
Define our velocity fields and initialize with hat

function

u = TimeFunction(name=’u’, grid=grid, space_order=2)

v = TimeFunction(name=’v’, grid=grid, space_order=2)

init_hat(field=u.data[0], dx=dx, dy=dy, value=2.)

init_hat(field=v.data[0], dx=dx, dy=dy, value=2.)

Write down the equations with explicit backward

differences

a = Constant(name=’a’)

u_dx = first_derivative(u, dim=x, side=left, order=1)

u_dy = first_derivative(u, dim=y, side=left, order=1)

v_dx = first_derivative(v, dim=x, side=left, order=1)

v_dy = first_derivative(v, dim=y, side=left, order=1)

eq_u = Eq(u.dt + u*u_dx + v*u_dy, a*u.laplace,

subdomain=grid.interior)

eq_v = Eq(v.dt + u*v_dx + v*v_dy, a*v.laplace,

subdomain=grid.interior)

Let SymPy rearrange our stencils to form the update

expressions

stencil_u = solve(eq_u, u.forward)

stencil_v = solve(eq_v, v.forward)

update_u = Eq(u.forward, stencil_u)

update_v = Eq(v.forward, stencil_v)

Create Dirichlet BC expressions using the low-level

API

bc_u = [Eq(u[t+1, 0, y], 1.)] # left

bc_u += [Eq(u[t+1, nx-1, y], 1.)] # right

bc_u += [Eq(u[t+1, x, ny-1], 1.)] # top

bc_u += [Eq(u[t+1, x, 0], 1.)] # bottom

bc_v = [Eq(v[t+1, 0, y], 1.)] # left

bc_v += [Eq(v[t+1, nx-1, y], 1.)] # right

bc_v += [Eq(v[t+1, x, ny-1], 1.)] # top

bc_v += [Eq(v[t+1, x, 0], 1.)] # bottom

Create the operator

op = Operator([update_u, update_v] + bc_u + bc_v)

