
p = Function(name=’p’, grid=grid, space_order=2)

pd = Function(name=’pd’, grid=grid, space_order=2)

p.data[:] = 0.

pd.data[:] = 0.

Initialize the source term ‘b‘

b = Function(name=’b’, grid=grid)

b.data[:] = 0.

b.data[int(nx / 4), int(ny / 4)] = 100

b.data[int(3 * nx / 4), int(3 * ny / 4)] = -100

Create Laplace equation base on ‘pd‘

eq = Eq(pd.laplace, b, subdomain=grid.interior)

Let SymPy solve for the central stencil point

stencil = solve(eq, pd)

Now we let our stencil populate our second buffer ‘p‘

eq_stencil = Eq(p, stencil)

Create boundary condition expressions

x, y = grid.dimensions

t = grid.stepping_dim

bc = [Eq(p[x, 0], 0.)]

bc += [Eq(p[x, ny-1], 0.)]

bc += [Eq(p[0, y], 0.)]

bc += [Eq(p[nx-1, y], 0.)]

Now we can build the operator that we need

op = Operator([eq_stencil] + bc)

Run the outer loop explicitly in Python

for i in range(nt):

Determine buffer order

if i % 2 == 0:

_p = p

_pd = pd

else:

_p = pd

_pd = p

Apply operator

op(p=_p, pd=_pd)

