair et al. (2014).

3 Computational implementation

Inverse modeling is a complex issue for modelers as a result
of the numerous uncertainties in model parameters and ob-
servations (e.g., Carrera et al., 2005; Beven, 2006). PSO is
an evolutionary optimization algorithm originally developed
by Kennedy and Eberhart (1995), which has proven to be
highly efficient when solving a large collection of case stud-
ies from different disciplines (see, e.g., Poli, 2008). In PSO,
each individual of the population searches for the global op-
timum in a multi-dimensional parameter space, considering

the individual and collective past experiences. The canonical
PSO algorithm starts with a random initialization of the par-
ticles’ positions and velocities within the parameter space.
Velocity and position of each particle in the parameter space
are updated in successive iterations following equations spe-
cific to the selected PSO version, in order to find the mini-
mum or (maximum) value of a user-defined objective func-
tion (see a complete description in Zambrano-Bigiarini and
Rojas, 2013). In the last decades, several improvements have
been proposed to the canonical PSO algorithm, and the se-
lected optimization tool implements several of them in a
single piece of software. The hydroPSO R package v0.3-3
(Rojas and Zambrano-Bigiarini, 2012; Zambrano-Bigiarini
and Rojas, 2013, 2014) is a model-independent optimization
package, which implements a state-of-the-art PSO algorithm
to carry out a global parameter optimization, and it has been
successfully applied as calibration tool for both hydrogeolog-
ical and hydrological models (Zambrano-Bigiarini and Ro-
jas, 2013; Thiemig et al., 2013; Abdelaziz and Zambrano-
Bigiarini, 2014; Bisselink et al., 2016). In particular, hy-
droPSO implements six PSO variants (equations used to up-
date particles’ position and velocities), four topologies (ways
in which particles are linked during each iteration), two ini-
tialization of particles’ positions (random uniform distribu-
tion or Latin hypercube sampling), and five alternatives for
initializing particles’ velocities, among other fine-tuning op-
tions (see Zambrano-Bigiarini and Rojas, 2013). In the ap-
plication of hydroPSO to PHREEQC, the following configu-
ration was used: a swarm with 10 particles, 200 iterations,
LH initialization of particle positions and velocities, ran-
dom topology with five informants, acceleration coefficients
c1 and c2 equal to 2.05, linearly decreasing clamping fac-
tor for Vmax in the range [1.0, 0.5], and use of Clerc’s con-
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Figure 1. Flow chart used to couple (a) PHREEQC with hydroPSO and (b) PHREEQC with PEST for inverse modeling of surface complex-
ation constants for uranium carbonate (U(VI)) species on quartz using the PHREEQC geochemical model.

striction factor instead of the inertia weight. hydroPSO re-
quires no instruction or template files as UCODE (Poeter et
al., 2005; Abdelaziz and Merkel, 2015) and PEST software
(Doherty, 2010, 2013) do. In order to couple hydroPSO with
the PHREEQC geochemical model, three text files have to
be prepared by the user to handle data transfer between the
model code and the optimization engine. These files include
(i) ParamFiles.txt, which describes the names of a set of pa-
rameters to be estimated and locations in the model input files
to be utilized in the inverse modeling, (ii) ParamRanges.txt,
which defines the minimum and maximum values that each
selected parameter might have during the optimization, and
(iii) PSO_OBS.txt, which contains the observations that will
be compared against its simulated counterparts. In addition,
a user-defined R script file (Read_output.R) should define the
instructions to read model outputs. Finally, for coupling hy-
droPSO with PHREEQC, an R script template provided by
hydroPSO developers was slightly modified by the user in
order to carry out the optimization. Figure 1a shows a flow
chart that depicts how hydroPSO is coupled with PHREEQC
to calibrate its parameters. Run-phreeqc.bat is a batch file to
run PHREEQC-3.1.2 in the DOS environment, which reads
*.phrq files to produce *.prn files as output (simulated data);
*.ins files are instructions to read model outputs, by us-
ing the Read_output.R script. At each iteration, hydroPSO
modifies model parameter values to minimize the value of
the user-defined objective function. Finally, the new param-
eter values are updated following the locations provided in
the “ParamFiles.txt” file. In contrast, to couple PEST with
PHREEQC, four files are required. These include (i) tem-
plate files (*.tpl), (ii) instruction files (*.ins), (iii) a main con-
trol file (*.pst), and (iv) a batch file to execute PHREEQC
and PEST(*.bat). Template files are built to modify the input
files for PHREEQC with other values while an instruction
file is used to extract the simulated values from the output
file for PHREEQC. The main control file includes the model
application to be run, the observations, parameters to be es-

timated, control data keywords, and others. Further informa-
tion about PEST can be found in its manual (Doherty, 2010).
Figure 1a, b show the key files used to couple PHREEQC
with hydroPSO and explain the flowchart and files involved
in the inverse modeling of the surface complexation con-
stants for the U(VI) sorption model.

For numerical optimization, the residual sum of squares
(RSS or SSR; see Eq. 1) was utilized to compute the good-
ness of fit (GoF) between the corresponding model outputs
(Cs
j ) and observed U-carbonate concentration values (Co

j )

at different pH values for every iteration step i; n is the
number of observation points (measured sorption U(VI) onto
quartz). Minimizing the residual sum of squares was cho-
sen as the method for estimating the surface/sorption reac-
tion constants in calibrations by Nair et al. (2014) when
PEST was combined with PHREEQC. It was decided for
consistency to select SSR as the criterion for goodness of
fit when applying hydroPSO with PHREEQC. After some
initial trials, the number of maximum iterations (T ) was set
to 200 and the number of particles used to search for the
minimum RSS in the parameter space was fixed at 10 (i.e.,
2000 model runs). All the input files required for running
PHREEQC and hydroPSO can be found at Zenodo (https:
//zenodo.org/record/1044951#.WgVTbVuCzIU, last access:
10 November 2017), including all the optimization results.

SSR=
∑

j
= 1n

(
Cs
j −C

o
j

)2
(1)

4 Results and discussion

One approach to evaluate model performance is by plot-
ting the simulation against observed values (i.e., visualiz-
ing model outputs), as shown in Fig. 1. The coefficient of
determination (R2) for the relation between calculated and
observed values is 0.89, indicating that the simulated values
obtained with the best parameter set found by hydroPSO are
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Figure 2. Scatter plot with the experimentally observed and calcu-
lated values of uranium carbonate (sorption percentage).

able to explain a good portion of the variability of the re-
sponse data (Fig. 2).

In hydroPSO, there are two types of criteria for conver-
gence:

i. “absolute”, when the global optimum found in a given
iteration is below/above a user-defined threshold (useful
for minimization/maximization problems where the true
minimum/maximum is known); and

ii. “relative”, when the absolute difference between the
model performance in the current iteration and the
model performance in the previous iteration for the
best performing particle is less than or equal to a user-
defined threshold (useful to prevent too many model
runs without any improvement in the optimum found
by the algorithm).

If none of the two previous criteria are met, then the algo-
rithm stops when the user-defined number of iterations is
finally achieved. Figure 3 shows the evolution of the best
model performance (i.e., smallest RSS) found by all the par-
ticles in a given iteration, and the normalized swarm radius
(δnorm, a measure of the spread of the population in the range
of search-space) versus the iterations number. One may ob-
serve that both δnorm and the best model performance be-
come smaller with an increasing iteration number, which in-
dicates that the main particles are “flying” around a small
region within the parameter space. Only 100 iterations (i.e.,
100×10= 1000 model runs) were enough to reach the region
of the global optimum (i.e., RSS ca. 2.52), and the remain-
ing iterations were just used to refine the search, as shown in
Fig. 3.

Figure 3. Evolution of the normalized swarm radius (δ norm) and
the global optimum (SSR) over 200 iterations.

The boxplots in Fig. 4 are graphical representations of the
values sampled during optimization. The bottom and top of
the box show the first and third quartiles of the distribution
of each one of the surface/sorption reaction constants (logK)
sampled during the optimization, respectively. The horizon-
tal line within the box denotes the median of the distribu-
tion. Points outside the whiskers are considered to be out-
liers, where notches are within ±1.58IQR/

√
(n), IQR repre-

sents the interquartile range and n the total number of param-
eter sets used in the optimization. The horizontal red lines in
Fig. 4 point out the optimum value found during optimization
for each parameter.

Quasi-three-dimensional dotty plots in Fig. 5 depict the
goodness-of-fit values achieved by different parameter sets.
They are suitable for identifying ranges where different sets
of parameters lead to the same model performance (equifi-
nality, Beven, 2006). So, Fig. 5 also shows the model per-
formance as function of the interaction of different parame-
ter ranges. The (quasi-)three-dimensional dotty plot shown in
Fig. 5 is a projection of the values of pairs of parameters onto
the RSS response surface. Parameter values where the model
presents high performance are shown in light blue (points
density), whilst the parameter values where the model shows
low performance are shown in dark red (points density). Fig-
ure 5 was used to identify regions of the solution space with
good and bad model performance.

Visual inspection of Fig. 5 shows a good exploratory ca-
pability of PSO because the particles are well spread over
the entire range space. It is clearly visible that the param-
eter samples are denser around the optimum value (lowest
SSR), showing a small uncertainty range around the opti-
mum value.

Figures 6 and 7 give a graphical summary for optimized
parameters. Empirical cumulative density functions (ECDFs)
in Fig. 6 show the sampled frequencies for the six calibrated
parameters. The horizontal gray dotted lines show the me-
dian of the distribution (cumulative probability equal to 0.5),
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Figure 4. Boxplots for the optimized parameters. The horizontal red lines indicate the optimum value for each parameter. Parameter names
are defined in Table 1.

Figure 5. Quasi-three-dimensional dotty plots.
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Figure 6. Empirical cumulative density functions for each calibrated parameter.

Figure 7. Histograms of calibrated parameter values. Horizontal axis shows the sampled range for each parameter, and the vertical axis
represents the amount of parameter sets in each of the classes used to divide the horizontal axis.
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Figure 8. Correlation matrix between model performance (SSR) and calibrated parameters. Red lines represent lowest smoothing, using
locally weighted polynomial regression, and numbers in the upper panel represents the Pearson-moment correlation coefficient between each
pair of parameters. Vertical and horizontal axes illustrate the physical range utilized for parameter optimization. ∗∗∗ stands for a p < 0.001;
∗∗ stands for p < 0.01, according to level of statistical significance

while the vertical gray dotted lines depict the correspond-
ing parameter value displayed at the top of every panel in
Fig. 6. The thin vertical red line in Fig. 7 points out the opti-
mum value achieved for each parameter. Histograms in Fig. 7
show near-normal distributions forK1 andK2, whileK4 and
K5 follow a skewed distribution with sampled values con-
centrated near the upper boundary of each parameter.

Figure 8 illustrates the correlation matrix among K values
and model performance (SSR), with horizontal and vertical

axes displaying the ranges used for the calibration of each
parameter. The figure shows that the highest correlation co-
efficient occurred among the measure of model performance
(SSR) and K4, K6, and K3. In addition, a higher correlation
coefficient was observed between K4 and K5, K3 and K4,
and K1 and K6.

Figure 9 shows the model output using hydroPSO fitted
logK values and the monitored sorption ratio.

Geosci. Model Dev., 12, 167–177, 2019 www.geosci-model-dev.net/12/167/2019/
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Figure 9. Observed and simulated sorption of uranium in quartz vs.
pH with both PEST and hydroPSO calibrated logK values.

It is worthwhile to mention that the surface complexation
constants for Eqs. (1), (2), and (5) (Table 1) are more impor-
tant, and the equations that are less important are Eqs. (3),
(4), and (6) in optimizing the logK values. It proves that
UO2(CO3)

4−
3 , UO2(CO3)

2−
2 , and (UO2)CO3(OH)−3 are the

most dominant species for sorption on quartz. The surface
complexation constants for Eqs. (2) and (4) were 21.18 and
3.229, respectively (Nair et al., 2014), which is higher than
the electrostatic (ES) and non-electrostatic (NES) models,
while the optimized value for Eq. (1) is 25.156, which is
higher than the NES model and almost the same as the ES
model (Nair et al., 2014).

The experimental conditions used to calibrate PHREEQC
with hydroPSO were the same as during the PEST optimiza-
tion carried out by Nair et al. (2014). In other words, PEST
was applied for the same experiment and the same data, and
Fig. 9 shows that the logK values obtained with hydroPSO
are better than those obtained by PEST, except for pH= 7.
The main reason is that PSO is a global optimization tech-
nique, which searches for optimum values in the whole pa-
rameter space using the parameter ranges given in Table 1,
while PEST searches in a neighborhood of the initial solu-
tion. In particular, local optimization carried out by PEST
minimize a weighted least squares objective function via the
Gauss–Marquardt–Levenberg non-linear regression method
(Marquardt, 1963). Actually, a major drawback of PEST,
as of all gradient-based techniques, is the dependency of
the quality of the optimization results upon the initial point
used for the optimization, which might lead to a local opti-
mum rather than the global one. Thus, PSO techniques offer
promising possibilities for similar surface complexation and
reactive transport applications in hydrogeology and hydro-
chemistry.

5 Conclusions

The coupling of hydroPSO and PHREEQC was success-
fully carried to estimate surface complexation constants for
uranium (VI) species on quartz, based on a data set pub-
lished by Nair and Merkel (2011), and Nair et al. (2014).
The open-source hydroPSO R package proved to be a use-
ful tool for inverse modeling of surface complexation models
with PHREEQC and allowed a prompt evaluation of the cali-
bration results. Furthermore, thermodynamic values obtained
with hydroPSO provided a better match to observation sorp-
tion rates in comparison to those obtained with PEST, using
the same input data and experimental setup.

Code and data availability. PHREEQC is available at http://www.
hydrochemistry.eu/ph3/index.html (Parkhurst and Appelo, 2016).
Source code, tutorials, and the reference manual of hydroPSO can
be obtained from https://CRAN.R-project.org/package=hydroPSO
(Zambrano-Bigiarini and Rojas, 2012). The PHREEQC model in-
put files along with the R scripts used for coupling it with hydroPSO
and the model outputs can be obtained from the Zenodo reposi-
tory (https://zenodo.org/record/1044951#.WgVTbVuCzIU, last ac-
cess: 10 November 2017; Abdelaziz, 2017).
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