
Now with Devito we will turn ‘p‘ into ‘TimeFunction‘

object to make all the buffer switching implicit

p = TimeFunction(name=’p’, grid=grid, space_order=2)

Initialize the source term ‘b‘

b = Function(name=’b’, grid=grid)

b.data[:] = 0.

b.data[int(nx / 4), int(ny / 4)] = 100

b.data[int(3 * nx / 4), int(3 * ny / 4)] = -100

Create Laplace equation base on ‘p‘

eq = Eq(p.laplace, b)

Let SymPy solve for the central stencil point

stencil = solve(eq, p)

Let our stencil populate the buffer ‘p.forward‘

eq_stencil = Eq(p.forward, stencil)

Create boundary condition expressions

Note that we now add an explicit "t + 1"

for the time dimension.

bc = [Eq(p[t + 1, x, 0], 0.)]

bc += [Eq(p[t + 1, x, ny-1], 0.)]

bc += [Eq(p[t + 1, 0, y], 0.)]

bc += [Eq(p[t + 1, nx-1, y], 0.)]

We can even switch performance logging back on,

since we only require a single kernel invocation.

configuration[’log-level’] = ’INFO’

Create and execute the operator for nt iterations

op = Operator([eq_stencil] + bc)

op(time=nt)

