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Abstract. Stochastic weather simulation models are com-
monly employed in water resources management, agricul-
tural applications, forest management, transportation man-
agement, and recreational activities. Stochastic simulation
of multisite precipitation occurrence is a challenge because
of its intermittent characteristics as well as spatial and tem-
poral cross-correlation. This study proposes a novel simula-
tion method for multisite precipitation occurrence employ-
ing a nonparametric technique, the discrete version of the k-
nearest neighbor resampling (KNNR), and couples it with
a genetic algorithm (GA). Its modification for the study of
climatic change adaptation is also tested. The datasets sim-
ulated from both the discrete KNNR (DKNNR) model and
an existing traditional model were evaluated using a num-
ber of statistics, such as occurrence and transition probabili-
ties, as well as temporal and spatial cross-correlations. Re-
sults showed that the proposed DKNNR model with GA-
simulated multisite precipitation occurrence preserved the
lagged cross-correlation between sites, while the existing
conventional model was not able to reproduce lagged cross-
correlation between stations, so long stochastic simulation
was required. Also, the GA mixing process provided a num-
ber of new patterns that were different from observations,
which was not feasible with the sole DKNNR model. When
climate change was considered, the model performed satis-
factorily, but further improvement is required to more accu-
rately simulate specific variations of the occurrence proba-
bility.

1 Introduction

Stochastic simulation of weather variables has been em-
ployed for water resources management, hydrological de-
sign, agricultural irrigation, forest management, transporta-
tion planning and evacuation, recreation activities, filling
in missing historical data, simulating data, extending ob-
served records, and simulating different weather conditions.
Stochastic simulation models play a key role in producing
weather sequences, while preserving the statistical charac-
teristics of observed data. A number of stochastic weather
simulation models have been developed using parametric
and nonparametric approaches (Lee, 2017; Lee et al., 2012;
Wilby et al., 2003; Wilks, 1999; Wilks and Wilby, 1999).

Parametric approaches simulate statistical characteristics
of observed weather data with a set of parameters that are de-
termined by fitting (Jeong et al., 2012; Lee, 2016; Zheng and
Katz, 2008), whereas in nonparametric approaches, histori-
cal analogs with current conditions are searched, following
the weather simulation data (Buishand and Brandsma, 2001;
Lee et al., 2012). Combinations of parametric and nonpara-
metric approaches have also been proposed (Apipattanavis et
al., 2007; Frost et al., 2011).

Among weather variables, precipitation possesses inter-
mittency and zero values between precipitation events, which
make it difficult to properly reproduce the events (Beersma
and Buishand, 2003; Hughes et al., 1999; Katz and Zheng,
1999). To overcome the problem of intermittency and zero
values, precipitation is simulated separately from other vari-
ables. The main method for reproducing intermittency has
been the multiplication of precipitation occurrence and an
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amount as Z =X ·Y , where X is the occurrence (binary as
either 0 or 1) and Y is the amount (Jeong et al., 2013; Lee
and Park, 2017; Todorovic and Woolhiser, 1975). The spatial
and temporal dependence in the occurrence and amount of
precipitation introduce further complexity in multisite simu-
lation.

Wilks (1998) presented a multisite simulation model for
the occurrence process (i.e., X) using the standard normal
variable that is spatially dependent, representing the relation-
ship between the occurrence variable and the standard nor-
mal variable with simulation data. Originally, the occurrence
of precipitation had been simulated with a discrete Markov
chain (MC) model (Katz, 1977). Compared to the MC model
that requires a significant number of parameters for gener-
ating multisite occurrence, the multisite occurrence model
proposed by Wilks (1998) transforms the standard normal
variate and simulates the sequence with multivariate normal
distribution, and then back-transforms the multivariate nor-
mal sequence to the original domain. The model is able to
reproduce the contemporaneous multisite dependence struc-
ture and lagged dependence only for the same site but it re-
quires a complex simulation process to estimate parameters
for each site and is unable to preserve lagged dependence be-
tween sites. Also, a recent improvement has also been made,
but the weakness of the model in Wilks (1998) was not sig-
nificantly improved (Evin et al., 2018; Mehrotra et al., 2006;
Srikanthan and Pegram, 2009).

Lee et al. (2010) proposed a nonparametric-based stochas-
tic simulation model for hydrometeorological variables.
Their model overcame the shortcomings of a previous non-
parametric simulation model (Lall and Sharma, 1996), called
k-nearest neighbor resampling (KNNR), but the simulated
data do not produce patterns different from those of the ob-
served data (Brandsma and Buishand, 1998; Mehrotra et al.,
2006; St-Hilaire et al., 2012). In addition to KNNR, Lee et
al. (2010) used a metaheuristic genetic algorithm (GA) that
led to the reproduction of similar populations by mixing the
simulated datasets. Note that the reproduction procedure of
the GA allows to generate new patterns that are similar to
observed patterns, but a small number of totally new patterns
are simulated from the mutation procedure of the GA.

While KNNR is employed to find historical analogues of
multisite occurrence similar to the current status of a simula-
tion series, GA is applied to use its skill to generate a new de-
scendant from the historical parent chosen with the KNNR.
In this procedure, the multisite occurrence of precipitation
can be simulated while preserving spatial and temporal cor-
relations. Metaheuristic techniques, such as GA, have been
popularly employed in a number of hydrometeorological ap-
plications (Chau, 2017; Fotovatikhah et al., 2018; Taormina
et al., 2015; Wang et al., 2013). Although a number of vari-
ants of KNNR-GA have been applied (Lee et al., 2012; Lee
and Park, 2017), none of them can simulate multisite occur-
rence of precipitation whose characteristics are binary and
temporally and spatially related.

Therefore, this study proposes a stochastic simulation
method for multisite occurrence of precipitation with the
KNNR-GA-based nonparametric approach that (1) simulates
multisite occurrence with a simple and direct procedure with-
out parameterization of all the required occurrence proba-
bilities, and (2) reproduces the complex temporal and spa-
tial correlation between stations, as well as the basic occur-
rence probabilities. The proposed nonparametric model is
compared with the popular model proposed by Wilks (1998).
Even though the multisite occurrence data generated from the
Wilks model preserves various statistical characteristics of
the observed data well, significant underestimation of lagged
cross-correlation still exists. Furthermore, the relation be-
tween standard normal variable and occurrence variable re-
lies on long stochastic simulation.

The paper is organized as follows. The next section
presents the mathematical background of existing multisite
occurrence modeling and section discusses the modeling pro-
cedure. The study area and data are reported in Sect. 4. The
model application is presented in Sect. 5. Results of the pro-
posed model are discussed in Sect. 6, and summary and con-
clusions are presented in Sect. 7.

2 Background

2.1 Single site occurrence modeling

Let Xst represent the occurrence of daily precipitation for a
location s (s = 1, . . .,S) on day t (t = 1, . . .,n; n is the num-
ber observed days) and let Xst be either 0 for dry days or 1
for wet days. The first-order Markov chain model for Xst is
defined with the assumption that the occurrence probability
of a wet day is fully defined by the previous day as

Pr
{
Xst = 1|Xst−1 = 0

}
= ps01 (1)

Pr
{
Xst = 1|Xst−1 = 1

}
= ps11. (2)

Also, ps00 = 1−ps01 and ps10 = 1−ps11, since the summation
of 0 and 1 should be unity with the same previous condition.
This consists of a transition probability matrix (TPM) as

TPMs
=

[
ps00 ps01
ps10 ps11

]
=

[
1−ps01 ps01
1−ps11 ps11

]
. (3)

The marginal distributions of TPM (i.e., p0 and p1) can be
expressed with TPM and its condition of p0+p1 = 1 as

ps0 =
ps01

1+ps01−p
s
11

(4)

ps1 =
1−ps11

1+ps01−p
s
11
. (5)

Note that p1 represents the probability of precipitation oc-
currence for a day, while p0 represents non-occurrence. The
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lag-1 autocorrelation of precipitation occurrence is the com-
bination of transition probabilities as

ρ1(s,s)= p
s
11−p

s
01. (6)

The simulation can be done by comparing TPM with a uni-
form random number (ust ) as

Xst =

{
1 if ust ≤ p

s
i1

0 otherwise , (7)

wherepsi1 is the selected probability from TPM regarding the
previous condition i (i.e., either 0 or 1). Wilks (1998) sug-
gested a different method using a standard normal random
number wst ∼N [0,1] as

Xst =

{
1 if wst ≤8

−1(psi1)

0 otherwise
, (8)

where 8−1indicates the inverse of the standard normal cu-
mulative function 8.

2.2 Multisite occurrence modeling

Wilks (1998) suggested a multisite occurrence model using
a standard normal random number (here denoted as MONR)
that is spatially dependent but serially independent. The cor-
relation of the standard normal variate for a site pair of q and
s can be expressed as

τ(q,s)= corr[wqt ,w
s
t ]. (9)

Also, the correlation of the original occurrence variate is

ρ(q,s)= corr[Xqt ,X
s
t ]. (10)

Once the correlation of the standard normal variate is
known, the simulation of multisite precipitation occurrence
is straightforward. Multivariate standard normal distribution
is used with a parameter set of [0, T], where 0 is the zero vec-
tor (S× 1) and T is the correlation matrix with the elements
of τ(q,s) for q ∈ {1, . . .,S} and s ∈ {1, . . .,S}.

Since direct estimation of τ(q,s) is not feasible, a simu-
lation technique is used to estimate τ(q,s) from ρ(q,s). A
long sequence of the occurrences is simulated with differ-
ent values of τ(q,s) and its corresponding correlation of the
original domain ρ(q,s) is estimated with the simulated long
sequence by the inverse standard normal cumulative function
(i.e., 8−1). A curve between τ(q,s) and ρ(q,s) is derived
from this long simulation with the MONR model and is em-
ployed for parameter estimation for a real application.

3 DKNNR

3.1 DKNNR modeling procedure

In the current study, a novel multisite simulation model for
discrete occurrence of precipitation variable with the KNNR

technique (Lall and Sharma, 1996; Lee and Ouarda, 2011;
Lee et al., 2017) for a discrete case (denoted as discrete
KNNR; DKNNR) is proposed by combining a mixture mech-
anism with GA. Provided the number of nearest neighbors,
k, is known, the discrete k-nearest neighbor resampling with
genetic algorithm is done as follows:

1. Estimate the distance between the current (i.e., time in-
dex: c) multisite occurrence Xsc and the observed mul-
tisite occurrence xsi . Here, the distance is measured for
i = 1, . . .,n− 1 as

Di =

S∑
s=1

∣∣Xsc − xsi ∣∣ . (11)

2. Arrange the estimated distances from step (1) in ascend-
ing order, select the first k distances (i.e., the smallest k
values), and reserve the time indices of the smallest k
distances.

3. Randomly select one of the stored k time indices with
the weighting probability given by

wm =
1/m
k∑
j=1

1/j
, m= 1, . . .,k. (12)

4. Assume the selected time index from step (3) as p. Note
that there are a number of values that have the same dis-
tance as the selected Dp, since Dp is a natural num-
ber between 0 and S. For example, if S = 2 and X1

c = 0
and X2

c = 1, the two sequences have the same D = 1
as [x1

i = 0 and x2
i = 0] and [x1

i = 1 and x2
i = 1]. In this

case, a random selection procedure is required to take
into account the cases with the same quantity. One par-
ticular time index is randomly selected with equal prob-
abilities among the time indices of the same distances.
Note that instead of the random selection, one can al-
ways use the first one. In such a case, only one historical
combination of multisite occurrences will be selected.

5. Assign the binary vector of the proceeding index of the
selected time as xp+1 = [x

s
p+1]s∈{1,S}. Here, p is the fi-

nally selected time index from step (4).

6. Execute the following steps for GA mixing if GA mix-
ing is subjectively selected. Otherwise, skip this step.

a. Reproduction: select one additional time index us-
ing steps (1) through (4) and denote this index as
p∗. Obtain the corresponding precipitation occur-
rence values, xp∗+1 = [x

s
p∗+1]s∈{1,...,S}. The subse-

quent two GA operators employ the two selected
vectors, xp and xp∗ . This reproduction process is a
mating process by finding another individual that
has characteristics similar to those of the current
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one (xp+1). With this procedure, a vector similar to
the current vector will be mated and will produce a
new descendant.

b. Crossover: replace each element xsp+1 with xsp∗+1
at probability Pcr, i.e.,

Xsc+1 =

{
xsp∗+1 if ε < Pcr

xsp+1 otherwise , (13)

where ε is a uniform random number between 0
and 1. From this crossover, a new occurrence vector
whose elements are similar to the historical ones is
generated.

c. Mutation: replace each element (i.e., each station,
s = 1, . . .,S) with one selected from all the obser-
vations of this element for i = 1, . . .,n with proba-
bility Pm, i.e.,

Xsc+1 =

{
xsξ+1 if ε < Pm

xsp+1 otherwise , (14)

where xsξ+1 is selected from [xsi ]i∈{1,...,n} with equal
probability for i = 1, . . .,n, and ε is a uniform ran-
dom number between 0 and 1. This mutation proce-
dure allows to generate a multisite occurrence com-
bination that is totally different from the histori-
cal records. Without this procedure, multisite oc-
currences always similar to historical combinations
are generated, which is not feasible for a simulation
purpose.

7. Repeat steps (1)–(6) until the required data are gener-
ated.

The selection of the number of nearest neighbors (k) has
been investigated by Lall and Sharma (1996) and Lee and
Ouarda (2011). A simple selection method was applied in the
current study as k =

√
n. For hydrometeorological stochastic

simulation, this heuristic approach of the k selection has been
employed (Lall and Sharma, 1996; Lee and Ouarda, 2012;
Lee et al., 2010; Prairie et al., 2006; Rajagopalan and Lall,
1999). One can use generalized cross-validation (GCV) as
shown in Lall and Sharma (1996) and Lee and Ouarda (2011)
by treating this simulation as a prediction problem. However,
the current multisite occurrence simulation does not neces-
sarily require an accurate value prediction and not much dif-
ference in simulation using the simple heuristic approach
has been reported. Also, this heuristic approach of the k
selection has been popularly employed for hydrometeoro-
logical stochastic simulations (Lall and Sharma, 1996; Lee
and Ouarda, 2012; Lee et al., 2010; Prairie et al., 2006; Ra-
jagopalan and Lall, 1999).

In Appendix A, an example of the DKNNR simulation
procedure is explained in detail.

3.2 Adaptation to climate change

The capability of model to take climate change into account
is critical. For example, the marginal distributions and tran-
sition probabilities in Eqs. (5) and (3) can change in future
climate scenarios. It is known that nonparametric simula-
tion models have difficulty adapting to climate change, since
the models employ in general the current observation se-
quences. However, the proposed model in the current study
possesses the capability to adapt to the variations of prob-
abilities by tuning the crossover and mutation probabilities
in Pcr (Eq. 13) and Pm (Eq. 14), adding the condition when
applied.

For example, the probability of P11 can be increased with
the crossover probability Pcr by adding the condition to in-
crease the probability of P11 as

Xsc+1 ={
xsp∗+1 if ε < Pcr & xsp∗+1 = 1 & Xsc = 1
xsp+1 otherwise . (15)

It is obviously possible to increase the probability of P1 by
removing the condition of Xsc = 1.

In addition, further adjustment can be made with the mu-
tation process in Eq. (14) as

Xsc+1 =

{
xsξ+1 if ε < Pm and xsξ+1 = 1
xsp+1 otherwise . (16)

This adjustment of adding the condition xsξ+1 = 1 can in-
crease the marginal distribution as much as Pm×P1. This
has been tested in a case study.

4 Study area and data description

For testing the occurrence model, 12 weather stations were
selected from the Yeongnam province, which is located in the
southeastern part of South Korea, as shown in Fig. 1. Infor-
mation on longitude and latitude (fourth and fifth columns),
as well as order index and the identification number (first and
second columns) of these stations operated by Korea Meteo-
rological Administration with the area name (third column),
is shown in Table 1. The employed precipitation dataset
presents strong seasonality, since this area is dry from late
fall to early autumn and humid and rainy during the remain-
ing seasons, especially in summer. The employed stations are
not far from each other, at most 100 km apart, and not many
high mountains are located in the current study area. There-
fore, this region can be considered as a homogeneous region
(Lee et al., 2007).

Figure 1 illustrates the locations of the selected weather
stations. All the stations are inside Yeongnam province,
which consists of two different regions (north and south
Gyeongsang), as well as the self-governing cities of Busan,
Daegu, and Ulsan. Most of the Yeongnam region is drained
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Figure 1. Locations of 12 selected weather stations in the Yeong-
nam province. See Table 1 for further information about the stations.

to the Nakdong River. To validate the proposed model appro-
priately, test sites must be highly correlated with each other
as well as have significant temporal relation. The stations in-
side the Yeongnam area cover one of the most important wa-
tersheds, the Nakdong River basin, where the Nakdong River
passes through the entire basin, and its hydrological assess-
ments for agriculture and climate change have a particular
value in flood control and water resources management such
as floods and droughts.

It is important to analyze the impact of weather condi-
tions for planning agricultural operations and water resources
management, especially during the summer season, because
around 50 %–60 % of the annual precipitation occurs during
the summer season from June to September. The length of
daily precipitation data record ranges from 1976 to 2015 and
the summer season record was employed, since a large num-
ber of rainy days occur during summer and it is important to
preserve these characteristics. Also, the whole-year dataset
was tested and other seasons were further applied but the
correlation coefficient was relatively high and its estimated
correlation matrix was not a positive semi-definite matrix for
the MONR model.

Table 1. Information on 12 selected stations from the Yeongnam
province, South Korea.

Order Station Name Longitude Latitude
number∗

1 138 Pohang 129.3797 36.0327
2 143 Daegu 128.6189 35.8850
3 152 Ulsan 129.3200 35.5600
4 159 Busan 129.0319 35.1044
5 162 Tongyeong 128.4356 34.8453
6 277 Yeoungdeok 129.4092 36.5331
7 278 Uiseong 128.6883 36.3558
8 279 Gumi 128.3206 36.1306
9 281 Yeongcheon 128.9514 35.9772
10 285 Hapcheon 128.1697 35.5650
11 288 Miryang 128.7439 35.4914
12 294 Geoje 128.6044 34.8881

∗ The station number indicates the identification number operated by Korea
Meteorological Administration (KMA).

5 Application

To analyze the performance of the proposed DKNNR model,
the occurrence of precipitation was simulated. The DKNNR
simulation was compared with that of the MONR model. For
each model, 100 series of daily occurrence with the same
record length were simulated. The key statistics of observed
data and each generated series, such as transition probabil-
ities (P11, P01, and P1) and cross-correlation (see Eq. 10),
were determined. The MONR model underestimated the lag-
1 cross-correlation, as indicated by Wilks (1998). In the cur-
rent study, this statistic was analyzed, since a synoptic-scale
weather system often results in lagged cross-correlation for
daily precipitation data (Wilks, 1998). It was formulated as

ρ1(q,s)= corr[Xqt−1,X
s
t ]. (17)

Statistics from 100 generated series were evaluated by the
root mean square error (RMSE), expressed as

RMSE=

(
1
N

N∑
m=1

(
0Gm −0

h
)2
)1/2

, (18)

where N is the number of series (here 100), 0Gm is the statis-
tic estimated from the mth generated series, while 0h is the
statistic for the observed data. Note that lower RMSE indi-
cates better performance, represented by the summarized er-
ror of a given statistic of generated series from the statistic of
the observed data.

The 100 simulated statistic values were illustrated with
box plots to show their variability as shown in Figs. 5–7. The
box of the box plot represents the interquartile range (IQR),
ranging from the 25th percentile to the 75th percentile. The
whiskers extend up and down to 1.5 times the IQR. The data
beyond the whiskers (1.5×IQR) are indicated by a plus sign
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Figure 2. Testing for different probabilities of crossover Pcr. RMSE
is estimated for all the tested 12 stations for each transition and
limiting probability of the simulated data with the record length of
100 000.

(+). The horizontal line inside the box represents the median
of the data. The statistics of the observed data are denoted by
a cross (×). The closer a cross is to the horizontal line inside
the box, the better the simulated data from a model reproduce
the statistical characteristics of the observed data.

6 Results

6.1 GA mixing and its probability selection

The roles of crossover probability Pcr (Eq. 13) and mutation
probability Pm (Eq. 14) were studied by Lee et al. (2010). In
the current study, we further tested these by selecting an ap-
propriate parameter set of these two parameters with the sim-
ulated data from the DKNNR model and the record length of
100 000. RMSE (Eq. 18) of the three transition and limit-
ing probabilities (P11, P01, and P1) between the simulated
data and the observed was used, since those probabilities
are key statistics that the simulated data must match the ob-
served data, and no parameterization of these probabilities
was made for the current DKNNR model. Results are shown
in Figs. 2 and 3 for Pcr and Pm, respectively. For Pcr in Fig. 2,
the probability of 0.02 shows the smallest RMSE in all tran-
sition and limiting probabilities. The RMSE of Pm in Fig. 3
shows a slight fluctuation along with Pm. However, all three
probabilities (P11, P01, and P1) have relatively small RMSEs
in Pm = 0.003. Therefore, the parameter set 0.02 and 0.003
was chosen for Pcr and Pm, respectively, and employed in the
current study. We also tested the simulation without the GA
mixing procedure (results not shown). The results showed
that no better result could be found from the simulation with-
out GA mixing. The necessity of the GA mixing is further
discussed in the following.

We further tested and discuss why the GA mixing is nec-
essary in the proposed DKNNR model as follows. For ex-

Figure 3. Testing for different probabilities of mutation Pm. RMSE
is estimated for all the tested 12 stations for each transition and
limiting probability of the simulated data with the record length of
100 000.

ample, assume that three weather stations are considered and
observed data only have the occurrence cases of 000, 001,
011, 010, 011, 100, and 111, among 23

= 8 possible cases.
In other words, no patterns for 110 and 101 are found in the
observed data. Note that 0 indicates dry days and 1 indicates
rainy (or wet) days. The KNNR is a resampling process in
which the simulation data are resampled from observations.
Therefore, no new patterns such as 110 and 101 can be found
in the simulated data.

This can be problematic for the simulation purpose in
that one of the major simulation purposes is to simulate se-
quences that might possibly happen in the future. The wet (1)
or dry (0) for multisite precipitation occurrence is decided by
the spatial distribution of a precipitation weather system. A
humid air mass can be distributed randomly, relying on wind
velocity and direction, as well as the surrounding air pres-
sure. In general, any combinations of wet and dry stations
can be possible, especially when the simulation continues in-
finitely. Therefore, the patterns of simulated data must be al-
lowed to have any possible combinations (here 4096), even
if they have not been observed from the historical records.
Also, the probability to have this new pattern must not be
high, since it has not been observed in the historical records,
and this can be taken into account by low probability of the
crossover and mutation.

This drawback of the KNNR model frequently happens
in multisite occurrence as the number of stations increases.
Note that the number of patterns increases as 2n, where n is
the number of stations. If n= 12, then 4096 cases must be
observed. However, among 4096 cases, observed cases are
limited, since the amount of data is limited. The GA process
can mix two candidate patterns to produce new patterns. For
example, in the three-station case, a new pattern of 101 can
be produced from two observed occurrence candidates of 001
and 100 by the crossover of the first value of 001 with the first
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Figure 4. Frequency of the observed patterns among all the possible
cases (212

= 4096). The x coordinate indicates each pattern with the
numbering of the binary number system. All zero (0) and all one
(4095) have the largest and second largest numbers of frequency as
1894 and 877, respectively, as expected meaning all dry and all wet
stations. Note that the bars are very sporadic, indicating a number
of occurrence patterns are not observed.

value of 100 (i.e., 001→ 101), which is not in the observed
data.

Note that the data employed in the case study are 40 years
and 122 days (summer months) in each year. The total num-
ber of the observed data is 4880 and the number of possible
cases is 4096. We checked the number of possible cases that
were not found in the observed data. The result shows that
3379 cases were not observed at all for the entire cases as
shown in Fig. 4.

We further investigated the number of new patterns that
were generated with the probabilities Pcr = 0.02, Pm =

0.001 by the proposed GA mixing. The generated data for
100 sequences from DKNNR with the GA mixing show that
the number 3379 was reduced to 1200, which is not in the
dataset among the 4096 possible patterns. Therefore, more
than 2000 new patterns were simulated with the GA mix-
ing process. The KNNR model without the GA mixing did
not produce any new patterns in the 100 sequences with the
same length of the historical data.

6.2 Occurrence and transition probabilities

The data simulated from the proposed DKNNR model and
the existing MONR model were analyzed. The estimated
transition probabilities (P11 and P01 in Eq. 3) as well as the
occurrence probability (P1 in Eq. 5) are shown in Table 2 and
Figs. 5–7 for the observed data and the data generated from
the DKNNR and MONR models. In Table 2, the observed

Figure 5. Box plots of the P11 probability for the simulated data
from the DKNNR model (a) and the MONR model (b), as well as
the observed (x marker) for the 12 selected weather stations from
the Yeongnam province.

Figure 6. Box plots of the P01 probability for the data simulated
from the DKNNR model (a) and the MONR model (b), as well as
the observed (x marker) for the 12 selected weather stations from
the Yeongnam province.

statistic shows that P11 is always higher than P01, and P1 is
between P11 and P01. Site 6 shows the lowest P11 and P1,
and site 12 shows the highest P11.

As shown in Fig. 5, the probability P11 of the observed
data shows that sites 6, 7, 8, and 9 located in the northern
part of the region exhibited lower consistency (i.e., consecu-
tive rainy days) than did the other sites, while sites 5 and 12
had higher probability of P11 than did other sites. Both mod-
els preserved well the observed P11 statistic. It seems that the
MONR model had a slightly better performance, since this
statistic is parameterized in the model, as shown in Sect. 2.2,
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Table 2. Occurrence and transition probabilities of observed data and data simulated by DKNNR and MONR for 12 stations from the
Yeongnam province, South Korea, during the summer season. Note that 100 sets with the same record length as the observed data were
simulated and the statistics of 100 sets were averaged.

Obs. DKNNR MONR

P11 P01 P1 P11 P01 P1 P11 P01 P1

S1 0.56 0.27 0.38 0.56 0.27 0.38 0.56 0.26 0.37
S2 0.56 0.27 0.38 0.58 0.26 0.38 0.57 0.25 0.37
S3 0.57 0.26 0.38 0.58 0.26 0.38 0.56 0.26 0.37
S4 0.58 0.25 0.37 0.58 0.25 0.37 0.57 0.24 0.36
S5 0.58 0.25 0.37 0.59 0.24 0.37 0.58 0.24 0.36
S6 0.52 0.25 0.34 0.50 0.24 0.33 0.52 0.24 0.33
S7 0.55 0.26 0.36 0.56 0.25 0.36 0.55 0.24 0.35
S8 0.56 0.25 0.37 0.57 0.25 0.37 0.57 0.24 0.36
S9 0.55 0.25 0.36 0.55 0.24 0.35 0.55 0.24 0.35
S10 0.58 0.25 0.38 0.59 0.24 0.37 0.57 0.23 0.35
S11 0.57 0.25 0.36 0.58 0.24 0.36 0.56 0.24 0.35
S12 0.59 0.25 0.38 0.59 0.25 0.38 0.59 0.25 0.37

Figure 7. Box plots of the P1 probability for the data simulated
from the DKNNR model (a) and the MONR model (b), as well as
the observed (x marker) for the 12 selected weather stations from
the Yeongnam province.

and that is the same for P01 and P1, as shown in Figs. 6 and
7. Note that the MONR model employed the transition prob-
abilities in simulating rainfall occurrence, while the DKNNR
model did not. The occurrence probability P1 can be de-
scribed with the combination of transition probabilities as in
Eq. (5). Even though the transition probabilities were not em-
ployed in simulating rainfall occurrence, the DKNNR model
preserved this statistic fairly well.

In the DKNNR modeling procedure, the simple distance
measurement in Eq. (11) allows to preserve transition prob-
abilities in that the following multisite occurrence is resam-
pled from the historical data whose previous states of multi-
site occurrence (xsi ) are similar to the current simulation mul-

tisite occurrence (Xsc). This summarized distance (Di) is an
essential tool in the proposed DKNNR modeling. The con-
dition of the current weather system is memorized and the
system is conditioned on simulating the following multisite
occurrence with the distance measurement like a precipita-
tion weather system dynamically changes, but often it im-
pacts the system of the following day.

As shown in Fig. 6, the P01 probability showed a slightly
different behavior such that sites 1, 2, and 3 located in the
middle part of the Yeongnam province showed a higher prob-
ability than did other sites. A slight underestimation was seen
for sites 2 and 11 but it was not critical, since its observed
value with a cross mark was close to the upper IQR repre-
senting the 75th percentile.

The behavior of P1 was found to be the same as that of
the P11 probability. It can be seen in Fig. 7a that no signifi-
cant underestimation is seen for the DKNNR model. The P1
statistic was fairly preserved by both DKNNR and MONR
models. Note that the MONR model parameterized the P1
statistic through the transition probabilities as in Eq. (5),
while the DKNNR model did not. Although the DKNNR
model used almost no parameters for simulation, the P1
statistic was preserved fairly well.

6.3 Cross-correlation

Cross-correlation is a measure of the relationship between
sites. The preservation of cross-correlation is important
for the simulation of precipitation occurrence and is re-
quired in the regional analysis for water resources man-
agement or agricultural applications. Furthermore, lagged
cross-correlation is also as essential as cross-correlation (i.e.,
contemporaneous correlation). For example, the amount of
streamflow for a watershed from a certain precipitation event
is highly related to lagged cross-correlation.
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Table 3. Cross-correlation of observed data for 12 stations from the Yeongnam province, South Korea.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S1 1.00 0.70 0.70 0.64 0.58 0.70 0.65 0.63 0.75 0.64 0.66 0.59
S2 0.70 1.00 0.67 0.64 0.61 0.64 0.70 0.72 0.79 0.72 0.74 0.62
S3 0.70 0.67 1.00 0.75 0.68 0.61 0.57 0.57 0.68 0.67 0.74 0.70
S4 0.64 0.64 0.75 1.00 0.79 0.56 0.56 0.55 0.65 0.66 0.73 0.82
S5 0.58 0.61 0.68 0.79 1.00 0.51 0.54 0.55 0.61 0.65 0.70 0.87
S6 0.70 0.64 0.61 0.56 0.51 1.00 0.69 0.65 0.68 0.59 0.59 0.54
S7 0.65 0.70 0.57 0.56 0.54 0.69 1.00 0.78 0.71 0.65 0.63 0.55
S8 0.63 0.72 0.57 0.55 0.55 0.65 0.78 1.00 0.71 0.68 0.65 0.56
S9 0.75 0.79 0.68 0.65 0.61 0.68 0.71 0.71 1.00 0.68 0.71 0.62
S10 0.64 0.72 0.67 0.66 0.65 0.59 0.65 0.68 0.68 1.00 0.77 0.66
S11 0.66 0.74 0.74 0.73 0.70 0.59 0.63 0.65 0.71 0.77 1.00 0.70
S12 0.59 0.62 0.70 0.82 0.87 0.54 0.55 0.56 0.62 0.66 0.70 1.00

Table 4. Averaged cross-correlation of the 100 simulated series from the DKNNR model for 12 stations from the Yeongnam province, South
Korea.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S1 1.00 0.68 0.69 0.64 0.60 0.69 0.64 0.62 0.73 0.63 0.65 0.61
S2 0.68 1.00 0.67 0.63 0.62 0.63 0.68 0.72 0.77 0.74 0.73 0.63
S3 0.69 0.67 1.00 0.74 0.69 0.60 0.58 0.59 0.66 0.68 0.74 0.70
S4 0.64 0.63 0.74 1.00 0.79 0.55 0.55 0.56 0.62 0.65 0.71 0.81
S5 0.60 0.62 0.69 0.79 1.00 0.51 0.56 0.58 0.60 0.66 0.70 0.86
S6 0.69 0.63 0.60 0.55 0.51 1.00 0.68 0.64 0.65 0.59 0.58 0.53
S7 0.64 0.68 0.58 0.55 0.56 0.68 1.00 0.78 0.69 0.65 0.63 0.56
S8 0.62 0.72 0.59 0.56 0.58 0.64 0.78 1.00 0.70 0.69 0.67 0.58
S9 0.73 0.77 0.66 0.62 0.60 0.65 0.69 0.70 1.00 0.67 0.69 0.60
S10 0.63 0.74 0.68 0.65 0.66 0.59 0.65 0.69 0.67 1.00 0.77 0.67
S11 0.65 0.73 0.74 0.71 0.70 0.58 0.63 0.67 0.69 0.77 1.00 0.71
S12 0.61 0.63 0.70 0.81 0.86 0.53 0.56 0.58 0.60 0.67 0.71 1.00

Table 5. Averaged cross-correlation of 100 simulated series from the MONR model for 12 stations from the Yeongnam province.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S1 1.00 0.63 0.67 0.58 0.54 0.66 0.62 0.60 0.68 0.55 0.62 0.53
S2 0.63 1.00 0.61 0.60 0.57 0.59 0.68 0.68 0.75 0.66 0.72 0.58
S3 0.67 0.61 1.00 0.71 0.67 0.57 0.56 0.53 0.65 0.61 0.71 0.69
S4 0.58 0.60 0.71 1.00 0.78 0.50 0.52 0.52 0.61 0.62 0.69 0.78
S5 0.54 0.57 0.67 0.78 1.00 0.48 0.51 0.53 0.57 0.62 0.67 0.81
S6 0.66 0.59 0.57 0.50 0.48 1.00 0.67 0.62 0.63 0.54 0.54 0.49
S7 0.62 0.68 0.56 0.52 0.51 0.67 1.00 0.75 0.70 0.61 0.62 0.52
S8 0.60 0.68 0.53 0.52 0.53 0.62 0.75 1.00 0.66 0.64 0.61 0.52
S9 0.68 0.75 0.65 0.61 0.57 0.63 0.70 0.66 1.00 0.63 0.69 0.57
S10 0.55 0.66 0.61 0.62 0.62 0.54 0.61 0.64 0.63 1.00 0.72 0.61
S11 0.62 0.72 0.71 0.69 0.67 0.54 0.62 0.61 0.69 0.72 1.00 0.66
S12 0.53 0.58 0.69 0.78 0.81 0.49 0.52 0.52 0.57 0.61 0.66 1.00

Daily precipitation occurrence, in general, shows the
strongest serial correlation at lag-1 and its correlation de-
cays as the lag gets longer. This is because a precipitation
weather system moves according to the surrounding pres-
sure and wind direction that dynamically change within a day

or week. Therefore, we analyzed the lag-1 cross-correlation
in the current study as the representative lagged correlation
structure.

The cross-correlation of observed data is shown in Table 3.
High cross-correlation among grouped sites, such as sites 6,

www.geosci-model-dev.net/12/1189/2019/ Geosci. Model Dev., 12, 1189–1207, 2019



1198 T. Lee and V. P. Singh: DNNR for simulating multisite precipitation

Table 6. The difference of RMSE of cross-correlation between MONR and DKNNR. Note that the positive value indicates that the DKNNR
model performs better in preserving the cross-correlation, while a negative value (in bold font) shows that the MONR model performs better.

MONR- S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
DKNNR

S1 0.000 0.014 0.004 0.013 0.012 0.012 0.008 0.005 0.024 0.031 0.011 0.035
S2 0.014 0.000 0.023 0.013 0.021 0.009 0.010 0.013 0.018 0.027 0.011 0.020
S3 0.004 0.023 0.000 0.015 0.004 0.014 0.003 0.022 0.009 0.028 0.011 0.004
S4 0.013 0.013 0.015 0.000 0.002 0.017 0.018 0.014 0.018 0.018 0.027 0.024
S5 0.012 0.021 0.004 0.002 0.000 0.014 0.021 0.014 0.015 0.013 0.015 0.012
S6 0.012 0.009 0.014 0.017 0.014 0.000 0.006 0.010 0.030 0.018 0.029 0.021
S7 0.008 0.010 0.003 0.018 0.021 0.006 0.000 0.005 0.008 0.024 0.012 0.023
S8 0.005 0.013 0.022 0.014 0.014 0.010 0.005 0.000 0.032 0.019 0.022 0.023
S9 0.024 0.018 0.009 0.018 0.015 0.030 0.008 0.032 0.000 0.019 0.005 0.027
S10 0.031 0.027 0.028 0.018 0.013 0.018 0.024 0.019 0.019 0.000 0.020 0.021
S11 0.011 0.011 0.011 0.027 0.015 0.029 0.012 0.022 0.005 0.020 0.000 0.022
S12 0.035 0.020 0.004 0.024 0.012 0.021 0.023 0.023 0.027 0.021 0.022 0.000

Note that no negative value can be found, implying that the DKNNR model preserves the cross-correlation better than the MONR model.

Table 7. Lag-1 cross-correlation of observed data for 12 stations from the Yeongnam province, South Korea.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S1 0.29∗ 0.26 0.30 0.27 0.24 0.29 0.26 0.24 0.27 0.26 0.28 0.26
S2 0.28 0.30 0.29 0.28 0.26 0.28 0.28 0.27 0.31 0.30 0.32 0.27
S3 0.28 0.26 0.31 0.30 0.27 0.27 0.25 0.24 0.27 0.27 0.30 0.27
S4 0.28 0.27 0.32 0.34 0.31 0.27 0.26 0.26 0.28 0.28 0.31 0.32
S5 0.29 0.28 0.32 0.35 0.34 0.27 0.27 0.26 0.29 0.29 0.33 0.35
S6 0.25 0.22 0.26 0.23 0.22 0.27 0.24 0.22 0.25 0.23 0.24 0.23
S7 0.25 0.26 0.27 0.25 0.25 0.28 0.29 0.27 0.27 0.27 0.28 0.26
S8 0.29 0.30 0.29 0.27 0.26 0.30 0.31 0.30 0.31 0.30 0.31 0.27
S9 0.29 0.29 0.30 0.29 0.27 0.29 0.27 0.27 0.30 0.30 0.31 0.28
S10 0.28 0.31 0.32 0.31 0.29 0.29 0.30 0.30 0.31 0.33 0.34 0.29
S11 0.27 0.29 0.31 0.30 0.27 0.27 0.27 0.27 0.29 0.30 0.32 0.29
S12 0.30 0.29 0.32 0.35 0.33 0.28 0.27 0.26 0.29 0.30 0.33 0.35

∗ Values in bold font represent lag-1 autocorrelation (i.e., the one lagged correlation for the same site).

7, and 8 (northern part) and sites 3, 4, and 5, as well as 12
(southeast coastal area, 0.68–0.87), was found. As expected,
sites 5 and 12 had the highest cross-correlation (0.87) due
to proximity. The northern sites and coastal sites showed
low cross-correlation. This observed cross-correlation was
well preserved in the data generated from both DKNNR and
MONR models, as shown in Fig. 8 as well as Tables 4 and
5. However, consistently slight but significant underestima-
tion of cross-correlation was seen for the data generated by
the MONR model (see Fig. 8b). Note that the error bars are
extended to upper and lower lines of the circles to 1.95 times
the standard deviation. The difference of RMSE in Table 6
showed this characteristic, as most of the values were posi-
tive, indicating that the proposed DKNNR model performed
better for cross-correlation.

The lag-1 cross-correlation of observed data, as shown in
Table 7, ranged from 0.22 to 0.35. The lag-1 cross-correlation
for the same site (i.e., ρ1(q,s), q = s) was autocorrela-

tion and was highly related to P01 and P11 as in Eq. (6).
All the lag-1 cross-correlations exhibited similar magnitudes
even for autocorrelation. This implies that the lag-1 cross-
correlation among the selected sites was as strong as the au-
tocorrelation and as much as the transition probabilities P01
and P11 thereof.

The observed lag-1 cross-correlations were well preserved
in the data generated by the DKNNR model, as shown in
Fig. 9a, while the MONR model showed significant underes-
timation, as seen in Fig. 9b. The difference of RMSE shown
in Table 8 reflects this behavior. In Fig. 9b, some of the lag-
1 cross-correlations were well preserved, that were aligned
with the baseline. From Table 8, the MONR model repro-
duced the autocorrelations well with the shaded values. It
is because the lag-1 autocorrelation was indirectly param-
eterized with the transition probabilities of P11 and P01 as
in Eq. (6). Other than this autocorrelation, the lag-1 cross-
correlation was not reproduced well with the MONR model.
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Table 8. The difference of RMSE of lag-1 cross-correlation between MONR and DKNNR. Note that a positive value indicates that the
DKNNR model performs better in preserving lag-1 cross-correlation, while a negative value (in bold font) shows that the MONR model
performs better.

MONR- S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
DKNNR

S1 0.000 0.048 0.075 0.049 0.041 0.095 0.059 0.036 0.047 0.055 0.063 0.052
S2 0.070 0.000 0.079 0.057 0.046 0.104 0.068 0.047 0.066 0.058 0.073 0.047
S3 0.067 0.054 0.000 0.046 0.031 0.096 0.072 0.056 0.055 0.052 0.056 0.025
S4 0.086 0.075 0.083 0.002 0.037 0.117 0.089 0.077 0.078 0.062 0.077 0.040
S5 0.111 0.096 0.098 0.074 0.002 0.124 0.103 0.085 0.105 0.070 0.108 0.049
S6 0.039 0.024 0.060 0.038 0.043 −0.002 0.028 0.017 0.045 0.034 0.055 0.037
S7 0.055 0.045 0.077 0.061 0.062 0.084 0.000 0.023 0.051 0.052 0.071 0.064
S8 0.092 0.078 0.104 0.079 0.068 0.115 0.079 0.000 0.094 0.078 0.101 0.074
S9 0.060 0.052 0.084 0.066 0.056 0.106 0.057 0.056 0.001 0.069 0.076 0.064
S10 0.091 0.094 0.105 0.081 0.062 0.123 0.107 0.085 0.100 0.001 0.092 0.063
S11 0.064 0.061 0.071 0.057 0.033 0.109 0.084 0.063 0.062 0.043 −0.002 0.043
S12 0.121 0.099 0.096 0.077 0.036 0.130 0.101 0.086 0.107 0.082 0.109 0.003

Table 9. Bias of lag-1 cross-correlation of the generated data from the DKNNR model. Note that a positive value indicates the overestimation

of lag-1 cross-correlation, while a negative value shows underestimation. Note that bias= 1/N
N∑
m=1

0Gm−0
h, and see Eq. (18) for the details

of each term.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S1 0.000 0.009 0.001 0.003 0.006 −0.002 0.010 0.011 0.006 0.010 0.010 0.006
S2 0.005 0.009 0.010 0.006 0.008 0.006 0.011 0.011 0.004 0.009 0.009 0.010
S3 0.002 0.010 0.001 −0.002 0.003 0.002 0.007 0.008 0.006 0.009 0.006 0.007
S4 0.006 0.009 0.004 0.001 0.007 0.003 0.008 0.008 0.009 0.010 0.010 0.005
S5 0.004 0.005 0.000 −0.001 −0.001 0.007 0.005 0.006 0.002 0.008 0.000 −0.001
S6 −0.002 0.006 0.000 0.002 −0.001 −0.002 0.004 0.003 0.002 0.005 0.004 0.001
S7 0.004 0.008 0.003 0.003 0.001 0.004 0.002 0.006 0.007 0.007 0.007 0.002
S8 0.000 0.005 0.004 0.001 0.004 −0.003 −0.003 0.000 0.001 0.004 0.006 0.003
S9 0.005 0.007 0.006 0.003 0.006 0.004 0.010 0.007 0.004 0.007 0.006 0.007
S10 0.003 0.005 0.001 −0.001 −0.001 0.001 0.001 0.001 0.003 0.000 0.002 0.001
S11 0.010 0.010 0.008 0.004 0.008 0.009 0.009 0.009 0.010 0.010 0.011 0.008
S12 0.003 0.006 0.001 −0.001 0.004 0.003 0.008 0.008 0.005 0.005 0.002 0.001

Table 10. Bias of lag-1 cross-correlation of the generated data from the Wilks model. Note that a positive value indicates the overestimation
of lag-1 cross-correlation, while a negative value shows underestimation.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S1 −0.001 −0.062 −0.089 −0.063 −0.055 −0.106 −0.074 −0.052 −0.060 −0.070 −0.080 −0.067
S2 −0.084 0.000 −0.096 −0.072 −0.061 −0.117 −0.083 −0.063 −0.079 −0.072 −0.089 −0.063
S3 −0.080 −0.070 0.001 −0.059 −0.043 −0.110 −0.086 −0.072 −0.069 −0.066 −0.071 −0.037
S4 −0.100 −0.090 −0.097 −0.001 −0.048 −0.129 −0.103 −0.093 −0.093 −0.077 −0.092 −0.051
S5 −0.125 −0.110 −0.111 −0.087 −0.001 −0.138 −0.117 −0.100 −0.118 −0.084 −0.121 −0.060
S6 −0.053 −0.037 −0.074 −0.051 −0.057 −0.001 −0.039 −0.030 −0.060 −0.047 −0.070 −0.049
S7 −0.068 −0.058 −0.091 −0.077 −0.077 −0.098 −0.002 −0.038 −0.065 −0.065 −0.086 −0.079
S8 −0.106 −0.091 −0.119 −0.094 −0.084 −0.128 −0.093 0.001 −0.108 −0.091 −0.116 −0.088
S9 −0.074 −0.064 −0.098 −0.080 −0.070 −0.119 −0.072 −0.070 −0.001 −0.082 −0.091 −0.078
S10 −0.105 −0.107 −0.120 −0.096 −0.075 −0.136 −0.119 −0.097 −0.113 −0.001 −0.106 −0.076
S11 −0.078 −0.074 −0.085 −0.070 −0.047 −0.123 −0.097 −0.077 −0.076 −0.056 −0.001 −0.057
S12 −0.134 −0.112 −0.108 −0.088 −0.046 −0.142 −0.116 −0.101 −0.121 −0.095 −0.122 0.000
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Figure 8. Scatterplot of cross-correlations between 12 weather
stations for the observed data (x coordinate) and the generated
data (y coordinate) from the DKNNR model (a) and the MONR
model (b). The cross-correlations from 100 generated series are av-
eraged for the filled circle, and the error bars upper and lower ex-
tended lines indicate the range of 1.95 times the standard deviation.

This shortcoming was mentioned by Wilks (1998). Mean-
while, the proposed DKNNR model preserved this statistic
without any parameterization.

We further tested the performance measurements of mean
absolute error (MAE) and bias whose estimates showed that
MAE had no difference from RMSE. In addition, bias of lag-
1 correlation presented significant negative values, imply-
ing its underestimation for the simulated data of the MONR
model as shown in Table 9, while Table 10 of the DKNNR
model showed a much smaller bias.

Figure 9. Scatterplot of lag-1 cross-correlations between
12 weather stations for the observed data (x coordinate) and
the generated data (y coordinate) from the DKNNR model (a) and
the MONR model (b). The cross-correlations from 100 generated
series are averaged for the filled circle, and the error bars upper and
lower extended lines indicate the range of 1.95 times the standard
deviation.

Also, the whole-year data instead of the summer season
data were tested for model fitting. Note that all the results
presented above were for the summer season data (June–
September), as mentioned in Sect. 4 in the data description.
The lag-1 cross-correlation is shown in Fig. 10, which in-
dicates that the same characteristic was observed as for the
summer season, such that the proposed DKNNR model pre-
served better the lagged cross-correlation than did the exist-
ing MONR model. Other statistics, such as correlation matrix
and transition probabilities, exhibited the same results (not
shown). Also, other seasons were tried but the estimated cor-
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Figure 10. Scatterplot of lag-1 cross-correlations between 12
weather stations for the observed data (x coordinate) and the gen-
erated data (y coordinate) from the DKNNR model (a) and the
MONR model (b) with the whole-year data and not with the sum-
mer season. The cross-correlations from 100 generated series are
averaged.

relation matrix was not a positive semi-definite matrix and
its inverse cannot be made for multivariate normal distribu-
tion in the MONR model. It was because the selected stations
were close to each other (around 50–100 km) and produced
high cross-correlation, especially in the occurrence during
dry seasons. Special remedy for the existing MONR model
should be applied, such as decreasing cross-correlation by
force, but further remedy was not applied in the current study
since it was not within the current scope and focus.

6.4 Adaptation to climate change

Model adaptability to climate change in hydro-
meteorological simulation models is a critical factor,
since one of the major applications of the models is to
assess the impact of climate change. Therefore, we tested
the capability of the proposed model in the current study by
adjusting the probabilities of crossover and mutation as in
Eqs. (15) and (16). A number of variations can be made with
different conditions.

In Fig. 11, the changes of transition and marginal proba-
bilities are shown, along with the increase of crossover prob-
ability Pcr from 0.01 to 0.2 with the condition that the candi-
date value is 1 and the previous value is also 1 as in Eq. (15)
for the selected 5 stations among the 12 stations (from sta-
tion 1 to station 5; see Table 1 for details). The stations
were limited in this analysis due to computational time. In
each case, 100 series were simulated. The average value of

Figure 11. Transition probabilities and marginal distribution for the
selected five stations along with changing the crossover probability
Pcr with the condition that the candidate value is 1 and the previous
value is also 1. See Eq. (15) for details.

the simulated statistics is presented in the figure. It is obvi-
ous that the transition probability P11 increased as intended
along with the increase of Pcr. As expected from Eq. (5), P1
presents that the change of P1 is highly related to P11. How-
ever, the probability P01 fluctuated along with the increase of
Pcr. Elaborate work to adjust all the probabilities is however
required.

The changes in transition and marginal probabilities are
presented in Fig. 12 with increasing mutation probability Pm
from 0.01 to 0.2 under the condition that the candidate value
is 1, so that the marginal probability P1 increased. P01 also
increased along with increasing P1. The change of P11 was
not related to other probabilities. The combination of the ad-
justment of Pcr and Pm with a certain condition to the pre-
vious state will allow the specific adaptation for simulating
future climatic scenarios.

As an example, assume that the occurrence probability
(P1) of the control period is 0.26 (see the dotted line with a
cross in the bottom panels of Figs. 11 and 12) and global cir-
culation model (GCM) output indicates that the occurrence
probability (P1) increases up to 0.27. This can be achieved
with increasing either the crossover probability to 0.1 or the
mutation probability to 0.05. Note that the crossover prob-
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Figure 12. Transition probabilities and marginal distribution along
with changing the crossover probability with the condition that the
mutation is processed only if the candidate value is 1. See Eq. (16)
for details.

abilities might cause the stations to affect each other, while
the mutation probabilities do not.

Climate change, however, may refer to a larger phe-
nomenon, which cannot be addressed directly through mod-
ifying only the marginal and transition probabilities as in the
current study. Further model development on systematically
varying temporal and spatial cross-correlations is required to
properly address climate change of the regional precipitation
system.

7 Conclusions

In the current study, the discrete version of a nonparametric
simulation model, based on KNNR, is proposed to overcome
the shortcomings of the existing MONR model, such as long
stochastic simulation for parameter estimation and underesti-
mation of the lagged cross-correlation between sites, as well
as testing the adaptability for climatic change. Occurrence
and transition probabilities and cross-correlation, as well as
lag-1 cross-correlation are estimated for both models. Better

preservation of cross-correlation and lag-1 cross-correlation
with the DKNNR model than the MONR model is observed.
For some cases (i.e., the whole-year data and seasons other
than the summer season), the estimated cross-correlation ma-
trix is not a positive semi-definite matrix, so the multivariate
normal simulation is not applicable for the MONR model,
because the tested sites are close to each other with high
cross-correlation.

Results of this study indicate that the proposed DKNNR
model reproduces the occurrence and transition probabilities
satisfactorily and preserves the cross-correlations better than
the existing MONR model. Furthermore, not much effort is
required to estimate the parameters in the DKNNR model,
while the MONR model requires a long stochastic simulation
just to estimate each parameter. Thus, the proposed DKNNR
model can be a good alternative for simulating multisite pre-
cipitation occurrence.

We further tested the enhancement of the proposed model
for adapting to climate change by modifying the mutation
and crossover probabilities (Pm and Pcr). Results show that
the proposed DKNNR model has the capability to adapt to
the climate change scenarios, but further elaborate work is
required to find the best probability estimation for climate
change. Also, only the marginal and transition probabili-
ties cannot address the climate change of regional precipita-
tion. The variation of temporal and spatial cross-correlation
structure must be considered to properly address the climate
change of the regional precipitation system. Further study on
improving the model adaptability to climate change will fol-
low in the near future. Also, the simulated multisite occur-
rence can be coupled with a multisite amount model to pro-
duce precipitation events, including zero values. Further de-
velopment can be made for multisite amount models with a
nonparametric technique, such as KNNR and bootstrapping.

Code and data availability. DKNNR code is written in Matlab and
is available as a Supplement.

The precipitation data employed in the current study are down-
loadable through https://data.kma.go.kr/cmmn/main.do (Korea Me-
teorological Administration, 2019).

Geosci. Model Dev., 12, 1189–1207, 2019 www.geosci-model-dev.net/12/1189/2019/

https://data.kma.go.kr/cmmn/main.do


T. Lee and V. P. Singh: DNNR for simulating multisite precipitation 1203

Appendix A: Example of DKNNR

In this appendix, one example of DKNNR simulation is
presented with observed dataset in Table A1 (i.e., xi =

[xsi ]s∈{1,S} for i = 1, . . .,n; here, S = 12 and n= 16). The
upper part of the table presents the observed precipitation
(unit: mm). Its occurrence data are presented in the bot-
tom part of this table. The current precipitation occurrence
Xc = [X

s
c]s∈{1,...,12} is shown in the second row of Table A2.

The number of nearest neighbors k =
√
n=
√

16= 4 and the
parameters for GA (i.e., Pc and Pm) are 0.1 and 0.01, respec-
tively. The simulation can be made as follows:

1. Estimate the distance Di between xi and Xc for i =
1, . . .,n− 1 as in Eq. (11). For example, for i = 1,

D1 =

S∑
s=1

∣∣Xsc − xs1∣∣= |0−1|+|1−1|+. . .+|0−1| = 6.

All the estimated distances are shown in the last column
of Table A2.

2. The daily index values are sorted according to the small-
est distances shown in the first two columns of Ta-
ble A3. The sorted day indices and their corresponding
distances are shown in the third and fourth columns of
Table A3. From the k number of sorted indices, one is
selected with the weight probability (see Eq. 12), which
is shown in the last column of Table A3.

3. Simulate a uniform random number (u) between 0 and
1. Say u= 0.321. This value must be compared with the
cumulative weighted probabilities in the last column of
Table A3 as [0 0.48 0.72 0.88 1.0]. The corresponding
day index is assigned as to where the simulated uniform
number falls in the cumulative weighted probabilities,
here [0 0.48]. Therefore, the selected day, p, is 14. The
occurrences of the following day (p+1= 15) for 12 sta-
tions are selected as in the second row of Table A4.

4. For GA mixture, another set must be chosen as in
step (3). Say u= 0.561, which falls in [0.48 0.72]. The
second one should be selected. However, there are a
number of days with the same distances. Specifically,
6 days have the same distances withDi = 4. In this case,
one among all 6 days is selected with equal probability.
Assume that p = 4 is selected and the following occur-
rences are selected, as shown in the third row of Ta-
ble A4.

5. With two sets, the crossover and mutation process is
performed as follows:

a. Crossover: for each station, a uniform random num-
ber (ε) is generated and compared with Pc = 0.1
here. Say ε = 0.345, then skip since ε = 0.345>
Pc = 0.1. For s = 6, assume the generated random
number, ε(= 0.051) < Pc(= 0.1), and then switch
the sixth station value of Set 1 into the value of
Set 2 (see Table A4). The occurrence state of Xsc+1
turns into 1 from 0, as shown in the fourth row of
Table A4, as well as at station 8.

b. Mutation: for each station, a uniform random num-
ber (ε) is generated and compared with Pm = 0.01.
For s = 12, assume ε = 0.009< Pm = 0.01, and
switch the 12th station value of Set 1 with the one
selected among all the observed 12th station val-
ues with equal probability (here the last column,
s = 12, of the bottom part of Table A1 [1 1 0 0 . . .
1]). The occurrence state of X12

c+1 turns into 0 from
1, as shown in the fourth column of Table A4.

6. Repeat steps (1)–(5) until the target simulation length is
reached.
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Table Appendix A1. Example dataset of daily rainfall with 12 weather stations and 16 days for measured rainfall (mm) in the upper part of
this table and its corresponding occurrences in the bottom part of this table.

Day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1 2.0 2.9 1.2 0.0 0.0 1.8 4.0 8.9 2.0 4.6 1.3 0.6
2 52.6 39.8 47.2 17.4 11.8 31.0 30.0 33.7 52.0 57.8 37.0 17.5
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.2 1.0 1.4 1.9 12.3 0.0 0.0 0.0 0.7 3.1 3.5 8.1
6 14.8 0.2 0.8 0.2 5.0 0.0 0.0 18.0 0.0 0.0 0.6 3.1
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 1.0 0.0 0.4 0.0 3.8 0.0 0.1 0.0 0.0 0.0 0.0
11 7.1 6.4 12.8 12.8 13.6 2.3 2.0 5.4 6.0 7.3 16.4 20.3
12 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 4.3
13 10.0 1.6 11.6 14.3 1.5 5.4 0.0 0.0 2.5 0.0 2.7 16.1
14 2.3 0.0 0.7 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0
15 31.5 4.3 30.6 12.7 14.4 25.8 3.5 0.8 5.0 2.7 6.5 20.3
16 37.0 7.8 30.1 11.2 9.6 36.8 2.5 4.7 13.5 1.7 10.1 14.1

Day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1 1 1 1 0 0 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 0 0 0 1 1 1 1
6 1 1 1 1 1 0 0 1 0 0 1 1
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0
10 0 1 0 1 0 1 0 1 0 0 0 0
11 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 1 0 0 0 0 0 0 1
13 1 1 1 1 1 1 0 0 1 0 1 1
14 1 0 1 0 0 1 0 0 0 0 0 0
15 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1
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Table Appendix A2. Example dataset for estimating distances. The second row presents the current daily precipitation occurrences for
12 stations and the rows below show the absolute difference between the current occurrences (Xc) and the observed data in Table A1. The
last column presents the distances in Eq. (11).

Day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Dist.

Xc 0 1 1 0 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1 1 1 1 6
2 1 0 0 1 1 0 0 1 1 1 1 1 8
3 0 1 1 0 0 1 1 0 0 0 0 0 4
4 0 1 1 0 0 1 1 0 0 0 0 0 4
5 1 0 0 1 1 1 1 0 1 1 1 1 9
6 1 0 0 1 1 1 1 1 0 0 1 1 8
7 0 1 1 0 0 1 1 0 0 0 0 0 4
8 0 1 1 0 0 1 1 0 0 0 0 0 4
9 0 1 1 0 0 1 1 0 0 0 0 0 4
10 0 0 1 1 0 0 1 1 0 0 0 0 4
11 1 0 0 1 1 0 0 1 1 1 1 1 8
12 0 1 1 0 1 1 1 0 0 0 0 1 6
13 1 0 0 1 1 0 1 0 1 0 1 1 7
14 1 1 0 0 0 0 1 0 0 0 0 0 3
15 1 0 0 1 1 0 0 1 1 1 1 1 8
16 1 0 0 1 1 0 0 1 1 1 1 1 8

Table Appendix A3. Example for selecting one sequence for Xc+1. The second row presents the distances in Table A2. The third and fourth
columns show the sorted days and distances for the smallest distances to the largest in the second column. The fourth row presents the
probabilities estimated with Eq. (12). Note that there are 6 days whose distances are identical. In this case, all the days are included, and
among 6 days, one is selected with equal probabilities. The bold values are selected from the distance measurement in Eq. (11) and random
selection in Eq. (12).

Day Dist. Sorted Sorted Prob
day dist.

1 6 14 3 0.48
2 8 3 4 0.24
3 4 4 4 0.16
4 4 7 4 0.12
5 9 8 4
6 8 9 4
7 4 10 4
8 4 1 6
9 4 12 6
10 4 13 7
11 8 2 8
12 6 6 8
13 7 11 8
14 3 15 8
15 8 16 8
16 8 5 9

Table Appendix A4. Example for GA mixture for Xc+1. The second and third rows present two selected sets, while the third row shows the
final set for Xc+1 with the crossover at S6 and S8 and the mutation for S12. Note that the italic values are crossovers from Set 2 to Set 1
while the bold value is mutated.

Assigned Selected S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
day, p day, p+ 1

Set 1 14 15 1 0 0 1 1 0 0 1 1 1 1 1
Set 2 4 5 1 0 0 1 1 1 1 0 1 1 1 1
Final 1 0 0 1 1 1 0 0 1 1 1 0
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-12-1189-2019-supplement.
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