model = Model(...)
dt, nt = <timestepping parameters>

Define source and receiver geometry
src = RickerSource(...)
rec = Receiver(...)

Create forward and gradient operators
op_fwd = forward(model, src, rec, order)
op_grad = gradient(model, rec, order)

Run FWI with gradient descent

for i in range(0, fwi_iteratioms):
Compute functional value and gradient
for the current model estimate
phi, direction = fwi_gradient (model.m)

Artificial Step length for gradient descent
alpha = .005 / np.max(direction)

Update the model estimate and inforce

minimum/maximum values

m_updated = model.m.data - alpha*direction
model.m.data[:] = box_constraint(m_updated)

