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Abstract. Earth system models (ESMs) are the gold stan-
dard for producing future projections of climate change, but
running them is difficult and costly, and thus researchers are
generally limited to a small selection of scenarios. This pa-
per presents a technique for detailed emulation of the Earth
system model (ESM) temperature output, based on the con-
struction of a deterministic model for the mean response to
global temperature. The residuals between the mean response
and the ESM output temperature fields are used to construct
variability fields that are added to the mean response to pro-
duce the final product. The method produces grid-level out-
put with spatially and temporally coherent variability. Out-
put fields include random components, so the system may be
run as many times as necessary to produce large ensembles
of fields for applications that require them. We describe the
method, show example outputs, and present statistical veri-
fication that it reproduces the ESM properties it is intended
to capture. This method, available as an open-source R pack-
age, should be useful in the study of climate variability and
its contribution to uncertainties in the interactions between
human and Earth systems.

1 Introduction

There are a variety of scientific applications that use data
from future climate scenarios as an input. Examples include
crop and agricultural productivity models (Rosenzweig et al.,

2014; Elliott et al., 2014; Nelson et al., 2014), water and hy-
drology models (Cui et al., 2018; Voisin et al., 2017), energy
models (Turner et al., 2017), and global human system mod-
els (Akhtar et al., 2013; Calvin and Bond-Lamberty, 2018).
Earth system models (ESMs) are the gold standard for pro-
ducing these future projections of climate change; however,
running ESMs is difficult and costly. As a result, most users
of ESM data are forced to rely on public libraries of ESM
runs produced in model intercomparison projects, such as the
CMIP5 (Coupled Model Intercomparison Project 5) archive
(Taylor et al., 2012). Although a few experiments have pro-
duced larger ensembles of runs (e.g., Kay et al., 2015), typi-
cally users are limited to a small selection of scenarios with
only a handful of runs for each scenario.

This limited selection of scenarios may be inadequate for
many types of studies. Users might need customized scenar-
ios following some specific future climate pathway not cov-
ered by the scenario library, or they might need many real-
izations of one or more future climate scenarios.

Examples of research areas for which archival runs might
be insufficient include uncertainty studies in which the mul-
tiple realizations are used to compute a statistical distribu-
tion of outcomes in the downstream model (Murphy et al.,
2004; Falloon et al., 2014; Sanderson et al., 2015; Bod-
man and Jones, 2016; Rasmussen et al., 2016). Studying tail
risk (i.e., the effects of climate variables assuming values
in the tails of their distribution, which by definition occurs
infrequently in any single scenario run) is another example
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(Greenough et al., 2001), and studying sensitivity to climate
variability is a third (Kay et al., 2015).

In these situations, researchers typically turn to emulators
to get access to a sufficient quantity of data without having
to do an infeasible amount of computation. Climate model
emulators attempt to approximate the output a climate model
would have produced had it been run for a specified scenario.
Perhaps the best known emulator algorithm is pattern scal-
ing, which develops in each grid cell a linear relationship be-
tween global mean temperature Tg and the climate variable
or variables being modeled (Mitchell et al., 1999; Mitchell,
2003; Tebaldi and Arblaster, 2014). A variety of enhance-
ments to this basic procedure have been proposed, mostly
centering around adding additional predictor variables (i.e.,
besides just Tg) (MacMartin and Kravitz, 2016), adding non-
linear terms to the emulator function (Neelin et al., 2010),
or separating the climate state into components, each with
its own dependence on the predictor variables (Holden and
Edwards, 2010).

Most of these methods are deterministic functions of their
inputs, and thus their outputs can be viewed as expecta-
tion values for the ESM output. Real ESM output, however,
would have some distribution around these mean response
values. We will refer to these departures from the mean re-
sponse generically as “variability”. Many of the applications
described above are sensitive to climate variability. For ex-
ample, Ray et al. (2015) found that “globally, climate vari-
ability accounts for roughly a third (∼ 32 %–39 %) of the ob-
served yield variability” in agricultural crops. Therefore, cap-
turing this variability in emulators is crucial to understanding
the behavior of and uncertainties in these applications.

There have been some attempts to add variability to em-
ulators, but producing realistic variability is difficult due to
the complicated correlation structure exhibited by climate
model output over both space and time. Typically, methods
deal with this difficulty by either placing a priori limits on
the form of the correlation function (Castruccio and Stein,
2013), or by using bootstrap resampling of the existing ESM
output (Osborn et al., 2015; Alexeeff et al., 2016).

In this paper we describe a computationally efficient
method for producing climate scenario realizations with real-
istic variability. The realizations are constructed so as to have
the same variance and time–space correlation structure as the
ESM data used to train the system. The variability produced
by this method includes random components; so the system
may be run many times with different random number seeds
to produce an ensemble of independent realizations. The re-
sults in this study are limited to temperature output at an-
nual resolution. Future papers will extend the method to ad-
ditional output variables, such as precipitation, and to suban-
nual time resolution.

2 Method

2.1 Notation

In the text that follows, we use bold symbols (e.g., R) to re-
fer to matrices. Italicized bold symbols are used for vectors
(e.g., x). When it is necessary to distinguish between column
and row vectors, the latter will be marked as the transpose of
a column vector (e.g., x>). These vectors represent collec-
tions of scalar quantities that bear some relationship to each
other in time or space. Because of this, the same variable
can appear in both vector and scalar variants, with the vector
decoration (or lack thereof) indicating which is meant. For
example, Tg is the global mean temperature, a scalar, while
T g is a vector representing a sequence of global mean tem-
peratures.

Occasionally we will add a matrix and a vector; e.g.,
B= A+ x. This should be interpreted to mean that the vec-
tor x is to be added to each row of the matrix A. Therefore,
the length of x must be equal to the number of columns in A.
This broadcast convention is slightly nonstandard mathemat-
ically, but it is common in programming languages that sup-
port matrix arithmetic (e.g., the NumPy package for Python),
and simplifies certain expressions that will come up in the
derivation.

2.2 Input

Our method requires a collection of ESM model output to
train on. Any model can be used, and by switching out the
input data the method can be tuned to produce results rep-
resentative of any desired ESM. For all of the results in this
paper we have used the CESM(CAM5) (Community Earth
System Model; Community Atmosphere Model version 5)
output from the CMIP5 archive (Taylor et al., 2012). We
used surface temperature data from all available 21st cen-
tury runs for all four Representative Concentration Pathway
(RCP) emissions scenarios (RCP2.6, RCP4.5, RCP6.0, and
RCP8.5), for a total of nine runs, each 95 years in length.
These data were averaged to annual resolution, for a total of
855 global temperature states.

To keep clear the distinction between the data produced
by the emulator and the ESM data used to train the emu-
lator, we will refer to the ESM data as “synthetic measure-
ments” (when referring to the data as a whole) or “cases”
(when referring to individual frames in the data), while the
terms “results” and “model output” will be reserved for the
data produced by the emulator.

Throughout the discussion, we will treat each tempera-
ture state as a vector, with each grid cell providing one en-
try in the vector. The ordering of the grid cells within the
vector is arbitrary but consistent throughout the entire cal-
culation. The entire set of synthetic measurements will be
grouped into the input matrix O, with the cases in rows and
grid cells in columns. In the input data used for this study,
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Figure 1. Schematic of the residual calculation showing the shapes
of the matrices involved. The result of the outer product T gw

> is
an 855× 55296 matrix. The vector b is added to this matrix using
the broadcast convention described in Sect. 2.1

each case is 288 (longitude)× 192 (latitude) for a total of
55 296 grid cells. Therefore, in this case, O has a dimension
of 855× 55296.

We will also derive from the input an operator for comput-
ing the area-weighted mean of a grid state. We denote this
vector by

λ=
1
S

sin(θ), (1)

where θ is the polar angle (i.e., colatitude) of each grid cell,
and S is the sum of all the area weights across the entire
grid. When defined this way, the global mean temperature
for a grid state x is Tg = λ

>x = x>λ. Similarly, the matrix–
vector multiplication T g =Oλ produces a vector of global
mean temperature values for the entire input data set.

2.3 Mean response model

Our basic procedure will be to construct a deterministic
model for the mean response to global temperature. The
residuals between the mean response and the synthetic tem-
perature fields will be taken as representative of the variabil-
ity in the ESM and used to construct variability fields that
will be added to the mean response to produce the final prod-
uct.

In principle, the mean response could be calculated using
any of the emulation techniques described in Sect. 1. For il-
lustrative purposes we will stick with a simple linear pattern
scaling using a linear regression variant similar to that de-
scribed in Mitchell et al. (1999). Using standard least-squares
regression techniques we compute vectors of weights w and
biases b (each of these vectors has length equal to the number
of grid cells) such that the mean response field m for global
mean temperature Tg is given by

m(Tg)= Tgw+ b. (2)

This formula can be applied to the entire input data set, with
Tgw becoming the outer product T gw

> to produce the resid-
ual matrix

R=O−
(
T gw

>
+ b

)
, (3)

which will be used to construct the variability model. This
calculation is shown schematically in Fig. 1. Conversely, the

variability fields generated will be added to the mean re-
sponse (i.e., the last term of Eq. 3) to generate absolute tem-
perature fields.

2.4 Generating variability

The matrix of residuals, R, characterizes the variability in
the input data. We deem a generated variability data set to
be realistic if it matches the distribution of residual values in
each grid cell and the space and time correlation properties
of the residuals. Our task, therefore, is to generate a random
field with specified distribution and correlation properties.

To capture the time correlation we will make use of the
Wiener–Khinchin theorem (Champeney, 1973, Sect. 5.4).
This theorem states that given a function g(t) and its Fourier
transform G(f ),

F(C(g))= |G(f )|2, (4)

where C(g) is the time autocorrelation function of g(t), and
F(C) is the Fourier transform of C. The salient feature of
Eq. (4) is that the right-hand side of the equation depends
only on the magnitudes of the elements of G, and not their
phases (recall that the results of a Fourier transform are com-
plex numbers with both magnitude and phase). Therefore, we
can generate an alternate function g′ by setting |G′| = |G|,
selecting the phases of G′ at random, and taking the in-
verse Fourier transform. When g′ is constructed this way, the
Wiener–Khinchin theorem guarantees that g and g′ will have
the same autocorrelation function.

In theory we could use a similar technique to capture the
spatial correlation; however, in practice the spherical geome-
try of the spatial domain makes this difficult. Moreover, it is
not just the spatial correlation properties that matter, but also
the locations at which spatially correlated phenomena occur.
Therefore, we capture spatial correlations by using princi-
pal components analysis (PCA) to express the grid state as a
linear combination of basis vectors that diagonalize the co-
variance matrix of the system.

x(t)=

L∑
i=1

φi(t)x̂i, (5)

where

x̂>i x̂j = 0,

cov(φi,φj )= 0,

}
if i 6= j. (6)

The x̂i are called empirical orthogonal functions (EOFs)
(Kutzbach, 1967) and are computed using singular value de-
composition (SVD) (Golub and Van Loan, 1996, Sect. 2.5.3).
The φi(t) are the projection coefficients for the grid state vec-
tors. The second property in Eq. (6) is of particular interest
for this application. Because the covariances of the projec-
tion coefficients for different EOFs are zero we can choose
them independently. In particular, when applying the phase
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randomization procedure described above, we can apply it to
each φi independently because all of the spatial correlation
properties of the system have been absorbed into the defini-
tion of the EOFs.

In practice, it is convenient to force all of the basis vectors
except for one to have area-weighted global means of zero,
so that all of the variability in the global mean is carried by
a single component. This property is useful because it allows
us to control how much the generated variability distorts the
global properties of the mean response field it is being added
to. To accomplish this, we introduce a small modification to
the EOF decomposition procedure. We define the zeroth ba-
sis vector x̂0 to be the global mean operator, normalized to
unit magnitude:

x̂0 =
λ
√

λ>λ
. (7)

We force x̂0 to be a basis vector by subtracting from each
residual vector its projection onto x̂0 and performing the
SVD on the modified residuals. This procedure forces all of
the basis vectors to be orthogonal to x̂0. Since this vector
is proportional to the global mean operator λ, this orthogo-
nality property guarantees that all of the other basis vectors
will have a zero global mean. Therefore, if φ0(t)= 0, then
the global means of the mean response fields will be unaf-
fected when the generated residual fields are added. On the
other hand, if it is desirable to change the global means, per-
haps because they were generated by a simple climate model
(Hartin et al., 2015; Meinshausen et al., 2011) that produces
smoother results than real ESMs, then it can be done by set-
ting φ0 appropriately.

The typical use of PCA in many fields, including climate
modeling, is for dimensionality reduction. In such applica-
tions the next step after computing the EOFs would be to
identify and keep a small set of EOFs that capture the ma-
jority of the variability and to throw away the rest. In this
case, dimensionality reduction is not our goal. Rather, we
have used the EOF decomposition only to separate the resid-
ual field into components that are uncorrelated over time.
Therefore, we keep the full set of EOFs and their projec-
tion coefficients. The sole exception is for components for
which the singular values produced by the SVD procedure
are very small. There are generally one or two such compo-
nents, and keeping them can cause problems with roundoff
error, so these are dropped.

At this point we are ready to apply the Wiener–Khinchin
theorem. We compute the discrete Fourier transform (DFT)
of the φ from Eq. (5): 8(f )= F(φ(t)). We then compute
8?(f ) such that |8?| = |8|, but we choose the phases of 8?

to be uniform random deviates on the interval [0,2π ]. From
this we can reconstruct φ?(t) as the inverse DFT of 8?(f ).
Finally, we construct the variability field using Eq. (5), re-
placing φ with φ?.

The steps in the variability generation algorithm are sum-
marized in Table 1.

Table 1. Summary of steps in the variability generation algorithm
described in Sect. 2.

1. Select and fit the mean response model.
2. Construct residual field R by subtracting mean response

from ESM output (Eq. 3).
3. Orthogonalize residuals with respect to EOF 0 (Eq. 7).
4. Perform the EOF analysis on the residual field.
5. Compute the DFT 8 of the residual field’s projection

coefficients onto the EOF basis.
6. Compute a new Fourier transform 8? such that |8| =
|8?| and the phases of 8? are chosen randomly, uni-
formly on the interval [0,2π).

7. Compute the projection coefficients φ? of the variability
field as the inverse DFT of 8?.

8. Compute the variability field as x(t)=
∑N
i=0φ

?
i
(t)x̂i .

3 Results, analysis, and validation

3.1 Model output and performance

To illustrate the algorithm, we have produced four indepen-
dent variability fields by applying the algorithm to the input
data described in Sect. 2.2. Training the emulator (i.e., read-
in and analysis of the ESM input) took approximately 143 s
on a midrange workstation. Each temperature field took 3–4 s
to generate.

Figure 2 shows a single time slice for each of the variabil-
ity fields (i.e., the temperature field, with the mean response
field subtracted out). The time series these slices were taken
from could be used as an ensemble to study the effects of
variability on the downstream models that are consumers of
these sorts of climate projections.

The spatial structure in the variability is apparent. Temper-
ature perturbations occur on scales of roughly 40–60 arcdeg.
Some features, such as the one seen in the low-latitude east-
ern Pacific, appear in all of the frames with greater or lesser
strength, or, in one case, with an opposite sign. Other fea-
tures, such as the cool patch over northern Europe in the third
frame, have no apparent analog in the other realizations.

We can get a sense of the behavior of the variability fields
over time by looking at the power spectral density of the
EOFs (Fig. 3). Two trends are immediately apparent. First,
the total power present in each EOF decreases dramatically
after the first few EOFs (Fig. 3). The first 10 components
together account for 49 % of the total power, and the first
50 components account for 72 %. Notwithstanding this ob-
servation, the long tail of EOFs makes a nontrivial contribu-
tion to the result. The last 400 EOFs collectively make up a
little over 1 % of the total power, and as we shall see below
all of the small-scale variability is contained in these compo-
nents.

The second observation is that the power spectrum whitens
(becomes more uniform across frequencies) considerably
(Fig. 4), such that only a few of the most prominent EOFs
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Figure 2. Year 2025 snapshot for variability fields generated using the procedure described in Sect. 2.4. Each field is a different randomly
generated realization of the temperature field’s departure from the mean response (Sect. 2.3). The sequences these frames were drawn from
could be used as an ensemble of future climate scenarios for studying sensitivities or uncertainties in models that use climate data as inputs.

have any significant periodic signature. One interpretation of
this observation is that there are only a few consistently re-
peatable periodic phenomena represented in the surface tem-
perature data of this ESM. The rest of the variability, al-
though highly structured spatially, does not have a lot of tem-
poral structure. The components with significant periodicity
account for roughly a third of the total variability signal. In
other words, although periodic oscillations are a prominent
component of the variability, most of the variability appears
to be of the uncorrelated, interannual sort.

In Fig. 5 we show the power spectral density for the first
nine EOFs. EOF 1 has power primarily at long periods, indi-
cating a pattern of variability that is largely locked in at the
beginning of a run, but which varies from one run to the next.
EOFs 2, 3, and 5 show evidence of periodicity on timescales
ranging from 3 to 5 years.

Figure 6 visualizes the spatial patterns represented by the
first six EOFs, and Fig. 7 visualizes some of the lower power
EOFs. These plots show that the scale of the features gets
progressively smaller as the power decreases. For example,
in EOF 3 there is a complex of positive and negative associa-
tions that spans nearly the entire Pacific Ocean. The features
visible in EOF 25 are roughly on a continental scale, while
the features in EOF 50 are about half that size. By EOF 400

the feature size is in the hundreds of kilometers, and the low-
est power EOF, EOF 853, shows variations a few grid cells
in size.

3.2 Statistical equivalence to ESM input

The time series produced by this method are designed to
match three key statistical properties of the ESM data used
to train the emulator:

1. distribution of values in a grid cell over time and be-
tween realizations;

2. correlation between values in different grid cells; and

3. time autocorrelation of spatially correlated patterns of
grid cells.

In this section we perform a series of statistical tests to verify
properties 1 and 2. Property 3 is guaranteed by the Wiener–
Khinchin theorem, and so we do not test it statistically.

3.2.1 Statistical tests of variability field properties

The generation procedure described in this paper does not
strictly guarantee that the generated fields have the desired
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Figure 3. Relative power for each EOF. Roughly half of the total
power is contained in the first 10 EOFs. The aggregate power for all
EOFs beyond 400 is 1 % of the total.

Figure 4. Heat map of power spectral density (PSD) for the first
50 EOFs. The trend of decreasing total power and more uniform
spectral density continues for the remaining EOFs beyond EOF 50.

Figure 5. Smoothed power spectral density (PSD) for the first nine
EOF basis functions. EOFs 2, 3, and 5 show peaks in the PSD, in-
dicating quasiperiodic behavior on 3–5-year timescales. EOF 1 has
most of its power at low frequencies, indicating that this component
is approximately (though not exactly) constant over the course of a
single ESM run.

statistical properties; therefore, we turn to statistical tests of
some of the key properties. Testing for the absence of an ef-
fect is tricky. One cannot simply run a hypothesis test and,
seeing a lack of a positive result, conclude that there is no ef-
fect. The procedure we have adopted is to focus on tests that
can be run in each grid cell (or, in one case, for each pair-
wise combination of EOFs). We can consider two competing
hypotheses.

H1 The statistic being tested is the same in the generated
data as in the input data.

H2 The statistic being tested differs in the generated data by
some de minimis value from the input data.

The expected numbers of positive results under these hy-
potheses are just the p value (H1) and the power (H2) of
the test, each multiplied by the number of tests performed.
By observing which of the two hypotheses the actual number
of positive results agrees with more closely, we can decide
which of the two hypotheses is more likely. The philosophy
underlying this procedure is that although we cannot prove
that there is no statistical difference between the generated
and input data, if we can show that an upper bound on the
effect size is small enough to be ignorable in practice, then
that is sufficient.

All of the statistical tests described in this section were
performed on an ensemble of 20 generated fields, each with
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Figure 6. Spatial visualizations of the EOFs 1–6 basis functions. EOF grid cell values are scaled such that the magnitude of the largest value
is 1. These components capture large-scale patterns of variability. EOFs 2, 3, and 5 all feature a temperature anomaly in the eastern Pacific.
These same components can be seen in Fig. 5 to have some periodicity on 3–5-year timescales, suggesting that they may be rooted in physical
processes in the ESM the model was trained on.

95 one-year time steps, for a total of 1900 model outputs in
the tests that operated directly on the generated data. For the
test that operates on the φ values, each temperature grid time
series had to be tested separately for a total of 95 samples per
test. In each case the threshold p value used for the tests was
0.05.

The first property we will examine is the variance of the
distribution of grid cells. We used the F test of equality of
variances to perform this test. In order to be valid, the F test
requires the samples being tested to be normally distributed.
We test for this property separately below. Table 2 gives the
power (i.e., expected fraction of positive results) for several
hypothetical percentage differences in variance between the

Table 2. F test power for several hypothetical percentage differ-
ences between input and output variance.

Variance F test
difference power

1 % 0.05
2.5 % 0.07
5 % 0.13
10 % 0.37
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Figure 7. Spatial visualizations of higher EOF basis functions. EOF grid cell values are scaled such that the magnitude of the largest value
is 1. The characteristic scale of temperature fluctuations decreases for functions later in the series. Thus, EOFs 25 and 50 show features at
about half the scale of those shown in Fig. 6, while features in EOFs 200 and 400 are roughly one-quarter the scale. By the time we get to
the last few hundred EOFs, features are just a few grid cells in size resulting in patterns that might be thought of as spatially structured noise.

ESM and the generated fields. The actual fraction of positive
results was approximately 2× 10−4, which is much smaller
than the p value of 0.05.

It may seem surprising that the fraction of positive results
was so much smaller than the number expected from the p
value of the tests. This result can be explained by observing
that the derivation of the p value assumes a particular model
for H1. Specifically it assumes that the generated data and the
reference data (i.e., the ESM input) come from populations
with exactly equal variance. We cannot observe population
variances directly; instead we observe the variances of sam-
ples from those populations. The variances of such samples
can vary quite a bit from the variance of the underlying pop-

ulation, and so we expect to see some fairly large differences
between the variances of input grid cells and the correspond-
ing variances of output grid cells. The F distribution tells us
just how large we might reasonably expect those discrepan-
cies to be.

Our model results, on the other hand, are not being gen-
erated by sampling from a population. Instead, they are gen-
erated by a process that seeks to replicate the variances of
the reference data exactly. If it were completely successful
at doing so, then all of the variances would be identical to
their counterparts in the reference set, and there would be
precisely zero positive results. In actuality, there are some
slight discrepancies, but these are much smaller than the ones
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Table 3. Pearson test power for several hypothetical correlation co-
efficients between φ for different EOFs.

Correlation Pearson
coefficient test power

0.01 0.07
0.05 0.59
0.10 0.99

assumed in the formulation of H1. Therefore, we see many
fewer positive results than would be expected based on the p
value used in the tests.

Our second test concerns the covariance between grid
cells. Testing for equal, nonzero covariances directly is chal-
lenging, but we can transform the results into a form that is
more readily testable. Starting from Eq. (5) we can show that
for two grid cells xm and xn

cov(xm,xn)=
∑
i

var(φi)x̂imx̂in

+

∑
i 6=j

cov(φi,φj )x̂imx̂jn, (8)

where x̂im is the mth component of x̂i . The corresponding
expression for the generated data is the same, except that the
φ are replaced by φ?. For the input ESM data, the construc-
tion of the EOFs guarantees that cov(φi,φj )= 0, when av-
eraged over the input data. Thus, the grid cell covariances
of the generated data will match those of the ESM data if,
averaged over runs of the generator:

var(φ?i )= var(φi) for all i, and (9)
cov(φ?i ,φ

?
j )= 0 for all i 6= j. (10)

The first of these two conditions is guaranteed by the gener-
ation procedure. Parseval’s theorem (Champeney, 1973, Ap-
pendix E) states that for each of the φi (and likewise for the
φ?i ),

Nt∑
t=1

(φi(t))
2
=

Nt∑
k=1

|Fk(φi)|2. (11)

Since our procedure ensures |Fk(φ?i )| = |Fk(φi)|, this guar-
antees that the condition in Eq. (9) holds.

To test the condition in Eq. (10) we used Pearson’s cor-
relation test. Table 3 gives the power of the test for various
correlation coefficients for the alternative hypothesis. The ac-
tual fraction of positive tests, over the pairwise combinations
of EOFs, was 0.05, or roughly what we would expect from
the p value used in the test. From these observations we can
conclude that the upper bound on possible correlation coeffi-
cients between the φ is somewhere between 0.01 and 0.05.

The final statistical test concerns whether the generated
residuals are normally distributed. Apart from being neces-
sary to ensure the validity of the F tests above, a normal

Figure 8. Comparison of the beta(5,5) distribution and a normal dis-
tribution with equal variance. The beta distribution is zero outside
of the depicted range, while the normal distribution asymptotically
approaches zero. Although the difference between these two distri-
butions is small, the Shapiro–Wilk test can easily distinguish them.

distribution is desirable per se because we expect the temper-
ature residuals to be normally distributed. This test is more
challenging to perform than the rest because there is no ob-
vious way to define an effect size to use in calculating the
power. Instead, we must determine a reasonable nonnormal
distribution to use as the benchmark for deviations from nor-
mality.

To arrive at such a distribution, consider how the gener-
ated residual fields are calculated. The value x of the residual
temperature in each grid cell is produced by summing over
all EOFs and all Fourier components. Since the phases of the
Fourier components are chosen randomly, this amounts to a
sum over uniform random deviates, which by the central limit
theorem will be asymptotically normally distributed. Any de-
viations from normality will be due to having insufficient
terms in the sum to reach that asymptotic behavior. Such
a distribution would appear truncated compared to the nor-
mal distribution, since the sum of uniform random deviates
has hard minimum and maximum values. The beta distribu-
tion, B(n1,n2), also has these properties. When n1 = n2 = n,
the distribution is symmetric and approaches a normal distri-
bution as n increases. We adopted the B(5,5) distribution,
shown in Fig. 8, as our representative distribution for a de
minimis effect size.

We used the Shapiro–Wilk test of normality to evaluate the
normality of the grid cell distribution. For this sample size,
the power of the test for distinguishing between a B(5,5)
and a normal distribution is 0.998. The actual fraction of grid
cells that showed a positive result was 0.06, indicating that if
there is any nonnormality, it is almost certainly smaller than
the difference between a normal distribution and a B(5,5)
distribution.
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3.2.2 Commentary on statistical properties

Property 3 deserves additional comment because it is ex-
plicitly not equivalent to matching the time autocorrelation
function of individual grid cells. We chose to focus on au-
tocorrelation of spatial patterns rather than on grid cells be-
cause the only way to preserve the autocorrelation of grid
cells would be to force a constant phase difference between
EOFs. This assumption does not seem particularly realistic
and is not supported by the input data. Limiting the treat-
ment of time autocorrelation to the EOFs ensures that to the
extent that EOFs represent physical phenomena they occur
with the right frequency spectra while not overly constrain-
ing the phase relationships between modes.

The properties enumerated above ensure that, when using
the generated data to drive an ensemble of downstream mod-
els and compute statistics on those results, the scale of the
fluctuations produced, their spatial location and extent, and
their periodic character, if any, will be faithfully reproduced,
allowing reliable calculations of variance in outcomes, re-
turn times of extremes, and regional differences in impacts.
Therefore, we expect a technique like this to be invaluable
for studies of the contribution of variability to uncertainty in
climate effects and feedbacks.

Supporting such uncertainty studies was our primary pur-
pose in developing this tool, but the analysis in Sect. 3.1 sug-
gests additional possibilities. A byproduct of the procedure
to generate variability fields is that we develop quite a few
statistics that could be used to characterize the ESM used to
train the emulator. Thus, the training stage of the emulation
procedure could also function as a diagnostic package for
ESMs. For example, the high power at low frequencies for
the first 10–15 EOFs (Fig. 4) was unexpected and might be
of interest for further study.

3.3 Overfitting the mean response

There is one important pitfall to watch out for when using
this method to learn the behavior of an ESM; viz., one must
take care not to allow the mean response model to overfit
the ESM data. The more complex the model, the greater the
danger of overfitting, but even simple models like the lin-
ear regression used here can overfit. Consider EOF 1 and its
power spectrum, depicted in Fig. 5. The power spectrum’s
strong peak at f = 0 means that the coefficient φ1 of the
component is nearly constant within a single run of ESM
data. Therefore, if we were to train the model on just a single
run (i.e., a single realization of a single scenario), this com-
ponent would be absorbed into the mean response, causing
it to be reproduced identically in all generated temperature
fields. In fact, this is precisely what happened in early ver-
sions of this work, where we trained the emulator on a single
ESM run. EOF 1 only began to appear in the variability fields
once we expanded the input data to include the full suite of
CESM(CAM5) runs from CMIP5.

Therefore, it is essential to include enough independent
ESM runs in the training data to ensure that the mean re-
sponse model will not capture fluctuations that are idiosyn-
cratic to a particular run. Exactly how many runs are needed
will depend on the complexity of the mean field response
model. For a relatively simple model, such as the linear
model used in this paper, as few as three independent runs
(i.e., one more than the number of parameters per grid cell)
should provide reasonable protection against absorbing vari-
ability features into the mean response model. Conversely,
mean response models with many parameters per grid cell
would require more independent inputs. In case of doubt,
cross-validation should be used to diagnose possible overfit-
ting. Along similar lines, the input data should include runs
for scenarios that span the entire range of future scenarios
that the system will be used to emulate. This practice ensures
that the mean response model will not be called upon to ex-
trapolate beyond the range of conditions it was trained on.

3.4 Underfitting the mean response

Several readers of early versions of this work questioned the
decision to fit the mean response model over the entire range
of RCP scenarios, speculating that this practice would result
in a mean response model that represented a sort of compro-
mise amongst the various RCPs in the input data, fitting none
of them particularly well. If the mean response model were
to be underfit in this way, then the residuals from the misfit-
ting would be lumped in with the variability and subjected
to the randomization procedure described in Sect. 2.4. It was
suggested that the long-period behavior of EOF 1 might be
evidence that this was happening.

Throughout the rest of this section we will refer to this
collection of hypotheses as the compromise conjecture, or
CC for short. We know that the CC is true to some extent,
since it seems unlikely that the relationship between global
and local temperatures in these models has no dependence on
the specifics of the warming scenario. One solution to the CC
would be to fit separate emulators for each of the RCP warm-
ing scenarios; however, for scenarios that do not correspond
exactly to an RCP, we still need to generate fields using an
approximate mean response, and we will need to know how
much of an error we are making. Therefore, the question we
must answer is the following: are the effects of using a com-
promise model acceptably small in the context of the other
approximations used in the emulator’s design?

To investigate this question, we fit two more emulators to
subsets of the data. The first of these used only the three en-
semble members for the RCP8.5 scenarios. We designated
this emulator “RCP85”. The second fit used three ESM runs
covering the RCP2.6, RCP6.0, and RCP8.5 scenarios. We
designated this emulator “MULTI”. Our first test was to com-
pare the mean field models for these two emulators. Figure 9
shows a grid cell by grid cell comparison of the w (linear)
and b (intercept) coefficients for the two models, from which
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Figure 9. Comparison between coefficients of the mean response model for the RCP85 and MULTI emulators. For both the linear term w (a)
and the intercept term b (b) the two models are nearly identical.

it can be see that the two mean response models are very
similar.

We can quantify just how similar the two models are by
fitting linear models predicting the RCP85 coefficients from
the corresponding MULTI coefficients. When we do this, we
find that the average ratio between the RCP85 and MULTI w
terms is 0.994, with an R2 of 0.999. Most of the residuals are
within±0.02 of 0 (for a coefficient that ranges approximately
from 0 to 3). For b, the relationship is nearly as good; the
coefficient ratio is 0.987, with an R2 of 0.998. Most of the
residuals are between −5 and +6 (the scale of this variable
is considerably larger than the scale for w: approximately
−650 to +300.)

From this result alone, we see that the mean response mod-
els for these two emulators are virtually identical, making it
extremely unlikely that CC effects are an appreciable source
of error in the MULTI emulator. For this reason, descrip-
tion of additional tests of CC effects, along with source code
and results, has been relegated to the data and analysis code
archive cited in the code and data availability section.

3.5 Assumptions

As with most emulation schemes, this one makes certain
assumptions about the models it is trying to emulate. The
most important assumption is that the ESM outputs can be
linearly separated into a temperature-dependent component
(what we have been calling the “mean field response”) and
a time-dependent component (the “variability”). Notably, we
assume that the temperature response is independent of the
temperature history. This assumption, though common in
emulator studies, is dubious. The assumption can be par-
tially negated by including additional predictor variables in
the mean field model (e.g., Joshi et al., 2013; MacMartin and
Kravitz, 2016). At the same time, the second assumption im-
plies that the internal dynamics of the ESM are unaffected by
the specifics of the external forcing, which is certainly debat-
able.

A related assumption is the assumption of stationarity. The
variability fields produced by this method have stationary
statistical properties. Some research has suggested that the
variability is likely to change with increasing global mean
temperature (Field et al., 2012). This sort of phenomenon
could be added to our method by introducing a global mean
temperature-dependent scale factor. Such a factor would be
applied in between steps 7 and 8 in Table 1.

4 Conclusions

Having a computationally efficient method for generating re-
alizations of future climate pathways is a key enabler for re-
search into uncertainties in climate impacts. In order to be fit
for this purpose, a proposed method must produce data with
statistical properties that are similar to those of Earth system
models, which are currently the state of the art in projecting
future climate states.

In the preceding sections we have described such a
method, and we have shown that it reproduces key statistical
properties of the Earth system model on which it was trained.
Specifically, it produces equivalent distributions of residuals
to the mean field response and equivalent space and time cor-
relation structure. The method is computationally efficient,
requiring under 10 min to train on the input data set used for
the results presented here. Once training is complete, gen-
erating temperature fields takes just a few seconds per field
generated.

As a result, we believe the method will be extremely useful
for the impact studies it was designed to support. Currently,
the method is limited to producing temperature only, and at
annual resolution. However, we believe that the method can
be readily extended to other climate variables and to shorter
timescales. These extensions will be the subject of follow-up
work.
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Code and data availability. Software implementing this technique
is available as an R package released under the GNU General Public
License. Full source and installation instructions can be found in the
project’s GitHub repository (https://github.com/JGCRI/fldgen, Link
et al., 2018a). Release version 1.0.0 of the package was used for all
of the work in this paper.

The data and analysis code for the results presented in this pa-
per are archived at https://doi.org/10.5281/zenodo.2586040 (Link
et al., 2018b). Version 1.0.0 of fldgen is permanently archived at
https://doi.org/10.5281/zenodo.1183347 (Link, 2018).
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