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Abstract. An operational multimodel forecasting system for
air quality has been developed to provide air quality ser-
vices for urban areas of China. The initial forecasting sys-
tem included seven state-of-the-art computational models
developed and executed in Europe and China (CHIMERE,
IFS, EMEP MSC-W, WRF-Chem-MPIM, WRF-Chem-
SMS, LOTOS-EUROS, and SILAMtest). Several other mod-
els joined the prediction system recently, but are not con-
sidered in the present analysis. In addition to the individ-
ual models, a simple multimodel ensemble was constructed
by deriving statistical quantities such as the median and the
mean of the predicted concentrations.

The prediction system provides daily forecasts and obser-
vational data of surface ozone, nitrogen dioxides, and partic-
ulate matter for the 37 largest urban agglomerations in China
(population higher than 3 million in 2010). These individual
forecasts as well as the multimodel ensemble predictions for
the next 72 h are displayed as hourly outputs on a publicly ac-
cessible web site (http://www.marcopolo-panda.eu, last ac-
cess: 27 March 2019).

In this paper, the performance of the prediction system (in-
dividual models and the multimodel ensemble) for the first
operational year (April 2016 until June 2017) has been ana-
lyzed through statistical indicators using the surface observa-
tional data reported at Chinese national monitoring stations.
This evaluation aims to investigate (a) the seasonal behavior,
(b) the geographical distribution, and (c) diurnal variations
of the ensemble and model skills. Statistical indicators show
that the ensemble product usually provides the best perfor-
mance compared to the individual model forecasts. The en-
semble product is robust even if occasionally some individual
model results are missing.

Overall, and in spite of some discrepancies, the air qual-
ity forecasting system is well suited for the prediction of air
pollution events and has the ability to provide warning alerts
(binary prediction) of air pollution events if bias corrections
are applied to improve the ozone predictions.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://www.marcopolo-panda.eu


1242 A. K. Petersen et al.: Ensemble forecasts of air quality in eastern China – Part 2

1 Introduction

With the rapid development of its economy, China has been
experiencing repeated intense air pollution episodes (e.g.,
Guo et al., 2014; K. Huang et al., 2014; R.-J. Huang et al.,
2014; Wang et al., 2014) with a wide range of health ef-
fects (Kampa and Castanas, 2008; Wu et al., 2012; Hamra
et al., 2015; Boynard et al., 2014; WHO, 2018) and serious
consequences on ecosystems (Fowler et al., 2008; Ashmore,
2005; Leisner and Ainsworth, 2012; Sinha et al., 2015) and
on climate (Sitch et al., 2007; Brasseur et al., 1999; Akimoto,
2003). High concentrations of particulate matter often cover
a large area of eastern China during winter when air remains
stagnant for several days and chemical compounds emitted
by power plants, industrial complexes, traffic, and domestic
infrastructure remain trapped near the surface (e.g., Wang et
al., 2014; Zhao et al., 2013). During summer, photochemical
processes convert nitrogen oxides (NOx) and volatile organic
compounds (VOCs) into tropospheric ozone (O3) (e.g., Xu et
al., 2008; Sun et al., 2016).

Long-term solutions to mitigate air pollution require a fun-
damental transformation of the energy system, which may
require decades to be fully implemented. Short-term actions
to avoid severe air pollution episodes, however, can be put
in place immediately if such episodes can be reliably pre-
dicted a few days prior to their occurrence. Comprehensive
air quality models that capture meteorological, chemical, and
physical processes in the troposphere and predict the fate of
air pollutants are key tools to forecast the likelihood of air
pollution episodes and hence to inform the authorities.

Within the EU projects MarcoPolo and Panda, which in-
clude European as well as Chinese partner organizations, an
operational multimodel forecasting system for air quality in-
cluding a number of different chemical transport models has
been developed, and is providing daily forecasts of ozone, ni-
trogen oxides, and particulate matter for the 37 largest urban
areas of China (population higher than 3 million in 2010).
These individual forecasts as well as the mean and median
concentrations for the next 3 days are posted on a dedicated
web site (http://www.marcopolo-panda.eu/forecast, last ac-
cess: 27 March 2019) together with the hourly observational
data from local measurements reported by the Chinese mon-
itoring network of the China National Environmental Moni-
toring Center (CNEMC; data available at http://www.pm25.
in, last access: 27 March 2019). This operational air qual-
ity analysis and forecasting system is presented in detail in
a companion paper (Brasseur et al., 2019), where the indi-
vidual models contributing to the MarcoPolo–Panda predic-
tion system are described, and details about the individual
models and their individual settings are provided. Informa-
tion about selected parametrization options for the physical
processes – including boundary layer, radiation, convection,
and surface processes – and about the emissions adopted in
the MarcoPolo–Panda prediction system are also provided.

In the present study, we evaluate the prediction system of
the MarcoPolo and Panda projects that have been in opera-
tion for more than 1 year. We concentrate on the period April
2016 to June 2017 and analyze the model forecasts (seven in-
dividual models and the ensemble median) and observational
data for 34 cities (covered by most of the models, depending
on the extent of the domains; for two models only 31 and
32 cities).

We evaluate the performance of the individual models in-
volved in the present study, and to examine the performance
of the overall forecasting system by comparing the predicted
surface concentrations to values reported by the Chinese air
pollution monitoring network. Section 2 of this paper pro-
vides a brief description of the forecasting system, while
Sect. 3 investigates the performance of the system using dif-
ferent statistical indicators including the mean bias (BIAS),
the root mean square error (RMSE), the modified normal-
ized bias (MNBIAS), the fractional gross error (FGE), and
the correlation coefficient. We derive in particular (a) sta-
tistical indicators for each model over the time of the year
(on a monthly basis) in order to analyze seasonal character-
istics, (b) the geographical distribution of the statistical in-
dicators for the ensemble median in order to derive regional
characteristics and issues, and (c) the statistical indicators of
all models and of the ensemble median over the time of the
day (considering all model–observation pairs of all cities and
for the whole time period) and for a specific city (Beijing) to-
gether with the diurnal variation in the pollutants during the
whole time period. In Sect. 4, we assess the impacts of miss-
ing forecasts from one or more models on the production of
the ensemble. As the prediction system intends to provide
warning of air pollution episodes to the general public, the
system performance has been evaluated regarding its ability
to predict the exceedance of air quality thresholds (binary
prediction of pollution events). This analysis is presented in
Sect. 5. We conclude with a summary and outlook in Sect. 6.

2 Description of the analysis and forecasting system

Within the EU projects MarcoPolo and Panda, a number
of chemistry-transport models have been applied to provide
daily air quality forecasts for a selection of 37 large Chi-
nese agglomerations (population over 3 million, 2010 cen-
sus). Initially, seven models, CHIMERE (Royal Netherlands
Meteorological Institute, KNMI), IFS (European Centre for
Medium-Range Weather Forecasts, ECMWF), WRF-Chem-
SMS (Shanghai Meteorological Service, SMS), SILAMtest
(Finish Meteorological Institute, FMI), WRF-Chem-MPIM
(Max Planck Institute for Meteorology, MPIM, in Hamburg),
EMEP MSC-W (hereafter referred to as EMEP, Norwe-
gian Meteorological Institute, MET Norway), and LOTOS-
EUROS (the Netherlands Organisation for applied scientific
research, TNO) were providing daily forecasts every day at
00:00 UTC for the next 72 h (3 days) for NO2, O3, PM10, and
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Figure 1. Map of the 34 cities/urban clusters (population over 3 million, 2010 census) with available data (observational and model ensem-
bles), used in this evaluation.

PM2.5 (see Fig. 1). WRF-CMAQ and WRMS-CMAQ, both
used by Chinese institutions (Nanjing University and SMS),
have recently joined the prediction system, but are not con-
sidered in the present analysis.

We should note that the models considered in the present
study may have significantly evolved since the present anal-
ysis was performed. This is the case, for example, for the
SILAM model developed by the Finish Meteorological In-
stitute, whose configuration was still in a test mode and is
therefore referred to as SILAMtest. Several of the models
considered here have been involved in a previous intercom-
parison summarized by Bessagnet et al. (2016).

The individual models are executed independently on the
computing systems available in each partner institution. The
surface concentrations of the key chemical species are ex-
tracted locally from the model outputs and forwarded to a
central database operated by the Royal Netherlands Meteo-
rological Institute (KNMI).

Hourly predictions of surface concentrations (expressed in
µg m−3) are provided by the models as grid values, which are
bilinearly interpolated to city center coordinates. The average
for the data provided by the urban network (usually around
5–12 stations), is posted together with the corresponding
standard deviation and the number of contributing stations.
In the present analysis, we only consider the model simula-
tions corresponding to 34 cities, since the cities of Ürümqi
(most western, only covered by three models), Changchun,
and Harbin (most northern cities) are located outside of the

domains covered by most individual models, which are indi-
cated in the companion paper (Brasseur et al., 2019).

In addition to the forecasts provided by the individual par-
ticipating models, a multimodel ensemble was constructed
from which the median and the mean were derived. To pro-
cess the ensemble median, all seven individual models are
first interpolated to a common horizontal grid. For each grid
point, the ensemble model is calculated as the median value
of the individual model forecasts. The median is relatively
insensitive to outliers in the forecasts. The method is also
less vulnerable to occasionally missing data from individual
models, as the minimum number of model results needed to
calculate a meaningful ensemble mean or median is almost
always available. This will be discussed in detail in Section 4.
The multimodel approach also provides more accurate fore-
casts and thus reduces the underlying uncertainties (as will
be shown in the following section). More advanced methods,
e.g., based on individual model skills, are discussed in the
literature (e.g., Galmarini et al., 2013). They are significantly
more costly from a computational point of view and therefore
not well suited for daily operations.

3 Evaluation of the performance of the system

The evaluation of the performance of a forecasting system is
a necessary step for assessing the quality of the predictions
and demonstrating its usefulness. It also provides important
information that can lead to the improvement of the forecast-
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ing system and to further model development. The compar-
ison between model output and in situ measurements is not
straightforward because of the different nature of the respec-
tive quantities: air quality models provide volume-averaged
quantities over each model grid cell and time averages over
the modeling time step. Observations are available at fixed
measurement sites and at a fixed time. Further, they are in-
fluenced by local processes that are not necessarily well cap-
tured by relatively coarse-resolution models. Thus, the rep-
resentativeness of the observational site is not always guar-
anteed.

The MarcoPolo–Panda forecasting and analysis system
uses the surface observations available at the web site http:
//www.pm25.in for 37 Chinese cities. For a given city, the
observational data considered for the evaluation of the model
consist of an average of the measurements made at the dif-
ferent stations of the urban network, usually 5–12 stations,
which are aggregated to one value for the whole city. The
model fields are bilinearly interpolated to the city center co-
ordinates.

The mean bias,

BIAS=
1
N

∑
i
(mi − oi) , (1)

where mi and oi are the model forecast value and the obser-
vation value, and N the number of model–observation pairs;
the root mean square error,

RMSE=

√
1
N

∑
i
(mi − oi)

2
; (2)

the modified normalized bias,

MNBIAS=
2
N

∑
i

(mi − oi)

(mi + oi)
; (3)

the fractional gross error,

FGE=
2
N

∑
i

∣∣∣∣mi − oimi + oi

∣∣∣∣ ; (4)

and the correlation coefficient between the model forecast
and observed values,

R =

1
N

∑
i (mi −m)(oi − o)

σmσo
, (5)

are used to measure the system performance. Here m and
o are the mean values of the model forecast and observed
values, and σm and σo are the corresponding standard devia-
tions.

The evaluation presented here aims to investigate (a) the
statistical indicators for each model over the time of the year
(on a monthly basis) so that the seasonal features can be
characterized and related issues of individual models can be
identified (Sect. 3.1); (b) the geographical distribution of the

statistical indicators of the ensemble median to highlight re-
gional characteristics and related issues (Sect. 3.2); (c) statis-
tical indicators of all models and the ensemble median over
the time of the day (considering all model–observation pairs
of all cities and for the whole time period) and for a specific
city (Beijing) together with the diurnal variation in the pollu-
tion species over the whole time period (Sect. 3.3).

3.1 Evaluation of the seasonal behavior of the models

We start our evaluation of the multimodel prediction system
by examining the seasonal behavior of the predicted concen-
trations of key chemical species. The statistical indicators
mentioned above have been calculated separately for each
month from April 2016 to June 2017 and for the entire period
during which the forecasting system was operational. Due to
storage issues, only the predictions for the first 24 h (0–23 h)
were saved while the predictions from 24 to 72 h were not
retained and not analyzed in this work.

Figure 2 shows the RMSE, BIAS, MNBIAS, and FGE
of NO2 (left column) and O3 (right column) for each of
the seven individual models included in the system, for the
model ensemble median, and for each individual month be-
tween April 2016 and June 2017. The same results are also
provided for the whole period (“All”). It can be seen that
there is a wide spread of the results produced by the seven
models. The individual models are continuously improving
during the first months because many changes have been ap-
plied by the different modeling groups in order to improve
their individual predictions. In the case of NO2, most indi-
vidual models slightly overestimate the concentrations com-
pared to observations. In the EMEP model, it may be ex-
plained by the larger nitrogen emissions used in comparison
with the other models (Brasseur et al., 2019). This results in
a positive BIAS and MNBIAS for most models and the en-
semble median. The RMSE of the model ensemble is highest
in July/August/September 2016 and remains relatively con-
stant after October 2016. It can be seen that the median of the
model ensemble has the lowest RMSE for NO2, the smallest
BIAS and MNBIAS (slightly positive) and the lowest FGE.
This demonstrates the advantage of adopting a model ensem-
ble rather than the prediction provided by individual models.

Most models underestimate O3 (likely as a result of the
overestimated NO2 because the O3 production is not NOx-
limited) during the whole period under consideration. For
O3, the CHIMERE model shows slightly better performance
(lowest RMSE) than the model ensemble median. The me-
dian BIAS for O3 is relatively constant (slightly negative).
For this particular species, the model ensemble median does
not provide the best results regarding the BIAS. In fact,
in this case, the model LOTOS-EUROS gives the best per-
formance for ozone, Interestingly, this particular model has
the largest negative BIAS for NO2. The median BIAS of
O3 remains relatively constant during the period, while the
MNBIAS exhibits higher negative values during the winter
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Figure 2. RMSE (in µg m−3), BIAS (in µg m−3), MNBIAS, and FGE of NO2 and O3 for each month and for the entire time period (April
2016–June 2017 and lines on the right side of each panel).

months, as a result of the relatively low O3 concentrations
during wintertime.

As stated above, the MarcoPolo–Panda prediction system
has the tendency to overestimate surface NO2, which leads to
O3 titration especially during nighttime. The emission injec-
tion height is also a relevant factor here since it can largely
influence the results in the planetary boundary layer. During
night-time, emissions from stacks may take place above the
mixing layer and explain model–data discrepancies since the
models often assume that the injection of primary pollutants
takes place in the first layer above the surface.

Anthropogenic emissions of primary pollutants are chang-
ing extremely rapidly in China. The adopted emissions in-
ventories usually reflect the situation a few years before the
period during which the model simulations were performed.

Since the recent NOx emissions have decreased significantly
in some urban areas of China in response to measures taken
by the local authorities (Liu et al., 2017), the anthropogenic
emissions used for the current forecasts may be overesti-
mated in some areas. Some models use reduced NOx and
SOx anthropogenic emissions (for details see Brasseur et al.,
2019); however, daytime concentrations of ozone are gener-
ally underestimated in most models, even when the level of
NO2 is in reasonable agreement with the observational val-
ues. The discrepancy could be caused by an underestimation
of the emissions of some VOCs, especially in the center of
urban areas where ozone is often VOC-limited.

For PM10 and PM2.5, the model ensemble median shows
the best performance compared to all individual models dur-
ing the time period under consideration (see Fig. 3). For
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Figure 3. RMSE (in µg m−3), BIAS (in µg m−3), MNBIAS, and FGE of PM10 and PM2.5 for each month and for the entire time period
(April 2016–June 2017 and lines on the right side of each panel).

PM10, there is an overall slight underestimation by all models
except by CHIMERE and hence by the median of the model
ensemble. For PM2.5, the BIAS is relatively constant (apart
in the WRF-Chem-SMS model which exhibits a lot of varia-
tion in the BIAS of PM10 and PM2.5). In this case, the BIAS
is slightly overestimated but close to zero.

Figure 4 shows the temporal correlation coefficients for
NO2, O3, PM10, and PM2.5 for each individual month, and
for the whole time period. It can be seen that there is a wide
spread between the individual models: the calculated cor-
relations range from 0.2 to 0.7 for NO2, PM10, and PM2.5,
and from 0.3 to 0.8 for O3. The model ensemble median and
CHIMERE are characterized by high correlation coefficients
in the case of NO2, O3, and PM2.5. For PM10, the model en-
semble median and the LOTOS-EUROS model provide the
highest correlation coefficients. In general, the model ensem-
ble median gives the best performance.

The correlation coefficient of O3 for the ensemble median
on the monthly basis remains relatively unchanged between
April 2016 and June 2017, and ranges between 0.6 and 0.8.
Considering the whole time period, it is on the order of 0.75,
with CHIMERE providing a slightly higher correlation coef-
ficient for the whole time period, and also for each individ-
ual month. All models exhibit low correlation coefficients in
March 2017. High correlation coefficients are found during
the early summer months (June/July). For PM10 and PM2.5,

the correlation coefficients exhibit more variability, starting
with very low correlations for all models and for the en-
semble during April and May 2016, high correlations from
June 2016 to March 2017, and again low correlations dur-
ing April and May 2017. These differences may be due to
missing sources of biomass burning or dust or to individual
model tunings. An important difference between the models
included in the ensemble is the formulation of dust mobiliza-
tion (see Table 3 of the companion paper by Brasseur et al.,
2019). Note that the CHIMERE and EMEP models do not
include dust in their calculation of particulate matter and that
the emissions provided by the IFS-ECMWF are substantially
higher than in other models. For the entire time period, the
correlation coefficient of the ensemble mean is higher than
for each individual models (∼ 0.58 for PM10 and ∼ 0.78 for
PM2.5). The correlation between the model ensemble and the
observations is therefore relatively satisfactory.

3.2 Evaluation of the geographical distribution

The statistical indicators, described above for all contributing
cities, have also been calculated for the individual cities. The
purpose here is to assess regional characteristics and to iden-
tify model issues. Figure 5 shows the statistical indicators
(RMSE, BIAS, and correlation coefficient) for O3, NO2, and
PM2.5 of the ensemble median for each city during the time
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Figure 4. Correlation coefficients based on hourly concentrations of NO2, O3, PM10, and PM2.5 for each month between April 2016 and
June 2017 (and for the entire time period, lines on the right side of each panel).

period under consideration (April 2016 until June 2017). In
the uppermost left panel, the BIAS of ozone for each city
is shown. It can be seen that the ensemble median is under-
estimating the ozone concentrations in the north and north-
eastern regions of China, while no significant bias compared
to the observations is found in cities in the southern part of
the country. RMSE in the northern and northeastern cities
are higher (around 40 µg m−3) than in southern and western
cities (around 20–30 µg m−3).

The temporal correlation coefficients for ozone calculated
for each city over the whole period under consideration are
slightly higher in the northern part of the country and slightly
smaller in the southern regions. This indicates that the day-
to-day variability is well simulated, even though the models
are slightly underestimating the ozone pollution in the north.
NO2 concentrations (see the middle row panels of Fig. 5)
are overestimated in some cities and underestimated in other
cities. There is, however, no systematic geographical char-
acterization of the bias. When considering individual cities,
it can be seen that the NO2 concentrations are slightly over-
estimated in most urban areas including Beijing, Shanghai,
Chengdu, Wuhan, and Changsha. The missing urban param-
eterization could be one of the reasons for too low vertical
mixing in the model. The RMSE for NO2 in the middle panel
of Fig. 5 is very uniform (around 20 µg m−3) in the whole
country. The correlation coefficients of NO2 (between 0.5
and 0.7) are smaller than those of O3 as NO2 exhibits more

temporal variability than O3. In the case of PM2.5, (see up-
permost right panel), the concentrations are well simulated
in the northern and southern parts of China, but there are
a few city clusters in the middle of the domain (Chengdu,
Chongqing, Wuhan, and Changsha) in which the PM2.5 con-
centrations are overestimated by more than 50 µg m−3. These
cities also show an overestimation of NO2 concentrations.
The overestimation of PM2.5 may therefore be related to the
errors in precursor emissions, e.g., NOx and SO2. The RMSE
of PM2.5 is smaller in the southern part of the domain and
along the coastline of China, while the model results are less
satisfactory in the city clusters located in the central part of
the domain, with very high RMSE of 60–80 µg m−3 in three
cities. The correlation coefficients for the individual cities are
relatively constant around 0.7 with few cities characterized
by lower correlation coefficients (mostly in the central part
of the domain).

3.3 Evaluation of the diurnal variation

We now examine the ability of the models to reproduce the
diurnal variations of the chemical species’ concentrations.
We first provide a general view based on all observations in
China and then examine the particular situation in the city of
Beijing.
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Figure 5. Map of the BIAS, RMSE, and temporal correlation coefficient of O3, NO2, and PM2.5 for the whole time period (April 2016 until
June 2017) for each city.

3.3.1 Analysis based on all observations in China

The RMSE, BIAS, MNBIAS, and FGE of O3, NO2, PM10,
and PM2.5 for the seven models and the ensemble median
for all available observations in China are displayed over the
forecasting time (0–23 h; Figs. 6 and 7). Due to storage lim-
itations, only the predictions for the first 24 h (0–23 h) were
saved while the predictions for the 24–72 h period performed
by all models were not retained. Unfortunately, this does not
allow the investigation of a day-to-day degradation of the sta-
tistical indicators (from day 1 to day 3). Only the diurnal
behavior of the statistical indicators can be assessed, which
provides important hints for possible model issues.

It can be seen in the left column of panels of Fig. 6 that
the statistical indicators of NO2 for the ensemble median
is relatively stable over the time of the day, with slightly
higher RMSE and higher BIAS/MNBIAS during the night-
time hours. For the individual models, the variability in the
RMSE is somewhat higher during daytime, while some mod-
els exhibit very high RMSE and BIAS during the nighttime
hours. Most models show a positive BIAS of NO2 during the
night, but a few of them exhibit a negative bias; this results
in a relatively small BIAS for the ensemble median, showing
good results with respect to the BIAS throughout the day.

In the case of ozone, the statistical indicators exhibit a
variation over the time of the day. The RMSE is smallest
between 07:00 and 09:00 LT (local time), after which it in-

creases until 18:00 LT in the evening to become constant at
about 30 µg m−3 during the night.

An examination of the BIAS and MNBIAS for O3 over
the day shows that O3 is underestimated by nearly all mod-
els, apart from WRF-Chem-SMS. This might result from the
slight overestimation of NO2 concentrations by most models.
Especially during nighttime when the height of the bound-
ary layer is low, near-surface NO2 concentrations are high,
and ozone is underestimated by 50 %–100 % by most mod-
els. In the first hours of the day, only SILAMtest, WRF-
Chem-SMS, and LOTOS-EUROS exhibit slightly positive
O3 BIAS. The same models produce a negative BIAS for
NO2 during the first hours of the day.

Figure 7 shows that the BIAS and MNBIAS of both PM10
and PM2.5 stay relatively constant over the time of the day.
PM10 is slightly underestimated by the ensemble median
(−5 % to −10 %), while PM2.5 is slightly overestimated
(10 % to 25 %). In most cases, the models overestimate the
PM2.5 observations, while for PM10 there are stronger differ-
ences between the individual models.

For PM10 and PM2.5, the ensemble median exhibits a
better performance than the individual models: the RMSE
BIAS, MNBIAS, and FGE of the ensemble are on average
lower than the corresponding statistical parameters of the in-
dividual models. This demonstrates again the advantage of
using the ensemble median for the prediction of PM10 and
PM2.5.
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Figure 6. RMSE, BIAS, MNBIAS, and FGE of NO2 and O3 over the forecasting time (time of the day).

Figure 8 presents the diurnal variation in the concentra-
tions of O3, NO2, O3+NO2, and PM2.5 from the individual
models (and the ensemble median) and from the observations
at a specific location (Beijing). The RMSE and the BIAS are
also provided during the whole period under consideration.

It can be seen that the ensemble median (black line) un-
derestimates the O3 observations (red line) throughout the
day, especially during the nighttime hours and in the late af-
ternoon. Only WRF-Chem-SMS reproduces the amplitude
of the O3 diurnal cycle, but it also underestimates the O3
concentrations after 18:00 LT when the height of the bound-
ary layer is rapidly decreasing. All models and the ensem-
ble median reproduce the diurnal cycle with a maximum
in the late afternoon, but this maximum produced by the
model appears about 2 h earlier than observed. When consid-
ering the RMSE, the models produce the best results during

the morning, and with increasing O3 concentrations as the
day progresses; the RMSE is also increasing. The negative
BIAS is increasing for all models and for the model ensem-
ble throughout the day.

3.3.2 Analysis for the specific case of Beijing

In Beijing, the diurnal variation in the NO2 concentrations is
overestimated by the individual models as also reflected by
the ensemble median. During the nighttime, for example, the
observed concentrations are about 20–30 µg m−3 lower than
the concentrations associated with the ensemble median. The
individual models and the ensemble median show a much
stronger diurnal behavior than the observations. Atmospheric
measurements suggest that the concentrations of NO2 are rel-
atively constant over the time of the day. This might be due to
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Figure 7. RMSE, BIAS, MNBIAS, and FGE of PM10 and PM2.5 over the forecasting time (time of the day).

applied temporal profiles of the anthropogenic emissions or
issues in the vertical mixing of the individual models. Also,
the models with their spatial resolution may not capture the
details seen in the observations by the ground network. The
RMSE of all models and for the ensemble median is highest
in late afternoon and during the night. The MarcoPolo–Panda
prediction system has thus a tendency to overestimate surface
NO2, which leads to an overestimation of the O3 titration es-
pecially at night.

To further analyze the chemical coupling between ozone
and NO2, we have added, at each time step, the mixing ra-
tios of O3 and NO2. The resulting variable, called Ox and
expressed here in ppbv, has the advantage of not being af-
fected by the fast interchange (null cycle) and the resulting
partitioning between ozone and NO2 produced by reactions

NO+O3, NO2+hν, and O+O2+M. If only these three
rapid photochemical reactions are considered, Ox is a con-
served quantity. In other words, even when a more compre-
hensive chemical scheme is adopted, the diurnal cycle of Ox
should be considerably less pronounced than the diurnal cy-
cle of NO2 and O3.

In fact, in the model forecasts, the sum of O3 and NO2
is nearly constant during the day, but exhibits nevertheless
some diurnal variation, which appears to be weaker than in
the observation. The calculated Ox is slightly too high at
night and too low during daytime, suggesting an overestima-
tion in photochemical activity by the majority of the models.
The partitioning of Ox into NO2 and O3 is not well repro-
duced despite the simple chemistry that determines this parti-
tioning: NO2 is generally too high and O3 too low, especially

Geosci. Model Dev., 12, 1241–1266, 2019 www.geosci-model-dev.net/12/1241/2019/



A. K. Petersen et al.: Ensemble forecasts of air quality in eastern China – Part 2 1251

Figure 8. Diurnal variations in the concentrations and of the RMSE and BIAS of O3, NO2, Ox , and PM2.5 for Beijing for the whole time
period (April 2016–June 2017).

in the afternoon and early night. The simple partitioning ap-
proach does not seem to work properly under high NOx load-
ing. As a result, the diurnal cycle of O3 is not well reproduced
by the forecasting ensemble and high ozone events are gen-
erally underestimated. This issue is discussed in more detail
in the companion paper by Brasseur et al. (2019).

The observed diurnal variation in PM2.5 is not well repro-
duced by the models and by the ensemble median. The cal-
culated variability in Beijing is substantially higher than sug-
gested by the observations (which are characterized by rela-
tively constant concentrations throughout the day). The mod-
els show a maximum in PM2.5 concentrations around 08:00–
09:00 LT, and a second maximum during nighttime hours.
This morning maximum is not present in the observations.
The model ensemble is overestimating the observations in the
morning and underestimating them in the early afternoon, re-
sulting in a diurnal variability in the BIAS, shown in the low-
est panel. Again, this might be related to the adopted diurnal
profiles of the anthropogenic emission sources or might be
due to errors in the formulation of vertical mixing in the plan-
etary boundary layer. Specifically, one should note that the
models do not include a detailed formulation of small-scale
urban canopy effects, which could generate some mechani-
cal and thermal turbulence with related vertical mixing dur-
ing nighttime. With increased nighttime ventilation from the
boundary layer to the free troposphere, the calculated ampli-

tude of the diurnal variation in gases and particulates would
be reduced and become closer to the observation.

4 The impact of missing model data on the ensemble
performance

To assess the impact on the ensemble forecast of occasionally
missing results from one or several models, we compare the
following ensembles during a given test period (1–30 May
2017), separately for O3, NO2 and PM2.5: this approach has
already been adopted by Marécal et al. (2015) to evaluate
European air quality predictions. We consider the following
cases:

– MEDIAN 7. the median provided by the operational en-
semble method, which includes all seven models;

– MEDIAN 5. the median built on five individual models,
excluding the “best” and the “worst” models;

– MEDIAN 3. the median built on three individual mod-
els, excluding the two “best” and the “two” worst mod-
els;

– BEST. the model with the highest performance;

– WORST. the model with the lowest performance.
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Since the relative performance of individual models varies
in time and space, the criterion to order the seven individ-
ual models from “worst to best” is provided by the value of
their respective RMSE over the test period. For ozone, the
criterion is measured by the RMSE over the 30 days between
12:00 and 18:00 LT (ozone peak time) (this criterion is based
on the fact that the “best” model refers to the best forecast of
daytime ozone levels). RMSE is seen as the most objective
criterion since mean bias and modified normalized bias can
include compensating effects.

Figure 9 shows the statistical indicators for May 2017 as
a function of the forecasting time (0–23 h) of the ensem-
ble median based on all seven models (MEDIAN7 shown in
red), five models (MEDIAN5 shown in blue), and three mod-
els (MEDIAN3 shown in black). The results are also shown
for the “best” and the “worst” model (BEST, magenta, and
WORST, light blue). For all three species, the ensemble me-
dian based on seven models is of highest quality (based on
the statistical indicators used in this analysis), and generally
surpasses the results provided by the “best” model. When
only five models (excluding the best and the worst) are avail-
able to calculate the ensemble, all statistical indicators show
only very small differences with the more inclusive ME-
DIAN7 case based on seven models. Reducing the ensemble
calculation further to three models (MEDIAN3), the statisti-
cal scores degrade slightly compared to the MEDIAN7 and
MEDIAN5 for all three species, but remain higher or at least
similar to the score of the best model (BEST).

It is interesting to note that the best model (BEST) is not
the same model for the different months that are investigated,
nor the same model for all species. For example, in August
2016, the best model for O3 and PM2.5 is IFS, while LOTOS-
EUROS shows the best performance for NO2. In May 2017,
the best model for PM2.5 is LOTOS-EUROS and the worst
model is IFS, but the results remain the same: the ensem-
ble product performs better than (or at a similar level as) the
best model. Since the BEST model can change depending on
time period and species, the ensemble product is particularly
valuable for the sustained quality of the forecasting system.
This study shows, therefore, that using the ensemble prod-
uct (median) of models, even if occasionally based on fewer
models, is more useful than using a single model, even if the
performance of this individual model is high. The ensemble
product is still robust compared to the observations if the out-
put of some contributing models is occasionally missing. It
also shows that an ensemble product remains valuable even
if only few models are available for the production of the
forecast.

5 Performance of the forecasting system for warnings
alerts

The prediction system has been designed to support the de-
velopment of policies and the calculation of air quality in-

dices. One of the applications of the system is to provide
alerts to the general public when acute air pollution episodes
are expected. Thus, the performance of the forecast system
has been tested regarding the likelihood to predict air pollu-
tion events. We will refer to this type of forecast as binary
prediction of events (Brasseur and Jacob, 2017).

A model prediction of a specific event such as an air pollu-
tion episode at a given location (e.g., concentration of pollu-
tants exceeding a regulatory threshold) is evaluated by con-
sidering a binary variable and by distinguishing between four
possible situations: (1) the event is predicted and observed,
(2) the event is not predicted and not observed, (3) the event
is predicted but not observed, (4) the event is not predicted
but is observed. Cases (1) and (2) are regarded as success-
ful predictions (hits), while (3) and (4) are considered to be
failures (misses). The skill of the model for binary prediction
(event or no event) is measured by the fractions of observed
events that are correctly predicted (probability of detection,
POD). The fraction of predicted events that did not occur is
measured by the false alarm rate (FAR), both POD and FAR
as defined in Brasseur and Jacob (2017).

We have calculated the POD and FAR for the ensemble
median for the cities of Beijing, Shanghai, and Guangzhou
between April 2016 and June 2017, specifically for ozone
(based on the 8 h and the daily maximum value), NO2, and
PM2.5. Based on the 1-hourly time series of ozone, NO2
and PM2.5, the time series for (a) 1 h ozone, (b) 8 h ozone
concentrations (c) 24 h mean NO2 concentrations, (d) 1 h
NO2 concentrations, and (e) 24 h PM2.5 concentrations have
been constructed and the thresholds of the air quality indices
(AQI) have been applied for each definition. The definitions
breakpoints for the individual AQI are shown in Tables 1 and
2; they are based on current definitions of AQI from the Chi-
nese government.

In order to highlight the presence of thresholds violated
during the time period under consideration, Figs. 10–12 show
the time series for the period April 2016–July 2017 of the
(1) daily maximum ozone concentrations, (2) 8 h moving
average of ozone, (3) the 24 h mean NO2 concentrations,
(4) the daily maximum NO2 concentrations, and (5) the 24 h
mean PM2.5 concentrations for Beijing (Fig. 10), Shanghai
(Fig. 11), and Guangzhou (Fig. 12) derived from the model
and from the observations at each location. Pink lines indi-
cate the thresholds for the air quality indices for moderate
(line), lightly polluted (dashed line), and moderately polluted
(dotted line) conditions for each pollutant.

In Beijing and Shanghai, the daily maximum ozone con-
centrations exceeded the thresholds of 160 (moderate) and
200 (lightly polluted) within the considered time period only
during the months of April to September 2016. During the
months of October 2016 to March 2017, the ozone concen-
trations remained below the threshold of 160, highlighting
fair air quality conditions with regard to ozone in wintertime.
In Beijing, the ensemble median has a probability of detec-
tion of air pollution events for moderate 1 h ozone AQI of
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Figure 9. RMSE, BIAS, MNBIAS, and FGE of O3, NO2, and PM2.5 over the forecasting time (time of the day) for the Median7, Median5,
Median3, and the best and worst model.

Table 1. Chinese AQI categories.

Index AQI AQI categories
values levels

050 1 good
51–100 2 moderate
101–150 3 lightly polluted
151–200 4 moderately polluted
201–300 5 heavily polluted
> 300 6 severely polluted

0.44 (55 out of 126 events of 1 h ozone breaking the thresh-
old of 160 µg m−3 have been detected). The FAR is 0.05; the
model ensemble predicted 58 events where ozone exceeds
the threshold of 160 µg m−3, where 3 out of these 58 events
were false alarms (observations below the threshold). Lightly
polluted events (1 h ozone exceeding 200 µg m−3) were cor-
rectly predicted only 14 times, while the observations ex-
ceeded the threshold 79 times. The FAR for lightly polluted
ozone events is 0.12 (2 out of 16).

Table 2. Individual AQI (IAQI) for 1 and 8 h ozone, 24 and 1 h NO2,
and 24 h PM2.5.

IAQI 1 h O3 8 h O3 24 h NO2 1 h NO2 24 h PM2.5
(µg m−3) (µg m−3) (µg m−3) (µg m−3) (µg m−3)

0 0 0 0 0 0
50 160 100 40 100 35
100 200 160 80 200 75
150 300 215 180 700 115
200 400 265 280 1200 150
300 800 800 565 2340 250
400 1000 use hourly 750 3090 350
500 1200 use hourly 940 3840 500

For moderately polluted ozone events (1 h ozone exceed-
ing 300 µg m−3), the POD is 0; the model ensemble was not
able to predict the four observed events (FAR is not applica-
ble, 0 out of 0).

Looking at the 8 h ozone predictions for Beijing, the model
ensemble is very similar, with a POD of 0.45 (864 out of the
1921 observed events have been predicted correctly) and a
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Figure 10. Time series of daily maximum O3, 8 h moving average O3, 24 h mean NO2, daily maximum NO2, and 24 h mean PM2.5 for
Beijing from April 2016 until June 2017.
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Figure 11. Time series of daily maximum O3, 8 h moving average O3, 24 h mean NO2, daily maximum NO2, and 24 h mean PM2.5 for
Shanghai from April 2016 until June 2017.
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Figure 12. Calculated (ensemble median) and observed time series of daily maximum O3, 8 h moving average O3, 24 h mean NO2, daily
maximum NO2, and 24 h mean PM2.5 for Guangzhou from April 2016 until June 2017.
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FAR of 0.06 (56 counts are false alarms out of 920 events).
For lightly polluted ozone conditions, the POD is 0.18 (118
out of 657 observed events) with a FAR= 0.06 (7 out of
125 are false alarms). For moderately polluted conditions,
the model ensemble predicted 7 out of 150 observed events
correctly with a FAR of 0.22 (2 out of 9 alarms are false).

For Shanghai, the PODs for ozone predictions are lower
than in Beijing: for moderate air quality conditions, the POD
is 0.16 (15 out of 92 observed events are predicted correctly)
with a FAR of 0 (no false alarm) for 1 h ozone predictions,
and POD= 0.21 (488 out of 2346 observed events) with a
FAR of 0.01 (7 false alarms relative to 495 counts) for 8 h
ozone predictions. For lightly polluted conditions, the POD is
decreasing: POD= 0.08 (3 correct predictions out of 38 ob-
served events) with FAR of 0 (no false alarm, 3 correct pre-
dictions) for 1 h ozone, and POD= 0.07 (27 out of 398 ob-
served) with a FAR of 0.10 (3 false alarms out of 30) for
8 h ozone. For moderately polluted conditions (1 h ozone ex-
ceeding 300 µg m−3 or 8 h ozone exceeding 215 µg m−3), the
POD for 1 h ozone is not applicable (not predicted, no ob-
served events), and for 8 h ozone POD= 0 (0 predicted out
of the 29 observed), FAR= 1 (2 false alarms out of 2 pre-
dicted, but not observed).

In Guangzhou, there is no clear difference between ozone
conditions in summer or wintertime during the considered
time period. Ozone observations regularly exceed the thresh-
old of 160 (moderate) and 200 µg m−3 (lightly polluted) dur-
ing the whole time period, and five times 1 h ozone is exceed-
ing the threshold of 300 µg m−3.

The POD of 1 h ozone in Guangzhou is 0.16 (15 correct
predictions out of 94 observed) with FAR= 0.21 (4 false
alarms out of 19 predicted) for moderate conditions, and
POD= 0.03 (1 predicted out of 36 observed) with FAR= 0
(0 out of 1 predicted) for lightly polluted conditions, and
POD= 0 (0 predicted out of 5 observed events) for mod-
erately polluted ozone conditions. For 8 h ozone, the POD
is 0.31 (315 correct predicted out of 1032 observed) with
FAR= 0.28 (122 false alarms of 437 predicted events) for
moderate conditions, POD= 0.06 (12 out of 217 observed)
with FAR= 0 (no false alarm out of 12 predicted events)
for lightly polluted ozone conditions, and POD= 0 (0 out
of 47 observed events) for moderately polluted ozone condi-
tions.

In general, the ability of the model ensemble to correctly
predict ozone air pollution events is best for light ozone pol-
lution, while it fails to predict correctly the ozone pollution
events for moderately polluted situations. This is mostly a
result of the model ensemble being too low compared to the
observations. The predictions can be improved by applying a
bias correction to the ozone predictions. This is investigated
in the last section.

The NO2 predictions of the ensemble median are in
general too high compared to the observations, espe-
cially in Beijing and Shanghai. Especially in summertime
(June/July/August/September), the model predictions are

sometimes twice as high as the observations, which might be
a result of uncertainties in the emissions. In all three cities
under consideration, the NO2 concentrations are only ex-
ceeding the thresholds of 40 µg m−3 for 24 h NO2 (100 for
1 h NO2) and 80 µg m−3 for 24 h NO2 (200 µg m−3 for 1 h
NO2) during the considered period (moderate and lightly
polluted conditions for NO2). During wintertime (Novem-
ber/December/January), the observations are slightly higher
than in summer and the ensemble system is in better agree-
ment with the observations.

In Beijing, the POD for 24 h NO2 is 1 (214 of 214 observed
events are predicted) for moderate conditions with a FAR
of 0.46 (180 false alarms relative to 394 predicted events).
This indicates that NO2 is generally overestimated by the
model ensemble. For lightly polluted events, the POD is 0.79
(27 predicted out of 34 observed events) with FAR= 0.70
(63 false alarms out of 90 predicted). For the 1 h NO2, the
POD for moderate conditions is 0.61 (36 out of 59 observed
events) with FAR= 0.80 (141 false alarms out of 177 pre-
dicted). For lightly polluted conditions, no events have been
observed nor predicted for 1 h NO2 in Beijing during the con-
sidered period. In Beijing, the threshold for moderately pol-
luted NO2 conditions has not been exceeded neither by 1 h
NO2 nor by 24 h NO2 during the considered period.

In Shanghai, the numbers are very similar to those in Bei-
jing: POD for 24 h NO2 is 1 (208 of 208 observed events
are predicted) for moderate conditions with a FAR of 0.42
(152 false alarms of 360 predicted events). There is also a
general overestimation by the model ensemble compared to
the observations. For lightly polluted conditions, the POD
for 24 h NO2 is 0.67 (10 out of 15 observed) and a FAR of
0.86 (60 false alarms of 70 predicted), which is a clear re-
sult of the overestimated NO2. For the 1 h NO2, the POD is
0.91 (48 predicted out of 53 observed) with a FAR of 0.70
(111 false alarms out of 159 predicted) for moderate con-
ditions. The thresholds for lightly polluted and moderately
polluted conditions for 1 h NO2 have not been exceeded in
Shanghai during the considered period, but there was 1 false
alarm (1 out of 1) for lightly polluted conditions.

In Guangzhou, the model ensemble and the observations
for NO2 are in better agreement. There is slight overesti-
mation of the NO2 concentrations from May to September
2016, and in May 2017, but in general, there is a good agree-
ment between the model time series and the observations.
The POD for 24 h NO2 exceeding the threshold for moderate
conditions is 0.94 (208 predicted out of 222 observed) with
a FAR of 0.35 (110 false alarms of 318 predicted events), for
lightly polluted conditions POD is 0.56 (15 predicted out of
27 observed) with 32 false alarms out of 47 predicted events
(FAR= 0.69). Stronger polluted events have not been ob-
served nor predicted for NO2 in Guangzhou. For the 1 h NO2,
58 events have been predicted out of 76 observed for moder-
ate conditions (POD= 0.76, FAR= 0.63; 97 false alarms out
of 155 predicted). For lightly polluted conditions there was
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1 false alarm (1 out of 1), with no observed nor predicted
events.

The thresholds for moderately polluted conditions for 24 h
NO2 and 1 h NO2 have not been exceeded in Guangzhou dur-
ing the considered period, no events have been predicted nor
observed.

The predictions of PM2.5 concentrations (24 h PM2.5) of
the model ensemble are in very good agreement with the ob-
servations in all three cities during the considered period.

In Beijing, the POD for the prediction of moderate con-
dition for 24 h PM2.5 is 0.95 (268 correctly predicted events
out of 283 observed) with a FAR of 0.19 (61 false alarms
out of 329 predicted events). For lightly polluted condi-
tions, the POD is 0.76 (111 correctly predicted events of
146 observed events) with a FAR of 0.28 (43 false alarms
for 154 predicted events). Moderately polluted PM2.5 events
have been correctly predicted 33 times out of 64 observed
events (POD= 0.52) with a FAR of 0.35 (18 false alarms out
of 51 predicted events).

In Shanghai, 191 moderate pollution events for PM2.5
have been correctly predicted out of 220 observed events
(POD= 0.87, FAR= 0.19), with 46 false alarms out of the
237 predicted events. For lightly polluted events, the POD
is 0.84 (32 out of 38 observed events) with a FAR of o.47
(28 false alarms of 60 predicted events). For moderately pol-
luted conditions of PM2.5, the POD is 0.50 (3 correctly pre-
dicted events out of 6 observed) with a relatively high FAR
(0.67, 6 false alarms out of 9 predicted).

In Guangzhou, the POD for moderate conditions of PM2.5
is 0.85 (149 correctly predicted out of 175 observed) with
65 false alarms out of 214 predicted events (FAR= 0.30).
Lightly polluted events have been observed only seven
times, the ensemble median predicted four of them correctly
(POD= 0.57), but with a very high false alarm rate (16 false
alarms out of 20 predicted events, FAR= 0.80); this indi-
cates a slight overestimation of the PM2.5 concentrations of
the models compared to the observations. In Guangzhou, no
moderately polluted events of PM2.5 have been observed nor
predicted during the considered period.

Only in Beijing, and only with regard to 24 h PM2.5, heav-
ily polluted conditions have been observed and predicted dur-
ing the considered period in the winter months 2016/2017
(see Table 4): the POD is 0.5 (18 correctly predicted out of
36 observed events) with a FAR of 0.28 (7 false alarms out
of 25).

These investigations show that the model ensemble is well
suited to be used in air quality predictions of PM2.5. For
ozone, due to biases of the model ensemble compared to ob-
servations, the model ensemble is not able to predict ozone
pollution in an appropriate way. Although the FAR is very
low for ozone predictions, the POD of model ensemble is not
very high. In the following section, we apply bias correction
to improve the predictions for ozone pollution events.

Bias correction for ozone predictions

Bias corrections can be applied to improve the predictions
of an individual model or a model ensemble. In our case,
we have calculated the summertime bias of the time series
of the hourly ozone concentrations from the model ensemble
with respect to the hourly observations, and subtracted the
bias from the hourly time series. For predictions of ozone air
pollution, the summertime is an appropriate season to con-
sider since the ozone thresholds are exceeded only during
this season. As the bias between the observations and the
model might not be the same for each month, and our goal is
to obtain the best improvement in the ozone predictions for
summertime, we have subtracted the mean summertime bias
(mean of the bias of June/July/August/September 2016) from
the original time series. The daily maximum ozone values
and the 8 h moving average for the corrected time series have
then been calculated. The resulting POD and FAR for 1 h
ozone and 8 h ozone under different air quality conditions are
shown in Table 3. This table shows that, for bias-corrected
predictions, the POD in all three cities is larger than for the
noncorrected time series, especially in the case of moderate
and lightly polluted conditions of ozone. Thus, the predic-
tions of air pollution events are significantly improved when
the bias correction is applied in the case of ozone. Only for
the predictions of moderately polluted conditions of ozone,
the POD is not changing. The FAR is also slightly decreasing
for all cities, but the improvement is small.

In Beijing, the POD air pollution events represented by
a moderate AQI for 1 h ozone increased from 0.44 for Bei-
jing (55 out of 126 observed events) before bias correction
to 0.69 (87 out of 126 events) after bias correction. The
FAR also increased from 0.05 (3 false alarms out of these 58
events) to 0.10 (10 false alarms out of 97 predicted events).
Lightly polluted events (1 h ozone exceeding 200 µg m−3)
have been predicted correctly 31 times (14 times without the
corrections), while the observations exceeded the threshold
79 times. The FAR for lightly polluted ozone events also
slightly increased from 0.125 (2 out of 16) to 0.2 (8 false
alarms out of 40).

For moderately polluted ozone events (1 h ozone exceed-
ing 300 µg m−3), the POD for the bias-corrected prediction
is still 0. The model ensemble was not able to predict the
4 observed events (FAR is not applicable, 0 out of 0).

Looking at the 8 h ozone predictions for Beijing, the POD
of 0.45 (864 out of the 1921 observed events have been pre-
dicted correctly) increased to 0.76 (1452 out of 1921) after
bias corrections, and the FAR from 0.06 (56 counts are false
alarms out of 920) to 0.23 (424 false alarms out of 1876 pre-
dictions) for moderate ozone pollution. For lightly polluted
ozone conditions, the POD increased to 0.44 (291 out of 657)
and FAR is 0.22 (81 false alarms of 372 predicted) for the
bias-corrected predictions compared to POD is 0.18 (118 out
of 657 observed events) with a FAR is 0.06 (7 out of 125 are
false alarm). For moderately polluted conditions, the model
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Table 3. POD and FAR for Beijing, Shanghai, and Guangzhou.

Probability of detection (POD) False alarm rate (FAR)

AQI 2 AQI 3 AQI 4 AQI 2 AQI 3 AQI 4
(moderate) (lightly poll.) (moderately poll.) (moderate) (lightly poll.) (moderately poll.)

Beijing

1 h O3 (µg m−3) 0.44 0.18 0 0.05 0.12 NA
(55/126) (14/79) (0/4) (3/58) (2/16) (0/0)

Bias-corrected 1 h O3 0.69 0.41 0 0.10 0.20 NA
(µg m−3) (87/126) (32/79) (0/4) (10/97) (8/40) (0/0)
8 h O3 (µg m−3) 0.45 0.18 0.05 0.06 0.06 0.22

(864/1921) (118/657) (7/150) (56/920) (7/125) (2/9)
Bias-corrected 8 h O3 0.76 0.44 0.23 0.23 0.21 0.28
(µg m−3) (1452/1921) (291/657) (34/150) (424/1876) (81/372) (13/47)
24 h NO2 (µg m−3) 1 0.79 NA 0.46 0.70 NA

(214/214) (27/34) (0/0) (180/394) (63/90) (0/0)
1 h NO2 (µg m−3) 0.61 NA NA 0.80 NA NA

(36/59) (0/0) (0/0) (141/177) (0/0) (0/0)
24 h PM2.5 (µg m−3) 0.95 0.76 0.52 0.19 0.28 0.35

(268/283) (111/146) (33/64) (61/329) (43/154) (18/51)

Shanghai

1 h O3 (µg m−3) 0.16 0.08 NA 0 0 NA
(15/92) (3/38) (0/0) (0/15) (0/3) (0/0)

Bias-corrected 1 h O3 0.51 0.34 NA 0.10 0.07 1
(µg m−3) (47/92) (13/38) (0/0) (5/52) (1/14) (1/1)
8 h O3 (µg m−3) 0.21 0.07 0 0.01 0.10 1

(488/2346) (27(398) (0/29) (7/495) (3/30) (2/2)
Bias-corrected 8 h O3 0.66 0.27 0.10 0.32 0.13 0.80
(µg m−3) (1554/2346) (109/398) (3/29) (726/2280) (16/125) (12/15)
24 h NO2 (µg m−3) 1 0.67 NA 0.42 0.86 NA

(208/208) (10/15) (0/0) (152/360) (60/70) (0/0)
1 h NO2 (µg m−3) 0.91 NA NA 0.70 1 NA

(48/53) (0/0) (0/0) (111/159) (1/1) (0/0)
24 h PM2.5 (µg m−3) 0.87 0.84 0.50 0.19 0.47 0.67

(191/220) (32/38) (3/6) (46/237) (28/60) (6/9)

Guangzhou

1 h O3 (µg m−3) 0.16 0.03 0 0.21 0 NA
(15/94) (1/36) (0/5) (4/19) (0/1) (0/0)

Bias-corrected 1 h O3 0.32 0.14 0 0.33 0.29 NA
(µg m−3) (30/94) (5/36) (0/5) (15/45) (2/7) (0/0)
8 h O3 (µg m−3) 0.31 0.06 0 0.28 0 NA

(315/1032) (12/217) (0/47) (122/437) (0/12) (0/0)
Bias-corrected 8 h O3 0.49 0.13 0 0.37 0.19 NA
(µg m−3) (508/1032) (29/217) (0/47) (296/804) (7/36) (0/0)
24 h NO2 (µg m−3) 0.94 0.56 NA 0.35 0.68 NA

(208/222) (15/27) (0/0) (110/318) (32/47) (0/0)
1 h NO2 (µg m−3) 0.76 NA NA 0.63 1 NA

(58/76) (0/0) (0/0) (97/155) (1/1) (0/0)
24 h PM2.5 (µg m−3) 0.85 0.57 NA 0.30 0.80 NA

(149/175) (4/7) (0/0) (65/214) (16/20) (0/0)
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Table 4. POD and FAR for PM2.5 for Beijing under heavily polluted
conditions.

Beijing AQI, heavily POD FAR
polluted

24 h PM2.5 0.50 0.28
(µg m−3) (18/36) (7/25)

ensemble with bias-corrected predicted 27 (instead of only
7) out of 150 observed events correctly with a FAR of 0.28
(13 false alarms of 47 predictions) compared to FAR of 0.22
(2 out of 9 are false alarm).

For Shanghai, for moderate air quality conditions of
ozone, the POD increased from 0.16 to 0.51 (47 – 15 for
noncorrected – out of 92 observed events are predicted cor-
rectly); the FAR increased from 0 (no false alarm) to 0.10
(5 false alarms out of 52) for 1 h ozone predictions. For
8 h ozone predictions, the POD increased from 0.21 to 0.66
(1554 – noncorrected: 488 – out of 2346 observed events),
the FAR increased from 0.01 (7 false alarms of 495 pre-
dicted events) to 0.32 (726 false alarms of 2280 counts) for
8 h ozone predictions. For lightly polluted ozone conditions,
the POD increased from 0.08 (3 correct predictions out of 38
observed, with FAR of 0; no false alarm, 3 correct predic-
tions) to POD is 0.34 (13 out of 38) with FAR is 0.07 (1 false
alarm of 14 predicted events) for 1 h ozone, and for 8 h ozone,
the POD increased from 0.07 to 0.27 (109 – noncorrected:
27 – out of 398 observed) and the FAR increased from 0.10
(3 false alarms out of 30) to 0.13 (16 false alarms in 125 pre-
dicted events). For moderately polluted ozone conditions, the
POD for 1 h ozone is not applicable for both noncorrected
and bias-corrected predictions (not predicted, no observed
events); but for the bias-corrected prediction, one false alarm
is observed (FAR= 1, 1 false alarm in 1 predicted event),
and for 8 h ozone POD increased from 0 to 0.10 (3 – non-
corrected: 0 – predicted out of the 29 observed), the FAR
decreased from 1 (2 false alarms out of 2 predicted, but not
observed) to 0.8 (12 false alarms of 15 predicted events).

In Guangzhou, the predictions are not as accurate as in
Beijing and Shanghai, and the bias corrections result only in
slight improvements of the ozone forecasts for Guangzhou.
The POD of 1 h ozone in Guangzhou increased from 0.16 to
0.32 (30 – noncorrected: 15 – correct predictions out of 94
observed) and the FAR slightly increased from 0.21 (4 false
alarms out of 19 predicted) to 0.33 (15 false alarms out of
45 predicted events) for moderate conditions. For lightly pol-
luted ozone conditions, the POD increased from 0.03 to 0.14
(5 – non corrected: 1 – predicted out of 36 observed) and the
FAR increased from 0 (0 out of 1 predicted) to 0.29 (2 false
alarms of 7 predicted events). For moderately polluted ozone
predictions, the POD and FAR did not change with bias cor-
rections (POD= 0 – 0 predicted out of 5 observed events –
FAR not applicable).

For 8 h ozone of moderate conditions, the POD increased
from 0.31 to 0.49 (508 – noncorrected: 315 – correct pre-
dicted out of 1032 observed) and the FAR increased from
0.28 (122 false alarms of 437 predicted events) to 0.37
(296 false alarms for 804 predictions). For lightly polluted
ozone conditions the POD increased from 0.06 to 0.13 (29
– noncorrected: 12 – out of 217 observed) and the FAR in-
creased from 0 (no false alarm out of 12 predicted events) to
0.19 (7 false alarms for 36 predicted events). For moderately
polluted ozone conditions, the POD and FAR did not change
with bias corrections (POD= 0 – 0 out of 47 observed events
– FAR not applicable).

Figure 13a–c show the time series of the model ensemble,
the bias-corrected time series of the model ensemble and the
observations. For the daily maximum ozone, the bias cor-
rection results in a better agreement with the observations,
which also results in better event predictions. For 8 h ozone,
there is better agreement during summertime, while during
the wintertime, the bias-corrected ozone time series are too
high compared to the observations (both correcting for the
bias derived from the total time series, or only from the
summertime time series). This shows (as we have seen in
Sect. 3.1) that the bias is not the same during the whole year,
and also that the diurnal cycle of ozone is not well captured
by the model ensemble. While the bias-corrected daily max-
imum ozone is in better agreement with the observations, the
8 h bias-corrected moving average is too high during win-
tertime (with very low ozone concentrations). As the ozone
is too low in winter to exceed the lowest threshold (moder-
ate conditions) for air quality index calculations, this is not
affecting the quality of the event prediction. A more sophis-
ticated bias correction (bias correction with diurnal and an-
nual variation included) could be applied to further improve
the predictions, provided that a longer time series (more than
1 year of data) is available. The statistical bias correction can
then be used for the improvement of future predictions.

6 Conclusions and future developments

In this paper, we evaluate the forecasting system devel-
oped and implemented as part of the EU Panda and Mar-
coPolo projects after a little more than 1 year of op-
eration. The forecasting system is based on an ensem-
ble of seven state-of-the-art chemistry-transport models
(CHIMERE, EMEP, IFS, LOTOS-EUROS, WRF-Chem-
MPIM, WRF-Chem-SMS, SILAMtest). Each model is ex-
ecuted on a computer platform hosted by individual insti-
tutes in China and Europe. Input for meteorological forcing,
emissions, and boundary conditions have been carefully cho-
sen and adopted for the specific situation of China, but vary
from model to model. Every day, the forecasting system pro-
vides hourly forecasts for 3 days ahead for four major chem-
ical pollutants (O3, NO2, PM10, and PM2.5) together with
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Figure 13.
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Figure 14.
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Figure 15. (a, b) Time series of calculated (ensemble median) and observed daily maximum and 8 h moving average O3 for Beijing and
Shanghai together with the bias-corrected calculated time series. (c) Time series of calculated (ensemble median) and observed daily maxi-
mum and 8 h moving average O3 for Guangzhou together with the bias-corrected calculated time series.
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hourly observational data provided by the Chinese observa-
tional network (http://www.pm25.in).

The models, whose predictions are strongly influenced by
the adopted weather forecast, reproduce in general the re-
gional features and capture many air pollution events. In most
cases, the model ensemble satisfactorily reproduces the day-
to-day variability in the concentrations of the primary and
secondary air pollutants, and in particular predicts the oc-
currence of pollution events a few days before they occur.
Overall, and in spite of some discrepancies, the air quality
forecasting system is well suited for the prediction of air pol-
lution events and has the ability to be used for warning alerts
(binary prediction) for the general public, specifically if bias
corrections are applied to improve the ozone forecasts.

In most cases, the ensemble approach provides more ac-
curate forecasts and reduces the uncertainties in compari-
son with the individual model results. The calculation of the
median of all models is also relatively insensitive to model
outliers, and is computationally efficient. Using the ensem-
ble median based on all models provides the best perfor-
mance for all species, as the relative performance of any
individual model may vary with time, space, and species.
We showed that the ensemble product, even if occasionally
based on fewer models, is more useful than a single model
of good quality, and that the ensemble product is still robust
compared to the observations if data from some contributing
models are occasionally missing.

Despite the fact that the prediction system is in its devel-
opment phase and that the resources available to improve the
system are limited, the MarcoPolo–Panda forecasting sys-
tem can be viewed as already quite successful. The inter-
comparison presented in the companion paper by Brasseur et
al. (2019) and the present evaluation were performed to di-
agnose differences between models, identify problems, and
contribute to individual model improvements. Specifically,
the underestimation of ozone under high NOx conditions
and the resulting errors in the diurnal cycle of ozone need
to be addressed in an effort to improve the model forecasts in
China. Although major efforts are ongoing to improve emis-
sion inventories for China, the remaining uncertainties, espe-
cially in regard to local emissions, may partly explain the dif-
ferences between models and observations. This is the sub-
ject of further investigation. Furthermore, data assimilation
of satellite and in situ observations should significantly im-
prove the performance of the forecasting system (e.g., see
Mizzi et al., 2016). Finally, a more advanced approach to
extract observations provided by the Chinese network is ex-
pected to improve the model–data comparison.
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