p = Function(name=’p’, grid=grid, space_order=2)
pd = Function(name=’pd’, grid=grid, space_order=2)
p.datal:] = 0.

pd.datal:] = 0.

Initialize the source term ‘b¢

b = Function(name=’b’, grid=grid)

b.datal:] = 0.

b.datalint(nx / 4), int(ny / 4)] = 100
b.datalint(3 * nx / 4), int(3 * ny / 4)] = -100

Create Laplace equation base on ‘pd¢

eq = Eq(pd.laplace, b, subdomain=grid.interior)

Let SymPy solve for the central stencil point
stencil = solve(eq, pd)

Now we let our stencil populate our second buffer ‘p°
eq_stencil = Eq(p, stencil)

Create boundary condition expressions
X, y = grid.dimensions
t = grid.stepping_dim
bc = [Eq(plx, 0], 0.)]

bc += [Eq(plx, ny-1], 0.)]
bc += [Eq(pl[0, yl, 0.)]
bc += [Eq(plnx-1, yl, 0.)]

Now we can build the operator that we need
op = Operator([eq_stencil] + bc)

Run the outer loop explicitly in Python
for i in range(nt):
Determine buffer order

if i 4 2 == 0:
-P=P
_pd = pd
else:
_p = pd
-pd = p

Apply operator
op(p=_p, pd=_pd)

