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Abstract. Predicting future changes in ecosystem services
is not only highly desirable but is also becoming feasible as
several forces (e.g., available big data, developed data assim-
ilation (DA) techniques, and advanced cyber-infrastructure)
are converging to transform ecological research into quan-
titative forecasting. To realize ecological forecasting, we
have developed an Ecological Platform for Assimilating Data
(EcoPAD, v1.0) into models. EcoPAD (v1.0) is a web-based
software system that automates data transfer and processing
from sensor networks to ecological forecasting through data
management, model simulation, data assimilation, forecast-
ing, and visualization. It facilitates interactive data–model
integration from which the model is recursively improved
through updated data while data are systematically refined
under the guidance of model. EcoPAD (v1.0) relies on data
from observations, process-oriented models, DA techniques,
and the web-based workflow.

We applied EcoPAD (v1.0) to the Spruce and Peat-
land Responses Under Climatic and Environmental change
(SPRUCE) experiment in northern Minnesota. The EcoPAD-

SPRUCE realizes fully automated data transfer, feeds mete-
orological data to drive model simulations, assimilates both
manually measured and automated sensor data into the Ter-
restrial ECOsystem (TECO) model, and recursively fore-
casts the responses of various biophysical and biogeochemi-
cal processes to five temperature and two CO2 treatments in
near-real time (weekly). Forecasting with EcoPAD-SPRUCE
has revealed that mismatches in forecasting carbon pool dy-
namics are more related to model (e.g., model structure, pa-
rameter, and initial value) than forcing variables, opposite
to forecasting flux variables. EcoPAD-SPRUCE quantified
acclimations of methane production in response to warm-
ing treatments through shifted posterior distributions of the
CH4 : CO2 ratio and the temperature sensitivity (Q10) of
methane production towards lower values. Different case
studies indicated that realistic forecasting of carbon dynam-
ics relies on appropriate model structure, correct parameter-
ization, and accurate external forcing. Moreover, EcoPAD-
SPRUCE stimulated active feedbacks between experimenters
and modelers to identify model components to be improved
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and additional measurements to be taken. It has become an
interactive model–experiment (ModEx) system and opens a
novel avenue for interactive dialogue between modelers and
experimenters. Altogether, EcoPAD (v1.0) acts to integrate
multiple sources of information and knowledge to best in-
form ecological forecasting.

1 Introduction

One ambitious goal of ecology as a science discipline is to
forecast states and services of ecological systems. Forecast-
ing in ecology is not only desirable for scientific advances
in this discipline but also has practical values to guide re-
source management and decision-making towards a sustain-
able planet Earth. The practical need for ecological fore-
casting is particularly urgent in this rapidly changing world,
which is experiencing unprecedented natural resource deple-
tion, increasing food demand, serious biodiversity crisis, ac-
celerated climate changes, and widespread pollution in the
air, waters, and soils (Clark et al., 2001; Mouquet et al.,
2015). As a result, a growing number of studies have re-
ported forecasting of, e.g., phenology (Diez et al., 2012), car-
bon dynamics (Luo et al., 2016; Gao et al., 2011; Thomas et
al., 2017), species dynamics (Clark et al., 2003; Kearney et
al., 2010), pollinator performance (Corbet et al., 1995), epi-
demics (Ong et al., 2010), fishery (Hare et al., 2010), algal
bloom (Stumpf et al., 2009), crop yield (Bastiaanssen and
Ali, 2003), biodiversity (Botkin et al., 2007), plant extinction
risk (Fordham et al., 2012), and ecosystem service (Craft et
al., 2009) in the last several decades. Despite its broad appli-
cations, ecological forecasting is still sporadically practiced
and lags far behind demand due to the lack of infrastructure
that enables timely integration of models with data. This pa-
per introduces a fully interactive infrastructure, the Ecologi-
cal Platform for Assimilating Data (EcoPAD, v1.0) into mod-
els, to inform near-time ecological forecasting with iterative
data–model integration.

Ecological forecasting relies on both models and data.
However, currently the ecology research community has
not yet adequately integrated observations with models to
best inform forecasts. Forecasts generated from scenario ap-
proaches are qualitative and scenarios are often not based
on ecological knowledge (Coreau et al., 2009, 2010). Data-
driven forecasts using statistical methods are generally lim-
ited for extrapolation and sometimes contaminated by con-
founding factors (Schindler and Hilborn, 2015). The recent
emergent mechanism-free nonparametric approach, which
depends on the statistical pattern extracted from data, is re-
ported to be promising for short-term forecast (Ward et al.,
2014; Perretti et al., 2013; Sugihara et al., 2012) but has lim-
ited capability in long-term prediction due to the lack of rel-
evant ecological mechanisms. Process-based models provide
capacity in long-term prediction and flexibility in capturing

short-term dynamics on the basis of a mechanistic under-
standing (Coreau et al., 2009; Purves et al., 2013). Wide ap-
plications of process-based models are limited by their often
complicated numerical structure and sometimes unrealistic
parameterization (Moorcroft, 2006). The complex and uncer-
tain nature of ecology precludes the practice of incorporating
as many processes as possible into mechanistic models. Our
current incomplete knowledge about ecological systems and
unrepresented processes under novel conditions is partly re-
flected in model parameters associated with large uncertain-
ties. Good forecasting therefore requires effective communi-
cation between process-based models and data to estimate re-
alistic model parameters and capture context-dependent eco-
logical phenomena.

Data–model fusion, or data–model integration, is an im-
portant step to combine models with data. But previous data–
model integration activities have mostly been done in an ad
hoc manner instead of being interactive. For example, data
from a network of eddy covariance flux tower sites across the
United States and Canada were compared with gross primary
productivity (GPP) estimated from different models (Schae-
fer et al., 2012). Luo and Reynolds (1999) used a model to
examine ecosystem responses to gradual, as in the real world,
vs. step increases in CO2 concentration as in elevated CO2
experiments. Parton et al. (2007) parameterized CO2 impacts
in an ecosystem model with data from a CO2 experiment in
Colorado. Such model–experiment interactions encounter a
few issues: (1) models are not always calibrated for individ-
ual sites and therefore not accurate; (2) it is not very effective
because it is usually a one-time practice without many itera-
tive processes between experimenters and modelers (Dietze
et al., 2013; Lebauer et al., 2013); (3) it is usually unidirec-
tional as data are normally used to train models, while the
guidance of the model for efficient data collection is lim-
ited; and (4) it is not streamlined and could not be dissem-
inated with common practices among the research commu-
nity (Lebauer et al., 2013; Dietze et al., 2013; Walker et al.,
2014).

A few research groups have developed data assimilation
systems to facilitate data–model integration in a systematic
way. For example, data–model integration systems, such as
the Data Assimilation Research Testbed – DART (Anderson
et al., 2009) – and the Carbon Cycle Data Assimilation Sys-
tems – CCDAS (Scholze et al., 2007; Peylin et al., 2016),
combine various data streams (e.g., FLUXNET data, satellite
data, and inventory data) with process-based models through
data assimilation algorithms such as the Kalman filter (An-
derson et al., 2009) and variational methods (Peylin et al.,
2016). These data assimilation systems automate model pa-
rameterization and provide an avenue to systematically im-
prove models by combining as much data as possible. Data-
informed model improvements normally happen after the end
of a field experiment, and interactive data–model integration
is limited as feedbacks from models to ongoing experimental
studies are not adequately realized. In addition, wide appli-
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cations of these data assimilation systems in ecological fore-
casting are constrained by limited user interactions with a
steep learning curve to understand these systems, especially
for experimenters who have limited training in modeling.

Web-based technology facilitates interactions. Web-based
modeling, which provides user-friendly interfaces to run
models in the background, is usually supported by the sci-
entific workflow, a sequence of processes through which
a piece of work passes from initiation to completion. For
example, TreeWatch.Net (https://treewatch.net, last access:
January 2019) has recently been developed to make use of
high-precision individual tree-monitoring data to parameter-
ize process-based tree models in real time and to assess in-
stant tree hydraulics and carbon status with online result vi-
sualization (Steppe et al., 2016). Although the web portal of
TreeWatch.Net is currently limited to the purpose of visual-
ization, it broadens the application of data–model integration
and strengthens the interaction between modeling research
and the general public. The Predictive Ecosystem Analyzer
(PEcAn) is a scientific workflow that wraps around differ-
ent ecosystem models and manages the flows of informa-
tion coming in and out of the model (Lebauer et al., 2013).
PEcAn enables web-based model simulations. Such a work-
flow has advantages, for example making ecological model-
ing and analysis convenient, transparent, reproducible, and
adaptable to new questions (Lebauer et al., 2013) and en-
couraging user–model interactions. PEcAn uses the Bayesian
meta-analysis to synthesize plant trait data to estimate model
parameters and associated uncertainties, i.e., the prior in-
formation for process-based models. Parameter uncertain-
ties are propagated to model uncertainties and displayed as
outputs. It is still not fully interactive in that states are not
updated iteratively according to observations and the web-
based data assimilation and ecological forecasting have not
yet been fully realized.

Iterative model–data integration provides an approach to
constantly improve ecological forecasting and is an impor-
tant step, especially in realizing near-real-time ecological
forecasting. Instead of projecting into the future by assimilat-
ing observations only once, iterative forecasting constantly
updates forecasting along with ongoing new data streams
and/or improved models. Forecasting is likely to be im-
proved unidirectionally so that either only models are up-
dated through observations, or only data collections and field
experimentations are improved according to theoretical and
model information, but not both. Ecological forecasting can
also be bidirectionally improved so that both models and field
experimentations are optimized hand-in-hand over time. Al-
though the bidirectional case is rare in ecological forecast-
ing, unidirectional iterative forecasting has been reported.
One excellent example of forecasting by dynamically and
repeatedly integrating data with models is from infectious
disease studies (Niu et al., 2014; Ong et al., 2010). The dy-
namics of infectious diseases are traditionally captured by
susceptible–infected–removed (SIR) models. In the forecast-

ing of the Singapore H1N1-2009 infections, SIR model pa-
rameters and the number of individuals in each state were
updated daily, combining data renewed from local clinical
reports. The evolution of epidemic-related parameters and
states was captured by iteratively assimilating observations
to inform forecasting. As a result, the model correctly fore-
casted the timing of the peak and decline of the infection
ahead of time. Iterative forecasting dynamically integrates
data with models and makes the best use of both data and
theoretical understandings of ecological processes.

The aim of this paper is to present a fully interactive plat-
form, the web-based EcoPAD (v1.0), to best inform ecolog-
ical forecasting. The interactive feature of EcoPAD (v1.0) is
reflected in iterative model updating and forecasting by dy-
namically integrating models with new observations, bidirec-
tional feedbacks between experimenters and modelers, and
flexible user–model communication through web-based sim-
ulation, data assimilation, and forecasting. Such an interac-
tive platform provides the infrastructure to effectively inte-
grate available resources from models and data, modelers and
experimenters, and scientists and the general public to im-
prove scientific understanding of ecological processes, boost
ecological forecasting practice, and transform ecology to-
wards quantitative forecasting.

In the following sections, we first describe the system de-
sign and major components of EcoPAD (v1.0). We then use
the Spruce and Peatland Responses Under Climatic and En-
vironmental change (SPRUCE) experiment (Hanson et al.,
2017) as a test bed to elaborate the functionality and new
opportunities brought by the platform. We finally discuss the
implications of EcoPAD (v1.0) for better ecological forecast-
ing.

2 EcoPAD (v1.0): system design and components

2.1 General description: web-based data assimilation
and forecast

EcoPAD (v1.0) (https://ecolab.nau.edu/ecopad_portal/, last
access: January 2019) focuses on linking ecological exper-
iments and data with models and allows for easily acces-
sible and reproducible data–model integration with interac-
tive web-based simulation, data assimilation, and forecast
capabilities. Specifically, EcoPAD (v1.0) enables automated
near-time ecological forecasting that works hand-in-hand
between modelers and experimenters and updates periodi-
cally in a manner similar to weather forecasting. The system
is designed to streamline web request–response, data man-
agement, modeling, prediction, and visualization to boost
the overall throughput of observational data, promote data–
model communication, inform ecological forecasting, and
improve scientific understanding of ecological processes (see
the Supplement for detailed functionalities of EcoPAD v1.0).
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To realize such data-informed ecological forecasting, the
essential components of EcoPAD (v1.0) include experi-
ments and data, process-based models, data assimilation
techniques, and the scientific workflow (Figs. 1–3). The sci-
entific workflow of EcoPAD (v1.0) that wraps around eco-
logical models and data assimilation algorithms acts to move
datasets in and out of structured and cataloged data collec-
tions (metadata catalog), while leaving the logic of the eco-
logical models and data assimilation algorithms untouched
(Figs. 1, 3). Once a user makes a request through the web
browser or command line utilities, the scientific workflow
takes charge of triggering and executing corresponding tasks,
be it pulling data from a remote server, running a particu-
lar ecological model, automating forecasting, or making the
result easily understandable to users (Figs. 1, 3). With the
workflow, the system is agnostic to operation system, envi-
ronment, and programming language and is built to horizon-
tally scale to meet the demands of the model and the end-user
community.

2.2 Components

2.2.1 Data

Data are an important component of EcoPAD (v1.0) and Eco-
PAD (v1.0) offers systematic data management to digest di-
verse data streams. The “big data” ecology generates a large
volume of very different datasets across various scales (Mou-
quet et al., 2015; Hampton et al., 2013). These datasets might
have high temporal resolutions, such as those from real-time
ecological sensors, or the display of spatial information from
remote sensing sources and data stored in the geographic in-
formation system (GIS). These datasets may also include,
but are not limited to, inventory data, laboratory measure-
ments, FLUXNET databases, or data from long-term ecolog-
ical networks (Baldocchi et al., 2001; Johnson et al., 2010;
Robertson et al., 2012). Such data contain information re-
lated to environmental forcing (e.g., precipitation, temper-
ature, and radiative forcing), site characteristics (e.g., soil
texture and species composition), and biogeochemical com-
position. Datasets in EcoPAD (v1.0) are derived from other
research projects in comma-separated value files or other
loosely structured data formats. These datasets are first de-
scribed and stored with appropriate metadata via either man-
ual operation or scheduled automation from sensors. Each
project has a separate folder where data are stored. Data
are generally separated into two categories. One is used as
boundary conditions for modeling and the other category is
related to observations that are used for data assimilation.
Scheduled sensor data are appended to existing data files
with prescribed frequency. Attention is then given to how the
particular dataset varies over space (x, y) and time (t). When
the spatiotemporal variability is understood, it is then placed
in metadata records that allow for query through its scientific
workflow.

Figure 1. Schema of approaches to forecast future ecological re-
sponses from common practice (a) and the Ecological Platform
for Assimilation of Data (EcoPAD, v1.0) (b). The common prac-
tice makes use of observations to develop or calibrate models to
make predictions, while the EcoPAD (v1.0) approach advances the
common practice through its fully interactive platform. EcoPAD
(v1.0) consists of four major components: experiment and data,
model, data assimilation, and the scientific workflow (green ar-
rows or lines). Data and model are iteratively integrated through
its data assimilation systems to improve forecasting. Its near-real-
time forecasting results are shared among research groups through
its web interface to guide new data collections. The scientific work-
flow enables web-based data transfer from sensors, model simula-
tion, data assimilation, forecasting, result analysis, visualization,
and reporting, encouraging broad user–model interactions, espe-
cially for experimenters and the general public with a limited back-
ground in modeling. Images from the SPRUCE field experiments
(https://mnspruce.ornl.gov/, last access: January 2019) are used to
represent the data collection and the flowchart of the TECO model
is used to delegate ecological models.

2.2.2 Ecological models

A process-based ecological model is another essential com-
ponent of EcoPAD (Fig. 1). In this paper, the Terrestrial
ECOsystem (TECO) model is applied as a general ecologi-
cal model for demonstration purposes since the workflow and
data assimilation system of EcoPAD (v1.0) are relatively in-
dependent of the specific ecological model. Linkages among
the workflow, data assimilation system, and ecological model
are based on messaging. For example, the data assimilation
system generates parameters that are passed to ecological
models. The state variables simulated from ecological mod-
els are passed back to the data assimilation system. Models
may have different formulations. As long as they take in the
same parameters and generate the same state variables, they
are functionally identical from the “eye” of the data assimi-
lation system.

TECO simulates ecosystem carbon, nitrogen, water, and
energy dynamics (Weng and Luo, 2008; Shi et al., 2016). The
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original TECO model has four major submodules (canopy,
soil water, vegetation dynamics, and soil carbon and nitro-
gen) and is further extended to incorporate methane biogeo-
chemistry and snow dynamics (Huang et al., 2017; Ma et al.,
2017). As in the global land surface model CABLE (Wang et
al., 2010; Wang and Leuning, 1998), canopy photosynthesis
that couples surface energy and water and carbon fluxes is
based on a two-big-leaf model (Wang and Leuning, 1998).
Leaf photosynthesis and stomatal conductance are based on
the common scheme from Farquhar et al. (1980) and Ball
et al. (1987), respectively. Transpiration and associated la-
tent heat losses are controlled by stomatal conductance, soil
water content, and the rooting profile. Evaporation losses of
water are balanced between the soil water supply and the at-
mospheric demand based on the difference between satura-
tion vapor pressure and the actual atmospheric vapor pres-
sure. Soil moisture in different soil layers is regulated by
water influxes (e.g., precipitation and percolation) and ef-
fluxes (e.g., transpiration and runoff). Vegetation dynamic
tracks processes such as growth, allocation, and phenology.
The soil carbon and nitrogen module tracks carbon and ni-
trogen through processes such as litterfall, soil organic mat-
ter (SOM) decomposition, and mineralization. SOM decom-
position modeling follows the general form of the Century
model (Parton et al., 1988) as in most Earth system models.
SOM is divided into pools with different turnover times (the
inverse of decomposition rates), which are modified by envi-
ronmental factors such as the soil temperature and moisture.

2.2.3 Data assimilation

Data assimilation is growing in importance as process-based
ecological models, despite largely simplifying the real sys-
tems, need to be complex enough to address sophisticated
ecological issues. These ecological issues are composed of
an enormous number of biotic and abiotic factors interact-
ing with each other. Data assimilation techniques provide a
framework to combine models with data to estimate model
parameters (Shi et al., 2016), test alternative ecological hy-
potheses through different model structures (Liang et al.,
2015), assess the information content of datasets (Weng and
Luo, 2011), quantify uncertainties (Zhou et al., 2012; Weng
et al., 2011; Keenan et al., 2012), derive emergent ecological
relationships (Bloom et al., 2016), identify model errors, and
improve ecological predictions (Luo et al., 2011b) (Fig. 2).
Under the Bayesian paradigm, data assimilation techniques
treat the model structure and the initial and parameter val-
ues as priors that represent our current understanding of the
system. As new information from observations or data be-
comes available, model parameters and state variables can
be updated accordingly. The posterior distributions of esti-
mated parameters or state variables are imprinted with infor-
mation from the model, observations, and data as the chosen
parameters act to reduce mismatches between observations
and model simulations. Future predictions benefit from such

Figure 2. The data assimilation system inside the Ecological Plat-
form for Assimilation of Data (EcoPAD, v1.0) towards better fore-
casting of terrestrial carbon dynamics.

constrained posterior distributions through forward model-
ing (Fig. S1 in the Supplement). As a result, the probability
density function of predicted future states through data as-
similation normally has a narrower spread than that without
data assimilation when everything else is equal (Niu et al.,
2014; Luo et al., 2011b; Weng and Luo, 2011).

EcoPAD (v1.0) is open to different data assimilation tech-
niques since the scientific workflow of EcoPAD (v1.0) is in-
dependent of the specific data assimilation algorithm. For
demonstration, Markov chain Monte Carlo (MCMC) (Xu et
al., 2006) is described in this study.

MCMC is a class of sampling algorithms to draw samples
from a probability distribution obtained through constructed
Markov chains to approximate the equilibrium distribution.
The Bayesian-based MCMC method takes into account var-
ious uncertainty sources that are crucial in interpreting and
delivering forecasting results (Clark et al., 2001). In the ap-
plication of MCMC, the posterior distribution of a parame-
ter for given observations is proportional to the prior distri-
bution of that parameter and the likelihood function linked
to the fit or match (or cost function) between model simu-
lations and observations. EcoPAD (v1.0) currently adopts a
batch mode; that is, the cost function is treated as a single
function to be minimized and different observations are stan-
dardized by their corresponding standard deviations (Xu et
al., 2006). For simplicity, we assume uniform distributions
in priors and Gaussian or multivariate Gaussian distributions
in observational errors, which can be operationally expanded
to other specific distribution forms depending on the avail-
able information. A detailed description is available in Xu et
al. (2006).
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2.2.4 Scientific workflow

EcoPAD (v1.0) relies on its scientific workflow to interface
with ecological models and data assimilation algorithms,
manage diverse data streams, and automate iterative ecologi-
cal forecasting in response to various user requests. Work-
flow is a relatively new concept in the ecology literature
but is essential to realize real- or near-real-time forecasting.
Thus, we describe it in detail below. The essential compo-
nents of the scientific workflow of EcoPAD (v1.0) include
the metadata catalog, web application-programming inter-
face (API), the asynchronous task or job queue (Celery),
and the container-based virtualization platform (docker). The
workflow system of EcoPAD (v1.0) also provides structured
result access and visualization.

Metadata catalog and data management

Datasets can be placed and queried in EcoPAD (v1.0) via a
common metadata catalog, which allows for effective man-
agement of diverse data streams. Calls for good management
of current large and heterogeneous ecological datasets are
common (Vitolo et al., 2015; Michener and Jones, 2012; Elli-
son, 2010). Kepler (Ludascher et al., 2006) and the Analytic
Web (Osterweil et al., 2010) are two example systems that
endeavor to provide efficient data management through the
storage of metadata, including clear documentation of data
provenance. Similarly to these systems, EcoPAD (v1.0) takes
advantage of modern information technology, especially the
metadata catalog, to manage diverse data streams. The Eco-
PAD (v1.0) metadata scheme includes a description of the
data product, security, access pattern, and time stamp of last
metadata update. We use MongoDB (https://www.mongodb.
com/, last access: January 2019), a NoSQL database technol-
ogy, to manage heterogeneous datasets to make documenta-
tion, query, and storage fast and convenient. Through Mon-
goDB, measured datasets can be easily fed into ecological
models for various purposes such as to initialize the model,
calibrate model parameters, evaluate model structure, and
drive model forecasts. For datasets from real-time ecologi-
cal sensors that are constantly updating, EcoPAD (v1.0) is
set to automatically fetch new data streams with adjustable
frequency according to research needs.

Web API, asynchronous task queue, and docker

The representational state transfer (RESTful) API can de-
liver data to a wide variety of applications is the gateway
of EcoPAD (v1.0) and enables a wide array of user inter-
faces and data dissemination activities. Once a user makes
a request, such as through clicking on relevant buttons from
a web browser, the request is passed through the RESTful
API to trigger specific tasks. The RESTful API bridges the
talk between the client (e.g., a web browser or command line
terminal) and the server (Fig. 3). The API exploits the full

functionality and flexibility of the HyperText Transfer Proto-
col (HTTP) such that data can be retrieved and ingested from
EcoPAD (v1.0) through the use of simple HTTP headers and
verbs (e.g., GET, PUT, POST, etc.). Hence, a user can in-
corporate summary data from EcoPAD (v1.0) into a website
with a single line of html code. Users will also be able to ac-
cess data directly through programming environments like R,
Python, and MATLAB. Simplicity, ease of use, and interop-
erability are among the main advantages of this API, which
enables web-based modeling.

Celery (https://github.com/celery/celery, last access: Jan-
uary 2019) is an asynchronous task or job queue that runs
in the background (Fig. 3). The task queue (i.e., Celery) is
a mechanism used to distribute work across work units such
as threads or machines. Celery communicates through mes-
sages, and EcoPAD (v1.0) takes advantage of the RabbitMQ
(https://www.rabbitmq.com/, last access: January 2019) to
manage messaging. After the user submits a command, the
request or message is passed to Celery via the RESTful API.
These messages may trigger different tasks, which include
but are not limited to pulling data from a remote server where
original measurements are located, accessing data through
a metadata catalog, running model simulations with user-
specified parameters, conducting data assimilation that recur-
sively updates model parameters, forecasting future ecosys-
tem status, and post-processing model results for visualiza-
tion. The broker inside Celery receives task messages and
handles out tasks to available Celery workers that perform
the actual tasks (Fig. 3). Celery workers are in charge of
receiving messages from the broker, executing tasks, and
returning task results. The worker can be a local or re-
mote computation resource (e.g., the cloud) that has con-
nectivity to the metadata catalog. Workers can be distributed
into different information technology (IT) infrastructures,
which makes the EcoPAD (v1.0) workflow expandable. Each
worker can perform different tasks depending on the tools in-
stalled in each worker. One task can also be distributed to dif-
ferent workers. In such a way, the EcoPAD (v1.0) workflow
enables the parallelization and distributed computation of ac-
tual modeling tasks across various IT infrastructures and is
flexible in implementing additional computational resources
by connecting additional workers.

Another key feature that makes EcoPAD (v1.0) easily
portable and scalable among different operation systems is
the utilization of a container-based virtualization platform,
the docker (https://www.docker.com/, last access: January
2019). The docker can run many applications that rely on
different libraries and environments on a single kernel with
its lightweight containerization. Tasks that execute TECO in
different ways are wrapped inside different docker contain-
ers that can “talk” with each other. Each docker container
embeds the ecosystem model into a complete file system
that contains everything needed to run an ecosystem model:
the source code, model input, run time, system tools, and li-
braries. Docker containers are both hardware-agnostic and
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Figure 3. The scientific workflow of EcoPAD (v1.0). The workflow wraps ecological models and data assimilation algorithms with the
docker containerization platform. Users trigger different tasks through the representational state transfer (RESTful) application-programming
interface (API). Tasks are managed through the asynchronous task queue, Celery. Tasks can be executed concurrently on a single or more
worker servers across different scalable IT infrastructures. MongoDB is a database software that takes charge of data management in EcoPAD
(v1.0), and RabbitMQ is a message broker.

platform-agnostic, and they are not confined to a particu-
lar language, framework, or packaging system. Docker con-
tainers can be run from a laptop, workstation, virtual ma-
chine, or any cloud compute instance. This is done to support
the widely varied number of ecological models running in
various languages (e.g., MATLAB, Python, Fortran, C, and
C++) and environments. In addition to wrapping the ecosys-
tem model into a docker container, software applied in the
workflow, such as Celery, RabbitMQ, and MongoDB, are all
lightweight and portable encapsulations through docker con-
tainers. Therefore, EcoPAD (v1.0) is readily portable and ap-
plicable in different environments.

Structured result access and visualization

EcoPAD (v1.0) enables structured result storage, access, and
visualization to track and analyze data–model fusion prac-
tice. Upon the completion of the model task, the model wrap-
per code calls a post-processing callback function. This call-
back function allows model-specific data requirements to be
added to the model result repository. Each task is associated
with a unique task ID and model results are stored within
the local repository that can be queried by the unique task
ID. The storage and query of model results are realized via
the MongoDB and RESTful API (Fig. 3). Researchers are
authorized to review and download model results and param-

eters submitted for each model run through a web-accessible
URL (link). The EcoPAD (v1.0) web page also displays a
list of historical tasks (with URL) performed by each user.
All current and historical model inputs and outputs are avail-
able to download, including the aggregated results produced
for graphical web applications. In addition, EcoPAD (v1.0)
also provides a task report that contains an all-inclusive re-
cap of submitted parameters, task status, and model outputs
with links to all data and graphical results for each task. Such
structured result storage and access make sharing, tracking,
and referring to modeling studies instantaneous and clear.

3 EcoPAD (v1.0) performance at test bed – SPRUCE

3.1 SPRUCE project overview

EcoPAD (v1.0) is being applied to the SPRUCE experiment
located at the USDA Forest Service Marcell Experimental
Forest (MEF; 47◦30.476′ N, 93◦27.162′W) in northern Min-
nesota (Kolka et al., 2011). SPRUCE is an ongoing project
that focuses on long-term responses of northern peatland to
climate warming and increased atmospheric CO2 concentra-
tion (Hanson et al., 2017). At SPRUCE, ecologists measure
various aspects of responses of organisms (from microbes to
trees) and ecological functions (carbon, nutrient, and water
cycles) to a warming climate. One of the key features of the
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SPRUCE experiments is manipulative deep soil–peat heat-
ing (0–3 m) and whole-ecosystem warming treatments (peat
+ air warmings), which include tall trees (> 4 m) (Hanson
et al., 2017). Together with elevated atmospheric CO2 treat-
ments, SPRUCE provides a platform for exploring mech-
anisms controlling the vulnerability of organisms, biogeo-
chemical processes, and ecosystems in response to future
novel climatic conditions. The SPRUCE peatland is espe-
cially sensitive to future climate change and also plays an im-
portant role in feeding back to future climate change through
greenhouse gas emissions as it stores a large amount of soil
organic carbon. Vegetation in the SPRUCE site is dominated
by Picea mariana (black spruce) and Sphagnum spp. (peat
moss). The studied peatland also has an understory that in-
cludes ericaceous and woody shrubs. There are also a limited
number of herbaceous species. The whole-ecosystem warm-
ing treatments include a large range of both aboveground
and belowground temperature manipulations (ambient, con-
trol plots of +0, +2.25, +4.5, +6.75, and +9 ◦C) in large
115 m2 open-topped enclosures with elevated CO2 manipu-
lations (+0 or +500 ppm). The difference between ambient
and+0 ◦C treatment plots is the open-topped and controlled-
environment enclosures.

The SPRUCE project generates a large variety of ob-
servational datasets that reflect ecosystem dynamics from
different scales and are available from the project web
page (https://mnspruce.ornl.gov/, last access: January 2019)
and file transfer protocol (FTP) site (ftp://sprucedata.ornl.
gov/, last access: January 2019). These datasets come
from multiple sources, including half-hourly automated sen-
sor records, species surveys, laboratory measurements, and
laser-scanning images. The involvement of both modeling
and experimental studies in the SPRUCE project creates
the opportunity for data–model communication. Datasets are
pulled from SPRUCE archives and stored in the EcoPAD
(v1.0) metadata catalog for running the TECO model and
conducting data–model fusion or forecasting. The TECO
model has been applied to simulate and forecast carbon dy-
namics with productions of CO2 and CH4 from different
carbon pools, soil temperature response, snow depth, and
freeze–thaw cycles at the SPRUCE site (Jiang et al., 2018;
Huang et al., 2017; Ma et al., 2017).

3.2 EcoPAD-SPRUCE web portal

We assimilate multiple streams of data from the SPRUCE
experiment to the TECO model using the MCMC algorithm
and forecast ecosystem dynamics in both near time and for
the next 10 years. Our forecasting system for SPRUCE is
available at https://ecolab.nau.edu/ecopad_portal/ (last ac-
cess: January 2019). From the web portal, users can check
our current near- and long-term forecasting results, conduct
model simulation, data assimilation, and forecasting runs,
and analyze and visualize model results. Detailed informa-

Figure 4. Schema of interactive communication between model-
ers and experimenters through the prediction–question–discussion–
adjustment–prediction cycle to improve ecological forecasting. The
schema is inspired by an episode of experimenter–modeler com-
munication stimulated by the EcoPAD-SPRUCE platform. The ini-
tial methane model constrained by static-chamber methane mea-
surements was used to predict the relative contributions of three
methane emission pathways (i.e., ebullition, plant-mediated trans-
portation (PMT), and diffusion) to the overall methane fluxes un-
der different warming treatments (+0, +2.25, +4.5, +6.75, and
+9 ◦C). The initial results indicated a dominant contribution from
ebullition, especially under +9 ◦C, which was doubted by experi-
menters. The discrepancy stimulated communication between mod-
elers and experimenters, with detailed information listed in Table 1.
After extensive discussion, the model structure was adjusted and
field observations were reevaluated. A second round of forecasting
yielded more reliable predictions.

tion about the interactive web portal is provided in the Sup-
plement.

3.3 Near-time ecosystem forecasting and feedback to
experimenters

As part of the forecasting functionality, EcoPAD-SPRUCE
automates near-time (weekly) forecasting with continuously
updated observations from SPRUCE experiments (Fig. 4).
We set up the system to automatically pull new data streams
every Sunday from the SPRUCE FTP site that holds obser-
vational data and update the forecasting results based on new
data streams. Updated forecasting results for the next week
are customized for the SPRUCE experiments with differ-
ent manipulative treatments and displayed in the EcoPAD-
SPRUCE portal. At the same time, these results are sent back
to SPRUCE communities and displayed together with near-
term observations for experimenter reference.
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3.4 New approaches to ecological studies towards
better forecasting

3.4.1 Case 1: interactive communications among
modelers and experimenters

EcoPAD-SPRUCE provides a platform to stimulate in-
teractive communication between modelers and experi-
menters through the loop of prediction–question–discussion–
adjustment–prediction (Fig. 4). We illustrate how the
prediction–question–discussion–adjustment–prediction cy-
cle and stimulation of modeler–experimenter communica-
tion improve ecological predictions through one episode dur-
ing the study of the relative contribution of different path-
ways to methane emissions. An initial methane model was
built upon information (e.g., site characteristics and envi-
ronmental conditions) provided by SPRUCE field scientists,
taking into account important processes in methane dynam-
ics, such as production, oxidation, and emissions, through
three pathways (i.e., diffusion, ebullition, and plant-mediated
transportation). The model was used to predict the relative
contributions of different pathways to overall methane emis-
sions under different warming treatments after being con-
strained by measured surface methane fluxes. Initial fore-
casting results, which indicated a strong contribution from
ebullition under high warming treatments, were sent back to
the SPRUCE group. Experimenters doubted such a high con-
tribution from the ebullition pathway and a discussion was
stimulated. It is difficult to accurately distinguish the three
pathways from field measurements. Field experimenters pro-
vided potential avenues to extract measurement information
related to these pathways, while modelers examined model
structure and parameters that may not be well constrained by
available field information. A detailed discussion is provided
in Table 1. After extensive discussion, several adjustments
were adopted as a first step to move forward. For example,
the three-porosity model that was used to simulate the diffu-
sion process was replaced by the Millington–Quirk model to
more realistically represent methane diffusions in peat soil;
the measured static-chamber methane fluxes were also ques-
tioned and scrutinized more carefully to clarify that they
did not capture the episodic ebullition events. Measurements
such as these related to pore water gas data may provide ad-
ditional inference related to ebullition. The updated forecast-
ing is more reasonable than the initial results, although more
studies are in need to ultimately quantify methane fluxes
from different pathways.

3.4.2 Case 2: acclimation of ecosystem carbon cycling
to experimental manipulations

As a first step, CH4 static-chamber flux measurements were
assimilated into TECO to assess potential acclimation phe-
nomena during methane production under five warming
treatments (+0, +2.25, +4.5, +6.75, +9 ◦C). Initial results

Figure 5. Posterior distribution of the ratio of CH4 : CO2 (a) and the
temperature sensitivity of methane production (Q10_CH4 , b) under
five warming treatments.

indicated a reduction in both the CH4 : CO2 ratio and the
temperature sensitivity of methane production based on their
posterior distributions (Fig. 5). The mean CH4 : CO2 ratio
decreased from 0.675 (+0 ◦C treatment) to 0.505 (+9 ◦C),
while the temperature sensitivity (Q10) for CH4 production
decreased from 3.33 (+0 ◦C) to 1.22 (+9 ◦C treatment). Such
shifts quantify the potential acclimation of methane produc-
tion to warming, and future climate warming is likely to have
a smaller impact on emissions than most current predictions
that do not take account of acclimation.

Despite the fact that these results are preliminary, as more
relevant datasets are under collection with current ongo-
ing warming manipulations and measurements, assimilating
observations through EcoPAD (v1.0) provides a quantita-
tive approach to assess acclimation through time. Melillo et
al. (2017) revealed that the thermal acclimation of soil res-
piration in Harvard Forest is likely to be phase (time) de-
pendent during their 26-year soil warming experiment. Eco-
PAD (v1.0) provides the possibility to trace the temporal path
of acclimation with its streamlined structure and archive ca-
pacity. Shi et al. (2015) assimilated carbon-related measure-
ments in a tallgrass prairie into the TECO model to study
acclimation after 9-year warming treatments. They revealed
a reduction in the allocation of GPP to shoot, the turnover
rates of the shoot and root carbon pools, and an increase in
litter and fast carbon turnovers in response to warming treat-
ments. Similarly, as time goes on, the SPRUCE experiment
will generate more carbon-cycling-related datasets under dif-
ferent warming and CO2 treatments, which can be mounted
to EcoPAD (v1.0) to systematically quantify acclimations in
carbon cycling through time in the future.

3.4.3 Case 3: partitioning of uncertainty sources

Uncertainties in ecological studies can come from observa-
tions (including the forcing that drives the model), different
model structures to represent the real world, and the specified
model parameters (Luo et al., 2016). Previous studies tended
to focus on one aspect of the uncertainty sources instead
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Table 1. Discussion stimulated by EcoPAD-SPRUCE forecasting among modelers and experimenters on how to improve predictions of the
relative contribution of different pathways of methane emissions.

Discussion

1 No strong bubbles are noted in the field, and a non-observation-constrained modeling study at a similar site from another project
concluded minor ebullition contribution, which is at odds with the TECO result.

2 CH4 : CO2 ratio might explain the discrepancy. The other modeling study assumed that decomposed C is mainly turned into
CO2 and a smaller fraction is turned into CH4. The large CH4 : CO2 ratio at this site may result in higher CH4 flux. It seems that
the most “flexible” term is ebullition because any “excess” (above saturation) CH4 is immediately released to ebullition, while
the plant transport term is constrained by vegetation data.

3 Experimental research on the relative contribution to methane emissions from three different pathways is rare.

4 Current available observations include the net surface flux of methane from the large collars, incubation data that should
represent methane sources within the profile, and gas–DOC profile data that can indicate active zones within the peat profile.
What additional data are needed to constrain the relative contribution of different pathways?

5 It is commonly believed that peatlands do not bubble much, but supersensitive GPS measurements found movement of the
surface of the glacial Lake Agassiz peatland (GLAP) consistent with degassing events, and subsurface radar images showed
layers that were interpreted as bubble layers.

6 Pore water gas data, perhaps N2 or Ar, may shed some light on the relative importance of ebullition.

7 It is difficult to accurately distinguish the three pathways and relies on multiple approaches. Particularly for the SPRUCE site,
the vegetation cover varies, and vegetation species vary. Does the number of channels each species has affect the transport?
Meanwhile, the presence of plants (including nonvascular plants) will lead to more gas transport, but as bubbles rather than
plant-mediated transport.

8 Simulating diffusion, vascular processes, and ebullition depends on model structure and algorithms. Most models assume a
threshold to allow ebullition. Diffusion is treated in similar ways as ebullition in some models (most one-layer or two-layer
models). For multiple-layers models, diffusion occurs from bottom to top millimeter by millimeter, layer by layer; therefore,
gas diffusion from the top layer to the atmosphere is considered the diffusion flux. If that is the case, the time step, wind
speed, and pressure matter (most models do not consider wind and pressure impacts). Plant transport is really dependent on the
parameters for plant species, aerenchyma, etc. The gas transportability of plants is associated with biomass, NPP, root biomass,
and the seasonality of plant growth in models. All these differences might cause biases in the final flux.

9 With only the CH4 emission data, we cannot constrain the relative contribution of the three pathways. Concentration data in
different soil layers may help constrain them.

10 The diffusion coefficient calculation in TECO adopts the three-porosity model, which is ideal for mineral soil, but may not fit
for organic soil. The Millington–Quirk model is a better choice for peat soil.

11 The boundary condition should be taken into account, but it brings in more uncertainties, including wind speed and piston
velocity.

12 CH4 emissions captured in static chambers do not include episodic ebullition events. So (1) the static chambers underestimate
the total methane emissions and (2) it might be necessary to exclude the ebullition pathway when using observational data to
constrain CH4 emissions. This point seems not to have been taken into account in other models.

of disentangling the contribution from different sources. For
example, model intercomparison projects (MIPs), such as
TRENDY, focus on uncertainty caused by different model
structures with prescribed external forcing (Sitch et al.,
2008). Keenan et al. (2012) used data assimilation to con-
strain parameter uncertainties in projecting Harvard Forest
carbon dynamics. Ahlstrom et al. (2012) forced one partic-
ular vegetation model by 18 sets of forcings from climate
models of the Coupled Model Intercomparison Project Phase
5 (CMIP5), while the parameter or model structure uncer-
tainty is not taken into account.

EcoPAD (v1.0) is designed to provide a thorough pic-
ture of uncertainties from multiple sources, especially in car-
bon cycling studies. By focusing on multiple instead of one
source of uncertainty, ecologists can allocate resources to ar-
eas that cause relatively high uncertainty. The attribution of
uncertainties in EcoPAD (v1.0) will rely on an ensemble of
ecosystem models, the data assimilation system, and climate
forcing with quantified uncertainty. Jiang et al. (2018) fo-
cused specifically on the relative contribution of parameter
uncertainty vs. climate forcing uncertainty in forecasting car-
bon dynamics at the SPRUCE site. By assimilating pretreat-
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ment measurements (2011–2014) from the SPRUCE exper-
iment, Jiang et al. (2018) estimated uncertainties in key pa-
rameters that regulate peatland carbon dynamics. Combined
with the stochastically generated climate forcing (e.g., pre-
cipitation and temperature), Jiang et al. (2018) found that
external forcing resulted in higher uncertainty than param-
eters in forecasting carbon fluxes, but caused lower uncer-
tainty than parameters in forecasting carbon pools. There-
fore, more efforts are required to improve forcing measure-
ments for studies that focus on carbon fluxes (e.g., GPP),
while reductions in parameter uncertainties are more impor-
tant for studies in carbon pool dynamics. Despite the fact
that Jiang et al. (2018) do not quantify model structure un-
certainty, incorporating multiple models into EcoPAD (v1.0)
is in progress, and future uncertainty assessment will benefit
from EcoPAD (v1.0) with its systematically archived model
simulation, data assimilation, and forecasting.

3.4.4 Case 4: improving biophysical estimation for
better ecological prediction

Carbon cycling studies can also benefit from EcoPAD (v1.0)
through improvements in biophysical estimation. The soil
environmental condition is an important regulator of below-
ground biological activities and also feeds back to above-
ground vegetation growth. Biophysical variables, such as soil
temperature, soil moisture, ice content, and snow depth, are
key predictors of ecosystem dynamics. After constraining
the biophysical module by detailed monitoring data from the
SPRUCE experiment through the data assimilation compo-
nent of EcoPAD (v1.0), Huang et al. (2017) forecasted soil
thermal dynamics under future conditions and studied the re-
sponses of soil temperature to hypothetical air warming. This
study emphasized the importance of accurate climate forcing
in providing robust thermal forecasts. In addition, Huang et
al. (2017) revealed nonuniform responses of soil temperature
to air warming. Soil temperature responded more strongly to
air warming during summer compared to winter. Soil tem-
perature increased more in shallow soil layers compared to
deep soils in summer in response to air warming. Therefore,
extrapolating manipulative experiments based on air warm-
ing alone may not reflect the real temperature sensitivity of
SOM if soil temperature is not monitored. As a robust quan-
tification of environmental conditions is known to be a first
step towards a better understanding of ecological process,
improvement in soil thermal predictions through the Eco-
PAD (v1.0) data assimilation system is helpful in telling apart
biogeochemical responses from environmental uncertainties
and also in providing field ecologists with key environmental
conditions beforehand.

3.4.5 Case 5: how do the updated model and data
contribute to reliable forecasting?

Through constantly adjusted model and external forcing ac-
cording to observations and weekly archived model parame-
ter, model structure, external forcing, and forecasting results,
the contribution of model and data updates can be tracked by
comparing forecasted vs. realized simulations. For example,
Fig. 6 illustrates how updated external forcing (compared
to stochastically generated forcing) and shifts in ecosys-
tem state variables shape ecological predictions. “Updated”
means the real meteorological forcing monitored from the
weather station. We use stochastically generated forcing to
represent future meteorological conditions. Future precipita-
tion and air temperature were generated by vector autoregres-
sion using a historical dataset (1961–2014) monitored by the
weather station. Photosynthetically active radiation (PAR),
relative humidity, and wind speed were randomly sampled
from the joint frequency distribution at a given hour each
month. Detailed information on weather forcing is available
in Jiang et al. (2018). Similarly as in other EcoPAD-SPRUCE
case studies, TECO is trained through data assimilation with
observations from 2011–2014 and used to forecast GPP and
total soil organic carbon content at the beginning of 2015.
For demonstrating purposes, Fig. 6 only shows three series
of forecasting results instead of updates from every week.
Series 1 (S1) records forecasted GPP and soil carbon with
stochastically generated weather forcing from January 2015–
December 2024 (Fig. 6a, b, cyan). Series 2 (S2) records sim-
ulated GPP and soil carbon with observed (updated) climate
forcing from January 2015 to July 2016 and forecasted GPP
and soil carbon with stochastically generated forcing from
August 2016–December 2024 (Fig. 6a, b, red). Similarly, the
stochastically generated forcing in Series 3 (S3) starts from
January 2017 (Fig. 6a, b, blue). For each series, predictions
were conducted with randomly sampled parameters from the
posterior distributions and stochastically generated forcing.
We displayed 100 mean values (across an ensemble of fore-
casts with different parameters) corresponding to 100 fore-
casts with stochastically generated forcing.

GPP is highly sensitive to climate forcing. The differ-
ences between the updated (S2, 3) and initial forecasts (S1)
reach almost 800 gC m−2 yr−1 (Fig. 6c). The discrepancy is
strongly dampened in the following 1–2 years. The impact of
updated forecasts is close to 0 after approximately 5 years.
However, the soil carbon pool shows a different pattern. The
soil carbon pool is increased by less than 150 gC m−2, which
is relatively small compared to the carbon pool size of ca.
62 000 gC m−2. The impact of updated forecasts grows with
time and is highest at the end of the simulation year 2024.
GPP is sensitive to the immediate change in climate forcing,
while the updated ecosystem status (or initial value) has a
minimum impact on the long-term forecast of GPP. The im-
pact of updated climate forcing is relatively small for soil car-
bon forecasts during our study period. Soil carbon is less sen-
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Figure 6. Updated vs. un-updated forecasting of gross primary production (GPP; panels a, c) and soil organic C content (SoilC; panels b,
d). The upper panels show three series of forecasting with updated vs. stochastically generated weather forcing. “Updated” means the real
meteorology forcing monitored from field weather stations. Cyan indicates forecasting with 100 stochastically generated weather forcings
from January 2015 to December 2024 (S1); red corresponds to updated forecasting with two stages, which is updating with measured weather
forcing from January 2015 to July 2016, followed by forecasting with 100 stochastically generated weather forcings from August 2016 to
December 2024 (S2); and blue shows updated forecasting with measured weather forcing from January 2015 to December 2016, followed
by forecasting with 100 stochastically generated weather forcings from January 2017 to December 2024 (S3). Panels (c) and (d) display
mismatches between updated forecasting (S2, 3) and the original un-updated forecasting (S1). Red displays the difference between S2
and S1 (S2–S1), and blue shows the discrepancy between S3 and S1 (S3–S1). Dashed green lines indicate the start of forecasting with
stochastically generated weather forcing. Note that panels (a) and (c) are plotted on a yearly timescale and panels (b) and (d) show results
on a monthly timescale.

sitive to the immediate change in climate compared to GPP.
However, the alteration of system status affects the soil car-
bon forecast, especially on a longer timescale.

Since we are archiving updated forecasts every week, we
can track the relative contribution of ecosystem status, forc-
ing uncertainty, and parameter distributions to the overall
forecasting patterns of different ecological variables and how
these patterns evolve in time. In addition, as more observa-
tions of ecological variables (e.g., carbon fluxes and pool
sizes) become available, it is feasible to diagnose key factors
that promote robust ecological forecasting by comparing the
archived forecasts vs. observations and analyzing archives of
model parameters, initial values, and climate forcing.

4 Discussion

4.1 The necessity of interactive infrastructure to realize
ecological forecasting

Interactions enable the exchange and extension of informa-
tion to benefit from collective knowledge. For example, ma-
nipulative studies will have a much broader impact if the im-
plications of their results can be extended from the regression

between environmental variables and ecosystem response,
such as being integrated into an ecosystem model through
model–data communication. Such an approach will allow
us to gain information about the processes responsible for
ecosystem response, constraining models, and making more
reliable predictions. Going beyond the common practice of
model–data assimilation, in which model updating lags far
behind observations, EcoPAD (v1.0) enables iterative model
updating and forecasting by dynamically integrating mod-
els with new observations in near-real time. This near-real-
time interactive capacity relies on its scientific workflow that
automates data management, model simulation, data simula-
tion, and result visualization. The system design encourages
thorough interactions between experimenters and modelers.
Forecasting results from SPRUCE were shared among re-
search groups with different backgrounds through the web
interface. Expertise from different research groups was in-
tegrated to improve a second round of forecasting. Again,
thanks to the workflow, new information or adjustments are
incorporated into forecasting efficiently, making the forecast-
ing system fully interactive.

We also benefit from the interactive EcoPAD (v1.0) plat-
form to broaden user–model interactions and to broadcast
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forecasting results. Learning about ecosystem models and
data–model fusion techniques may undermine one’s produc-
tivity and even discourage researchers from learning model-
ing techniques because of their complexity and long learn-
ing curve. Because EcoPAD (v1.0) can be accessed from
a web browser and does not require any coding from the
user’s side, the time lag between learning the model struc-
ture and obtaining model-based results for one’s study is
minimal, which opens the door for non-modeler groups to
“talk” with models. The online storage of one’s results low-
ers the risk of data loss. The results of each model run can
be easily tracked and shared with a unique ID and web ad-
dress. In addition, the web-based workflow also saves time
for experts with automated model running, data assimila-
tion, forecasting, structured result access, and instantaneous
graphic outputs, bringing the possibility for a thorough ex-
ploration of more essential parts of the system. The simplic-
ity in use of EcoPAD (v1.0) at the same time may limit ac-
cess to the code and lower flexibility. Flexibility for users
with higher demands, for example those who want to test al-
ternative data assimilation methods, use a different carbon
cycle model, change the number of calibrated parameters, or
include observations for other variables, is provided through
the GitHub repository (https://github.com/ou-ecolab, last ac-
cess: January 2019). This GitHub repository contains code
and instructions for installing, configuring, and controlling
the whole system; users can adapt the workflow to wrap their
own model based on their needs. On the one hand, the open-
source web-based system broadens the user community. On
the other hand, it increases the risk of misuse and misinter-
pretation. We encourage users to be critical and consult sys-
tem developers to avoid inappropriate application of the sys-
tem.

4.2 Implications for better ecological forecasting

Specific to the reliable forecasting of carbon dynamics, our
initial exploration from EcoPAD-SPRUCE indicates that re-
alistic model structure, correct parameterization, and accu-
rate external environmental conditions are essential. The
model structure captures important mechanisms that regu-
late ecosystem carbon dynamics. Adjustment in the model
structure is critical to our improvement of methane forecast-
ing. Model parameters may vary between observation sites
and change with time or environmental conditions (Medlyn
et al., 1999; Luo et al., 2001). A static or wrong parameteri-
zation misses important mechanisms (e.g., acclimation and
adaptation) that regulate future carbon dynamics. Parame-
ters that are not well constrained, for example caused by a
lack of information from observational data, contribute to
high forecasting uncertainty and low reliability in forecasting
results. Correct parameterization is especially important for
long-term carbon pool predictions as parameter uncertainty
resulted in high forecasting uncertainty in our case study
(Jiang et al., 2018). Parameter values derived under ambient

conditions were not applicable to the warming treatment in
our methane case due to acclimation. The external environ-
mental condition is another important factor in carbon pre-
dictions. The external environmental condition includes both
the external climatic forcing that is used to drive ecosystem
models and also the environmental condition that is simu-
lated by ecosystem models. As we showed that air warming
may not proportionally transfer to soil warming, realistic soil
environmental information needs to be appropriately repre-
sented to predict soil carbon dynamics (Huang et al., 2017).
The impact of external forcing is especially obvious in short-
term carbon flux predictions. Forcing uncertainty resulted in
higher forecasting uncertainty in carbon flux compared to
that from parameter uncertainty (Jiang et al., 2018). Mis-
matches in forecasted vs. realized forcing greatly increased
simulated GPP and the discrepancy diminished in the long
run. A reliable external environmental condition, to some ex-
tent, reduces the complexity in diagnosing modeled carbon
dynamics.

Pool-based vs. flux-based predictions are regulated differ-
ently by external forcing and initial states, which indicates
that differentiated efforts are required to improve short- vs.
long-term predictions. External forcing, which has not been
well emphasized in previous carbon studies, has a strong im-
pact on short-term forecasting. The large response of GPP
to forecasted vs. realized forcing, as well as the stronger
forcing-caused uncertainty in GPP predictions, indicates that
correct forcing information is a key step in short-term flux
predictions. In this study, we stochastically generated the
climate forcing based on local climatic conditions (1961–
2014), which is not sufficient to capture local short-term cli-
mate variability. As a result, updated GPP went outside our
ensemble forecasting. On the other hand, parameters and his-
torical information about pool status are more important in
long-term pool predictions. Therefore, improvement in long-
term pool size predictions cannot be achieved with accurate
climatic information alone. Instead, it requires accumulation
in knowledge related to site history and processes that regu-
late pool dynamics.

Furthermore, reliable forecasting requires an understand-
ing of uncertainty sources in addition to future mean states.
Uncertainty and complexity are major factors that lead to
the belief in “computationally irreducible” and low intrinsic
predictability of ecological systems (Beckage et al., 2011;
Coreau et al., 2010; Schindler and Hilborn, 2015). Recent
advances in computational statistical methods offer a way to
formally account for various uncertainty sources in ecology
(Clark et al., 2001; Cressie et al., 2009). The Bayesian ap-
proach embedded in EcoPAD (v1.0) brings the opportunity
to understand and communicate forecasting uncertainty. Our
case study revealed that forcing uncertainty is more impor-
tant in flux-based predictions, while parameter uncertainty is
more critical in pool-based predictions. Actually, how fore-
casting uncertainty changes with time, what the dominate
contributors of forecasting uncertainty are (e.g., parameter,
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initial condition, model structure, observation errors, forcing,
etc.), how uncertainty sources interact among different com-
ponents, and to what extent unconstrained parameters affect
forecasting uncertainty are all valuable questions that can be
explored through EcoPAD (v1.0).

4.3 Applications of EcoPAD (v1.0) to manipulative
experiments and observation sites

Broadly speaking, data–model integration stands to increase
the overall precision and accuracy of model-based experi-
mentation (Luo et al., 2011b; Niu et al., 2014). Systems for
which data have been collected in the field and that are well
represented by ecological models therefore have the capac-
ity to receive the highest benefits from EcoPAD (v1.0) to
improve forecasts. In a global change context, experimen-
tal manipulations, including ecosystem responses to changes
in precipitation regimes, carbon dioxide concentrations, tem-
peratures, season lengths, and species compositional shifts,
can now be assimilated into ecosystem models (Shi et al.,
2016; Xu et al., 2006; Gao et al., 2011; Lebauer et al., 2013).
The impacts of these global change factors on carbon cycling
and ecosystem functioning can now be measured in a sci-
entifically transparent and verifiable manner. This leads to
ecosystem modeling of systems and processes that can ob-
tain levels of confidence that lend credibility (from the pub-
lic point of view) to the forward progress of science toward
forecasting and predicting (Clark et al., 2001). These are the
strengths of a widely available interface devoted to data–
model integration towards better forecasting.

The data–model integration framework of EcoPAD (v1.0)
creates a smart interactive model–experiment (ModEx) sys-
tem. ModEx has the capacity to form a feedback loop in
which field experiments guide modeling and modeling in-
fluences experimental focus (Luo et al., 2011a). We demon-
strated how EcoPAD (v1.0) works hand-in-hand between
modelers and experimenters in the life cycle of the SPRUCE
project. The EcoPAD-SPRUCE system operates while exper-
imenters are making measurements or planning for future re-
search. Information is constantly fed back between modelers
and experimenters, and simultaneous efforts from both par-
ties illustrate how communication between models and data
advance and shape our understanding towards better fore-
casts during the life cycle of a scientific project. ModEx can
be extended to other experimental systems to do the follow-
ing: (1) predict what an ecosystem’s response might be to
treatments once the experimenter has selected a site and de-
cided the experimental plan; (2) assimilate the data exper-
imenters are collecting during the experiment to constrain
model predictions; (3) project what an ecosystem’s responses
may likely be in the rest of the experiment; (4) tell experi-
menters which important datasets they may want to collect
in order to understand the system; (5) periodically update the
projections; and (6) improve the models, the data assimila-
tion system, and field experiments during the process.

In addition to manipulative experiments, the data assimi-
lation system of EcoPAD (v1.0) can be used for automated
model calibration for FLUXNET sites or other observa-
tion networks, such as NEON and LTER (Johnson et al.,
2010; Robertson et al., 2012). The application of EcoPAD
(v1.0) at FLUXNET, NEON, or LTER sites includes three
steps in general. First, build the climate forcing in the suit-
able formats of EcoPAD (v1.0) from the database of each
site. Second, collect the prior information (include obser-
vations of state variables) in the data assimilation system
from FLUXNET, NEON, or LTER sites. Third, incorporate
the forcing and prior information into EcoPAD (v1.0) and
then run EcoPAD (v1.0) with the dynamic data assimilation
system. Furthermore, the proposed continental-scale ecology
study (Schimel, 2011), EcoPAD (v1.0) once properly applied
could also help evaluate and optimize the field deployment of
environmental sensors and supporting cyber-infrastructure,
which will be necessary for larger, more complex environ-
mental observing systems being planned in the US and across
different continents.

4.4 Future developments

EcoPAD (v1.0) will expand as time goes on. The system
is designed to incorporate multiple process-based models,
diverse data assimilation techniques, and various ecologi-
cal state variables for different ecosystems. The case stud-
ies presented in earlier sections are based primarily on one
model. A multiple (or ensemble) model approach is helpful
in tracking uncertainty sources from our process understand-
ing. With rapidly evolving ecological knowledge, emerging
models with different hypotheses, such as the microbial–
enzyme model (Wieder et al., 2013), enhance our capacity
in ecological prediction but can also benefit from rapid tests
against data if incorporated into EcoPAD (v1.0). In addition
to MCMC (Braswell et al., 2005; Xu et al., 2006), a vari-
ety of data assimilation techniques have been recently ap-
plied to improve models for ecological forecasting, such as
the EnKF (Gao et al., 2011), genetic algorithms (Zhou and
Luo, 2008), and 4-D variational assimilation (Peylin et al.,
2016). Future development will incorporate different opti-
mization techniques to offer users the option to search for the
best model parameters by selecting and comparing the best
method for their specific studies. We focus mostly on carbon-
related state variables in the SPRUCE example, and the data
assimilation system in EcoPAD (v1.0) needs to include more
observed variables for constraining model parameters. For
example, the NEON sites not only provide measured ecosys-
tem CO2 fluxes and soil carbon stocks, but also resource
(e.g., GPP–transpiration for water and GPP–intercepted PAR
for light) use efficiency (Johnson et al., 2010).

Researchers interested in creating their own multiple
model and/or multiple assimilation scheme version of Eco-
PAD (v1.0) can start from the GitHub repository (https:
//github.com/ou-ecolab, last access: January 2019) where the
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source code of the EcoPAD (v1.0) workflow is archived. To
add a new variable that is not forecasted in the EcoPAD-
SPRUCE example requires modelers and experimenters to
work together to understand their process-based model, ob-
servations, and how messaging works in the workflow of
EcoPAD (v1.0) following the example of EcoPAD-SPRUCE.
To add a new model or a new data assimilation scheme
for variables that are forecasted in EcoPAD-SPRUCE, re-
searchers need to create additional dockers and mount them
to the existing workflow with knowledge of how informa-
tion is passed within the workflow (see the Supplement for
detailed information).

With these improvements, one goal of EcoPAD (v1.0) is
to enable the research community to understand and reduce
forecasting uncertainties from different sources and fore-
cast various aspects of future biogeochemical and ecologi-
cal changes as data become available. EcoPAD (v1.0) acts
as a tool to link model and data, not as a substitution for
either model or data. Ecological forecasting through Eco-
PAD (v1.0) relies strongly on theoretical (model) and empir-
ical (data) ecological studies. Questions regarding the major
factors regulating temporal variability in methane emissions
cannot be directly answered by EcoPAD (v1.0). How to make
use of EcoPAD (v1.0) to inspire breakthroughs in both the-
oretical and empirical ecological studies is worth future ex-
ploration.

The power of EcoPAD (v1.0) also lies in the potential ser-
vice it can bring to society. Forecasting with carefully quan-
tified uncertainty is helpful in providing support for natural
resource managers and policy makers (Clark et al., 2001).
It is always difficult to bring complex mathematical ecosys-
tem models to the general public, which creates a gap be-
tween current scientific advances and public awareness. The
web-based interface from EcoPAD (v1.0) makes modeling as
easy as possible without losing the connection to the math-
ematics behind the models. It will greatly transform envi-
ronmental education and encourage citizen science (Miller-
Rushing et al., 2012; Kobori et al., 2016) in ecology and cli-
mate change with future outreach activities to broadcast the
EcoPAD (v1.0) platform.

5 Conclusions

The fully interactive web-based Ecological Platform for As-
similating Data (EcoPAD, v1.0) into models aims to pro-
mote data–model integration towards predictive ecology by
making complex ecosystem model and data assimilation
techniques accessible to different audience. It is supported
by meta-databases of biogeochemical variables, libraries of
modules for process models, a toolbox of inversion tech-
niques, and a scalable scientific workflow. Through these
components, it automates data management, model simula-
tion, data assimilation, ecological forecasting, and result vi-
sualization, providing an open, convenient, transparent, flex-

ible, scalable, traceable, and readily portable platform to sys-
tematically conduct data–model integration towards better
ecological forecasting.

We illustrated several of its functionalities through the
Spruce and Peatland Responses Under Climatic and En-
vironmental change (SPRUCE) experiment. The iterative
forecasting approach from EcoPAD-SPRUCE through the
prediction–question–discussion–adjustment–prediction cy-
cle and extensive communication between model and data
creates a new paradigm to best inform forecasting. In ad-
dition to forecasting, EcoPAD (v1.0) enables an interac-
tive web-based approach to conduct model simulation, es-
timate model parameters or state variables, quantify uncer-
tainty in estimated parameters and projected states of ecosys-
tems, evaluate model structures, and assess sampling strate-
gies. Altogether, EcoPAD-SPRUCE creates a smart interac-
tive model–experiment (ModEx) system from which experi-
menters can know what an ecosystem’s response might be at
the beginning of their experiments, constrain models through
collected measurements, predict an ecosystem’s response in
the rest of the experiments, adjust measurements to better
understand their system, periodically update projections, and
improve models, the data assimilation system, and field ex-
periments.

Specifically for forecasting carbon dynamics, EcoPAD-
SPRUCE revealed that better forecasting relies on improve-
ments in model structure, parameterization, and accurate ex-
ternal forcing. Accurate external forcing is critical for short-
term flux-based carbon predictions, while the right process
understanding, parameterization, and historical information
are essential for long-term pool-based predictions. In addi-
tion, EcoPAD (v1.0) provides an avenue to disentangle dif-
ferent sources of uncertainties in carbon cycling studies and
to provide reliable forecasts with accountable uncertainties.

Code availability. The EcoPAD (v1.0) portal is available at https:
//ecolab.nau.edu/ecopad_portal/ (Jiang et al., 2019a), and code is
provided at the GitHub repository (https://github.com/ou-ecolab,
Jiang et al., 2019b).

Data availability. Relevant data for this paper are available at the
SPRUCE project web page (https://mnspruce.ornl.gov/, last access:
January 2019) and the EcoPAD (v1.0) web portal (https://ecolab.
nau.edu/ecopad_portal/, Jiang et al., 2019a). Additional data can be
requested from the corresponding author.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-12-1119-2019-supplement.
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